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Abstract—Distribution microgrids are being challenged by re-
verse power flows and voltage fluctuations due to renewable gen-
eration, demand response, and electric vehicles. Advances in pho-
tovoltaic (PV) inverters offer new opportunities for reactive power
management provided PV owners have the right investment in-
centives. In this context, reactive power compensation is consid-
ered here as an ancillary service. Accounting for the increasing
time-variability of distributed generation and demand, a stochastic
reactive power compensation scheme is developed. Given uncer-
tain active power injections, an online reactive control scheme is
devised. This scheme is distribution-free and relies solely on power
injection data. Reactive injections are updated using the Lagrange
multipliers of a second-order cone program. Numerical tests on
an industrial 47-bus microgrid and the residential IEEE 123-bus
feeder corroborate the reactive power management efficiency of
the novel stochastic scheme over its deterministic alternative, as
well as its capability to track variations in solar generation and
household demand.

Index Terms—Convex relaxation, loss minimization, optimal
power flow, photovoltaic inverters, reactive power compensation,
stochastic approximation, voltage regulation.

I. INTRODUCTION

M EDIUM- and low-voltage power grids nowadays are
undergoing a transformative change to microgrids.

Renewable generation and elastic loads are uncertain, power
flows are frequently reversed, and bus voltage magnitudes can
fluctuate considerably. For example, the power generated by
a photovoltaic (PV) network with intermittent cloud coverage
can vary by 15% of its nameplate capacity within one-minute
intervals [1]. Different from transmission grids, bus voltage
magnitudes in distribution grids are markedly affected by active
power variations. On a clear day, solar generation may easily
exceed local demand (especially at midday off-peak hours) and
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cause over-voltages [2]; whereas overnight vehicle charging
could lead to serious voltage sags [3].
Given active power injections, reactive power management

aims at controlling reactive injections so that power losses over
distribution lines are minimized while bus voltage magnitudes
are maintained within the prescribed limits, e.g., of their
nominal values. Traditionally, reactive power management is
achieved via tap-changing under load (TCUL) transformers,
step voltage regulators (SVR), shunt capacitors and reactors,
and static var compensators (SVC) [4]; see for example [5]
and [6] for related control algorithms. Operational costs, dis-
crete control actions, and slow response times are the factors
limiting the use of such devices alone for voltage regulation
in distribution systems with renewables [7]. Reactive power
management becomes even more challenging in microgrids
operating in islanded mode due to the lack of centralized
fast-reacting generators [8]. On the other hand, subsidizing
reactive power control by distributed generation (DG) units has
been advocated as a viable solution [1], [9].
Although prohibited by current standards [10], the power

electronics of PVs can be commanded to provide reactive
injections as well; see [11] and references therein. For this
reason, reactive power compensation via DG units has been an
active research area lately. A multi-agent approach is proposed
in [12], while voltage regulation is cast as a learning problem
in [13]. Control policies based on approximate models are
developed in [1]; and a successive convex approximation is
adopted in [14] for voltage regulation. Upon linearizing the
power flow equations, a two-layer decentralized scheme is
proposed in [11]. Another decentralized consensus-type algo-
rithm is pursued in [15] after approximating power losses as
a quadratic function of reactive power injections. Localized
(re)active injection updates are reported in [16]–[18].
All previous schemes build on approximate grid models.

Being an instance of the optimal power flow (OPF) problem,
reactive power management is a non-convex problem, yet
several convex relaxations have been proposed [19]. In radial
distribution grids, OPF can be surrogated by a semidefinite
program (SDP) [20], [21]; or by a second-order cone program
(SOCP) using either polar coordinates [22], or the branch flow
model [23]–[25]. A one-to-one mapping between their feasible
sets proves the equivalence of the two relaxations [26], and
advocates using the SOCP one due to its simplicity. Sufficient
conditions guaranteeing the exactness of the convex relaxation
(i.e., that solving the relaxed problem is equivalent to solving
the original non-convex one) have been developed; see [19] for
a review. Regarding reactive power compensation, a distributed
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algorithm based on the SDP relaxation has been developed in
[27], and a centralized approach for inverter VAR control using
the SOCP relaxation has been devised in [7].
The approaches so far assume that active power injections

are precisely known and remain unchanged throughout the reac-
tive control period. However, such assumptions are less realistic
in future microgrids with high penetration of renewables. Our
first contribution is a stochastic framework for reactive power
management. We consider a radial microgrid where several DG
units with reactive power control capabilities have been inte-
grated. The grid operation is divided into short time intervals.
At every interval, a microgrid controller collects active nodal
injections and decides the reactive power to be injected by con-
trollable DG units. (Re)active load demands and renewable gen-
eration are known only via noisy and delayed estimates, and
are hence, modeled as stochastic processes. Different from the
power loss minimization in [28], an ancillary voltage regulation
market is formulated here: PV owners are reimbursed for pro-
viding reactive power support. Reactive injections from PVs are
set as the minimizers of an expected reactive power compensa-
tion cost.
As a second contribution, the derived optimization problem

is solved using a provably convergent stochastic approximation
algorithm. It is further shown that a subgradient of the involved
cost is computed via the dual SOCP problem and reactive PV
injections are updated by a simple thresholding rule. Numer-
ical results on industrial and residential microgrids with real
solar generation and demand data corroborate the efficacy of
the novel reactive power management scheme.
The rest of the paper is outlined as follows: After the branch

flow model is presented in Section II, the problem of stochastic
reactive power compensation is formulated in Section III. A sto-
chastic approximation algorithm is developed in Section IV, its
performance advantage over an instantaneous reactive control
scheme is supported by numerical tests in Section V, and con-
clusions are drawn in Section VI.
Regarding notation, lower- (upper-) case boldface letters de-

note column vectors (matrices), with the exception of line power
flow vectors . Calligraphic symbols are reserved for sets.
Prime stands for vector and matrix transposition. Vectors and
denote the all-zeros and the th canonical vector, respec-

tively. Symbol denotes the -norm of .

II. SYSTEM MODEL

Consider a microgrid consisting of buses. For oper-
ational and architectural simplicity, the microgrid is assumed
to be radial and it can thus be modeled by a tree graph

, where denotes the set of nodes
(buses), and is the cardinality of the edge set . The
tree is rooted at the substation bus indexed by . For every
bus , let be the squared voltage magnitude at bus
and the complex power injected into bus . Notice
that every non-root bus has a unique
parent bus that will be denoted by . Hence, the directed edge

corresponding to the distribution line feeding bus
will be simply indexed by ; see Fig. 1. Let also
and denote the line impedance and the squared current mag-
nitude on line , respectively. If is as the complex

Fig. 1. Bus is connected to its unique parent via line .

power flow on line seen at the sending end , the so termed
branch flow model is described by the equations [23], [24]

(1)

(2)

(3)

(4)

for all , where is the
set of the children nodes for bus . Equations (1)–(2) follow
from power conservation; (3) is derived upon squaring second
Kirchoff’s law; and (4) from current computations. The branch
flow model is essentially derived from the full AC model, after
eliminating voltage and current phases. The model is accompa-
nied with the initial conditions , , and

.
The active and reactive power injection at bus can be de-

composed into its generation and consumption components as
and . For a purely load bus, there

is no generation , the consumed active power
is , and its reactive power is typically related
to via a constant power factor. A DG bus (e.g., an industrial
facility equipped with rooftop solar panels or a wind turbine)
not only consumes power denoted by and , but it can also
generate active power , and provide reactive support
which can be positive or negative. For a bus hosting a shunt ca-
pacitor only, and .
For notational simplicity, let us collect all nodal quantities

related to non-root buses in vectors ,
, and . Likewise, for line quan-

tities define vectors , ,
and . Bus voltage magnitudes are allowed to
lie within a prespecified range (typically a of their nominal
value), yielding the voltage limits for all .
Upon setting and , voltage
regulation constraints can be compactly expressed as

(5)

Building on (1)–(5), our stochastic reactive control scheme is
formulated next.

III. PROBLEM FORMULATION

In the envisioned microgrid operation scenario, active power
is managed at a coarse timescale. For example, a power dispatch
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is issued for the next 24 h through a day-ahead market. Active
power adjustments are implemented on a 5- or 10-min basis via
a real-time market. Both the hourly and the real-time market
active power dispatch could depend on the cost of dispatchable
generators and predictions on renewable energy within the mi-
crogrid, as well as the costs of power exchanges with a main
grid. Together with this hourly active power schedule, the mi-
crogrid controller manages reactive power by controlling trans-
formers, shunt capacitors, SVRs, and SVCs [4], [5]. Nonethe-
less, slow response times and switching limitations render such
devices inadequate for very fast reactive power control. The
power electronic interfaces found in DG units, such as PV in-
verters, provide a viable solution for near real-time reactive
power management [1], [27].
Reactive power compensation occurs over time intervals in-

dexed by . These intervals could either coincide with real-time
market periods (e.g., 5 min), or be even shorter (30 s), depending
on the variability of active powers and cyber resources (sensing,
communication, and computation delays). If are the ac-
tive and reactive power injections in all but the root buses during
control period , the power loss on distribution lines is expressed
as

(6)

where the second equality follows from (1). Recalling that
, define for notational brevity

(7)

Given active injections and reactive demands , conven-
tional reactive power management aims at choosing so that
power losses are minimized and voltages are maintained within
. Concretely, reactive power management could be stated as
finding

(8)

where is the reactive feasible region to be delineated later.
Injecting at time would be the optimal control action
under two operational conditions:

(C1) are precisely known, and
(C2) they remain constant throughout period .

Yet such conditions are hardly met in microgrids: renewable DG
entails time-varying active and reactive injections. In low-in-
ertia microgrids, the lack of droop controllers challenges fur-
ther voltage regulation. It is worth noting that even if
are relatively constant over periods and , the microgrid
controller has only their noise-contaminated observations (di-
rect measurements or delayed state estimates).
To overcome these difficulties, a stochastic optimization ap-

proach is pursued here. The active and reactive power injections
realized over an hour or over a real-timemarket interval

aremodeled as stochastic processes drawn independently across
time from a probability density function (pdf): Injections
could be modeled as the sum of a nominal and deviations

that are assumed independent over time; and likewise for
. A meaningful stochastic control scheme could entail min-

imizing the average power loss as [28]

(9)

where the expectation is over time , or more precisely, over
. Rather than implementing the unreliable and possibly

obsolete instantaneous decisions of (8), problem (9) is ex-
pected to yield smoother control actions. Distinct from [28]
where PVs were providing voltage regulation at no charge, re-
active compensation is interpreted here as an ancillary service.
Before elaborating this service, the injection region should
be understood first.

A. Reactive Power Injection Region

Choosing requires understanding the reactive control ca-
pabilities of PVs [1]. Consider a solar panel located at bus
with nameplate active power capacity , and its inverter having
apparent power capability . Because PVs are currently re-
stricted to operate at unity power factor [10], their inverters are
typically designed so that . If is the PV output
at time , the inverter could compensate constrained as

. This design constraint introduces two
practical concerns: First, the reactive injection region becomes
time-varying thus complicating (9). Second, when
(at maximum solar output), no reactive power can be provided
although at those instances it may be needed.
For these reasons, PV inverters have been advocated to be

oversized over their panel nameplate capacity so that
; cf. [1]. By choosing for example and lim-

iting reactive power compensation to rather than

, the inverter can provide reactive power sup-

port with , regardless of the instantaneous PV
output . Under this policy, the reactive injection region is
the time-invariant convex set

(10)

where and . If
is the subset of buses with controllable reactive injections, then

for , and for .
Although the aforementioned scheme could be technologi-

cally feasible, PV owners have to invest on oversized inverters.
As a financial incentive, PV sites with reactive power compen-
sation capabilities can participate in an ancillary voltage regula-
tion market and be reimbursed for their reactive power support.
Specifically, let [in & h] be the price for reac-
tive power support at bus ; and [in kWh] the
price at which the microgrid buys (or sells) active power
from (to) the main grid. If prices are constant throughout the
real-time market interval or longer periods, a market-based ex-
tension of (9) could be formulated as

(11)

where the microgrid controller trades power losses for reac-
tive power support by PVs. The ancillary market in (11) can
be equivalently expressed as

(12)

where are the normalized prices for ,
and for . Even if the joint pdf of
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were known, evaluating the expectation in (9) or (12) would be
non-trivial. To practically solve these two policies, a stochastic
approximation approach is pursued next. The focus will be on
solving (12), yet that is without loss of generality since (9) is the
special case of (12) where .

IV. STOCHASTIC APPROXIMATION SOLVER

Leveraging recent advances in online convex optimization
(see for instance [29]), the problem in (12) can be cast in a sto-
chastic approximation framework. Successive estimates
for the minimizer are iteratively found as soon as a new
datum becomes available. Specifically, adopting the
composite objective mirror descent approach of [29], reactive
injection iterates ’s are updated as the minimizers of the
convex problem

(13)

where is an arbitrary subgradient of evaluated at
and is an appropriately selected step size. Recall that the
subgradient generalizes the notion of gradient to non-differen-
tiable functions. For a convex function , any vector

satisfying the inequality for
every in the domain of , constitutes a subgradient of at .
The set of all subgradients is termed the subdifferential of at
, and is denoted by ; see also [30, Sec. 2.5].
The rationale behind stochastic approximation algorithms is

to first surrogate the original cost in (12) by its instantaneous
approximation to yield

(14)

Notice that theminimizer of (14) is the per-time optimal reactive
injection. But instead of solving (14), online optimization algo-
rithms minimize a locally tight upper bound of the cost in (14).
Such a bound can be obtained by maintaining and
linearizing at the previous iterate as

for a proper . After ignoring
constant terms, the update in (13) follows.
To practically implement the stochastic reactive control

scheme of (13), two issues need to be resolved: finding the
minimizer of (13) and calculating the subgradient involved.

A. Closed-Form Minimizer for (13)

Suppose a subgradient has been found. Upon completing
the square, the optimization in (13) can be written as

(15)

where . Note that solving (15) decouples over
the entries of as

(16)

where is the -th entry of . By using the Karush-Kuhn-
Tucker conditions for the univariate minimization in (16), the
following result is shown in the Appendix.

Proposition 1: The minimizer of (16) is expressed in closed
form as

(17)

The rule of (17) implies that if is smaller than
, there is no reactive injection into bus . When
is large, its reactive injection saturates. Otherwise,

. Therefore, once a belonging to
the subdifferential has been found, can be easily
obtained from (17).

B. Efficient Subgradient Computation

Before finding a subgradient , an alternative representation
for is derived first. Recall that is the power
loss on distribution lines when injecting into
the distribution grid. Provided that is feasible,
function depends on the underlying grid operating point

[cf. (6)]. Finding this point requires
solving the nonlinear equations in (1)–(4), while guaranteeing
that voltages are maintained in the desired range .
Solving this set of nonlinear equations and linear inequalities is
non-trivial. Under practical operating conditions, the solution
has been claimed to be unique [31]. Even if multiple solutions
exist, the grid operating point attaining the smallest loss for the
same can be found as described next.
If the equalities in (4) are relaxed to inequalities, then

lies in a convex set; see e.g., [7] and
[25]. This convex set is represented by the linear equalities
(1)–(3), the set , and the second-order cone constraints

. Under different technical conditions
(see [19] and references therein), the minimizer of the convex
problem

(18a)

(18b)

(18c)

(18d)

(18e)

(18f)

satisfies the SOCP constraints in (18e) with equality. When this
occurs, the convex relaxation is said to be exact. To summarize,
when the relaxation is exact, the optimum value of (18) equals
the loss experienced under injections .
Henceforth, the following assumptions will be adopted:
(A1) The convex relaxation in (18) is exact.
(A2) There exists a feasible for (18) satisfying
constraints (18e) with strict inequality.
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Albeit assumptions (A1)–(A2) are not supported analytically
here, they are verified throughout our numerical tests. All in-
stances of (18) encountered in Section V were exact. Addition-
ally, when for these instances the cost in (18a) was maximized
rather than minimized, the resultant maximizers satisfied (18e)
with strict inequality; thus, numerically verifying (A2).
Under (A1), the minimizing (18) corresponds

to the underlying grid operation point, and more importantly,
is the actual power loss. Therefore, the instantaneous

power loss has been expressed as the
optimum value of an SOCP. Furthermore, since the function ar-
guments appear in the left-hand side of constraints
(18b)–(18c), is a perturbation function and is known to
be convex [30, Lemma 4.24].
The convexity of implies the existence of its subd-

ifferential [30]. To efficiently calculate a subgradient
, let us first eliminate and constraints (18b)

and (18d) from (18). To that end, define , and ex-
press as affine functions of , namely

(19a)

(19b)

(19c)

for appropriate matrices , and vectors
. Notice the dependence of on active injections

. Using these substitutions, constraints (18b) and (18d) can
be eliminated; the voltage constraints (18f) can be expressed as

; and the equalities in (18c) are compactly
written as (19c). The th hyperbolic constraint in (18e) can be
expressed as the second-order cone [7]

(20)

or in terms of the introduced variable as

(21)

where the involved parameters are defined as

Using the aforementioned substitutions and for
with being the vector of line resistances, problem (18) can be
equivalently written as

(22a)

(22b)

(22c)

(22d)

which is also an SOCP. Assumption (A2) and the fact that (18)
is bounded below (by zero) guarantee strong duality and that the

TABLE I
STOCHASTIC REACTIVE POWER MANAGEMENT ALGORITHM

dual problem of (22) is solvable [32, Proposition 5.3.2]. Stan-
dard results from sensitivity analysis further imply that the sub-
differential of with respect to coincides with the neg-
ative of the optimal dual variables corresponding to (22b) [30,
Theorem 4.26], [33].
The sought subgradient can be thus obtained via the dual

problem of (22). Towards this direction, let , , and ,
be the dual variables corresponding to (22b) and the lower and
upper bounds in (22d), respectively. To dualize the SOC con-
straints, introduce also the variable pairs . Then,
the dual of (22) is provided as [32], [34, pp. 566–567]

(23)

which can be solved as an SOCP as well. In deriving (23), con-
straints (22c) have been dualized based on the fact that for fixed

, the maximization
is equivalent to and becomes zero
when ; and infinity, otherwise.
If the tuple is a maximizer of

(23) for and , then .
Hence, the in (15) can be set to . Finally, under
(A2), complementary slackness asserts that if for all

maximizing (23), then the related primal constraints in
(22c) are satisfied with equality; see e.g., [35]. Thus,

provides an exactness certificate for the convex relax-
ation in (18).
Table I summarizes the novel stochastic reactive power com-

pensation scheme, for which two observations are in order.
Remark 1: The derived control scheme does not depend

on any distributional assumption on actual active and reactive
power injections. It rather utilizes real-time microgrid operation
data to infer the underlying statistics. The numerical tests in
Section V indicate that this data-driven approach can even track
slow time-varying statistics.
Remark 2: Albeit the focus has been on minimizing the re-

active power compensation cost, other microgrid management
tasks (voltage deviation and conservation voltage reduction)
could be amenable to this stochastic control framework.
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Fig. 2. Schematic diagram of the 47-bus industrial distribution feeder with high penetration of photovoltaics located at buses 13, 17, 19, 23, and 24 [37].

Fig. 3. Reactive management cost for the 47-bus distribution grid .

C. Algorithm Convergence

Define the cost function in (12) as

(24)

The following result that can be obtained from [29, Theorem 8]
characterizes the convergence of the iterates in (13).
Proposition 2: Let be a minimizer of (12), the update

of (13), and a maximizer of (23). If and
for all , it holds that

(25)

where ; and the constant is 2 for
, and 3/2 for . It further holds that

(26)

with probability at least .
Proposition 2 guarantees that the expected power loss expe-

rienced by converges to the optimum stochastic power loss
at the rate of . Beyond mean value convergence from
(25), the bound in (26) assures that remains close to the
optimum with high probability. According to the online
convex optimization terminology, the algorithm in Table I en-
joys sublinear regret [29]. Moreover, Proposition 2 asserts that

Fig. 4. Reactive management cost averaged over 40 independent realizations
of the 47-bus distribution feeder.

Fig. 5. Reactive power management cost using real solar generation data [38].

the novel control scheme can operate for a constant step size
, assuming of course that is known in ad-

vance. That could be the case, if the proposed reactive power
management scheme is periodically reset due to a new real-time
active power market dispatch. If on the other hand, is un-
known, a time-decaying step size works as well
with a slight degradation in performance. Both the step sizes
and the obtained bounds in Proposition 2 depend on and .
Apparently, when the reactive injection region models box
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Fig. 6. Top: Reactive power management cost with real solar generation data during August 12, 2011. Bottom: Normalized PV power output over 7 am–6 pm.

constraints, depends on the reactive power capabilities of in-
stalled PVs as . Regarding , the -norms
of the subgradients can be upper bounded too when is com-
pact [29]. Knowing precisely may be practically unrealistic.
Interestingly enough though, if the step size is
for some rather than , then (25) holds for

[36].

V. NUMERICAL TESTS

The novel stochastic reactive power management scheme is
numerically tested first on a 47-bus industrial distribution net-
work from South California Edison that is depicted in Fig. 2
[37]. For each operation interval, the microgrid controller col-
lects injections from load buses, as well as active injections from
DG buses. Reactive injections from DG units are determined:
1) by solving the deterministic control scheme of (14), and 2) via
the stochastic control scheme of Table I. Performance is tested in
terms of the reactive powermanagement cost that is the instanta-
neous counterpart of the cost in (11) evaluated on the true rather
than the observed . Observe that if , the
reactive power management cost coincides with the power loss
cost. The power loss price is set to , and reac-
tive power support prices are & h
for all . It is worth mentioning that all SOCP relaxations
were feasible and exact.
The first experiment evaluates the effect of uncertainties in

for controlling the 47-bus grid. Load injections
are kept fixed throughout the interval to 45% of their peak values
with a power factor of 0.8. Photovoltaic injections and shunt
capacitors are kept fixed throughout the interval to 60% of their
peak values, while . A period of 1 hour divided into
30-s control intervals is simulated. At each 30-s interval, the
controller observes a noise-corrupted version of the nominal
as , where the entries of are independent and
zero-mean Gaussian samples having variance 0.12, thus mod-
eling disturbances in power injections by 30%. Noisy readings
are likewise collected for the nominal . Although reactive
PV injections are decided upon the noise-corrupted read-
ings , the actual power loss depends on their nominal
values as . The algorithm was implemented

Fig. 7. Schematic diagram of the IEEE 123-bus feeder with PVs [39].

using MATLAB and CVX, and every reactive control was run
within 1.2 s on an Intel CPU @ 3.4 GHz (32 GB RAM) com-
puter. Fig. 3 depicts the reactive power management cost for
the two control schemes over a single system realization. The
algorithm of Table I converges within 20 iterations to a low
cost, while its deterministic alternative fluctuates at consistently
higher costs.
Fig. 4 presents the cost curves obtained after averaging 40

independent realizations. The curves verify that the stochastic
scheme achieves significantly lower reactive power manage-
ment costs than the myopic deterministic scheme. It is numeri-
cally observed that larger step sizes yield slower convergence,
yet at a lower steady-state cost. The savings in $/h are 28.7, 39.7,
41.8, 44.9, and 45.6, respectively, for . Prac-
tically, tuning trades off the initial transient for the steady-state
cost and the tracking of underlying statistics.
The second experiment entails real solar generation data from

the Smart* project [38]. The power outputs of the 3 PVs in-
volved in the Smart* microgrid over August 12, 2011, were pre-
processed as follows: upon removing the minimum daily value,
generation curves were normalized to the capacity of the PV
units in Fig. 7; see also Fig. 6. Industrial load demands were
simulated at 80% of their maximum values plus a Gaussian vari-
ation with standard deviation 15% of the nominal value. In ad-
dition to the original PV generators on buses 13, 17, 19, 23, and
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Fig. 8. Reactive power management cost with real solar generation and demand data during August 12, 2011.

24; four more PV generators with capacity 1.2 MW have been
installed on buses 11, 28, 40, and 44, to model higher solar pen-
etration. Fig. 5 shows the reactive power compensation cost at-
tained over the period 18:30–19:30 at 30-s control intervals. The
controller determines the optimal reactive control based on the
observed grid state which is the actual state delayed by 1 minute
due to communication and computation delays. Together with
the deterministic and stochastic schemes ( ), the figure
depicts the cost of the ideal control scheme that determines
DG reactive injections based on the actual instantaneous grid
state. Note that the latter is practically infeasible, but it serves
as a lower bound. The numerical results show that upon con-
vergence, the stochastic scheme approaches the ideal one and
is able to track solar generation variations. The reactive power
management benefit of the stochastic scheme over the determin-
istic one is 12.7$/h.
Fig. 6 presents the cost achieved by the new scheme during

the daylight interval on August 12, 2011. Load demands were
scaled to 90% of their maximum value, and . The con-
trol interval was selected as 30 s, and the observed state was the
actual one delayed by 30 s. When PV generation is high, power
losses and the related cost are low, as expected due to local gen-
eration. The curves on the top panel testify that the stochastic
scheme attains a slightly higher cost than the ideal one. It fur-
ther tracks successfully the steady solar power ramp occurring
between 7:30–9:15 am, as well as the variations due to cloud
coverage for the rest of the day.
Finally, the third experiment involved real data both for solar

generation and consumption, which were tested on the IEEE
123-bus feeder [39]. The latter is a residential feeder that was
modified according to [40]. Regarding renewable generation,
solar panels were located on buses No. 32, 51, 64, 76, 96, 111,
and 450, with capacities 40, 80, 160, 60, 160, 80, and 60 kW,
respectively. Solar outputs were scaled versions of the curves
shown at the bottom panel of Fig. 6. All PV inverters were as-
sumed to be oversized by 130%, yielding a reactive power ca-
pacity of 0.66 times the active power capacity. Reactive power
compensation prices were selected to be 0.0132 and h
for all PVs. Consumption data provided by the Smart* project
were utilized [38]. From a total of 443 min-based household
load data for August 12, 2011, we selected 85 after eliminating
bad and incomplete entries. These load data were then scaled to
match the IEEE 123-bus feeder profile. A reactive control pe-
riod of one minute was implemented, and the observed states
were equal to the actual ones delayed by one minute. The step
size was set to , and every control run lasted 3.7 s. As

shown in Fig. 8, the stochastic scheme was able to successfully
track solar and load variations.

VI. CONCLUDING REMARKS

Reactive power compensation was considered in this work.
Uncertainty and delays in acquiring microgrid states motivate
well stochastic solutions. Building on a convex relaxation of
the underlying problem as well as recent advances in online
convex optimization, a novel stochastic scheme was developed.
Reactive power injections from PV inverters were updated in
real time. Numerical tests on practical microgrids verified that
the novel control scheme converged within 10–20 iterations.
The reactive power management cost attained was consistently
lower than the one achieved by its myopic deterministic al-
ternative. During experiments using real solar generation and
load consumption data, the novel scheme tracked successfully
the underlying system variations and approached the ideal re-
active control scheme. The merit of our stochastic framework
is twofold: First, apart from requiring slow variations, no distri-
butional assumptions on active injections are imposed. Rather,
the control algorithm adjusts dynamically to microgrid opera-
tion data. Second, albeit the goal here was to minimize the re-
active power compensation cost, the novel approach could be
extended to other pertinent microgrid management tasks (e.g.,
voltage deviation, conservation voltage reduction). Character-
izing the resiliency of this centralized control to cyber-attacks
on injection data and deriving decentralized solvers constitute
directions for future research.

APPENDIX

Proof of Proposition 1: For notational simplicity, consider
the canonical problem for and

(27)

If are the optimal Lagrange multipliers for the box con-
straints in (27), the KKT conditions imply that there exists a
subgradient of at satisfying

(28a)

(28b)

(28c)

(28d)

(28e)
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For the subgradient of , it holds that for
, and , otherwise. Depending on the sign of

, three cases can be identified. If , condition (28b)
yields and (28a) reads . Two subcases
can be now considered: Either implying that
and when ; or, implying

when . The case of negative can
be treated similarly. In the third case where , conditions
(28a)–(28c) yield and . Since ,
this third case occurs only when .
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