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Abstract—Although electric vehicles are considered a viable
solution to reduce greenhouse gas emissions, their uncoordinated
charging could have adverse effects on power system operation.
Nevertheless, the task of optimal electric vehicle charging scales
unfavorably with the fleet size and the number of control periods,
especially when distribution grid limitations are enforced. To
this end, vehicle charging is first tackled using the recently
revived Frank-Wolfe method. The novel decentralized charging
protocol has minimal computational requirements from vehicle
controllers, enjoys provable acceleration over existing alterna-
tives, enhances the security of the pricing mechanism against data
attacks, and protects user privacy. To comply with voltage limits,
a network-constrained EV charging problem is subsequently
formulated. Leveraging a linearized model for unbalanced distri-
bution grids, the goal is to minimize the power supply cost while
respecting critical voltage regulation and substation capacity lim-
itations. Optimizing variables across grid nodes is accomplished
by exchanging information only between neighboring buses via
the alternating direction method of multipliers. Numerical tests
corroborate the optimality and efficiency of the novel schemes.

Index Terms—Linearized distribution flow model, alternating
direction method of multipliers, Frank-Wolfe algorithm.

I. INTRODUCTION

Electric vehicles (EVs) have received significant attention
from the automotive industry and the government due to their
capacity to reduce greenhouse gas emissions and mitigate
oil dependency. Nevertheless, the overall load profile will be
greatly affected with increasing numbers of EVs. Uncoordi-
nated charging of even a 10% penetration of EV loads will
notably affect power system operation, giving rise to voltage
magnitude fluctuations and unacceptable load peaks [1]. On
the other hand, with proper coordination scheme, EV loads can
be controlled to minimize charging costs or perform valley-
filling tasks relying on advanced power electronics.

Different charging control schemes have been proposed.
A centralized scheduling scheme to minimize total charging
costs based on the time-of-use price has been devised in
[2]. However, new load peaks may arise during low-price
(also termed valley) periods. In [3], vehicle plug-in times are
decided using random numbers, hence neglecting the specific
charging requests of individual EV users. Charging rates have
been also optimized in a centralized manner to facilitate
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voltage regulation [1], yet the number of control variables
scales unfavorably with the number of vehicles.

Decentralized control strategies not only offer computa-
tional savings, but they oftentimes enhance the privacy of
vehicle users since they do not require the charging requests
of EVs to be uploaded to the control center. Decentral-
ized charging protocols based on congestion pricing schemes
similar to those used in Internet Protocol networks can be
found in [4]; nevertheless, their optimality is not guaranteed.
Presuming identical energy requests and plug-in/-out times
for all vehicles, a game-theoretic charging scheme attaining a
Nash equilibrium has been developed in [5]. Iterative schemes
based on Lagrangian relaxation are suggested in [6], [7], while
[8] builds on the alternating direction method of multipliers
(ADMM). Distribution locational marginal prices are lever-
aged to coordinate vehicle charging in [9]. Reference [10]
proves a feasible valley-filling charging profile to be optimal
for any convex cost, and it develops a decentralized protocol
based on projected gradient descent (PGD). A multi-agent
based EV charging scheme is devised in [11]. The spatial
coupling of EV charging decisions due to transformer capacity
limits is tackled in [12] via a combination of the ADMM
and PGD. Upon neglecting total charging requirements, dual
decomposition and projected subgradient are applied to real-
time decentralized EV charging in [13]. The online charging
scheme of [14] minimizes the regret in charging cost, but only
in the long term.

Vehicle charging under distribution grid limitations has been
studied too. Centralized EV scheduling is studied under dif-
ferent linear models for multiphase networks in [15] and [16].
The objective function is confined to be linear and the optimal
solution is found using generic commercial solvers without
exploiting the problem structure. A method for heuristically
checking network constraint violations after vehicles have
been scheduled is reported in [17]. Presuming at most one
EV per bus, management under balanced network constraints
has been tackled using a water-filling algorithm [18].

The optimal vehicle charging problem considered here can
be rigorously stated as follows. Given charging requests from
EVs across time, a utility company schedules their charging
to minimize certain cost function, e.g., the power supply
cost or the load variance. The latter is equivalent to the
so termed the valley-filling task. Depending on whether grid
specifications are taken into account, two charging scenarios
can be recognized. The first scenario ignores any grid-related
constraints. Such a scenario arises for example when the EV
load is relatively low and is not expected to incur voltage
or feeder violations; see the valley-filling task in [10]. In this
first scenario, vehicle charging may be alternatively performed
by a charging station or a load aggregator to minimize its
power supply cost. Under the second scenario, EV penetration
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is high, and thus, voltage regulation and feeder limitations
must be enforced by the utility. Apparently, the first scenario
constitutes a relaxation of the second scenario of network-
constrained vehicle charging. Thus, protocols for the first
scenario will be used as building modules for the second one.

Our contribution is two-fold. First, a decentralized charging
method based on the Frank-Wolf algorithm is developed
(Section II). Different from existing schemes, the novel proto-
col requires minimal requirements from the vehicle charging
controllers and involves privacy-preserving updates. Numerical
tests demonstrate that the closed-form low-complexity updates
yield significant convergence improvement over existing alter-
natives (Section V-A). Secondly, building on an approximate
distribution grid model, network-constrained EV charging
is formulated as a convex quadratic program (Section III),
and tackled using a decentralized scheme based on ADMM
(Section IV). Compared to existing centralized schemes, the
decentralized protocol requires communication only between
neighbors and preserves the privacy of EV owners. Numerical
tests on the unbalanced IEEE 123-bus feeder corroborate the
optimality of the proposed charging protocol (Section V-B).

Regarding notation, column vectors (matrices) are denoted
by lower- (upper-) case boldface letters, except for power
flow vectors (P,Q,S). Sets are represented using calligraphic
symbols, and |S| is the cardinality of S. Symbol > stands
for transposition; while 0, 1, and en, denote respectively the
all-zeros, all-ones, and the n-th canonical vectors. Operator
diag(x) defines a diagonal matrix having x on its diagonal,
and Re(z) returns the real part of complex number z.

II. OPTIMAL VEHICLE CHARGING

This section studies EV charging without network con-
straints. Under this scenario, the utility company, a load ag-
gregator, or a charging station would like to coordinate EVs to
minimize the power supply cost or for valley-filling purposes.
Upon formulating the problem, an optimal charging scheme
is developed and contrasted to state-of-the-art alternatives.

A. Electric Vehicle Charging Model

An EV scheduler coordinates the charging of M EVs
over a period of T consecutive time slots comprising the set
T := {1, . . . , T}. The time slot duration ∆T can range from
minutes to an hour, depending on charging specifications, the
granularity of load forecasts, as well as communication and
computation capabilities. Let em(t) denote the energy charge
for vehicle m at time t with m = 1, . . . ,M , and t ∈ T . Given
that operational slots have equal duration, the terms power
and energy will be used interchangeably. The charge em(t)
can range from zero to its maximum value ēm(t). Apparently,
a vehicle can be charged only when it is connected to the grid.
If Tm ⊆ T is the set of time slots that vehicle m is connected
to the grid (not necessarily consecutive), then for all t ∈ T

ēm(t) =

{
ēm , t ∈ Tm
0 , otherwise

where ēm is the maximum charging rate determined by the
battery of vehicle m. Let em := [em(1) · · · em(T )]> be the

charging profile for EV m. Profile em should belong to the
compact and convex set

Em := {em : e>m1 = Rm, 0 ≤ em(t) ≤ ēm(t) ∀ t ∈ T } (1)

where Rm is the total energy needed by EV m. The latter
depends on the initial state of charge, the desired state of
charge, and the efficiency of the battery.

Through coordinated charging of electric vehicles, various
objectives can be achieved, such as minimizing charging costs
or valley-filling. Optimal EV charging can be posed as the
optimization problem [10]

min
{em}Mm=1

C({em}) :=

T∑
t=1

Ct

(
d(t) +

M∑
m=1

em(t)

)
(2)

s.to em ∈ Em, ∀ m = 1, . . . ,M

where the energy costs Ct(·) : R → R are assumed convex
and differentiable. For charging cost minimization, {Ct}Tt=1

can be linear or quadratic [2]; while Ct(x) = x2/2 for
all t when it comes to the valley-filling task. Parameters
{d(t)}Tt=1 capture the based load for the EV scheduler, which
is assumed inelastic and known in advance. The network
constrained EV charging is postponed for Section III, wherein
problem (2) turns out to be a building module. To facilitate
scheduling, each electric vehicle controller is capable of two-
way communication and of executing simple computation
tasks. Before the beginning of the charging horizon T , vehicle
controller submit their charging requests {(Tm, Rm)} to the
charging station controller. Protocols for efficiently solving (2)
are presented next.

B. Scalable Charging Protocol

Observe that the total number of variables involved in (2)
is MT . Therefore, although (2) is a convex problem, solving
it is a non-trivial task, particularly for large EV fleets and/or
decreasing control intervals ∆T . To derive a scalable solver,
the Frank-Wolfe method is deployed next [19]. Also known as
conditional gradient algorithm, the Frank-Wolfe method aims
at solving the generic problem

y∗ ∈ arg min
y∈Y

f(y) (3)

where f is a differentiable convex function, and Y is a compact
convex set. The method selects an initial y0 arbitrarily, and
iterates between the updates for k = 0, 1, . . . , as

rk ∈ arg min
r∈Y

r>∇f(yk) (4a)

yk+1 := yk + ηk(rk − yk) (4b)

with ηk := 2/(k+2). Step (4a) finds rk such that (rk−yk) is
a feasible descent direction for the first-order approximation
of the cost in (3). Step (4b) updates yk towards that direction
after scaling it with the diminishing step size ηk. The updated
{yk+1} is always feasible, since η0 = 1, y1 = r0 ∈ Y , and
for k ≥ 1, yk+1 is computed as the convex combination of
yk ∈ Y and rk ∈ Y .

Granted that (2) entails a differentiable cost and a compact
feasible set; it is amenable to Frank-Wolfe iterations. In the



ZHANG, KEKATOS, GIANNAKIS: SCALABLE ELECTRIC VEHICLE CHARGING PROTOCOLS 3

first Frank-Wolfe step, the gradient of the cost in (2) with
respect to {em}Mm=1 must be obtained. Critically, due to the
problem structure, the per-vehicle partial gradients of the cost
are all identical to

∇emC({em}) = g, m = 1, . . . ,M.

It can be readily checked that the t-th entry of the common
partial gradient g ∈ RT evaluated at {ekm} is

gk(t) = ∇ekm(t)Ct

(
d(t) +

M∑
m=1

ekm(t)

)
, t = 1, . . . , T. (5)

Applying (4a) to the problem at hand requires solving

{rkm}Mm=1 ∈ arg min
{rm∈Em}Mm=1

M∑
m=1

r>mgk (6)

which is separable across vehicles. Thus, given gk, vehicle m
needs to solve the linear program

rkm ∈ arg min
rm∈Em

r>mgk. (7)

Problem (7) involves a linear cost minimized over a weighted
budget and box constraints. The key observation here is that
due to the aforementioned structure, problem (7) can be solved
by a simple sorting algorithm [20, Chap. 4]: The entries of gk

are first sorted in increasing order as

gk(tk1) ≤ gk(tk2) ≤ . . . ≤ gk(tkT ). (8)

Since the problems in (7) share vector gk for all m, the sorting
operation is performed only once by the charging station.
Then, for vehicle m, we need to find the index Jkm for which

Jkm∑
j=1

ēm(tkj ) ≤ Rm and
Jkm+1∑
j=1

ēm(tkj ) > Rm. (9)

Subsequently, the entries of the minimizer rkm of (7) can be
computed per vehicle m as

rkm(tkj ) =


ēm(tkj ) , j = 1, . . . , Jkm − 1

Rm −
∑Jkm−1
j=1 ēm(tkj ) , j = Jkm

0 , j = Jkm + 1, . . . , T

.

(10)
The solution in (10) simply selects the maximum possible
charge during the cheapest time slots in a greedy fashion.
Interestingly, finding rkm from (10) requires knowing solely the
rank order (smallest to largest) rather than the actual entries
of the gradient vector gk.

The second Frank-Wolfe step updates the charging profiles
via the convex combinations

ek+1
m = (1− ηk)ekm + ηkr

k
m (11)

for all vehicles m = 1, . . . ,M .
To practically implement (5)–(11) during iteration k,

the charging control center evaluates the cost gradients
{gk(t)}t∈T defined in (5), and sorts them to determine the
time slot ordering {tk1 , tk2 , . . . , tkT }. This sorting operation can
be performed using for example the Merge-Sort algorithm
in O(T log T ) operations [21]. The price ordering of time

(a) Control center broadcasts time
slot pricing ordering (from cheapest
to most expensive) to EV controllers.

(b) Summations of charging profiles are
transmitted to charging control center.

Fig. 1: Information exchange for Algorithm 1 at iteration k.

Algorithm 1 Decentralized EV scheduling

1: Initialize e0
m = 0 for m = 1, . . . ,M .

2: for k = 0, 1, . . . do
3: EV scheduler calculates gk from (5).
4: EV scheduler broadcasts gk entry ranking to EVs.
5: Vehicles update {ekm}Mm=1 via (9)–(11).
6: Profile sums

∑M
m=1 e

k
m sent to control center.

7: end for

slots is subsequently broadcast to all EV controllers as shown
in Fig. 1a. Based on its charging needs Em, the m-th EV
controller first finds rkm from (9)–(10) in O(T ). It then updates
its charging profile ek+1

m using (11) in O(T ). Note that
operations (9)–(11) can be performed in parallel over the M
EV controllers. The updated charging profiles {ek+1

m }Mm=1 are
communicated back to the charging center, where upon adding
the base load {d(t)}, the center computes the updated cost gra-
dient gt+1, and iterations proceed as tabulated in Algorithm 1.
The developed solver converges to optimal charging profiles
{e∗m} at the rate [19]

C({ekm})− C({e∗m}) ≤ O
(

1

k

)
. (12)

Algorithm 1 not only exhibits provable convergence and
low computational cost (namely O(T log T ) operations) per
iteration. It further enjoys two additional advantages. First,
the charging center does not require knowing the individual
charging profiles {ekm}, since their summation

∑M
m=1 e

k
m

suffices for finding the gradient vector gk. In an effort to
preserve the privacy of EV users, a simple communication
protocol can be designed. Information flow can be arranged
over a tree graph rooted at the charging center, and vehicle
controllers constitute the remaining tree nodes. Each node
receives aggregate charging profiles from its downstream
nodes, adds them up to its own profile, and forwards the
updated aggregate charging profile to its parent node. As a
second feature, vehicle controllers do not need to know the
precise value of the cost gradient vector gk, but only the
ordering of its entries (current price ordering of time slots).
This algorithmic feature lightens the communication load from
the charging center to the vehicles, and enhances resiliency to
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price manipulations and data attacks to the solving scheme.

C. Comparison with Previous Work

The optimal EV charging of (2) has been previously studied
in [10], where a PGD solver was developed. Interpreted here
as a projected gradient algorithm applied to minimize the
non-strongly convex cost in (2), the PGD method exhibits a
convergence rate of O( 1

k ) [22]. At iteration k of the PGD
method, controller m solves in parallel

ek+1
m := arg min

em∈Em
‖em − (ekm − η′kgk)‖22 (13)

for a step size η′k > 0. In other words, every EV controller
projects vector (ekm − η′kgk) onto the simplex Em, which is a
non-trivial task.

On the other hand, each iteration of Algorithm 1 involves
closed-form updates, offering high computational efficiency
and posing affordable hardware requirements on EV con-
trollers. Although both Algorithm 1 and the PGD solver are
decentralized schemes with convergence rate O( 1

k ), the overall
computation time for the former is significantly lower due
to its simpler per-iteration updates: The numerical tests in
Section V-A demonstrate that Alg. 1 provides a 100 times
speed-up advantage over the PGD solver and the centralized
solver SeDuMi. The SeDuMi solver would be a viable option
for tackling (2) in a centralized manner after collecting all
charging needs {(Rm, Em)} at the charging center.

D. Real-time Scheduling

Algorithm 1 requires all EVs to negotiate with the scheduler
at the beginning of the control horizon. This presumption can
be satisfied for charging coordination in a residential area
where EVs are primarily used for commuting. Nevertheless,
there are cases where EVs arrive randomly at a charging
station. Then, not all charging needs are known at the be-
ginning of the control horizon; instead, they are revealed to
the scheduler in an online manner. To address random EV
arrivals, a real-time implementation of Alg. 1 is pursued next.

At time t, the scheduler negotiates only with the plugged-in
EVs comprising the setMt, while current EV energy demands
are denoted by {Rtm}m∈Mt . Ignoring future vehicle arrivals
and their energy needs, charging of the EVs in the set Mt

from time t till the latest departure time is coordinated by
Alg. 1. After running Alg. 1, the vehicles in Mt are charged
by {em(t)}m∈Mt during the current time slot t, and their
charging demands are updated as

Rt+1
m = Rtm − em(t) for all m ∈Mt. (14)

The scheduler proceeds to time t+ 1, newly arrived vehicles
are taken into account, and the process is repeated.

The overall real-time vehicle scheduling scheme is summa-
rized as Alg. 2. Algorithm 2 essentially runs Alg. 1 only for the
EVs plugged-in at every time slot. Even though no optimality
can be guaranteed for Alg. 2, this scheme aims greedily for the
best instantaneous charging solution while always maintaining
feasibility. A related algorithm based on the PGD method is
devised in [10].

Algorithm 2 Real-time decentralized EV scheduling

1: Initialize e0
m = 0 for all m ∈M0.

2: for t = 1, 2, . . . , T do
3: Scheduler negotiates with EVs in Mt.
4: for k = 0, 1, . . . , do
5: EV scheduler calculates and broadcasts gk.
6: Vehicles update {ekm}m∈Mt via (9)–(11).
7: Profile sums

∑
m∈Mt ekm sent to control center.

8: end for
9: Energy needs {Rtm}m∈Mt are updated from (14).

10: end for

III. NETWORK-CONSTRAINED EV SCHEDULING

The charging scheme of Section II applies to scenarios
where EV charging can be transparently supported by the
underlying grid. If higher levels of EV load incur voltage
magnitude or feeder capacity violations, the underlying power
distribution grid needs to be taken into account. In this context,
upon reviewing an approximate model for unbalanced dis-
tribution grids, this section formulates a network-constrained
vehicle charging task, while a decentralized solver scalable to
the number of buses and EVs is developed in Section IV.

A. Modeling Unbalanced Distribution Grids

Electric vehicles are connected to a distribution feeder com-
prising N+1 buses indicated by n ∈ N := {0, 1, . . . , N}, and
phases indexed by φ ∈ {a, b, c, }. Let Mn,φ represent the set
of vehicles located on phase φ of bus n, and Mn,φ := |Mn,φ|.
The distribution grid is assumed to be functionally radial with
the substation bus numbered by n = 0. Every non-feeder bus
n ∈ N+ with N+ := N \{0} has a unique parent bus indexed
by πn. The distribution line connecting bus πn with bus n is
denoted by n. For bus n, let also Cn denote the set of its
children buses, and Pn ⊆ {a, b, c} the set of its phases.

To enforce distribution network and voltage regulation lim-
itations, the underlying physical system is taken into account.
For that purpose, the distribution grid can be captured either
by the full AC power flow model or the linearized power flow
model proposed in [23]. The former becomes tractable under
appropriate conditions using convex relaxations [23], [24].
However, counterexamples indicate that convex relaxations are
not always successful and they can increase the computational
requirements. On the other hand, several numerical tests verify
that the linearized model constitutes a good approximation: the
error in voltage magnitudes is within the order of 10−3 for
various power flow studies [23], [25]. Although the linearized
grid model is adopted here to simplify calculations, extending
our charging protocol to the full AC model is straightforward.

Let vn, pn, and qn be respectively the 3-dimensional
vectors of squared voltage magnitudes and (re)active power
injections for all phases of bus n. For line n ∈ N , let
Zn = Z>n ∈ R3×3 be the related phase impedance matrix,
and Pn and Qn be the vectors of (re)active power flows on all
phases of line n. If line losses are relatively small and voltages
are roughly balanced, the linearized multi-phase power flow



ZHANG, KEKATOS, GIANNAKIS: SCALABLE ELECTRIC VEHICLE CHARGING PROTOCOLS 5

model reads [23], [25]

pn =
∑
k∈Cn

Pk −Pn (15a)

qn =
∑
k∈Cn

Qk −Qn (15b)

vπn − vn = Re
{
Z̄n(Pn + jQn)

}
(15c)

where Z̄n := 2 diag(α)Z∗n diag(α∗); α := [1 α α2]>;
α = e−j

2π
3 ; and ∗ denotes complex conjugation. When not

all phases are present, power injection and flow vectors and
phase impedance matrices are zero-padded. For (15c) to hold,
the entries of vn associated with non-existing phases are
arbitrarily set to the corresponding entries of vπn .

B. Network-Constrained EV Scheduling

To facilitate network-constrained EV scheduling, the base
active and reactive power loads {(dn(t),qdn(t))} for all n
and t need to be predicted in advance. Active power loads
pdn(t) consist of two parts: the base loads dn(t) and the EV
charging load. If pdn,φ(t) and dn,φ(t) are respectively the total
active load and the base load on phase φ of bus n, it holds
that pdn,φ(t) = dn,φ(t)+

∑
m∈Mn,φ

em(t). The cost f0(P0(t))
of power supply from the main grid is convex and known
in advance. Variables pgn(t) capture possible dispatchable
generation distributed across the feeder, and fgn(pgn(t)) is the
associated convex quadratic cost for all n ∈ N and t ∈ T .

To capture operational constraints, the following limits are
introduced. Let (

¯
pgn,φ,

¯
qgn,φ) be the lower, and (p̄gn,φ, q̄

g
n,φ) the

upper limits for distributed generation at phase φ ∈ Pn of bus
n. Define also (

¯
vn,φ, v̄n,φ) as the limits of squared voltage

magnitudes at phase φ ∈ Pn of bus n, S̄n as the apparent
power flow limits on line n, and S̄f as the rated capacity of
the feeder transformer. The utility company aims to minimize
the total operation cost by coordinating vehicle charging and
generation dispatch, while respecting charging and operational
limitations. The pertinent network-constrained EV scheduling
task can be posed as:

min
∑
t∈T

[
f0(P0(t)) +

∑
n∈N

fgn (pgn(t))

]
(16a)

over {pgn(t),qgn(t),Pn(t),Qn(t),vn(t)}n∈N ,t∈T , {em}

s.to pgn(t)− pdn(t) =
∑
k∈Cn

Pk(t)−Pn(t), ∀ n, t (16b)

qgn(t)− qdn(t) =
∑
k∈Cn

Qk(t)−Qn(t), ∀ n, t (16c)

vπn(t)− vn(t) = Re{Z̄n(Pn(t) + jQn(t))},∀n, t
(16d)

¯
pgn,φ ≤ p

g
n,φ(t) ≤ p̄gn,φ, ∀ φ ∈ Pn, n, t (16e)

¯
qgn,φ ≤ q

g
n,φ(t) ≤ q̄gn,φ, ∀ φ ∈ Pn, n, t (16f)

¯
vn ≤ vn,φ(t) ≤ v̄n, ∀ φ ∈ Pn, n, t (16g)

P 2
n,φ(t) +Q2

n,φ(t) ≤ S̄2
n, ∀ φ ∈ Pn, n ∈ N+, t (16h)

pdn,φ(t) = dn,φ(t) +
∑

m∈Mn,φ

em(t),∀ φ ∈ Pn, n, t

(16i)

em ∈ Em, ∀ m (16j)

(1>P0(t))2 + (1>Q0(t))2 ≤ S̄2
f , ∀ t. (16k)

Constraints (16b)–(16d) originate from the power flow model;
constraints (16e)–(16f) enforce generation limits; voltage reg-
ulation is guaranteed via (16g); apparent power flows are
upper bounded by (16h); the equalities in (16i) define demands
across phases and buses; constraint (16j) is related to the per-
vehicle charging profile; and (16k) results from the capacity
limit of the feeder transformer.

The cost functions and all the constraints apart from the
EV charging constraint in (16j) are separable across time.
The capacity limit in (16k) couples flows across phases, while
the voltage regulation constraints in (16d) and (16g) couple
variables across buses and phases. For linear and convex
quadratic costs, problem (16) can be reformulated as a stan-
dard quadratically-constrained quadratic program and tackled
by standard solvers in a centralized manner. Nonetheless, for
increasing grid sizes, longer time horizons T , and/or shorter
control periods, tackling (16) could be challenging: Phase φ
of bus n involves five variables (vn,φ, pn,φ, qn,φ, Pn,φ, Qn,φ).
Assuming for simplicity that every bus carries all three phases
results in a total of (15N+M)T variables. In addition, private
information on a per-vehicle basis needs to be collected and
processed by the utility. These considerations motivate well the
scalable (both in space and time) and the privacy-preserving
scheme for solving (16) that is pursued next.

IV. DISTRIBUTED OPTIMAL CHARGING PROTOCOL

This section delineates an ADMM-based method for de-
composing (16) into smaller subproblems. Notably, each sub-
problem either enjoys a closed-form solution or it can be
tackled efficiently by Alg. 1. As a brief review, ADMM solves
problems of the form [26]

min
x∈X ,z∈Z

{f(x) + g(z) : Fx + Gz = b} (17)

where f(x) and g(z) are convex functions; X and Z are con-
vex sets; and (F,G,b) model the linear equality constraints
coupling variables x and z. In its normalized form, ADMM
assigns a Lagrange multiplier w for the equality constraint and
solves (17) by iterating over the following three recursions

xi+1 ∈ arg min
x∈X

f(x) + ρ
2‖Fx + Gzi − b + wi‖22 (18a)

zi+1 ∈ arg min
z∈Z

g(z) + ρ
2‖Fx

i+1 + Gz− b + wi‖22 (18b)

wi+1 := wi + Fxi+1 + Gzi+1 − b (18c)

for some ρ > 0. At iteration i, the primal and dual residual
for (18) capturing primal and dual feasibility are defined as

oip := ‖Fxi + Gzi − b‖2
oid := ρ‖F>G(zi − zi−1)‖2. (19)

Under mild conditions, it has been shown that (oip, o
i
d) con-

verge to zero as the iteration index i goes to infinity, and that
the objective function converges to the optimal value [26].
ADMM has been applied to decentralize various power system
tasks [24], [27], [28]. Related ideas are adopted here to
decouple the spatially-coupled constraints (16b)–(16d).
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Fig. 2: Consensus and duplicate variables in the ADMM
scheme. Variables connected by blue dotted lines are con-
strained to be equal.

To that end, each bus n ∈ N maintains a local copy of the
variables associated with the squared voltage magnitude of its
parent bus, and the power flows feeding its children buses.
These auxiliary variables are marked with a hat as v̂n and
{(P̂k, Q̂k)}k∈Cn . The duplicate variable v̂n stored at bus n
should agree with the original variable vπn stored at bus πn
as demonstrated in Fig. 2. To decentralize the computations,
we further introduce the consensus variable ṽπn , and impose
the constraints vπn = ṽπn and v̂n = ṽπn for all non-leaf
buses. The spatially-coupled equality constraints vπn = ṽπn
and v̂n = ṽπn are dualized in the ADMM scheme. Consensus
variables marked with a tilde are updated in the second step
of ADMM, and all the remaining variables are updated in the
first step of ADMM. By repeating this process for the power
flow variables and for all n ∈ N , the physical grid model is
decoupled across buses.

We also introduce duplicate variables {p̃dn(t)}n∈N for net
loads to separate the tasks of EV charging and generation
dispatch. As detailed later, imposing the constraints p̃dn(t) =
pdn(t) for all n, enables isolating (16j) from the rest of
the constraints in (16); resulting in localized EV charging
subproblems that is a special case of (2).

For a compact representation define the aggregate variables:

xn(t) :=
{
vn(t),pgn(t),pdn(t),qgn(t),Pn(t),Qn(t)

}
x̂n(t) :=

{
v̂n(t), {P̂k(t), Q̂k(t)}k∈Cn

}
z̃n(t) :=

{
ṽn(t), p̃gn(t), p̃dn(t), q̃gn(t), P̃n(t), Q̃n(t)

}
for all n ∈ N and t ∈ T . With the newly introduced variables,
problem (16) can be equivalently expressed as:

min
∑
t∈T

[
f0(P0(t)) +

∑
n∈N

fgn(p̃gn(t))

]
(20a)

over {xn(t), x̂n(t), z̃n(t)}n∈N ,t∈T , {em ∈ Em}m∈M,

s.to pgn(t)− pdn(t) =
∑
k∈Cn

P̂k(t)−Pn(t),∀ n ∈ N , t

(20b)

qgn(t)− qdn(t) =
∑
k∈Cn

Q̂k(t)−Qn(t),∀ n ∈ N , t

(20c)
v̂n(t)− vn(t) = Re{Z̄n(Pn(t) + jQn(t))}

∀n ∈ N+, t (20d)

TABLE I: Lagrange multipliers for problem (20)
pgn(t) = p̃gn(t) λpn(t) qgn(t) = q̃gn(t) λqn(t)

P̂n(t) = P̃n(t) λ̂Pn (t) Pn(t) = P̃n(t) λPn (t)

Q̂n(t) = Q̃n(t) λ̂Qn (t) Qn(t) = Q̃n(t) λQn (t)

v̂n(t) = ṽπn (t) λ̂vn(t) vn(t) = ṽn(t) λvn(t)

pdn(t) = p̃dn(t) λdn(t) Constraints (20l) µn,φ(t)

¯
pgn,φ ≤ p̃

g
n,φ(t) ≤ p̄gn,φ, ∀ φ ∈ Pn, n ∈ N , t (20e)

¯
qgn,φ ≤ q̃

g
n,φ(t) ≤ q̄gn,φ, ∀ φ ∈ Pn, n ∈ N , t (20f)

¯
vn ≤ ṽn,φ(t) ≤ v̄n, ∀ φ ∈ Pn, n ∈ N , t (20g)

P̃ 2
n,φ(t) + Q̃2

n,φ(t) ≤ S̄2
n, ∀ φ ∈ Pn, n ∈ N+, t (20h)

Pn(t) = P̃n(t), Qn(t) = Q̃n(t), vn(t) = ṽn(t),

∀ n ∈ N+, t (20i)

P̂n(t) = P̃n(t), Q̂n(t) = Q̃n(t), v̂n(t) = ṽπn(t),

∀ n ∈ N+, t (20j)

pgn(t) = p̃gn(t),pdn(t) = p̃dn(t),qgn(t) = q̃gn(t),

∀ n ∈ N , t (20k)

p̃dn,φ(t) = dn,φ(t) +
∑

m∈Mn,φ

em(t), ∀φ ∈ Pn, n, t

(20l)

(1>P̃0(t))2 + (1>Q̃0(t))2 ≤ S̄2
f , ∀t (20m)

The equality constraints between duplicate variables in (20i)–
(20l) are assigned Langrange multipliers according to Table I.
Adopting the ADMM iterates of (18) to solve (20), variables
{xn(t), x̂n(t)}n∈N ,t∈T and {em}m∈M are updated in the
first ADMM step, whereas variables {{z̃n(t)}n∈N }t∈T are
updated during the second ADMM step as detailed next.

A. First Step of ADMM

Due to the form the generic update (18a) takes for the
problem at hand, variables {xn(t), x̂n(t)}n∈N ,t∈T can be
updated separately from the EV charging profiles {em}m∈M.
The updates for these two variable sets are studied next.

Heed that {xn(t), x̂n(t)}n∈N ,t∈T can be optimized in-
dependently across buses and time periods. Nevertheless,
for fixed bus and time indices (n, t), variables xn(t) and
x̂n(t) are coupled due to constraints (20b)–(20d). To simplify
the presentation, we drop the time index and consider the
canonical subproblems involved for all t ∈ T . Let ẑn :={
ṽπn , {P̃k, Q̃k}k∈Cn

}
for bus n ∈ N+. Variables xn and x̂n

are updated during the i-th iteration as the minimizers of

min
xn,x̂n

‖xn − zin + λin‖22 + ‖x̂n − ẑin + λ̂in‖22

s.to (20b)− (20d). (21)

For n = 0 and due to the power supply cost from the main
grid, variables (P0,Q0) are found as the minimizers of

min
P0,Q0

‖x0 − zi0 + λi0‖22 + ‖x̂0 − ẑi0 + λ̂i0‖22 +
2

ρ
f0(P0)

s.to (20b)− (20c). (22)

Problems (21)–(22) are linearly-constrained quadratic pro-
grams with closed-form minimizers [20].
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(a) First step of ADMM. (b) Second step of ADMM.

Fig. 3: Information exchange in the ADMM steps for bus n.

We next focus on updating the vehicle charging profiles
{em}m∈M at iteration i. Interestingly, the task of EV charging
decouples over buses and phases. The charging profiles for
vehicles m ∈Mn,φ can be updated as the minimizers of

min
{em∈Em}m∈Mn,φ

1

2

∑
t∈T

lin,φ(t) +
∑

m∈Mn,φ

em(t)

2

(23)

where lin,φ(t) := dn,φ(t)− p̃d,in,φ(t)+µin,φ(t) and the Lagrange
multiplier µin,φ(t) reflects the network constraints. Note (23) is
actually a special case of (2) with Ct(x) = x2/2, ∀t. Hence,
subproblem (23) can be solved using Alg. 1.

In the first step of ADMM, each bus n needs to collect
ṽπn from its parent and {P̃k, Q̃k}k∈Cn from all its children
as depicted in Fig. 3a. Meanwhile, each bus n transfers p̃dn to
its EV scheduling center, where the charging profile of EVs
are optimized using Alg. 1.

B. Second Step of ADMM

Finding optimal {z̃n(t)}n∈N ,t∈T can be performed inde-
pendently across buses and time slots. Because of that, time
indices are ignored. Every bus n has to solve five sub-
problems in parallel, each one associated with the variables
p̃gn, p̃dn, q̃gn, ṽn, and (P̃n, Q̃n). Firstly, updating p̃gn, p̃dn,
q̃gn, and ṽn decouples over phases of bus n too. It can be
shown that per phase variables are updated as the minimizers
of a univariate convex quadratic function possibly over box
constraints. If the generation cost at bus n is fgn(p̃gn) :=∑
φ∈Pn an,φ(pgn,φ)2 + bn,φp

g
n,φ + cn,φ with an,φ ≥ 0, then

p̃gn,φ is updated at iteration i by solving

min
p̃gn,φ

an,φ(p̃gn,φ)2 + bn,φp̃
g
n,φ + ρ

2 (pg,in,φ − p̃
g
n,φ + λp,in,φ)2

s.to
¯
pgn,φ ≤ p̃

g
n,φ ≤ p̄

g
n,φ. (24)

The minimizer of (24) is expressed as

p̃g,i+1
n,φ =

[
ρ(pg,in,φ + λp,in,φ)− bn,φ

2an,φ + ρ

]p̄gn,φ
¯
pgn,φ

(25)

where [x]x̄
¯
x := max{

¯
x,min{x, x̄}}. The entries of q̃gn and ṽn

are similarly found as

q̃g,i+1
n,φ =

[
qg,in,φ + λq,in,φ

]q̄gn,φ
¯
qgn,φ

(26)

ṽi+1
n,φ =

[∑
k∈Cn(v̂ik,φ + λ̂v,ik,φ) + vin,φ + λv,in,φ

|Cn|+ 1

]v̄n
¯
vn

. (27)

The entries of p̃dn are obtained as the solutions of uncon-
strained univariate convex quadratic programs as

p̃d,i+1
n,φ =

1

2

pd,in,φ + λd,in,φ + dn,φ +
∑

m∈Mn,φ

eim + µin,φ

 .

(28)
The optimizations involved in updating the consensus power

flow variables {P̃n, Q̃n}n∈N+ decouple across phases. The
consensus power flow variables {(P̃n,φ, Q̃n,φ)}φ∈Pn,n∈N+ are
updated by solving the problems for all φ ∈ Pn and n ∈ N+:

min
P̃n,φ,Q̃n,φ

(P̃n,φ − P̆ in,φ)2 + (Q̃n,φ − Q̆in,φ)2 (29)

s.to P̃ 2
n,φ + Q̃2

n,φ ≤ S̄2
n

where P̆ in,φ := 1
2 (P in,φ + P̂ in,φ + λP,in,φ + λ̂P,in,φ), and Q̆in,φ :=

1
2 (Qin,φ+Q̂in,φ+λQ,in,φ+λ̂Q,in,φ). Resorting to the KKT conditions
for (29) shows that its minimizers are

P̃ i+1
n,φ := min

 S̄n√
(P̆ in,φ)2 + (Q̆in,φ)2

, 1

 P̆ in,φ (30a)

Q̃i+1
n,φ := min

 S̄n√
(P̆ in,φ)2 + (Q̆in,φ)2

, 1

 Q̆in,φ. (30b)

The substation power flows are updated as the solution to

min
P̃0,Q̃0

‖P̃0 − P̆i0‖22 + ‖Q̃0 − Q̆i
0‖22 (31)

s.to (1>P̃0)2 + (1>Q̃0)2 ≤ S̄2
f

where P̆i0 := Pi0+λP,i0 and Q̆i
0 := Qi

0+λQ,i0 . The minimizers
of (31) can be computed in closed-form as shown in the
Appendix:

Proposition 1. The optimal solution of problem (31) is

P̃i+1
0 := P̆i0 −max

{
1− S̄f

Σ
, 0

}
11>P̆i0

3
(32a)

Q̃i+1
0 := Q̆i

0 −max

{
1− S̄f

Σ
, 0

}
11>Q̆i

0

3
(32b)

where Σ :=
√

(1>P̆i0)2 + (1>Q̆i
0)2.

To implement the second step of ADMM, bus n gathers
its copies (P̂n, Q̂n) from its parent, {v̂k}k∈Cn from all its
children, and the total charging load {

∑
m∈Mn,φ

ekm}φ∈Pn of
all the connected EVs as presented in Fig. 3b. Then bus n
updates z̃n according to (24)–(28), (30), and (32).

C. Third Step of ADMM

The Lagrange multipliers are updated according to (18c),
i.e., every multiplier is equal to its previous value plus the most
recent constraint violation. The overall information exchange
for the devised algorithm is depicted in Fig. 3, while the
charging protocol is summarized as Algorithm 3.
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Algorithm 3 Decentralized network-constrained charging

1: Initialize e0
m = 0 for all m.

2: for i = 0, 1, . . . do (parallel across all buses)
3: Bus n solves (21) or (22) to obtain xi+1

n and x̂i+1
n .

4: Bus n solves (23) via Alg. 1 to update ei+1
m for m ∈

Mn.
5: Bus n updates z̃i+1

n from (24)–(28), (30), and (32).
6: Bus n updates Lagrange multipliers by (18c).
7: end for

V. NUMERICAL TESTS

A. Frank-Wolfe Scheme for Vehicle Charging

We first evaluated Alg. 1 by simulating the charging of
59 EVs. The costs are selected as Ct(x) := x2/2 for all
t [10]. For all vehicles, the battery capacity was 20 kWh and
the maximum charging rate was 3.45 kW [15]. The plug-
in/-out times and daily travel miles were set according to
statistical estimates obtained from the National Household
Travel Survey [29], [30].

The expected state of charge for EVs was fixed to 90%,
and the energy needed per 100 km is E100 = 15 kWh. The
initial state of charge for EV m was modeled as ssocm =
0.9−Dmiles

m E100/(100Bm) for daily travel miles Dmiles
m . The

normalized base load curves were obtained by averaging the
2014 residential load data from Southern California Edison.
A day-long horizon starting at midnight was divided into
T = 96 slots. Tests were run on Matlab using an Intel CPU
@ 3.6 GHz (32 GB RAM) computer.

Parameter d(t) was the normalized residential load with
the maximum load set to 1000 kW [10]. The minimizer of
(16) was obtained via SeDuMi, Algorithm 1, and the PGD
solver of [10]. The subproblem (13) in PGD was solved by
SeDuMi. Algorithm 1 and PGD were run sequentially and they
were terminated once the relative cost error became smaller
than 10−6. Figure 4 shows that the three resultant load curves
coincide and feature a flat load valley. Algorithm 1 converged
within 0.01 sec, PGD in 12.5 sec, and SeDuMi in 82.47 sec.
Problem (2) was also solved by the ADMM-based scheme
of [8] that converged in 13 sec. Similar to PGD, each ADMM
update of the latter involves a quadratic program per vehicle.

Figure 5 depicts the cost convergence curves for Alg. 1 and
PGD while scheduling 59 vehicles over T = 96 time slots.
Figure 6 presents the mean running times (averaged across
vehicles and iterations) of a single update of Alg. 1 and PGD
and for varying T . Although Alg. 1 attains a relative cost
function error of 10−6 at roughly the same rate as PGD, its
mean update time is in the order of microseconds, whereas
PGD’s mean time is in the order of seconds and increases
linearly with T . The major computational advantage of Alg. 1
is the simple update in (10).

The real-time Alg. 2 was subsequently evaluated. By sim-
ulating the same 59 EVs used in our first experiment, Alg. 2
exhibited a load curve almost identical to the one obtained by
the offline Alg. 1 in Fig. 4. To amplify the effects of random
charging requests, the number of simulated EVs was increased
to 120. According to the total load curves shown in Fig. 7,
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Fig. 4: Load curves after optimal charging of 59 EVs.
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Fig. 5: Cost convergence for Alg. 1 and PGD.

the two charging protocols differ slightly around 23:00, thus
verifying the efficiency of Alg. 2. Similar observations have
also been made in [10] for uniformly distributed plug-in times.
Compared to the PGD protocol of [10], the computational
advantage of Alg. 2 enables faster real-time EV scheduling.

B. ADMM-based Scheme for Network-Constrained Charging

Algorithm 3 was first tested using the unbalanced IEEE 13-
bus feeder [31]. Voltage magnitudes were constrained within
[
¯
v, v̄] = [0.97, 1.03] pu and the feeder voltage was set to 1 pu.

The cost of energy drawn from the main grid was f0(P0) :=∑
φ f0,φ(P0,φ), where f0,φ(P0,φ) := a0,φP

2
0,φ + b0,φP0,φ,

a0,φ = 0.1$/(MW)2h, and b0,φ = 16 $/MWh for all three
phases φ. Two distributed generators (DG) were located at
buses 2 and 13. Their generation costs had the same functional
form as f0(P0) with coefficients an,φ = 0.1 $/(MW)2h, and
bn,φ = 8 $/MWh for all three phases φ and n = 2, 13. Forty
eight EVs were being charged on phases b and c of bus 6 and
phase a of bus 13 (16 EVs per location) resulting in a total of
23,328 variables for T = 96 time slots. SeDuMi and Alg. 3
converged to the optimal cost of $744.76 within 454 sec and
4.76 sec, respectively. The convergence of the objective in (16)
shown in Fig. 8a and the evolution of oip/T

√
N and oid/T

√
N
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Fig. 6: Average update time for Alg. 1 and PGD.
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Fig. 7: Load curves after optimal charging of 120 EVs. The
performance degradation using the online Alg. 7 is very small.

shown in Fig. 8b demonstrate that Alg. 3 converged within
350 iterations. Elaborating on the running time, the average
running time for solving the vehicle scheduling subproblem
(23) using Alg. 1 was 8.6 · 10−3 sec, and the average time
spent on the remaining ADMM updates was 5 ·10−3 sec. The
overall computational efficiency of Alg. 3 is due to the closed-
form updates and the use of Alg. 1 to tackle (23).

To evaluate the scalability of Alg. 3, vehicle numbers were
increased to 24 on phase b of bus 6, 24 on phase c of bus
6, and 20 on phase a of bus 13. For this setup, SeDuMi and
Alg. 3 reached the optimal cost of $748.98 in 713 sec and
4.80 sec, respectively. The average running time for tackling
(23) using Alg. 1 took 8.7 · 10−3 sec, and the average time
spent on the remaining ADMM updates was 5 · 10−3 sec as
before. For a total of 350 iterations, the total running time for
Alg. 3 was 4.8 sec, slightly larger than the previous case.

Due to the flexibility of EV loads to be served at night, no
voltage constraint was active during the previous experiments.
To test the effect of network constraints, the DG cost at
bus 13 was increased by setting a13,φ = 2$/(MW)2h,
and b13,φ = 16 $/MWh for all three phases φ. Moreover,
the capacitor at the same bus was removed. The result was

additional active power flowing from the feeder bus with less
reactive power support thus causing undervoltage scenarios.
Sixteen vehicles were assumed on phases b and c of bus 6
and phase a of bus 13. SeDuMi and Alg. 3 converged to the
optimal cost of $881.44 in 562 sec and 12 sec (700 iterations),
respectively. The voltage magnitude on phase c of bus 13
was reaching the lower limit of 0.97 pu from time slot 6
to 38. Without considering network constraints, the voltage
magnitude on phase c of bus 13 would drop to 0.96 pu, and
the total cost would decrease to $861.15.

Algorithm 3 was also tested on the larger unbalanced IEEE
123-bus feeder [31]. Fifteen DG units were placed in the
system; while 5, 10, 15, 25 and 5 vehicles were being charged
on buses 3, 15, 64, 82, and 102, respectively. In this feeder
scenario, SeDuMi was unable to handle the 182,880 variables
involved over T = 96 slots. The cost convergence and the
convergence of oip/T

√
N and oid/T

√
N are shown in Fig. 9.

The optimum cost of $849.43 was attained in 2,000 iterations.
The average running times for (23) and for the remaining
ADMM subproblems were 8.4 · 10−3 sec and 4.7 · 10−3 sec,
respectively, resulting in 26 sec for Alg. 3 to converge.

Finally, the approximation error incurred by the linearized
grid model in (15c) was also examined. The full AC power
flow model was solved using the forward-backward sweep
algorithm [32]. The approximation error was numerically
evaluated by varying active loads from 0.4 to 1.4 times the
original peak load while maintaining the power factor constant.
The maximum error and the maximum relative error in voltage
magnitudes over all phases and buses are shown in Figs.10a
and 10c, respectively for the IEEE 13-bus and the 123-bus
feeders. The voltage approximation error is less than 4 · 10−3

pu. Figures 10b and 10d depict the maximum relative errors
in apparent power flows, which are within 3%.

VI. CONCLUSIONS

Given that optimal EV charging scales unfavorably with
the fleet size and the number of control periods, decentralized
charging protocols have been developed in this work. A simple
vehicle charging scheme has been devised based on Frank-
Wolfe iterations. This charging protocol exhibits provable
O( 1

k ) convergence, poses minimal computational requirements
to EV controllers, enjoys privacy and security features, and
attains a 100-times acceleration in terms of computational time
over existing alternatives. To accommodate scenarios where
EVs plug-in sequentially, a real-time scheduling scheme has
also been developed. To respect voltage and feeder transformer
limits, network-constrained EV charging has been considered
too. To achieve scalability, an ADMM-based solver has been
built leveraging on an approximate grid model. The solver
features closed-form updates and incorporates the scheduling
protocol of vehicle charging. Numerical tests using real-world
data verify the optimality and efficiency of the proposed de-
centralized schemes. Extensions to asynchronous ADMM and
Frank-Wolfe updates constitute current research directions.

APPENDIX

Proof of Prop. 1: The Lagrangian function of the
convex problem in (31) reads L(P̃0, Q̃0, ν) = ‖P̃0 − P̆i0‖22 +
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Fig. 8: Convergence performance for the IEEE 13-bus feeder.
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Fig. 9: Convergence performance for the IEEE 123-bus feeder.

‖Q̃0 − Q̆i
0‖22 + ν

[
(1>P̃0)2 + (1>Q̃0)2 − S̄2

f

]
. Because (31)

satisfies Slater’s condition (e.g., for P̃0 = Q̃0 = 0), strong
duality holds [20]. If (P̃∗0, Q̃

∗
0, ν
∗) are the optimal primal/dual

variables, Lagrangian optimality yields:

P̃∗0 − P̆i0 + ν∗11>P̃∗0 = 0 (33a)

Q̃∗0 − Q̆i
0 + ν∗11>Q̃0 = 0. (33b)

Premultiplying both sides of (33a)–(33b) by 1> results in:

1>P̃∗0 =
1>P̆i0

1 + 3ν∗
and 1>Q̃∗0 =

1>Q̆i
0

1 + 3ν∗
. (34)

Complementary slackness yields ν∗
[
(1>P̃∗0)2 + (1>Q̃∗0)2 −

S̄2
f

]
= 0, which from (34) and dual feasibility provides

ν∗ = 0 or ν∗ =
1

3

(√
(1>P̆i0)2 + (1>Q̆i

0)2/S̄f − 1

)
. (35)

The claim follows from primal feasibility, (33), and (35).
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