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Distributed Robust Power System State Estimation
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Abstract—Deregulation of energy markets, penetration of
renewables, advanced metering capabilities, and the urge for
situational awareness, all call for system-wide power system
state estimation (PSSE). Implementing a centralized estimator
though is practically infeasible due to the complexity scale of
an interconnection, the communication bottleneck in real-time
monitoring, regional disclosure policies, and reliability issues. In
this context, distributed PSSE methods are treated here under a
unified and systematic framework. A novel algorithm is devel-
oped based on the alternating direction method of multipliers. It
leverages existing PSSE solvers, respects privacy policies, exhibits
low communication load, and its convergence to the centralized
estimates is guaranteed even in the absence of local observability.
Beyond the conventional least-squares based PSSE, the decen-
tralized framework accommodates a robust state estimator. By
exploiting interesting links to the compressive sampling advances,
the latter jointly estimates the state and identifies corrupted
measurements. The novel algorithms are numerically evaluated
using the IEEE 14-, 118-bus, and a 4200-bus benchmarks. Simu-
lations demonstrate that the attainable accuracy can be reached
within a few inter-area exchanges, while largest residual tests are
outperformed.

Index Terms—Alternating direction method of multipliers, bad
data identification, Huber’s function, multi-area state estimation,
phasor measurement units, SCADA measurements.

I. INTRODUCTION

OWER SYSTEM state estimation (PSSE) has been tradi-

tionally performed at regional control centers with lim-
ited interaction. However, due to the deregulation of energy
markets, large amounts of power are transferred over high-rate,
long-distance lines spanning several control areas [11]. These
so-called tie lines, originally constructed for emergency situa-
tions, are now fully operational and must be accurately moni-
tored. Since any control area can be strongly affected by events
and decisions elsewhere, independent system operators (ISOs)
can no longer operate in a truly independent fashion. The on-
going penetration of renewable sources further intensifies inter-
area power transfers, while their intermittent nature necessitates
more frequent state acquisition. At the same time, the advances
in metering infrastructure are unprecedented: phasor measure-
ment units (PMUs) provide finely-sampled voltage and current
phasors, synchronized across the grid; smart meters reach the
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distribution level; and networked processors are being installed
throughout the grid [6], [11]. The abundance and diversity of
measurements offer advanced monitoring capabilities, but pro-
cessing them constitutes a major challenge, which is exacer-
bated in the presence of malicious data attacks and bad data [16],
[1, Ch. 5-6].

There are two key issues in modernizing the power grid
monitoring infrastructure: Firstly, PSSE should be performed at
the interconnection level. Yet an interconnection may include
thousands of buses, while 2-3 measurements per state are typ-
ically needed. Requiring also real-time processing along with
resilience to corrupted data render centralized state estimation
computationally formidable. Further, a centralized approach
is vulnerable and is not flexible when it comes to policy and
privacy issues. Secondly, decentralizing information processing
for the power grid can be performed at several hierarchies [11]:
PMU measurements can be processed by phasor data con-
centrators (PDCs) [26]; conventional supervisory control and
data acquisition (SCADA) measurements together with PDC
fused data can be aggregated by the ISO; and finally, estimates
from ISOs can be merged at the interconnection level. These
considerations corroborate that distributed PSSE and bad data
analysis are essential for realizing the smart grid vision.

Existing distributed methods for PSSE and bad data anal-
ysis are reviewed in Section II. The PSSE problem, its unique
requirements and challenges are highlighted in Section III. In
Section IV, a new distributed PSSE methodology is developed.
Based on the alternating direction method of multipliers [2], a
systematic cooperation between local control centers is enabled
with unique features: it facilitates several practical PSSE for-
mulations; it lowers the overhead for inter-area information ex-
changes; its convergence is guaranteed regardless of local ob-
servability or parameter tuning; and the resultant algorithm can
be executed by solvers already in use at local control centers.
Building on this framework, a robust decentralized estimator
is derived in Section V. Different from the conventional two-
step bad data analysis, the novel approach implements Huber’s
M-estimator [1] in a decentralized manner, while PSSE is ac-
complished jointly with bad data removal. Leveraging sparsity
of the introduced bad data vectors, the new algorithm augments
standard PSSE solvers by a few iterations. The novel robust de-
centralized algorithms are numerically evaluated in Section VI,
and the paper is wrapped up in Section VII. Regarding nota-
tion, lower- (upper-) case boldface letters denote column vectors
(matrices), and calligraphic letters stand for sets. The notation
()T denotes transposition, while := defines a symbol variable.

II. RELATED WORK

Distributed solutions were pursued since the statistical for-
mulation of PSSE [27], when it was realized that for a chain
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of serially interconnected areas, Kalman filter-type updates can
be invoked incrementally in space [27, Part III]. For arbitrarily
connected areas though, a two-level approach with a global co-
ordinator is required [27]. Several renditions of this hierarchical
approach can be found in [5], [11], [13], [15], [31]. Most of these
presume local observability, meaning that local states estimated
excluding boundary bus measurements are uniquely identifi-
able. Such an assumption may not hold due to bad data removal
or because PSSE is performed at a lower than the ISO level.
The need for a coordinator hinders system reliability, while the
sought algorithms may be infeasible due to computational, com-
munication, or policy limitations.

Decentralized PSSE solutions include block Jacobi iterations
[18], [4], and an approximate algorithm developed from the op-
timality conditions involved [10]. However, these methods as-
sume again local observability and convergence is not always
guaranteed. The auxiliary problem principle is used in [8], but
several parameters must be tuned. Local observability is waived
in [29], where each area is envisioned to maintain a copy of
the entire high-dimensional state vector. A first-order algorithm
is proposed, yet its linear convergence scales unfavorably with
the interconnection size. For a review on multi-area PSSE, see
also [12].

Grossly corrupted SCADA data can potentially deteriorate
PSSE results. Hence, these meter readings (a.k.a. bad data)
should be identified or at least detected in a measurement set.
Statistical tests, such as the x2- and the largest normalized
residual tests, are typically employed for bad data detection
and identification, respectively [25]. Both tests rely on the
LS-estimated residuals and can thus run only after PSSE has
been completed. Whenever a bad datum has been identified,
PSSE must rerun by ignoring that datum. Alternatively, robust
estimators, such as the least-absolute deviation, the least me-
dian of squares, or Huber’s estimator have been considered
[3], [9], [22], [1]. Towards a multi-area setup, most existing
distributed PSSE methods rely on the two aforementioned
tests. Even though metering reliability is improved in the smart
grid realm, bad data analysis is still a major concern especially
in the face of malicious data attack threats. Stealth attacks in
power meter infrastructure are studied in [16] and [19]. In the
absence of such attacks, #1-norm based methods have been
developed in [7], [16], and [30].

III. PROBLEM FORMULATION AND PRELIMINARIES

Consider an interconnected power system consisting of K
control areas, where each area comprises a subset of buses
supervised by its own control center. The latter is able to 1)
collect the electrical measurements recorded at area buses; 2)
reliably communicate with neighboring control centers; and
3) carry out minimal computational tasks, such as solving a
(non)linear least-squares (LS) problem. As usual, measure-
ments are assumed to be time-synchronized within and across
control area footprints. A control area here is not confined to
an ISO region, but it can also model entities residing at lower
grid levels, such as a substation or a PDC [26]. Alternatively,
a control area can be the local balancing area under a regional
balancing authority’s footprint; or under a micro-grid setup, a
control area may degenerate even to a single bus.
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Suppose that M} measurements aggregated at the kth area
are concatenated in z;, € R** and obey the model

Zk‘, = h’k’,(xk) + Wk’, (l)

where x;, € R contains the subset of the interconnected
power system states involved in z,; hy is a vector of My, func-
tions; and Wy denotes a disturbance term capturing measure-
ment error and modeling inaccuracies. Error vectors {wy, }%_,
are assumed zero mean, having known covariance matrix ¥y,
and independent across areas. To simplify the presentation, the
model of (1) can be premultiplied by Z,:l/ % o yield

Z = hk(Xk) + Wy 2)
where z;, ;= %7127, and similarly for A(x}) and wy,. Hence,
the noise term in (2) has identity covariance matrix.

Functions {h (%)} | depend on the system’s admittance
matrix and are in general nonlinear, except when PMUs are in-
volved and complex quantities are expressed in rectangular rep-
resentations. Performing state estimation with nonlinear /’s
and load pseudo-measurements entails solving non-convex op-
timization problems. Typically, such models are iteratively lin-
earized via the Gauss-Newton method, or by resorting to the
so-called DC approximation [25], [1]. Either way, one arrives at
the following computationally ubiquitous linear model [cf. (2)]

zr, = Hpxp + wy, 3)

where H, € RM+*Ne is known (Jacobian). When {hy}s
are nonlinear, (3) is the linearized model per Gauss-Newton
iteration.

PSSE could be performed locally at each area. Specifically,
area k could aim at solving

min  fi(xp; 2, Hy) “4)
X €X'y

where f(-) is a convex function of x;, for the model in (3);
and the convex set A, captures possible prior information, such
as zero-injection buses, short circuits, or operational limits [25],
[1]. Typically, f3 is chosen equal to ||z, — Hyxy||2/2. For this
choice, the minimizer of (4) is the LS estimate (LSE), which
yields the maximum-likelihood estimate (MLE) of x;, if wy, is
Gaussian. To derive other MLEs and/or facilitate bad data re-
moval, alternative forms of f;, can be employed; cf. Section V.
For notational simplicity, the dependence of fj, on z; and Hy
will be henceforth dropped.

One of the unique PSSE characteristics in interconnected
areas is that the local state vectors {x; }5_, overlap partially
(cf. the toy interconnection of Fig. 1). Supposing that both
PMU data (bus voltage and line current measurements) and in-
terconnection states (bus voltages) are expressed in rectangular
coordinates, the linear model of (3) is exact. Area 2 supervises
buses {3,4, 7,8}. But since it collects current readings on lines
(7, 9) and (4, 5), its state vector x» extends to the bus voltages
of {5,9} as well. Thus, area 2 shares the states of bus 5 (9) with
area 1 (4). Notationally, let the N x 1 vector x collect all the
states. For every two neighboring areas, say k& and [, identify
the intersection of their states as Si;. Let also xg[!] (x;[k]) be
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Fig. 1. IEEE 14-bus system partitioned into four areas [15], [28]. Dotted lassos
show the buses belonging to area state vectors x; . PMU bus voltage (line cur-
rent) measurements depicted by green circles (blue squares).

the sub-vector of x; (x;) consisting of their overlapping vari-
ables ordered as they appear in x. For example, x3[4] = x4[3]
contain the bus voltages of {11, 14}.

A local PSSE scheme would entail solving the K problems of
the form (4) without any information exchange among adjacent
areas. Such a scheme is clearly suboptimal, let alone the fact
that control areas may be locally unobservable even if external
states and their associated measurements are ignored. Disagree-
ment on boundary bus estimates over critical tie lines is another
important limitation of solving (4) on a per-area basis. On the
other hand, upon defining X' := {x : x;, € &} Vk}, jointly
optimizing

K
min Z Je(x) (5)
k=1

xeX

at a central control center waives all these concerns and can con-
siderably improve estimation accuracy. Yet this comes at the
expense of impractical computational and communication load,
increased vulnerability, and disclosure of internal system struc-
ture. Targeting the “sweet spot” between the local and central-
ized PSSE extremes, a decentralized method is proposed next.

IV. DECENTRALIZED PSSE

Tying the local tasks of (4) into a single optimization problem
equivalent to (5) can be accomplished by

> felx)

min
{xk [P } b1
sb. xel[l] = xi[k], VI € Ny, VE 6)

where A, is the set of areas sharing states with area .

The constraints of (6) force neighboring areas to consent
on their shared variables, which renders problems (6) and (5)
equivalent. But the same constraints couple the estimation
tasks across areas. To enable a truly decentralized solution, an
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auxiliary variable denoted by xz; € RIS*! is introduced per
pair of interacting areas k, [. To keep the notation uncluttered,
symbols x;; and x;; are used interchangeably for the same
variable. Then, (6) can be alternatively expressed as

K
min Z Sr(xx)

{xp€X% ) {xui} =1

st xp[l]=xp, foralll e Ny, k=1,....K.(7)

The novelty here is solving (7) using the alternating direc-
tion method of multipliers (ADMM), a method that has been
successfully applied for distributing several optimization prob-
lems; see, e.g., [2] for a review. In ADMM, Lagrange multi-
pliers vi.; € RISst| are introduced for each constraint of (7).
Observe that vy, ; and v; . correspond to the distinct constraints
x[l] = xu and x;[k] = x4, respectively. ADMM then ex-
ploits the method of multipliers concatenated with an iteration
of the Gauss-Seidel algorithm. Specifically for (7), one first de-
fines the augmented Lagrangian function

L({xx}, {Xkl} {vii})
= Z [f’f ) Z (V{,l(xk[l] — Xp1)

leEN,,

ty m—m@)]

where ¢ > 0 is a predefined constant. Letting + denote the iter-
ation index, ADMM cycles through three steps:

®

{xi*1 :drg{ Inem L({xe} {x} i {via}) 99
X}

(1) = o i ([} ks () )

v}ffll =vi,+ (‘( Al xfjl) for all k,1.  (9¢)

At step (92), {xy, }s are updated by minimizing the augmented
Lagrangian while keeping x;; and vy, ; fixed to their previous
iteration values; x;; and vy ; can be initialized to zero. Like-
wise, x; are updated in (9b). Finally, (9¢) is a gradient ascent
of L({x”l} {xt1Y; {vi }) with step size c.

Inheriting ADMM features, the minimization in (9a) decou-
ples over control areas. Moreover, by exploiting the problem
structure, the iterations (9) can be greatly simplified as presented
next and detailed in the Appendix.

Proposition 1: The steps in (9) yield the same x], iterates as
the following steps:

t+1 = arg mem Jr(xn)
FESS N () - 0) v (o)
' 1 g g i
A0 = ,EZV; il Viwith M #0 (100)
FOY 4ot (g :
p?—l()-: ()—|—St+1() w, VL/N]Q#@
(10¢)
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where (i) is the ith entry of x;; the set J\/’,@ consists of the
areas sharing the variable x(¢) with area k; and x;[i] denotes
the entry of x; corresponding to (i) defined for all I € A}.
Regarding initialization, state variables x; are set to arbitrary
values x{; variables p} (i) are initialized to (2% (i) + s%(4))/2;
and 53 (i) as in (10b).

The minimization in (10a) and the simple update of (10c)
are performed at the local centers. The averaging step of (10b)
is accomplished either through a coordinator, or locally too.
Either way, the information revealed per area & is minimal. No
measurements or regression matrices, but only the boundary
bus states need to be exchanged, and only between the inter-
ested neighboring areas. States can be initialized to the flat
profile [25], or some prior estimate. To implement the LSE
given a nonlinear measurement model [cf. (2)], the derived
algorithm should be used per Gauss-Newton iteration. At
each Gauss-Newton iteration, an approximate linear model is
updated locally, and the decentralized iterates are initialized
using the latest state estimates.

Supposing { 1 (xx ) }X_, are convex, and { X} }5_, are closed
convex sets, the cost in (7) evaluated at {x}} generated by
(10) converges under mild conditions (typically met in prac-
tice) to the optimal value of (5) [2, p. 17]. Hence, when the
power system is globally observable, i.e., the centralized LSE is
unique, ADMM iterates minimizing the LS cost converge to it.
Notwithstanding, observability is not necessary for the method
to converge: if the system is unobservable, ADMM iterates con-
verge to one of the multiple LSEs. The equivalence to the cen-
tralized LSE ensures that global observability analysis, assumed
given in this work, carries over to the decentralized approach
too. In addition, ADMM iterates have been shown to be resilient
to asynchronous updates and random failures in the inter-area
communication links [32].

For notational convenience, define per area k a diagonal ma-
trix Dy, with (i, )th entry |A}|. Recall that by definition, |\ |
is zero for strictly local states. Also, define the /V;.-dimensional
vector pf, with ith entry the pi (i) of (10c) when |N}| > 0, and
0 otherwise. Hence, the second term in the cost of (10a) is ex-
pressed as c/2||D§€1)/(2) (x — pL)|3. For the typical case of the
unconstrained LSE, the minimizer of (10a) is clearly given in
closed form by

%= (HIH, + D) (H 2, + cDypl) (1)
which is a simple yet systematic modification of the local LSE.
Existing PSSE software can be straightforwardly exploited for
finding (11) by simply adding \/ED,IC/ 2p’;C as pseudomeasure-
ments with diagonal loading matrix \/ED,lﬂ/ * Note that pseu-
domeasurements are actually added only for the shared states.
As empirically observed in Section VI, the procedure terminates
after a few tens of iterations.

V. DECENTRALIZED BAD DATA ANALYSIS

Time skews, instrument/communication failures, infrequent
instrument calibration, reverse wiring, and parameter uncer-
tainty can yield grossly corrupted SCADA measurements. In
the cyber-physical smart grid context, bad data are not simply
unintentional metering faults, but can also take the form of
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malicious data injections [24]. If an intruder can counterfeit
some meters so that the attack vector lies in the range space of
the PSSE regression matrix, the attack is undetectable and can
arbitrarily perturb state estimates [19], [16]. Excluding these
naturally termed stealth attacks, this section focuses on bad
data identification. After presenting an outlier-aware estimator,
interesting connections are established, to efficiently implement
it using the decentralized approach of Section I'V.

A. Interconnection-Wide Bad Data Identification

The local quantities {7y, Hx, w }< | in (3) can be vertically
stacked in z, H, and w, respectively. The interconnection-level
model then reads z = Hx +w, where the dimensions of z and x
are M = Zf:l M)y, and IV, in the order given. However, when
bad data are present, a more pertinent model is

z=Hx+o+w (12)
where o is an unknown vector with its entry o(4) being non-zero
only if 2(¢) is a bad datum [7], [14], [16]. Recovering both x
and o essentially reveals the state and identifies faulty measure-
ments. Such a mission however seems rather impossible, since
the model in (12) is unobservable even if H is full column rank.
By capitalizing on the sparsity of o though, interesting results
can be obtained [14]. If 7y bad data are expected, then one would
ideally wish to solve

min
x€X 0

{3l Ex—oli:lol<nf. a3
But the £y-pseudonorm, i.e., the number of non-zero o(#)’s, ren-
ders (13) NP-hard. The problem is computationally intractable
even for moderate-sized interconnections and small 7. Building
on the premise of compressed sensing, a practical robust esti-
mator can be derived after relaxing the £y-pseudonorm by the
convex £1-norm as (see also [14])

(1 ‘
s, { il =~ Hx —oll3 < Jlofl, < n} (14)
for a selected constant 7, > 0, or in the Lagrangian form
1
(,0) € arg min Slls—Hx—olf +Alolls  (13)

xeX,0 2

where A denotes a positive parameter. The optimization
problem in (15) is a convex quadratic program and can be
solved by interior point-based methods. The estimator of (15)
allows for joint state estimation and bad data identification.
Even when some measurements are deemed as corrupted,
their effect has been already suppressed, and the state estimate
remains valid.

B. Interesting Links

The two statistical tests traditionally used for bad data anal-
ysis rely on the model z = Hx + w, and the residual error
achieved by the unconstrained LSE. The latter can be expressed
ast := Pz = Pw, where P := I — H(HTH) 'H7 is the
so-called “residual sensitivity matrix” satisfying P = P2 [1,
Ch. 5]. Clearly, when w is Gaussian, r is Gaussian too with
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Algorithm 1: Decentralized Robust PSSE (D-RPSSE)

Require: {H;, Dy, 2z}, and positive ¢, A.

: Initialize {x},pY, s} as in (10); and {0} } to zero.
cfort=1,2,...do
Every area updates its xfjl as in (20).

Neighboring areas exchange shared state variables.

Every area updates its p';fl via (10c).
Every area updates its 01,?“1 through (21)—(22).

1
2
3
4
5:  Every area updates its sfjl via (10b).
6
7
8: end for

covariance matrix P. The y2-test compares ||r||3 against a
threshold to detect the presence of bad data [25], [1]. The
largest normalized residual (LNR) test computes

Tmax = e 16
ie{l,.... M} , /P(i, L) (16)

where P(i, 1) is the (4, 7)th entry of P; note that in the absence
of critical measurements, 0 < P(i,7) < 1 for all 1. Metric Fpax
is then compared to a prescribed threshold to identify a single
bad datum [1, Sec. 5.7]. Adopting the proofin [16, Prop. 1], the
following claim can be established.

Proposition 2: The optimization problem in (13) with g = 1
over X = R", and the LNR test of (16) are equivalent in terms
of the measurement being detected as bad.

For multiple bad data, this connection is unclear. If a mea-
surement is deemed as outlier, PSSE is repeated after discarding
this bad datum, the LNR test is re-applied, and the process iter-
ates till no corrupted data are identified. Even though rank-one
updates can be used to speed up computations, the process be-
comes complicated for multi-area grids.

Returning to the convex relaxation (15) for ¥ = R, note
that when A — oc¢, the minimizer 6 becomes zero, and thus, X
reduces to the LSE. On the contrary, by letting A — 07 [17],
the solution X coincides with arg miny ||z—Hx||1, meaning the
least-absolute value estimator [3], [9].

For finite A > 0, x of (15) corresponds to Huber’s M-esti-
mator; see [14] and references therein. Based on this connec-
tion and assuming Gaussian w, tuning parameter A can be set
to 1.34, which makes the estimator 95% asymptotically efficient
for bad data-free measurements [21, p. 26].

Alternatively, Huber’s estimate can be expressed as the
x-minimizer of minye v o (1)/(2)|w||3 + A||z — Hx — w||; as
shown in [20]. The bad data identification performance of this
minimization is analyzed in [30].

To solve (15), one can first minimize over x and then over o.
For X = RY, the x minimizing (15) is (HTH) 'H”(z — o),
and thus, minimizing (15) reduces to [7], [16]

1
min 5||P(Z—0)||§+)\||0||1- an
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A minimization similar to (17) is derived in [16] using a gener-
alized likelihood ratio test. By assuming a Bayesian prior x ~
N(0,X,), [16] suggests solving (17), but with P substituted
byI- HHTH + 1) 'H”. In any case, matrix P couples
the minimization over o across areas and complicates a decen-
tralized implementation. An efficient distributed algorithm for
solving (15) is developed next.

C. Distributed Robust Algorithm

Consider now the system-wide minimization in (15) under
the decentralized PSSE format of Section IV. To this end, parti-
tion o into subvectors oy, ’s conforming to the partition of z into
z;’s, and define the local functions

1
Ju(x,01) = §||Zk — Hixp, — opll5 + Aog]li. (18)

Critically, notice that {0} belong to a single area and there is
no need for sharing them. Similar to the way (7) was obtained
from (5), the decentralized equivalent of (15) is

K
min Xy, 0
(k€ fon ) fxur) kZ:lfk( b0k
s.t. ka = Xkl,

foralll e N, k=1,...,K. (19)
Proceeding with the ADMM methodology, the augmented
Lagrangian of (19) is similar to the one in (8) apart from f.(xz)
being replaced by fi(xs,0:). Having three instead of two
primal variable sets offers two algorithmic alternatives: the
additional o variables can be jointly optimized either with
{xx}s in step (9a), or with {xz;}s in step (9b). The second
choice yields computational efficiency as described next.

Two are the key observations here. First, that the augmented
Lagrangian of the problem is separable with respect to {0 } and
{x#1}, and hence, the optimization required at the ADMM step
(9b) decouples over the two variable sets. Second, the updated
{0 ™'} vectors appear only in f;(xy, 0}, ), and do not affect the
x4 and vi! updates. Since the iterations of (10) were derived
from (9) for generic {fr(x1)}, they can be readily extended to
the robust PSSE case as follows.

In step (10a), { fx(xx)} should be replaced by { fx(xx,0%L)}.
For X = RY* and using the notation introduced before (11),
state variables can be updated in closed form as

X! = (HfHy+cDy) (HY (25—0}) +cDypl) - (20)

Interestingly, the update of (20) is the LSE of (11) slightly mod-
ified: measurements z; have been substituted by the bad data-
compensated measurements (zy, — o%).

Steps (10b)—(10c) are left untouched; guaranteeing the con-
sent between shared states is unrelated to the local functions
Jr(xx). The variables {0y} can be finally updated as the min-
imizers of fi(xit!, 0;.) as required by the ADMM step (9b).
Interestingly, the solution of the latter minimization is provided
in closed form too as (cf. [2, p. 32])

ot = [z - HyxtH T Q1)
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where [L]j\r denotes the simple thresholding operator

rH+ A <=
[2]] = {O, lz] < A (22)
r—A x> A

understood entry-wise in (21). Intuitively, for measurements
with a small tentative absolute residual, the corresponding oy (%)
becomes zero. Otherwise, the bad datum residual is artificially
shrunk by A towards zero via a non-zero oy (i).

The novel robust decentralized algorithm, called D-RPSSE
hereafter, is tabulated as Algorithm 1. Compared to the decen-
tralized LSE of (10)—(11), D-RPSSE maintains software com-
patibility too. On top of adding v/cD ,lc/ 2p’,; as pseudo-measure-
ments, resilience to bad data comes by simply off-setting local
measurements by of, and via the thresholding rule of (22). Ro-
bust state estimates and bad data identification are jointly ac-
quired without repeating PSSE as required by the LNRT.

VI. SIMULATED TESTS

The developed decentralized state estimators are numerically
tested on an Intel Duo Core @ 2.2 GHz (4 GB RAM) com-
puter using MATLAB. Two power network benchmarks are ini-
tially considered, namely the IEEE 14- and the 118-bus sys-
tems; while later a 4200-bus grid is generated based on the IEEE
14- and 300-bus systems [28]. Their admittance matrices and
the underlying power system states are obtained using MAT-
POWER [33]. For all systems, the state vector contains the real
and imaginary parts of all bus voltages. Measurements consist
of PMU recordings on bus voltages and line currents, expressed
in rectangular coordinates too. Measurement noise is simulated
as independent zero-mean Gaussian with standard deviation per
real component 0.01 and 0.02 for voltages and currents, respec-
tively [33].

For the IEEE 14-bus grid, PMU sites and types are shown in
Fig. 1: 6 bus voltage and 17 line current meters yield a total of 46
measurements corresponding to a redundancy ratio of 1.6 [25].
For the IEEE 118-bus grid, PMU sites are selected uniformly at
random: 77 bus voltage and 205 line current meters are utilized,
yielding a redundancy ratio of 2.4. The IEEE 14-bus grid is
partitioned into the 4 areas depicted in Fig. 1, while the IEEE
118-bus system is split into 3 areas as in [23, Fig. 4].

A reasonable question is whether interconnection-wide PSSE
offers any improvement over local PSSE. To this end, three es-
timators are numerically compared: First, an estimator that uses
only the measurements related to its own area, henceforth called
“internal.” Second, a “local” estimator which extends its state to
boundary buses that can be reached via tie line measurements.
Lastly, the interconnection-wide or “global” estimator. The av-
erage standard deviation per state is empirically computed over
100 Monte Carlo runs. Table I lists the standard deviations for
the two power grids. The IEEE 118-bus grid attains improved
estimation accuracy due to its increased redundancy ratio. More
importantly, the improvement of the local over the internal esti-
mator is marginal, whereas the accuracy of the global estimator
roughly doubles. This observation speaks for the importance
of interconnection-wide PSSE even when local observability is
guaranteed.
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TABLE I
AVERAGE STANDARD DEVIATION PER STATE

Estimator IEEE 14-bus grid | IEEE 118-bus grid
Internal LSE 34-1073 4.1-1074
Local LSE 3.1-1073 4.0-1074
Global LSE 1.0-1073 2.2.-107%

Per area error curves

10—!0

0 10 20 30 40 50
Iteration
Fig. 2. Per area error curves e, .’s (bottom) and e, _’s (middle) for the decen-

tralized LSE of the IEEE 14-bus system of Fig. 1. The almost flat curves (top)
show the corresponding €], , error curves for the algorithm of [29].

A. Testing the Decentralized LSE

States are initialized here to the flat profile. Even though it-
erations (10) are guaranteed to converge to the optimal value
of (5) for any ¢ > 0, the value of ¢ affects the convergence
rate. After scaling the data to obey the model in (3), ¢ is em-
pirically set to 10*. Two performance metrics are adopted: the
per area error to the centralized solution of (5), denoted by

Che = HX,(:) —x%||2/Ny, and the per area error to the true un-
derlying state defined as e}, , := [Ix—%}[|2/Nk.

Fig. 2 depicts the e}, . and the e} , curves obtained for the
IEEE 14-bus network. The almost flat ei,yc curves shown at the
top of the figure correspond to the decentralized algorithm of
[29] whose step sizes have been optimized. Based on the ¢, .
curves, the algorithm of (10) converges to the centralized solu-
tion. Interestingly though, as indicated by the e, , curves, accu-
racy of around 103 dictated by the measurements is reached
in 10—15 iterations. On the other hand, the algorithm of [29] at-
tains the same accuracy after around 10 000 iterations. Being
a first-order method, the algorithm in [29] incurs per iteration
complexity much smaller than (10), yet it does not fully ex-
ploit the capabilities of local PSSE solvers. Moreover, the high
number of iterations required translates to increased inter-area
communication overhead.

To evaluate the new algorithm in scenarios where local ob-
servability does not hold, the electric current measurement on
line (6, 11) is removed from the IEEE 14-bus measurement set
(cf. Fig. 1). Since the only measurement directly related to bus
11 is the current measurement on line (10, 11) and that is col-
lected by control area 4, area 3 is locally unobservable. The error
curves obtained and plotted in Fig. 3 verify that the developed
method does not require local observability.
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Fig. 3. Per area error curves ¢, s (bottom) and e}, ,’s (top) for the decentral-
ized LSE of the IEEE 14-bus system without local observability.
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Fig. 4. Per area error curves e}, s (bottom) and ej, ,’s (top) for the decentral-
ized LSE of the IEEE 118-bus system of [23, Fig. 4].

Switching to the IEEE 118-bus benchmark, similar results are
observed. As evidenced by the e} . and ¢, curves plotted in
Fig. 4, the decentralized solution attains the desired statistical
accuracy within only 5-10 iterations.

B. Testing the Decentralized Robust Estimator

The centralized versions of bad data analysis methods are
compared first. The IEEE 14-bus grid of Fig. 1 is considered
under the following four scenarios. (S0): no bad data; (S1): bad
data on line (4, 7); (S2): bad data on line current (4, 7) and bus
voltage 5; and (S3): bad data on line current (4, 7), tie line cur-
rent (10, 11), and bus voltage 5. In all scenarios, bad data are
simulated by multiplying the real and imaginary parts of the ac-
tual measurement by 1.2. The performance metric here is the
f5-norm between the true state and the PSSE, which is aver-
aged over 1 000 Monte Carlo runs.

Table II lists the results obtained by the four centralized algo-
rithms tested: (a) an ideal yet practically infeasible genie-aided
LSE (GS-LSE), which ignores the corrupted measurements; (b)
the regular LSE; (c) the LNR test-based (LNRT) estimator with
the test threshold set to 3.0 [1]; and (d) Huber’s estimator of
(15) with A = 1.34 and X = R™. For (S0)—(S1), the estima-
tors perform almost similarly. The few corrupted measurements
in (S2)—(S3) can deteriorate LSE’s performance, while Huber’s
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TABLE II
MEAN-SQUARE ESTIMATION ERROR IN THE PRESENCE OF BAD DATA

Method | GA-LSE LSE LNRT | Huber’s
(S0) 0.0278 | 0.0278 | 0.0286 0.0281
(S1) 0.0313 | 0.0318 | 0.0331 0.0322
(S2) 0.0336 | 0.1431 | 0.0404 0.0390
(S3) 0.0367 | 0.1434 | 0.0407 | 0.0390

——Area 1
== =Area2
vim Area 3
== Area4
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Per area error curves
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Fig. 5. Per area error curves e, .’s (bottom) and e}, s (top) for the D-RPSSE
algorithm on the IEEE 14-bus benchmark under (S3).

estimator performs slightly better than LNRT. Computationally,
Huber’s estimator is implemented using iterations (20)—(21) for
the interconnection-wide vectors x and o with ¢ = 0. The al-
gorithm is terminated when the £2-norm between the two last
state iterates becomes less than 10~*. On the average and for all
scenarios (S0)—(S3), Huber’s estimator converges in 6—12 iter-
ations and within 1.3 msec, while LNRT requires 2.6 recalcula-
tions of (16) in 1.5 msec. The computing times were also mea-
sured for the IEEE 118-bus grid without corrupted data. Inter-
estingly, the average time on the IEEE 118-bus grid without cor-
rupted data are 3.2 msec and 81 msec, respectively. Of course,
efficient updates for LNRT can be devised, but their decentral-
ized implementation is not obvious.

Focusing on decentralized implementation, the D-RPSSE
algorithm (cf. Algorithm 1) is considered next. Technically, the
X minimizing (15) may not be unique. However, a sufficient
condition for its uniqueness is provided in [17, Th. 3.6], and
this condition was satisfied in all the remaining tests. D-RPSSE
was first tested on the IEEE 14-bus grid under scenario (S3).
The associated ¢j . and e} , curves are depicted in Fig. 5.
The decentralized iterates approach the underlying state at an
accuracy of 1072 in 30 iterations in 12.1 msec. In comparison,
the respective time for the LSE was 5 msec. Finally, for the
IEEE 118-bus system, 10% of the measurements are corrupted
in the way described earlier. The corresponding error curves
are plotted in Fig. 6. The time needed to achieve a 10~2-10~*
accuracy (10 iterations) is 12.1 msec versus 3.7 msec for the
related LSE.

The decentralized algorithms were finally tested on a larger
power network: a 4200-bus power grid that was generated using
the IEEE 14- and 300-bus grids as follows. Each one of the
300 buses of the latter is assumed to be a different area, and is
replaced by a copy of the IEEE 14-bus grid. Additionally, every
branch of the IEEE 300-bus grid is now an inter-area line whose
terminal buses are randomly selected from the two incident to
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Fig. 6. Per area error curves e}, _’s (bottom) and e}, ,’s (top) for the D-RPSSE
algorithm on the IEEE 118-bus benchmark having 10% of the measurements
corrupted.
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Fig. 7. Average error curves Y iy €4 /300 (bottom) and >"5°° et /300

=1

(top) for the LSE and D-RPSSE algorithms on a 4200-bus grid.

this line areas. Measurements, bad data, and ¢ are selected as in
the tests for the IEEE 118-bus grid.

Fig. 7 shows the corresponding error curves that are now
averaged over the 300 areas. Given bad data-free measure-
ments, the decentralized LSE approaches the underlying state
at an accuracy of 10~% in approximately 10 iterations or 6.2
msec; the centralized LSE finished in 93.4 msec. For a 10% of
the measurements being bad, D-RPSSE yields an accuracy of
10~3 in less than 20 ADMM iterations or 15.2 msec; the cen-
tralized robust estimator needed 193.5 msec. The convergence
to their unique centralized counterparts is illustrated by the
bottom curves. These tests corroborate that 1) the decentralized
algorithms are basically insensitive to the variation of ¢; and
2) the convergence times for both the decentralized LSE and
D-RPSSE scale favorably with the network size.

Note that for the decentralized LSE, local updates are of
second-order type [cf. (11)], whereas inter-area updates are of
first-order [cf. (10b)—(10c)]. This intuitively means that when
there are many shared variables, the algorithm is expected to be
slower; whereas for a few tie lines, fewer iterations suffice. This
is verified by experimenting with a 4200-bus grid partitioned
into 14 areas having 300 buses each. In this second 4200-grid
system, each of the 14 nodes of the IEEE 14-bus grid is replaced
by the IEEE 300-bus system. Even though this architecture has
larger areas, the algorithms converged even faster due to the
looser area coupling.
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VII. CONCLUSION

Distributed and robust state estimators have been treated
here systematically. The proposed algorithms waive local ob-
servability requirements and maintain backward compatibility.
With minimal data exchanges between neighboring areas, local
control centers can acquire highly accurate estimates for the
part of the interconnection they are responsible for, and simul-
taneously identify (un)intentionally corrupted data. The novel
framework accommodates several important modifications of
the PSSE problem, such as constraints (e.g., zero-injection
buses, operational limits) and different MLEs. Exciting issues
that emerge for future research include this work’s application
to generalized state estimation, extensions to non-convex
problems, and re-weighted versions of (15) [14].

APPENDIX

A useful lemma is shown first.

Lemma 1: For every pair of adjacent areas &k and /, the La-
grange multipliers updated by (9¢c) satisfy v , + vj, = 0 per
iteration ¢t > 0. '

Proof: Note that step (9b) decouples over the x;’s, while
the minimizers can be shown to be

- (x?ﬁl[z] +x§+w> N (vz,l +‘vf,k) .

t+1
.44
Kl 2 2¢

Next, consider the updates of v;; and v;; according to
step (9¢). Adding the two updates by parts and solving for the
common term x41 !, yields

t t t+1 t+1 t4+1 t+1rg,
i+l = Vil + Vik -~ Vi1 + Vik n Xk+ [l] + xl+ [k]
kl 2c 2¢ 2

By equating the right-hand sides of (23) and the last equation,
the claim of the lemma follows readily. ]

Proof of Proposition 1: The optimization in (9a) is sepa-
rable across areas. Upon completing the squares, the optimiza-
tion task for area k£ during step (9a) becomes

vi
xi[l] - (le ~ —)
C

Apparently, the £>-norms in (24) decouple over the entries of the
vectors involved. However, a single entry of x;., say 2 (¢), may
be shared not only between areas k and [, but rather among area
k and all the areas in A}. If z4;[i] (vi,[4]) denotes the entry of
Xg1 (Vi) corresponding to (i), the optimization in (24) can
be expressed as

2

. C
min Jr(xk) + 2 Z

1eENL

24

2

) ¢ ; , 1,2
win fu(xi) + 5 0 N (nld) =1 @)°@9)
LENT
where for all k, and i = 1,..., N with N} # (), define
) 1 — 7’12,1[”:]
P = e (wzl[z] -] @
klieni ’
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By Lemma 1, step (9b) simplifies to xif' = (xit'[l] +
x)t1[%])/2. In other words, the auxiliary variable x; is the av-
erage of the shared state variables across areas k& and [ per iter-
ation. By eliminating x;; from (26) and (9c), step (9b) can be
dropped. Hence, one arrives at the iterates

x’l;-l-l = arg H}lcikn Je(xe) + % Z |Nlé| (HIk(i)—pZ(i)f

PENTG
Nizg
(27a)
t+1 l I S | k
il = vi,,’l—&-(:(x—k U — [ ]> (27b)
1 1
pe(i) = B z i) + |—7 Z i)
klien;
t4+1r-
1 Vi [4]
I P 27¢)

klens

To further simplify the iterations, define the average of the
shared variable x(7)’s copies over A} as the s (<) in (10b).
Define also the average of the weighted Lagrange multipliers
ub (i) 1= D v 118/ (cIN{]). Then, (27¢) can be written as

P ) = 5 () + )~ ) @)

With {vy;} initialized to zero, {u(i)} can be recursively up-
dated as )t (4) = ul (i) + (2T (i) — siT'(4))/2. Hence, up-
date (28) can be alternatively performed as in (10c). Collecting
(27a), the definition of {s! (%)}, and the recursive updates for

{p! (i)}, one readily arrives at (10). =
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