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Abstract—Instrumenting power networks with phasor measure-
ment units (PMUs) facilitates several tasks including optimum
power flow, system control, contingency analysis, visualization,
and integration of renewable resources, thus enabling situational
awareness—one of the key steps toward realizing the smart grid
vision. The installation cost of PMUs currently prohibits their
deployment on every bus, which in turn motivates their strategic
placement across the power grid. As state estimation is at the
core of grid monitoring, PMU deployment is optimized here
based on estimation-theoretic criteria. Considering both voltage
and incident current readings per PMU-instrumented bus and
incorporating conventionally derived state estimates under the
Bayesian framework, PMU placement is formulated as an optimal
experimental design task. To bypass the combinatorial search
involved, a convex relaxation is developed to obtain solutions
with numerical optimality guarantees. In the tests performed on
standard IEEE 14-, 30-, and 118-bus benchmarks, the proposed
relaxation approaches and oftentimes attains the optimum PMU
placement.

Index Terms—Gradient projection method, maximum a-poste-
riori estimation, optimal experimental design, phasor measure-
ment units, SCADA measurements, semidefinite programming.

I. INTRODUCTION

P HASOR measurement units (PMUs) are contemporary
metering devices installed on system buses to measure

phasors of bus voltages and currents flowing across lines [14],
[31]. After sampling, windowing, phasor estimation, and time
stamping, measurements are communicated to the intended
application through phasor data concentrators. Merits of PMUs
(a.k.a. synchrophasors) over conventional power meters in-
clude increased precision in measuring phasor angles due to
network-wide synchronization, and higher sampling rates.
PMU penetration has so far been rather limited, mainly due

to the installation and networking costs involved [34]. How-
ever, their important role in network operation and the growing
maturity of PMU technology are expected to markedly increase
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their deployment [9]. According to the North American Syn-
chrophasor Initiative [13], the number of PMUs installed and
networked in the eastern/western interconnection is expected
to raise from 105/56 as of 2009 to 400–600 by 2014 [29]. Thus,
strategic placement of synchrophasors is currently a critical
issue for the power operators worldwide.
Given the gamut of PMU-enabled applications [31], [34], se-

lecting the buses to be PMU-instrumented faces many options to
choose from. A multitude of diverse attributes and target appli-
cations (alongwith associated criteria) include observability, os-
cillation and angular separation monitoring, infrastructure crit-
icality and cyber-security under communication and deploy-
ment cost constraints [25], and offer representative options to
consider when deciding PMU placement. In the present paper,
PMU sites are selected to minimize the error in estimating the
grid state. The emphasis is on state estimation, since this task
affects directly several critical power monitoring applications,
e.g., optimal power flow, contingency analysis, and topology
inference. In addition, the proposed methodology can be com-
bined with other placement criteria in a multi-objective opti-
mization framework.
Given values of power, voltages, and currents metered at spe-

cific buses and lines of the grid, state estimation amounts to
finding the underlying complex voltages at all buses. Tradition-
ally, state estimation has relied on the supervisory control and
data acquisition (SCADA) meter readings [28], [37, Ch. 12].
State estimation using PMU measurements was introduced in
[32], and the improved estimation accuracy when PMU and
SCADAmeasurements are used jointly has been documented in
[39]. Note that with a relatively small number of synchrophasor
units, state estimation based solely on PMU readings does not
guarantee identifiability; in any case, the SCADA-based infor-
mation should not be discarded.
Similar to [23], PMU placement is formulated here as a vari-

ation of the optimal experimental design problem [33], [7, Sec.
7.5]. Recovering the system state expressed in rectangular co-
ordinates using PMU measurements leads to a linear estima-
tion problem, with the SCADA-based estimate serving the role
of a Gaussian prior (Section II). The optimal PMU placement
is the one achieving the smallest covariance matrix for the as-
sociated state estimation error (Section III). The combinatorial
problem involved is suboptimally solved after relaxing it to a
convex semidefinite program (SDP) [7], [21]. The SDP-derived
cost values provide numerical bounds on the suboptimality gap.
After expressing the input data of the problem in terms of the
physical properties of the grid in Section IV, numerical tests
are provided in Section V. Numerical tests are conducted using
standard SDP solvers as well as a customized gradient projec-
tion algorithm (cf. Appendix). Surprisingly, the results obtained
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demonstrate that the gap is small and oftentimes zero for the
IEEE 14-, 30-, and 118-bus power network benchmarks [36].
Related Work: A large volume of the existing literature on

PMU placement strategies targets topological observability of
the power network [5]. The latter ensures existence of a span-
ning tree covering all nodes (buses) with edges (transmission
lines) whose currents can be (in)directly metered by PMUs.
Using topological observability as a criterion, optimal PMU po-
sitions have been pursued via simulated annealing [5], or ge-
netic algorithms [3], [27]. If the number of available PMUs
cannot provide a spanning tree, only incomplete observability
can be afforded, and a tree search yields the PMU positions
sought [30]. By extending topological (in)observability to ac-
count for branch-only units, contingencies, and other limita-
tions, the PMU placement problem has been posed as a binary
linear program [1], [15], [16], [19], or, as a binary quadratic one
[10], [11]; see also [2] for a related probabilistic approach.
In theory, topological observability does not imply observ-

ability [5], that is recoverability of the underlying state vector
using noise-free linear observations. In practical scenarios
though, the implication does hold [12]. But observability does
not guarantee meaningful estimation accuracy: a full-rank, yet
ill-conditioned linear regression matrix can yield numerically
unstable estimators and amplify the noise when dealing with
realistic noisy measurements. Hence, estimation accuracy,
which considers observability together with the noise statistics,
is a more meaningful requirement for the power network.
A hybrid approach targeting topological observability at the

first stage, and high estimation accuracy at the second stage
in an ad hoc manner, is presented in [38]. In [4], [18], [40],
and [23], PMUs are deployed to provide high estimation ac-
curacy. However, the state vector is expressed in polar coor-
dinates, and hence, the informative line current PMU measure-
ments are ignored. Specifically, [18] proposes three placement
criteria, one of which is similar to the D-optimal design criterion
(cf. Section III), and is subsequently solved by a genetic algo-
rithm with no optimality guarantees. In [4], the state covariance
matrix is approximated by Monte Carlo simulations first; then,
the bus whose sum of variances over itself and its neighboring
buses is maximum is heuristically added to the placement; and
the two steps are repeated. Similarly, an incremental algorithm
selects the PMU with the highest variance at each step in [40].
Finally, different from the novel approach here, the method in
[23] ignores the PMU line current measurements, and estimates
only the phase of the system state using a greedy (incremental)
approach.
Notation: Lower- (upper-) case boldface letters denote

column vectors (matrices), and calligraphic letters stand for
sets; is the all-ones(zeros) vector of length ;

and denote transposition and complex conjugation,
respectively; stands for ; designates a
semi-positive definite matrix, i.e., a symmetric matrix with
non-negative eigenvalues; stands for the multivariate
Gaussian probability density function with mean and co-
variance matrix .

II. PMU-BASED STATE ESTIMATION

Consider a power grid comprising buses (nodes) con-
nected through transmission lines (edges). After expressing

the complex voltages at all buses in rectangular coordinates, the
grid state is described by the vector ,
where and denote the real and imaginary parts of nodal
voltages, respectively.
In power transmission systems, each bus is connected to a

limited number of lines. Contemporary phasor measurement de-
vices feature an adequate number of channels. Thus, it is rea-
sonable to consider that once the th bus is selected for PMU
instrumentation, the installed unit records not only the complex
voltage of bus , but also the complex currents flowing over all
the lines incident to this bus. The synchrophasor measure-
ments at the th bus expressed in rectangular coordinates are
collected in a vector with , and
obey the following linear model:

(1)

where is the associated regression matrix, and
denotes the additive Gaussian noise vector

that is assumed independent across PMUs. The detailed form of
’s will be specified in Section IV-A.
To capture presence or absence of a PMU, a binary variable
is introduced per bus: its value is 1 if a PMU is present at

the th bus; and 0, otherwise. For the linear-Gaussian model of
(1) and a given PMU indicator vector , the
state of the power grid can be deduced using the PMU mea-
surements. Given that the likelihood of the measurements is

, the maximum likeli-
hood estimate (MLE) of the system state is simply

(2)

When the so-called gain matrix [28]

(3)

is non-singular, the minimizer of (2) is unique and it is given in
closed form as . Under
the same condition, the MLE is known to be Gaussian dis-
tributed [22]; that is, .
Invertibility of apparently depends on the non-zero en-

tries of . As the number of PMU is small, especially at their
initial deployment phase, state observability is at risk. By
incorporating SCADA measurements, however, it is possible to
regularize the system matrix, and thus enable state estimation
even when is singular [39]. Nonetheless, simply aggregating
SCADA and PMU readings faces three challenges: 1) SCADA
measurements are available every 4 s, whereas PMU ones are
sampled every 0.03 s [13]; 2) explicitly including conventional
measurements results in a nonlinear estimation problem of
even higher dimensionality; and 3) upgrading the existing
estimation software to accommodate high-rate PMU readings
compromises backward compatibility [39]. An approach to
address these challenges is through the so-called “pseudo-mea-
surements,” which are SCADA-based state estimates utilized
as an extra set of measurements [31]. PMU readings and
pseudo-measurements are then jointly used to form the MLE.
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The alternative approach taken here treats state estimation in
a Bayesian framework, where SCADA-based state estimates
in rectangular coordinates are used as a priori information

to aid PMU-based estimation. Specifically, it is assumed that
the actual state vector is distributed as —an
assumption to be justified in Section IV-B, where an approxi-
mate expression for is provided as well. Based on the linear
model of (1) and the SCADA-based Gaussian prior informa-
tion, the power system state is estimated as the vector yielding
the maximum a posteriori probability (MAP) .
Because the latter is proportional to , the
MAP estimate can be easily shown to be the minimizer of

(4)

The last term in (4) incorporates the SCADA-based prior state
information and regularizes the MLE of (2). Note also that be-
cause of the linear-Gaussian model and the Gaussian prior, the
MAP estimate coincides with the minimum mean-square error
(MMSE) estimate [22].
The unique minimizer of (4) is provided straightforwardly in

closed form as

(5)

where the now regularized gain matrix is

(6)

Standard results from estimation theory assure that
[22]. Thanks to the Gaussianity of , matrix

is related to its -confidence region, meaning that the estimate
falls into the ellipsoid with

probability for , where is the inverse cu-

mulative distribution function of a chi-square random variable
with degrees of freedom [7, Sec. 7.5].
Phase Alignment: Since SCADAmeasurements are quadrat-

ically related to the state vector, complex bus voltages can be
recovered only up to a phase rotation [28], [37]. This phase am-
biguity is practically resolved by fixing the phase of a so-termed
reference bus— typically enumerated as first—to zero. Equiv-
alently, in rectangular coordinates, the entry is set to
zero, and is removed from the state vector. When state estima-
tion is based solely on PMU measurements, phase ambiguity
is not an issue, since measurements are linearly related to the
system state. However, using the SCADA-based prior renders
it necessary to “align” the prior with PMU phases. This is typ-
ically resolved by PMU-instrumenting the reference bus, and
subtracting its measured voltage phase from all other PMU read-
ings [31]. This clearly implies , and again is
set to zero and removed from the state vector. For notational
brevity, will henceforth refer to the reduced
vector, while ’s will denote the corresponding matrices
obtained after ignoring the st column (and row) from
the respective matrices of (1) and (3). Moreover, the contribu-
tion of the reference bus to in (3) can be added

to the term when defining in (6) without loss of gener-
ality. Non-reference buses are renumbered from one.

III. OPTIMAL PMU PLACEMENT

Building on the state estimate in (4), the problem of PMU
placement can be now stated as follows. Given
1) a power network of buses (nodes);
2) matrices (c.f (1) and Section IV-A);
3) the covariance matrix (cf. Section IV-B);
4) an integer ,
and assuming a PMU installed at the reference bus, the goal is
to choose buses to be PMU-instrumented so that the error of
the estimator (5) is minimized.
PMU placement is cast here as a variation of the optimal

experimental design problem [33]. The state estimation error
for a specific PMU placement has inverse covariance matrix

, where the dependence on will be ex-
emplified throughout this section.
Apparently, between two candidate placements and with

, placement is preferable over if
. However, the ordering over semi-positive

matrices is partial: if is an indefinitematrix, i.e.,
it has both positive and negative eigenvalues, then none of the
placements is better than the other. To overcome this ordering
issue, placements are typically ranked based on a scalar-valued
function of , , that is to be minimized [7],
[33]. Typical function choices are:
(c1) E-optimal design: , where
denotes the maximum eigenvalue of ;

(c2)A-optimal design: that is equal
to the sum of the eigenvalues of ;
(c3) M-optimal design: cor-

responding to the maximum diagonal entry of ; and
(c4) D-optimal design: , where

denotes matrix determinant.
Details and interesting geometric interpretations regarding
choices (c1)–(c4) can be found in [7, Sec. 7.5] and [33]. After
this scalarization step, the -optimal PMU placement can be
found as the solution of the optimization problem

(7a)

(7b)

(7c)

where . The constraint (7b) expresses the
PMU budget. Trivially, when some buses have already been
PMU-instrumented, they can be handled in the same way as for
the reference bus (cf. end of Section III).
Unfortunately, solving (7) incurs combinatorial complexity

[7], [21]. Suboptimal solutions can be obtained by converting
the troublesome binary constraint (7c) to the box constraint

with the inequalities understood entry-wise
[7]. Since , such a conversion constitutes a
relaxation of the original problem. Upon defining the relaxed
feasible set

(8)
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the relaxed problem is expressed as

(9)

Fortunately, the problem in (9) can be efficiently solved as a
convex optimization problem for all four cost function choices

[7], [21]. The SDP formulations of the prob-
lems are presented briefly next for completeness.
For the E-optimal design, instead of minimizing

, one can alternatively maximize
by introducing the auxiliary variable and solving the SDP

(10)

For the A-optimal design, minimizing the trace of can
be accomplished after introducing the auxiliary vector variable

, leading to the SDP

(11)

where is the th canonical vector. The M-optimal design can
be suboptimally solved by the SDP

(12)

Finally, the relaxed D-optimal placement can be expressed as
the convex optimization problem

(13)

that can be efficiently solved via standard software [24], [35].
Even though (9) is solved offline whenever a new batch of ac-

quired units is to be installed, interior point-based methods are
deemed non-operational when is larger than few hundreds
[24], [35] (cf. Section V), in which case one has to resort to
first-order optimization algorithms. To this end, a gradient pro-
jection algorithm for solving (9) for is developed
in the Appendix. For minimizing the convex, yet non-smooth
functions and over , proximal gradient counter-
parts can be adopted, too.
The minimizers of (10)–(13) do not necessarily have bi-

nary entries. A simple heuristic to obtain a binary solution is
to set the largest entries of to 1, and zero the rest [7].
The so-acquired vector, denoted by , belongs to the feasible
set of the original non-convex problem (7), but in general it
is not a minimizer of (7). It provides though the upper bound

for all . Additionally, due to the relax-
ation, the minimizers of (10)–(13) yield also the lower bound

for all placement criteria . When the gap
becomes zero, the relaxation is deemed exact

in the sense that [21].
Extensions: The optimal PMU placement problem in (7)

can accommodate several additional constraints imposed by

communication, installation, or other practical considerations.
Linear (in)equality constraints on the binary variables can
effect prior information of logical nature [21]. For example,
the placement constraint that bus can be PMU-instrumented
only if bus is, too, can be expressed as ; or, if
a critical subnetwork of the grid is to be equipped with at
least PMU devices, the constraint should be
added. Moreover, criteria other than state estimation error can
be jointly considered in the placement process. For example, if
having a PMU at the th bus incurs communication cost ,
and there is a budget , the constraint can
be attached to (7). All these constraints can be retained in the
relaxed problems (9) by properly redefining its feasible set .
However, the simple operation to acquire from can no
longer guarantee the feasibility of .
Parameter Uncertainty: Problems (7) and (9) assume that

matrices and are perfectly known. However,
measurement errors, seasonal variations, and the approximation
involved in introduce errors. Small deviations from nominal
values can be lumped into the noise in (1), or can be handled
possibly by following a total least-squares approach [20]. Fur-
thermore, by postulating an uncertainty model, one can resort to
robust (minimax) optimal experimental designs. Interestingly,
under practical uncertainty models, the relaxed robust E-/D-op-
timal designs can be formulated as SDP problems, too [17], [21].

IV. INPUT DATA

In this section, the input data for the optimal PMU placement
problem are expressed in terms of physical properties of the
power network. The regression matrices appearing in (1)
are described in Section IV-A, while an approximation of
required in (4) is provided in Section IV-B.

A. Regression Matrices

Let be the vector of complex nodal
voltages. The vector of complex currents injected per bus is

(14)

where denotes the bus admittance matrix, and can
be explicitly expressed as a function of the bus admittances, the
line series admittances and charging susceptances, and potential
tap ratios and phase shifters [41]. Considering a power network
consisting of lines, the vector of complex currents
injected on each line can be described similarly by

(15)

where denotes the line-to-bus admittance ma-
trix [41]. Note that the current flowing from bus to bus is
not equal to the negative of the current flowing in the reverse
direction. Hence, each line is considered twice in vector . The
regression matrices in (1) can now be expressed as

(16)
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where is the binary matrix selecting the rows of
corresponding to the lines originating from bus .

B. Covariance of the SCADA-Based State Estimate

Conventional power meters measure subsets of nodal real and
reactive power injections, real and reactive power line flows,
as well as nodal voltage magnitudes. Consider such mea-
surements concatenated in that are related to
through the generally nonlinear function .
The SCADA reading model is

(17)

where denotes the noise vector. Supposing that
the SCADA-based estimate has converged to theMLE based
on (17), the estimate is asymptotically (as ) normal;
that is, , where [22]

(18)

and is the Jacobian matrix of
evaluated at . Since is nonlinear, the covari-

ance matrix in (18) depends on the actual nodal voltage values
, which are unknown. To resolve this vicious cycle, one ap-

proach is to surrogate (18) by in (5).
For optimal PMU placement, however, the goal is to solve

(7) or (9) without having acquired any measurements and for
all possible values of the state vector . Toward this end, the
idea here is to replace in (18) by the so-called flat voltage
profile , commonly used for initializing
state estimation algorithms [37]. For this reason, wherever
appears in the previous section, it is replaced by . Then,
the Jacobian can be neatly expressed in terms of and
. Note that other typical voltage profiles can be alternatively

used, too.
What remains to be determined is the Jacobian matrix

for the different types of SCADA measurements.
Starting with voltage magnitudes, if a row of corre-
sponds to the voltage magnitude measurement at bus , namely

, then it is readily given by . Before pro-
ceeding with power SCADA measurements, note that because

, it holds that

(19a)

(19b)

The vector of complex powers injected at each bus
is provided by the formula . After
applying the product and the chain rules of differentiation, and
using (19), the power gradients can be expressed as

(20a)

(20b)

When these gradients are evaluated at , they yield

(21a)

(21b)

Let denote the vectors of real and reactive nodal
power injections, respectively. Since and after using
(21), the gradient evaluations are

(22a)

(22b)

(22c)

(22d)

Hence, if a row of corresponds to the real/reactive
power injected at bus , then it is provided by the th row of
(22a)/(22c) followed by the th row of (22b)/(22d).
Similar derivations can be followed for the line power flows.

More precisely, the complex power flowing from bus to bus
through the th line is , where is the th entry
of and is the th entry of in (15). Next, define the line-to-
source bus adjacency matrix such that if its th
row corresponds to the directed line, the th element
of this row is 1, and the rest are zero. Let also
denote the vectors of real and reactive line power injections,
respectively, following the line ordering of (15). Then, the line
power injections can be neatly expressed by the matrix-vector
formula

(23)

Based on (23), mimicking the development of (19)–(22), and
exploiting the fact that , it follows readily that

(24a)

(24b)

(24c)

(24d)

Likewise for (22), if a row of corresponds to the real/re-
active power flowing over the directed line , then it is pro-
vided by the th row of (24a)/(24c) followed by the th row of
(24b)/(24d).

V. SIMULATED TESTS

The relaxed PMU placement methods are evaluated numer-
ically using MATLAB [26] on an Intel Duo Core @ 2.2 GHz
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Fig. 1. IEEE 14-bus test case: attained by solving (7) and (9), and by a random PMU placement for the different criteria . (a) E-optimal
design. (b) A-optimal design. (c) M-optimal design. (d) D-optimal design.

(4GB RAM) computer. Three commonly used power network
benchmarks, namely the IEEE 14-, 30-, and 118-bus systems,
are considered [36]. The bus- and line-to-bus admittance ma-
trices and , respectively, are obtained using the MAT-
POWER software [41], while the involved optimization param-
eters are stored as sparse matrices.
Regarding SCADA measurements, the redundancy ratio,

which is the ratio of SCADA measurements over the number
of state variables, is typically around 2.2 [28]. Given that the

pairs of the three power networks considered here are
(14,20), (30,41), and (118,186), this ratio was approximately
obtained by measuring the 50% of bus voltage magnitudes
and (real/reactive) powers at buses and lines. The locations
of SCADA measurements are initially selected uniformly at
random and remain fixed throughout the experiments.
The covariance matrix of the SCADA measurement noise
[c.f (17)] is modeled as diagonal: the standard deviation for

voltage magnitude, bus power injections, and line power flows
is 0.01, 0.015, and 0.02, respectively, in accordance with the
state estimation setups in [41]. PMUmeasurements are assumed
to have a diagonal covariance matrix [c.f (1)], too. Com-
pliant with SCADA readings, the standard deviation for bus
voltage and line current PMU measurements is 0.01 and 0.02,

respectively. Note that the proposed PMU deployment method
applies equally well even for non-diagonal ’s.
Starting with the IEEE 14-bus test case, the four placement

criteria were evaluated for units. Fig. 1 shows the
cost values for: 1)–2) and acquired by solving
(9) with the SDPT3 and YALMIP softwares [24], [35] in a
matter of a few seconds; 3) a random PMU placement; and 4)
the cost obtained by exhaustively solving (7); all for

. In most cases tested, coincided with
, as verified by the zero gap . In general,

differs from by at most one unit.
Regarding the 14-bus test case, note first that the minimizers
and do not possess a nesting property for varying ,

meaning that the optimal -placement is not necessarily a subset
of the optimal -one. Secondly, the numerical tests verify
the importance of the SCADA-based prior: For the A-optimal
placement and , the trace of increases from

to when the prior is ignored.More critically,
without the SCADA-based prior in (6), one needs units
to obtain a non-singular .
Next, the effect of PMU placement on state estimation accu-

racy is investigated. Fig. 2 illustrates the standard deviation of
the real (top) and the imaginary (bottom) parts of nodal voltages



KEKATOS et al.: OPTIMAL PLACEMENT OF PHASOR MEASUREMENT UNITS VIA CONVEX RELAXATION 1527

Fig. 2. IEEE 14-bus test case: Standard deviation for the real (top) and imaginary (bottom) nodal voltages for PMU. (a) E-optimal design. (b) A-optimal
design. (c) M-optimal design. (d) D-optimal design.

after deploying phasor measurement units according to
the placements , , and a random one. The performance of
the placement is close to that of for all four criteria.
For the IEEE 30-bus benchmark, solving (7) for an arbitrary

is prohibitively complex; hence, Fig. 3 depicts only
the costs attained by solving (9) using SDPT3/YALMIP [24],
[35], within a few seconds; and by a random placement. Even
though PMU misplacements compared to cannot be quanti-
fied, the small gap indicates the closeness of
the obtained solutions to the optimum ones.
Finally, the IEEE 118-bus test case is considered.

The network size disqualifies any combinatorial search.
SDPT3/YALMIP can solve (9) for in a few sec-
onds, but the cases of cannot be handled. The relaxed
A-optimal deployment is solved using the gradient projection
algorithm developed in the Appendix. Depending on the value
of , the algorithm converges in 100–200 iterations, which is
always less than 1.5 min. Fig. 4 shows the quite impressive
results obtained by the convex relaxations for ;
similar results hold for , but are omitted due to space
limitations.

VI. CONCLUSIONS

Recognizing that system state accuracy is a key factor in en-
abling situational awareness for the power grid, PMU deploy-
ment was approached here based on estimation theoretic cri-
teria. The estimation of nodal voltages expressed in rectangular
coordinates by using both voltage and current PMU measure-
ments was formulated as a linear regression problem, while
SCADA-derived state estimates were incorporated in the form

of Gaussian priors. By posing the problem under the frame-
work of optimal experimental design, the involved error co-
variance matrix was then minimized in a well-defined sense.
To obtain practically computable solutions, the combinatorial
problems involved were relaxed to convex optimization ones.
Surprisingly, numerical tests using standard SDP solvers and a
devised gradient projection algorithm demonstrated that the ob-
tained PMU placements come close to the optimum ones as ver-
ified by the small or oftentimes zero suboptimality gap for the
tested IEEE bus cases.

APPENDIX
A GRADIENT PROJECTION ALGORITHM

Problem (9) for entails minimization of
a convex, continuously differentiable function over . A
gradient projection algorithm for accomplishing this task is
presented here. The algorithm comprises the iterative updates

(25)

where denotes the step size; ; and the
symbol denotes the projection operator onto , i.e.,

(26)

The ingredients of the algorithm are detailed next.
Gradient Vectors: Using matrix calculus [8], the th entry of

for can be expressed as

(27a)

(27b)
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Fig. 3. IEEE 30-bus test case: attained by solving (9) and by a random PMU placement for the different criteria . (a) E-optimal design.
(b) A-optimal design (c) M-optimal design. (d) D-optimal design.

Fig. 4. IEEE 118-bus test case: attained by solving (9) and by a random PMU placement for the different criteria . (a) E-optimal
design. (b) A-optimal design.

where ; and likewise for

(28a)

(28b)

where . Efficient implementation of (27)
and (28) leverages three facts: 1) the involved matrices have
sparse structure; 2) the formulas (27b) and (28b) are computa-
tionally preferable over (27a) and (28a), since ’s are
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with ; and 3) inverting can be ac-
celerated by successively applying the matrix inversion lemma
on (3) and (6) [8].
Projection onto : The Karush-Kuhn-Tucker (KKT) condi-

tions for problem (26) show that its unique minimizer is
provided by the thresholding rule for

(29)

and for a value of , named , that satisfies the constraint
. It can be seen that is a continuous

decreasing function of ; hence, and can be
easily found via bisection as shown in the tabulated Algorithm
1 .
The algorithm is initialized at . At iteration
, vector is found using (27) and (28); the step size
can be fixed to a sufficiently small value (see e.g., [6] for

details); and the projection required in (25) is performed using
Algorithm 1 for . The algorithm can be
terminated when ; and its convergence
is guaranteed [6].

Algorithm 1: Projection Onto

Require: Vector and scalar .

1: Initialize , and .

2: repeat

3: Update .

4: Find using (29).

5: If , set ;

6: else set .

7: until .
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