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Abstract—Distribution grids currently lack comprehensive
real-time metering. Nevertheless, grid operators require precise
knowledge of loads and renewable generation to accomplish
any feeder optimization task. At the same time, new grid
technologies, such as solar photovoltaics and energy storage units
are interfaced via inverters with advanced sensing and actuation
capabilities. In this context, this two-part work puts forth the
idea of engaging power electronics to probe an electric grid and
record its voltage response at actuated and metered buses, to infer
non-metered loads. Probing can be accomplished by commanding
inverters to momentarily perturb their power injections. Multiple
probing actions can be induced within a few tens of seconds.
In Part I, load inference via grid probing is formulated as an
implicit nonlinear system identification task, which is shown to be
topologically observable under certain conditions. The conditions
can be readily checked upon solving a max-flow problem on
a bipartite graph derived from the feeder topology and the
placement of probed and non-metered buses. The analysis holds
for single- and multi-phase grids, radial or meshed, and applies
to phasor or magnitude-only voltage data. Using probing to learn
non-constant-power loads is also analyzed as a special case.

Index Terms—Smart inverters, topological observability, Jaco-
bian matrix, generic rank, distribution grids, ZIP loads.

I. INTRODUCTION

Low-voltage distribution grids have been plagued with
limited observability, due to limited instrumentation, low
investment interest in the past, and their sheer extent [1].
Traditionally, utility operators monitor distribution grids by
collecting measurements infrequently and only from a few
critical buses. This mode of operation has been functional
due to the under-utilization of distribution grids and the
availability of historical data. Nevertheless, with the advent
of distributed energy resources (DERs), electric vehicles, and
demand-response programs, there is a critical need to reliably
estimate the system state and learn non-metered loads to
optimally dispatch the grid on a frequent basis (say 20 min).
To this end, the communication capabilities of grid sensors
together with the actuation and sensing features of power
inverters found in solar panels, energy storage units, and
electric vehicles could be utilized toward unveiling loads.

Although estimating loads or the grid state has heavily
relied on pseudo-measurements, such measurements may not
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be available or accurate under the current mode of opera-
tion [2], [3]. On the other hand, the widespread deployment of
digital relays, phasor measurement units (PMUs), and inverter-
interfaced DERs provide excellent opportunities for improving
distribution grid observability [4], [5]. In addition, regular
polling and on-demand reads of customer loads and voltages
via smart meters have enhanced the accuracy of distribution
system state estimation [6], [7]. Ignoring network information,
a kernel-based scheme for learning loads is reported in [8].
Since the previous schemes collect data on a hourly basis,
they are of limited use for real-time optimization.

Rather than passively collecting grid readings to infer non-
metered loads, this works advocates engaging inverters to
probe the grid and thus actively collect feeder data. We define
probing as the technique of perturbing an electric grid for the
purpose of finding unknown parameters. The idea of probing
has been previously suggested towards estimating the electro-
mechanical oscillation modes in power transmission systems
[9], [10]. Perturbing the voltage and/or current of a single
inverter has been adopted in the power electronics community
to determine the grid-equivalent Thevenin impedance of in-
verters [11]. Moreover, modulating the primary droop control
loop of inverters has been recently suggested for learning loads
and topologies in direct-current grids [12]. Graph algorithms
and identifiability conditions for recovering feeder topologies
using inverter probing data have been devised in [13], [14].

Beyond their standard energy conversion functionality,
smart inverters are being utilized for reactive power control
and other feeder optimization tasks [15]. In fact, the grid
voltage response to inverter injection changes has been used as
a means to solve optimal power flow tasks in a decentralized
and/or communication-free fashion; see for example [16], [17],
[18], [19], [20]. Leveraging exactly this voltage response, grid
probing attributes smart inverters a third functionality towards
monitoring rather than grid control.

The contribution of Part I of this work is on three fronts.
First, we formulate our Probing-to-Learn (P2L) technique in
Section II. Exploiting the stationarity of non-metered loads
during probing and assuming noiseless inverter readings in
Part I, the P2L problem is posed as a coupled power flow
task. Second, we provide intuitive and easily verifiable graph-
theoretic conditions under which probing succeeds in finding
non-metered loads under phasor (Section III) and non-phasor
data (Section IV). Lastly, Section V extends probing to infer
non-constant-power (ZIP) loads.

The results of Part I significantly extend our previous work
of [21] in four directions: i) The analysis extends non-trivially
to multiple rather than only two probing actions; ii) Probing
setups with voltage magnitude and/or angle data are studied in
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a unified fashion; iii) We use the feeder connectivity to upper
bound the number of probing actions beyond which there is
no identifiability benefit; and iv) A new proving technique
generalizes the analysis from radial to meshed grids, thus
covering the timely topic of loopy multiphase distribution grids
and transmission systems.

Regarding notation, column vectors (matrices) are denoted
by lower- (upper-) case boldface letters and sets by calligraphic
symbols. The cardinality of set X is denoted by |X |, and its
complement by X̄ . The operators (·)> and (·)H stand for
(complex) transposition; the floor and ceiling functions are
denoted by b·c and d·e; dg(x) defines a diagonal matrix having
x on its main diagonal; and IN is the N ×N identity matrix.
The notation xA denotes the sub-vector of x indexed by A;
and XA,B is the matrix obtained by sampling the rows and
columns of X indexed respectively by A and B.

II. GRID PROBING

Albeit not every bus is metered in a distribution grid, some
buses are equipped with sensors recording voltage magnitudes
and/or angles, actual powers, and power factors. Moreover, the
power injections in solar panels and energy storage devices
can be instantly controlled using advanced power electronics.
Building on the physical law that perturbing power injections
at different buses is reflected on voltage changes across the
grid, the key idea here is to engage power electronics to probe
the grid with the purpose of learning non-metered loads.

To formally describe grid probing, let us briefly review a
feeder model. Consider a feeder represented by a graph G =
(N+,L) where the nodes in N+ := {0, . . . , N} correspond
to buses, and the edges in L to distribution lines. Let Y :=
G+jB be the grid bus admittance matrix and G (resp. B) be
the bus conductance (resp. susceptance) matrix. By definition,
the entries Bnm and Gnm for n 6= m are non-zero only if
(n,m) ∈ L. Let us express the voltage phasor at bus n ∈ N+

in Cartesian and polar coordinates as

vn = vr,n + jvi,n = une
jθn .

The substation is indexed by n = 0, its voltage remains fixed
at 1 + j0, and the remaining buses comprise the set N . If
vr := [vr,0 · · · vr,N ]> and vi := [vi,0 · · · vi,N ]>, define
the system state as v := [v>r v>i ]>. Apparently, for each bus
n ∈ N+, the squared voltage magnitude and the net power
injections are quadratic functions of v, whereas the voltage
angle is a trigonometric function of v [22, Ch. 3]

un(v) = u2n = v2r,n + v2i,n (1a)

pn(v) = vr,n

N∑
m=0

(vr,mGnm − vi,mBnm)

+ vi,n

N∑
m=0

(vr,mBnm + vi,mGnm) (1b)

qn(v) = vi,n

N∑
m=0

(vr,mGnm − vi,mBnm)

− vr,n
N∑
m=0

(vr,mBnm + vi,mGnm) (1c)

θn(v) = arctan

(
vr,n
vi,n

)
. (1d)

With the proliferation of grid sensors and inverters, the
distribution grid operator may have access to all four quantities
(un, θn, pn, qn) on a subset of buses. Different from the
conventional power flow (PF) setup with PQ and PV buses,
we partition N+ into the subsets:

• The set M of metered buses for which (un, θn, pn, qn)
are known and their power injections are possibly control-
lable. This set includes the substation and buses equipped
with smart sensors and/or inverters. Its cardinality is
denoted by M := |M|.

• The set O of non-metered buses where no information
is available. Its cardinality is denoted by O := |O|, and
apparently, N + 1 = M +O.

The inverters interfacing DERs are typically modeled as
constant-power generators [15], [16], [18]: Internal control
loops can reach setpoints for (re)-active power injections
within microseconds. The setpoints should comply with solar
irradiance and the rating of the inverter.

Remark 1. We emphasize pn + jqn is the net complex injec-
tion. If bus n hosts a smart inverter and a non-controllable
load, it is henceforth assumed that the operator measures
pn + jqn and the voltage at the point of common coupling,
and controls the complex injection from the inverter. This
assumption is reasonable since smart inverters are usually
equipped with sensors; e.g., the Pecan Street project measures
both the net and inverter injections [23].

Given the feeder topology captured in Y and the specifica-
tions {(un, θn, pn, qn)}n∈M, our goal is to recover the power
injections at non-metered buses {(pn, qn)}n∈O. Lacking a di-
rect mapping from {(un, θn, pn, qn)}n∈M to {(pn, qn)}n∈O,
the problem of finding the non-metered loads boils down to
the task of recovering the underlying state v first. Collecting
the grid data {(utn, θtn, ptn, qtn)}n∈M at time t and assuming
for now these data are noiseless, we get the specifications

un(vt) = utn, ∀n ∈M (2a)
θn(vt) = θtn, ∀n ∈M (2b)
pn(vt) = ptn, qn(vt) = qtn ∀n ∈M (2c)

which involve 4M equations over 2(N + 1) unknowns. A
necessary condition for solving (2) is 4M ≥ 2(N + 1). Since
N + 1 = M +O, the condition simplifies to

M ≥ O. (3)

In other words, the metered buses must be at least as many as
the non-metered ones.

To relax this condition on M , one may consider jointly
processing the data {(utn, θtn, ptn, qtn)}n∈M collected across
multiple times t ∈ T with T := {1, . . . , T}. This approach
does not improve the observability of the equations in (2),
simply because the equations are independent over T . More-
over, both the 4MT equations and the 2(N + 1)T state
variables {vt}Tt=1 scale with T . One way to relate power flow
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Fig. 1. Overview of the P2L framework: (a) block diagram depicting the P2L task with phasor data; (b) temporal organization of grid operation.

specifications across time is to assume that the non-metered
loads remain invariant across T , that is

pn(vt) = pn(vt+1), ∀n ∈ O, t ∈ T ′ (4a)
qn(vt) = qn(vt+1), ∀n ∈ O, t ∈ T ′ (4b)

where T ′ := {1, . . . , T − 1}. In this way, we obtain the
additional 2O(T −1) equations and couple the states {vt}Tt=1.

Even though there may be an observability advantage in
coupling specifications across time, the timespan of T is
critical: For non-metered loads to remain unchanged, the
timespan of T should be relatively short. But if the duration of
T is too short, the metered injections in the buses of M may
not change either. In this case, the grid state remains identical
over T , the scheme degenerates to the setup of (2) for T = 1,
and there is no advantage by coupling specifications.

At this point, smart inverters come to our rescue: The
timespan of T can be made sufficiently short so that the non-
metered loads in the buses of O remain invariant over T ,
whereas the power injections from smart inverters vary. The
key point here is to couple power flow specifications through
what we term grid probing. Probing can be accomplished by
commanding inverters to change their power injections for one
second. An inverter can curtail its solar output; (dis)-charge an
energy storage unit; and/or change its power factor. Multiple
probing actions can be instructed within tens of seconds. By
intentionally perturbing inverter injections, the grid transitions
across different states {vt}Tt=1 depending on the probing injec-
tions and non-metered loads. Recording voltages {utn, θtn}Tt=1

over n ∈M could unveil non-metered loads.
The metered buses in M can be classified into probing

buses and metered but non-controllable buses. Although grid
data (utn, θ

t
n, p

t
n, q

t
n) are collected on both probed and metered

buses, the operator can control only the probing buses. To
simplify the presentation, we will henceforth assume that all
metered buses are probing buses, although the analysis and
algorithms apply to the more general setup.

Probing postulates two assumptions on non-metered loads:
a1) They remain constant throughout T ; and a2) are modeled
as of constant power. Assumption a1) may be reasonable
over the short duration of probing. Regarding a2), one could
alternatively adopt a ZIP load model for bus n ∈ O [24]

−ptn(utn) = αpn(utn)2 + βpnu
t
n + γpn (5a)

−qtn(utn) = αqn(utn)2 + βqnu
t
n + γqn . (5b)

The parameters (αpn , βpn , γpn) correspond to the constant-
impedance, constant-current, and constant-power components
of active load; likewise (αqn , βqn , γqn) for reactive load. A
non-metered ZIP load is then described by six rather than two
parameters. Moreover, despite the model for load n does not
change across T , its power injection pn + jqn does change
for varying un. Then, the coupling equations are not valid in
the form of (4) anymore. If the ZIP parameters are assumed
invariant over T , the power flow equations can still be coupled
across T , yet the identifiability analysis and the associated
become perplex. To bypass this complexity, Section V copes
with ZIP loads by resorting to single-slot probing.

Figure 1 depicts how probing can be incorporated into
grid operation: Suppose a utility operates a demand-response
program; manages energy storage; or controls smart inverters
for reactive power control on a 20-min basis. To solve the
optimal power flow problem, the operator needs to know the
injections at non-metered buses. To do so, a probing interval
lasting few tens of seconds precedes the feeder dispatch.
This interval T is divided into T probing slots indexed by
t = 1, . . . , T . During each probing slot t, every inverter
n ∈ M changes its injections to the setpoints (ptn, q

t
n) and

reads voltage data (utn) or (utn, θ
t
n). At the end of interval

T , each inverter n ∈M sends the collected data {utn}t∈T or
{utn, θtn}t∈T back to the utility, and switches its setpoints back
to their nominal values. The utility processes the collected
data, infers the non-metered loads, and dispatches the grid for
the next 20-min period. Some implementation details follow.

Remark 2. The probing setpoints (ptn, q
t
n) for all t and

n ∈M are decided by the utility prior to T and communicated
to all inverters via two-way communication links. This is to
ensure that probing complies with voltage constraints and
for improved load estimation accuracy; see Part II. The
commanded setpoints are attained by simple PID controllers.
Further, the inverters act synchronously along probing slots.
Since potential delays may raise synchronization issues, de-
veloping protocols where inverters probe asynchronously is of
interest.

Remark 3. The proposed probing scheme aims at recovering
loads assuming the feeder topology is known. The topology
includes bus connectivity and line impedances, phase assign-
ments, and the statuses of capacitors and voltage regulators;
see Remark 4. Although small errors in line impedances and
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regulator tap settings could be modeled as measurement noise,
grid probing is as sensitive to topology errors as power flow
equations are. However, probing can be also used for inferring
grid topologies and line parameters without knowing non-
metered loads [13], [14]. Moreover, phase assignments can be
inferred from smart meter data; see e.g., [25]. Such techniques
could precede P2L to find or calibrate feeder models.

Remark 4. Feeders are equipped with voltage-control devices,
such as regulators and capacitor banks, which respond to
voltage excursions by changing their taps and switching on/off
with time delays of around 30-90 seconds [24]. Since T lasts
20 sec or less, probing is not expected to trigger voltage
control actions per se. Nonetheless, there are still chances for
these actions to occur during T due to load fluctuations. If the
utility does not monitor these devices in real-time or it cannot
override their settings during probing, the topology learning
techniques of Remark 3 could be possibly used. Voltage control
actions and topology reconfigurations will be ignored in this
work. Interestingly though, such actions could be used towards
grid probing too.

Grid probing can be now formally stated as follows.

Definition 1 (Probing-to-Learn task with phasor data). Given
Y and probing data (utn, θ

t
n, p

t
n, q

t
n) for all n ∈M and t ∈ T ,

the probing-to-learn (P2L) task entails solving the equations
in (2) for t ∈ T jointly with the coupling equations in (4).

The P2L task involves 4MT + 2O(T − 1) equations in
2(N + 1)T unknowns. A necessary condition for solving it is

M ≥ O

T
(6)

which coincides with the condition in (3) for T = 1. For
T ≥ 2 however, it improves upon (3) if probing over multiple
time instances is allowed. In [21], we have derived conditions
under which the P2L task recovers non-metered loads for
T = 2. The analysis there was further confined to non-
phasor grid data {(utn, ptn, qtn)}n∈M,t∈T and radial grids. The
conference work of [26] extended the previous claims (without
proofs) to meshed networks. Here, we broaden the scope to
study the identifiability of the P2L task with phasor data
{(utn, θtn, ptn, qtn)}n∈M over T , and show that the analysis with
non-phasor data can be seen as a special case of the former.

III. IDENTIFIABILITY OF P2L WITH PHASOR DATA

As customary in identifiability analysis, data will be as-
sumed noiseless; noisy data are considered in Part II [27].
The relationship between the inputs {utn, θtn, ptn, qtn}n∈M and
the outputs {ptn, qtn}n∈O of the P2L task is implicit since the
PF equations involve {vt}Tt=1 as nuisance variables. Because
of this, P2L is tackled in two steps. The first step of finding
{vt}Tt=1 is the challenging one. In the second step, one simply
evaluates (pn(vt), qn(vt)) for all n ∈ O and t = 1. For
numerical stability, one can recover the unknown injections
by averaging as 1

T

∑T
t=1 pn(vt) and 1

T

∑T
t=1 qn(vt) for all

n ∈ O. Hence, if the system states {vt}Tt=1 can be recovered
by solving (2) and (4), the P2L task is deemed successful.

Fig. 2. The sparsity pattern of E and its bipartite graph GE : Column nodes
are linked to row nodes depending on the entries of E. The perfect matching
is marked in red. From Lemma 1, any matrix with this sparsity pattern is
generically full rank. Had E4,3 = 0, no perfect matching would exist.

Granted the P2L equations are non-linear, identifiability
can be ensured only within a neighborhood of the nominal
{vt}Tt=1. Upon invoking the inverse function theorem, a nec-
essary and sufficient condition for locally solving P2L is that
the Jacobian matrix J ({vt}) related to the nonlinear equations
of (2) and (4) is full rank. Because J ({vt}) depends on {vt},
characterizing its column rank for any {vt} is challenging.

To tackle this issue, we resort to the generic rank of a matrix
defined as the maximum possible rank attained if the non-
zero entries of the matrix are allowed to take arbitrary real
values [28], [29]. If the generic rank of an M × N matrix
E with M ≥ N equals N , matrix E is said to be of full
generic rank. The generic rank of a matrix is related to a
graph constructed by the sparsity pattern of the matrix, that
is the locations of its (non)-zero entries. To explain this link,
some graph-theoretic concepts are needed.

A graph G = (N ,L) is bipartite if N can be partitioned
into disjoint subsets N1 and N2, such that N = N1 ∪ N2,
and every ` ∈ L connects a node in N1 to a node in N2. A
subset of edges L′ ⊆ L is termed a perfect matching of N1 to
N2, if every vertex in N1 is incident to exactly one edge in
L′. The degree δn(G) of node n is defined as the number of
edges incident to node n in G. Given a matrix E ∈ RM×N ,
construct a bipartite graph GE having M + N nodes: Each
column of E is mapped to a column node and each row of
E to a row node. An edge runs from the n-th column node
to the m-th row node only if Emn 6= 0; see Fig. 2. Based on
GE , we will use next claim.

Lemma 1 ([28], [29]). An M ×N matrix E has full generic
rank if and only if the bipartite graph GE features a perfect
matching from the column nodes to its row nodes.

According to Lemma 1 (proved in [29, Th. 12.10]), the
generic identifiability of P2L relies on the sparsity pattern of
J ({vt}). The goal is to match every column node (state) of
J ({vt}) to a unique row node (equation). The non-zero entries
of J ({vt}) are the available links.

To characterize the sparsity pattern of J ({vt}), consider the
Jacobian matrices Ju(v), Jθ(v), Jp(v), and Jq(v), associated
accordingly with the squared voltage magnitudes and voltage
angles, and the (re)active power injections over all buses.
Matrix J ({vt}) consists of stacked row-sampled submatrices
of Ju(vt), Jθ(vt), Jp(vt), and Jq(vt) corresponding to (2)
and (4) for t ∈ T . The matrices obtained by selecting the rows
of Ju(vt) associated with buses in M and O are respectively
denoted by JuM(vt) and JuO(vt). Similar notation is used for
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Fig. 3. Left: Sparsity pattern of J̃ ({vt}) [cf. (8)]. Right: block tridiagonal
J̃ ({vt}) revealed after splitting each block row of coupling equations.

Jθ(vt), Jp(vt), and Jq(vt). Let us define

JM(vt) :=


JuM(vt)
JθM(vt)
JpM(vt)
JqM(vt)

 and JO(vt) :=

[
JpO(vt)
JqO(vt)

]
.

Every JM(vt) corresponds to 4M metering equations, and
every JO(vt) to 2O coupling equations. Having defined
JM(vt) and JO(vt), the entire Jacobian matrix J ({vt}) can
be row-permuted as

JM(v1) 0 0 · · · 0
JO(v1) −JO(v2) 0 · · · 0

0 JM(v2) 0 · · · 0
0 JO(v2) −JO(v3) · · · 0
0 0 JM(v3) · · · 0
...

...
...

. . .
...

0 0 0 · · · −JO(vT )
0 0 0 · · · JM(vT )


. (8)

This row-permuted version of J ({vt}) will be denoted by
J̃ ({vt}), and has been obtained by interleaving block rows of
metering and coupling equations.

Matrix J̃ ({vt}) features the sparsity pattern of a block
tridiagonal matrix. To reveal this structure, split each block
row of coupling equations into two block rows. The top block
row will be grouped with the previous block row of metering
equations. The bottom block row will be grouped with the
next block row of metering equations as in Fig. 3.

Focus now on the blocks lying on the main diagonal of
J̃ ({vt}). These blocks will be denoted by J̃t(vt) for t ∈ T .
If for each J̃t(vt), its columns can be perfectly matched to its
rows, then a perfect bipartite matching for the entire J̃ ({vt})
has been obtained. Then, Lemma 1 guarantees that J̃ ({vt})
and J ({vt}) are generically full rank.

Our goal is to assign coupling equations to blocks so that
every block J̃t(vt) enjoys a perfect bipartite matching. There
are 2O(T−1) coupling equations to be assigned to T blocks. A
uniform allocation should assign 2O(T−1)

T coupling equations
per block. With this allocation, block t will have 4M metering
equations and 2O(T−1)

T coupling equations over its 2(N+1) =
2M+2O states in vt. For a perfect bipartite matching to exist,
we need 4M + 2O(T−1)

T ≥ 2M + 2O.
The last requirement coincides with the necessary condition

of (6) for T ≥ 2; but it is not enough: Every coupling equation

Fig. 4. Matchings on the IEEE 34-bus grid for T = 4 and O = 6 for the
P2L task with phasor data.

can be assigned to exactly one between two specific blocks;
see Fig. 3. For example, a coupling equation in the block row
involving JO(v2) and −JO(v3) can be grouped either with
JM(v2) or JM(v3). Partitioning the coupling equations into
groups of 2O(T−1)

T while adhering to the latter requirement
is the crux of the identifiability analysis. To allocate coupling
equations, let us first define the bipartite grid graph Gb.

Definition 2 (Bipartite grid graph). Consider the graph ob-
tained from G upon maintaining only the edges between M
and O. Replicate the node setM to formM′, and connect the
nodes in M′ to nodes in O by replicating the M–O edges.
The obtained bipartite graph will be denoted by Gb.

The identifiability of P2L relies on a matching in Gb.

Theorem 1. If O can be partitioned into {Ōk}dT/2ek=1 so that
each one of them independently can be perfectly matched to
M∪M′ on Gb, the Jacobian matrix J ({vt}) related to the
P2L task with phasor data is generically full rank.

In essence, Theorem 1 provides sufficient conditions for
successful probing. The proof of Theorem 1 relies on two
lemmas shown in the appendix: Lemma 2 provides sufficient
conditions for the coupling equations assigned to block t, so
that J̃t(vt) enjoys a bipartite matching. Lemma 3 explains
when these conditions can be met simultaneously for all t ∈ T .
The analysis uses the concept of a multi-set. Different from a
conventional set that contains unique elements, a multi-set is
allowed to have multiple instances of elements. For example,
we will override the definition of set union, so that {a, b} ∪
{a, b} does not yield {a, b}, but the multi-set {a, a, b, b}.

Lemma 2. Partition O into Ot ∪ Ōt so that |O ∪ Ot| =
2O(T−1)/T . Assume block J̃t(vt) is assigned some coupling
equations related to O ∪ Ot. If the vertices in Ōt can be
matched to the vertices in M∪M′ on Gb, the block J̃t(vt)
features a bipartite matching from its columns to its rows.

Lemma 3. Under the condition of Theorem 1, the coupling
equations for two successive blocks J̃t(vt) with t = 2k − 1
and t = 2k share the same sparsity pattern of O ∪ Ok for
k = 1, . . . , dT/2e.

Theorem 1 follows as a direct consequence of Lemmas 2
and 3. To simplify the exposition, we will henceforth assume
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Algorithm 1 Test for Successful Probing (phasor data)

1: Assign unit capacity to edges in Gb to define graph G̃b.
2: In G̃b, add source node ns, and connect it to all nodes in
O. These edges are assigned unit capacity.

3: In G̃b, add destination node nd, and connect it to all nodes
in M∪M′.

4: Initialize T = 2.
5: while T ≤ Tmax do
6: The edges running between M ∪ M′ and nd are

assigned capacities of T/2.
7: Run a max-flow problem between ns and nd.
8: if obtained ns–nd flow equals O then
9: return Probing setup is deemed successful for T .

10: else
11: T := T + 2
12: end if
13: return Probing setup is deemed unsuccessful.
14: end while

even T . To appreciate the conditions of Theorem 1, examine
the probing setup, that is the placement of non-metered and
probed buses, of Figure 4. The black circles denote the copies
M′ of nodes in M, and the dashed red lines show the added
edges from O to M′. The operator needs to infer the loads
at the O = 6 non-metered buses marked by red diamonds. To
study if probing this feeder over T = 4 slots is successful, the
set O has to be partitioned into two subsets O1 and O2, so
that the buses of each subset are matched to buses in M∪
M′ on Gb. The orange and blue arrows show precisely these
matchings. If the feeder were to be probed over T = 2 slots
instead, probing would fail since buses {8, 11, 12} cannot be
uniquely matched to any buses in M∪M′.

As illustrated through this example, to check the condition
of Theorem 1 for a particular (O,M) probing setup, first one
has to construct the bipartite graph Gb from G. Then, given a
number of probing actions T : i) the set O has to be partitioned
into the subsets {Ōk}T/2k=1; and ii) the nodes within each Ōk
have to be mapped to the nodes inM∪M′ on Gb. Albeit these
steps may seem computationally hard, they can be solved by
a linear program as detailed in Algorithm 1.

Given a probing setup, Algorithm 1 finds the maximum flow
between nodes ns and nd over graph G̃b constructed from Gb.
The edges in G̃b are organized in three layers: The edges of
the first layer connect ns to O and have unit capacities. The
edges of the second layer connect O to M∪M′ and have
unit capacities as well. The edges of the third layer connect
M∪M′ to nd and have capacities of T/2. This is to ensure
that each node in M∪M′ is mapped to at most T/2 nodes
in O through the second layer. If the maximum ns–nd flow
equals O, all first-layer edges have been used to their capacity
to map every node in O to exactly one node in M∪M′.

The max-flow problem can be solved using the Ford-
Fulkerson algorithm, whose complexity scales linearly with
the number of graph nodes and edges [30]. Moreover, if all
edge capacities are integers, the algorithm finds an integral
maximal flow. If the maximum ns–nd flow is smaller than
O, there is no matching for the tested T . Then, the edge

Fig. 5. Matchings on the IEEE 34-bus grid for T = 6 and O = 21 for the
P2L task with non-phasor data.

capacities at the third layer can be increased and the process
is repeated. Theorem 1 asserts that the chances of successful
probing improve for larger T . This is because progressively
smaller subsets of O need to be mapped to M∪M′. Yet this
gain in T is limited by the bus placement (M,O) as quantified
next and shown in the appendix.

Lemma 4. If δM is the maximum node degree overM on G̃b,
a probing setup with phasor data cannot turn into successful
beyond Tmax = δM − 1.

Lemma 4 implies that increasing T beyond Tmax has no
hope in making probing successful for a specific placement,
and Algorithm 1 terminates with a negative answer. Once
a (M,O) placement is deemed successful, there are two
questions to be answered: i) how to select probing injections;
and ii) how to recover the non-metered loads. Both questions
along with numerical tests are deferred to Part II.

IV. IDENTIFIABILITY OF P2L WITH NON-PHASOR DATA

Since PMUs have limited penetration in distribution grids,
requiring voltage phasor data at probing buses may be unre-
alistic. This section studies probing with non-phasor data.

Definition 3 (P2L task with non-phasor data). Given Y and
probing data (utn, p

t
n, q

t
n) for n ∈ M and t ∈ T , the P2L

task entails solving the equations in (2a) and (2c) for t ∈ T ,
jointly with the coupling equations in (4).

A simple count of equations and unknowns dictates M ≥
2O
T , which is clearly more restrictive than (6). We next provide

a sufficient condition under which this task is solvable.

Theorem 2. If O can be partitioned into {Ōk}dT/2ek=1 such that
each one of them independently can be perfectly matched to
M on G, the Jacobian matrix J ({vt}) related to the P2L task
with non-phasor data is generically full rank.

Dropping the voltage angle metering equations, matrix
JM(vt) in (8) is replaced by

JM(vt) :=

 JuM(vt)
JpM(vt)
JqM(vt)

 .
Similar to Theorem 1, it is not hard to see that the nodes in Ōt
have to be matched to the nodes in M, rather than M∪M′.
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Algorithm 2 Test for Successful Probing (non-phasor data)
1: Connect ns to all nodes in O with unit-capacity edges.
2: Connect O to M based on G with unit-capacity edges.
3: Connect all nodes in M to nd.
4: Initialize T = 2.
5: while T ≤ Tmax do
6: Assign capacity T/2 to edges between M and nd.
7: Run a max-flow problem between ns and nd.
8: if obtained ns–nd flow equals O then
9: return Probing setup is deemed successful for T .

10: else
11: T := T + 2
12: end if
13: return Probing setup is deemed unsuccessful.
14: end while
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Fig. 6. Matchings on the IEEE 34-bus grid for single-slot probing (T = 1)
with non-phasor data and O = 8. Single-slot probing waives assumption a2)
on exclusively constant-power loads.

Consider for example the probing setup of Figure 5. To infer
the loads at O = 21 non-metered buses with T = 6 probing
slots, the set O has to be partitioned into three subsets O1,
O2, and O3, so that the buses of each subset are matched to
M. The orange, blue, and purple arrows in the figure show
these matchings. Because non-metered buses are divided into
three subsets, up to three non-metered buses can be matched
to the same probed bus. For example, buses {14, 17, 18} are
all matched to the probed bus 16. Probing the same feeder
over T = 2 or T = 4 rather than T = 6 slots would fail.

The condition of Theorem 2 can be easily tested by Algo-
rithm 2 and up to the value of Tmax provided next.

Corollary 1. If δM is the maximum degree of the nodes in
M on the graph constructed by Alg. 2, a probing setup with
non-phasor data cannot turn into successful beyond Tmax =
2(δM − 1).

Corollary 1 is proved as part of the proof of Lemma 4.
Compared to Theorem 2, the condition of Theorem 1 provided
more flexibility towards attaining a bipartite matching since
probed buses can be used twice. If a probing setup is successful
for non-phasor data, it is also successful for phasor data.
Interestingly, the matchings in Theorems 1 and 2 depend solely
on the sparsity pattern of G and the probing setup, so the
claims here apply to even meshed (e.g., multiphase) grids.

V. SINGLE-SLOT PROBING

The analysis so far depends on assumption a2) of constant-
power loads. Under the ZIP load model of (5), the coupling
equations in (4) are no longer valid, and thus, the metering
equations decouple across T . Can the non-metered loads pn+
jqn for n ∈ O still be recovered upon collecting data on M?
This answer can be on the affirmative with single-slot probing,
that is T = 1. Leveraging the tools of Sections III and IV, we
next study the observability of single-slot probing. The ensuing
two results (proven in the appendix) provide conditions for
successful load recovery using (non)-phasor data.

Theorem 3. If each bus in O can be matched to one unique
bus in M on G, the Jacobian matrix J(v1) related to single-
slot probing (T = 1) with phasor data has full generic rank.

Theorem 4. If each bus in O can be matched to two unique
buses in M on G, the Jacobian J(v1) related to single-slot
probing (T = 1) with non-phasor data has full generic rank.

The conditions of Th. 3 and 4 can be tested by Algorithm 2
by fixing T = 2 and T = 1, respectively. Figure 6 shows a
successful placement per Theorem 4.

If the conditions of Th. 3 and 4 are met, the non-metered
loads pn + jqn for n ∈ O can be recovered using single-slot
probing, regardless if these loads are constant-power or not.
However, the operator may also want to estimate their ZIP
parameters in (5). Estimating these parameters directly with
multi-slot probing becomes complicated. Instead, one could
adopt multi-slot probing in a two-step process as follows: First,
the feeder is probed over T with |T | = T > 3. Under Th. 3
and 4, the operator obtains estimates (ûtn, p̂

t
n, q̂

t
n) for all non-

metered buses n ∈ O and t ∈ T . Secondly, the ZIP parameters
for active load n can be estimated through the least-squares
(LS) fit

[α̂pn β̂pn γ̂pn ]> := (Û>n Ûn)−1Û>n p̂n (10)

where p̂n := [p̂1n . . . p̂Tn ]> and the t-th row of matrix
Ûn is [(ûtn)2 ûtn 1] for t = 1, . . . , T . Similar LS fits
can be performed for the reactive ZIP load parameters. A
major concern here is that all entries of the Vandermonde
matrix Ûn are close to unity in compliance with voltage
regulation. For T = 3, the determinant of Ûn is calcu-
lated as (û1n − û2n)(û1n − û3n)(û2n − û3n) [31], which yields
|Ûn| = −2 · 10−3 even for bus voltages as widely spread as
û1n = 0.9, û2n = 1.0, and û3n = 1.1. This reveals that the task
of estimating ZIP parameters from voltage/power data is ill-
posed. This is germane to the task itself rather than the method
(here probing) used to collect the data.

Finally, note that Th. 3 and 4 hold even when data are not
collected via probing, e.g., smart meter data. Therefore, our
observability analysis covers the general setup where voltage
and active/reactive power data or specifications are given only
for M. Similar conditions were derived in [32], but were
confined to radial grids.

VI. CONCLUSIONS

The novel technique of intentionally probing an electric grid
using inverters to recover non-metered loads has been put forth
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in the first part of this two-part work. The technique leverages
the actuation capabilities of smart inverters, the data collected
at probed buses, and the stationarity of non-metered loads, to
formulate a power flow problem coupled over multiple times.
Sufficient conditions that can be easily verified by solving
a max-flow problem on a grid graph have been provided to
test if a probing placement is successful. Beyond probing, the
pertinent task of finding loads using data from a subset of
buses has also been cast as a special case. Assuming a probing
setup satisfies these conditions, Part II explains how inverter
probing setpoints can be designed to improve load estimation
accuracy, and provides numerical tests on the IEEE 34-bus
feeder using a semidefinite program relaxation.

APPENDIX

Proof of Lemma 2: It can be easily verified that the
sparsity patterns of Ju(vt) and Jθ(vt) coincide with the
sparsity pattern of [IN+1 IN+1]. The sparsity patterns of
Jp(vt) and Jq(vt) coincide with the sparsity pattern of [G G]
where G is the bus conductance matrix; see [22, Table 3.2].
From (8), the sparsity pattern of J̃t(vt) is

IM,N+ IM,N+

IM,N+ IM,N+

GM,N+ GM,N+

GM,N+ GM,N+

GO,N+ GO,N+

GOt,N+ GOt,N+

 (11)

where the first block row relates to voltage magnitudes; the
second to voltage angles; the third and fourth to probing
injections; while the fifth and sixth to coupled injections.

To create a bipartite matching for block J̃t(vt), unfold the
sparsity pattern in (11) column-wise using N+ =M∪O as

IM,M IM,O IM,M IM,O

IM,M IM,O IM,M IM,O

GM,M GM,O GM,M GM,O

GM,M GM,O GM,M GM,O

GO,M GO,O GO,M GO,O

GOt,M GOt,O GOt,M GOt,O


. (12)

The first block column in (12) relates to variables {vtr,n}n∈M,
and can be matched to the first block row via IM,M. Similarly,
the third block column relates to variables {vti,n}n∈M, and can
be matched to the second block row. The second block column
relates to variables {vtr,n}n∈O, and can be matched to the fifth
block row via the main diagonal of GO,O.

To achieve a bipartite matching, the fourth block column
related to variables {vti,n}n∈O has to be matched to the union
of the third, fourth, and sixth block rows. Lacking a simple
diagonal matching now, we leverage the sparsity pattern of G.
It suffices to match the column nodes in O to the row nodes
inM∪M∪Ot. Because O = Ot∪Ōt, the column nodes Ot
can be matched to the row nodes Ot via some diagonal entries
of GOt,O. Then, the column nodes Ōt have to be matched to
the row nodes M∪M. This can be accomplished based on
the hypothesis of this Lemma, thus completing its proof.

Proof of Lemma 3: The pair of blocks J̃2k−1(v2k−1)
and J̃2k(v2k) will be jointly indexed by k. Define also

Rk :=

k⋃
τ=1

Ōτ . (13)

In addition to the claim of this lemma, we will also prove
that when passing from pair k− 1 to pair k, a set of coupling
equations represented by Rk−1∪Rk−1 have not been assigned
to block 2k − 2, and are free to be assigned to block 2k − 1.

Proving by induction, we start with the base case. The
pair indexed by k = 1 consists of J̃1(v1) and J̃2(v2). The
active and reactive equations coupling these two blocks can
be represented by O∪O = O1∪O1∪Ō1∪Ō1. Let us assign
O1 ∪O1 ∪ Ō1 to block 1. With this assignment, the coupling
equations for J̃1(v1) get the sparsity pattern of O ∪O1. The
remaining coupling equations in Ō1 are assigned to block 2.

Block 2 shares with block 3 the coupling equations O∪O,
which are again expressed as O1 ∪ O1 ∪ Ō1 ∪ Ō1. From this
new set of coupling equations, assign O1 ∪ O1 to block 2.
Hence, the coupling equations for J̃2(v2) have the sparsity
pattern of O1 ∪ O1 ∪ Ō1 = O ∪ O1. The unused coupling
equations are represented by Ō1 ∪ Ō1 = R1 ∪R1.

Suppose the claim holds for the block pair k− 1. It is next
shown that the claim holds for the block pair k consisting of
blocks 2k − 1 and 2k. Starting with the odd block 2k − 1,
the unused equations Rk−1 ∪Rk−1 that couple blocks 2k− 2
and 2k − 1 are assigned to block 2k − 1. Block 2k − 1 is
also coupled to block 2k via O ∪ O equations, which can
be expressed as Ok ∪ Ok ∪ Ōk ∪ Ōk. The key point here is
that by the definition of Rk−1 and because Ōk’s are mutually
exclusive by the hypothesis of this lemma, it holds that

Rk−1 ∩ Ōk = ∅ and Rk−1 ⊂ O, so that Rk−1 ⊆ Ok.

Therefore, the set Ok can be partitioned into Rk−1 and Ok \
Rk−1. From the equations coupling blocks 2k−1 and 2k, the
equations (Ok \ Rk−1) ∪ (Ok \ Rk−1) ∪ Ōk are assigned to
block 2k − 1. In this way, the coupling equations for block
2k − 1 have the sparsity pattern

Rk−1 ∪Rk−1︸ ︷︷ ︸
with block 2k − 2

∪ (Ok \ Rk−1) ∪ (Ok \ Rk−1) ∪ Ōk︸ ︷︷ ︸
with block 2k

= O∪Ok.

The unused equations coupling blocks 2k − 1 and 2k are
Rk−1 ∪Rk−1 ∪ Ōk.

Moving to block 2k of pair k, the unused equations Rk−1∪
Rk−1∪Ōk coupling block 2k with block 2k−1 are assigned to
block 2k. Block 2k is also coupled with block 2k+ 1 through
O∪O = Ok ∪Ok ∪ Ōk ∪ Ōk. From this new set of coupling
equations, assign equations (Ok \ Rk−1) ∪ (Ok \ Rk−1) to
block 2k. Hence, the coupling equations assigned to block
2k − 1 have the sparsity pattern

Rk−1 ∪Rk−1 ∪ Ōk︸ ︷︷ ︸
with block 2k − 1

∪ (Ok \ Rk−1) ∪ (Ok \ Rk−1)︸ ︷︷ ︸
with block 2k + 1

= O∪Ok.

The unused equations coupling blocks 2k and 2k + 1 are

Rk−1 ∪Rk−1 ∪ Ōk ∪ Ōk = Rk ∪Rk.
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For the last block pair, the coupling equations already
assigned to block T − 1 have the sparsity pattern O ∪ OT/2.
The last block T differs from the previous blocks as it only
gets the RT/2−1∪RT/2−1∪ŌT/2 unused coupling equations
between blocks T − 1 and T . Under the condition of Th. 1,
RT/2−1∪ŌT/2 = O and because O = OT/2∪ŌT/2, we also
have RT/2−1 = OT/2. Hence, the sparsity pattern of the last
block is also given by O∪OT/2. Since every pair of successive
blocks has the same structure, the diagonal blocks of J̃ ({vt})
will exhibit dT/2e distinct sparsity patterns.

Proof of Lemma 4: Consider node m ∈ M in G̃b with
degree δm. This node is connected to node nd via an edge
having capacity T/2, and to δm − 1 nodes in O via unit-
capacity edges. The maximum flow that can pass through the
second-layer edges to m is δm−1. This flow will be funneled
through edge (m,nd). Then, there is no advantage for this
edge to have capacity larger than δm−1, so that T/2 ≤ δm−1.
Considering all m ∈M∪M′, there is no point in testing for
values of T beyond T ≤ 2(δM − 1).

The bound can be improved, since the previous argument
assumed that all δm − 1 edges between O and m ∈ M have
reached their capacity. That will not happen since the O nodes
adjacent to m on the feeder, can be shared between m and
its copy m′ ∈ M′ on G̃b. Hence, the flow passing jointly
through m and m′ cannot exceed δm − 1. Then, the capacity
of edge (m,nd) plus the capacity of edge (m′, nd) can be
safely limited to δm − 1, implying T ≤ δm − 1.

Proof of Theorem 3: The sparsity pattern of J(vt) can
be derived from (11)–(12) by eliminating the blocks related to
coupling equations

IM,M IM,O IM,M IM,O

IM,M IM,O IM,M IM,O

GM,M GM,O GM,M GM,O

GM,M GM,O GM,M GM,O

 . (14)

Variables {vtr,n}n∈M corresponding to the first block column
and {vti,n}n∈M to the third block column can be matched
respectively to the first and second block row via IM,M. To
complete the bipartite matching, the second and fourth block
columns (variables {vtr,n}n∈O and {vti,n}n∈O) can be matched
to the third and fourth block rows, accordingly. Hence, J(vt)
is generically full rank if there exists a perfect matching in
GM,O, that is every non-metered node in O is mapped to a
unique node in M; see also Lemma 1.

Proof of Theorem 4: Given non-phasor data, the sec-
ond block row related to voltage angles in (14) is dropped.
Following the arguments to the proof for Theorem 3, matrix
J(vt) can be shown to be generically full rank if there exists
a perfect matching in GM,(O∪O), that is every node in O is
mapped to two unique nodes in M; see also Lemma 1.
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