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Natural Gas Flow Solvers using Convex Relaxation
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Abstract—The vast infrastructure development, gas flow dy-
namics, and complex interdependence of gas with electric power
networks call for advanced computational tools. Solving the
equations relating gas injections to pressures and pipeline flows
lies at the heart of natural gas network (NGN) operation, yet
existing solvers require careful initialization and uniqueness has
been an open question. In this context, this work considers the
nonlinear steady-state version of the gas flow (GF) problem. It
first establishes that the solution to the GF problem is unique
under arbitrary NGN topologies, compressor types, and sets of
specifications. For GF setups where pressure is specified on a
single (reference) node and compressors do no appear in cycles,
the GF task is posed as an convex minimization. To handle
more general setups, a GF solver relying on a mixed-integer
quadratically-constrained quadratic program (MI-QCQP) is also
devised. This solver can be used for any GF setup at any NGN.
It introduces binary variables to capture flow directions; relaxes
the pressure drop equations to quadratic inequality constraints;
and uses a carefully selected objective to promote the exactness
of this relaxation. The relaxation is provably exact in NGNs
with non-overlapping cycles and a single fixed-pressure node.
The solver handles efficiently the involved bilinear terms through
McCormick linearization. Numerical tests validate our claims,
demonstrate that the MI-QCQP solver scales well, and that
the relaxation is exact even when the sufficient conditions are
violated, such as in NGNs with overlapping cycles and multiple
fixed-pressure nodes.

Index Terms—Gas flow equations, convex relaxation, unique-
ness, energy function minimization, McCormick linearization.

I. INTRODUCTION

Natural gas has served as a critical energy source for
decades, mainly for heating and electric power generation [1].
Thanks to the higher ramping capabilities of gas-fired gen-
erators, electric power system operators could achieve higher
penetration of uncertain and intermittent renewable generation.
In addition, the discovery of substantial new supplies of natural
gas in the U.S. has led to a new thrust in development of gas-
centered technologies and analytical tools [2].

Natural gas produced at gas pits and refineries is primar-
ily transported to customer locations via a continent-wide
network of pipelines [1]. The safe, reliable, and economical
transportation of gas across these networks is ensured by gas
system operators [3]. Considering the scale of natural gas
networks (NGN), and their coupling with electric power grids,
a plethora of analytical and computational challenges can be
envisaged. Stand-alone and gas-electric coupled versions of
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network expansion planning, optimal scheduling, least-cost
procurement, and security analysis are examples of problems
that have gained increasing research interest; see [3], [4], [5],
[6], [7]. These problems aim at optimizing varying objectives,
while respecting network limitations and gas flow physics.

The flow of natural gas on pipelines is governed by partial
differential equations, which under steady-state assumptions,
yield nonlinear equations relating pressures and gas flows [8].
These equations reveal that the pressure drops along a pipe
in the direction of flow due to friction. However, a minimum
pressure needs to be maintained at consumer nodes to satisfy
gas contracts. Therefore, compressors are placed on selected
pipelines to increase the pressure at their output based on a
typically multiplicative [1], and rarely additive law [9]. Oper-
ators need to solve the set of nonlinear equations governing
gas flow in an NGN [10]: For each node, the operator fixes
the gas pressure or gas injection rate to specified values. Given
also the compression ratios, the GF task aims at finding the
injections and pressures at all nodes, as well as the gas flows
on all pipes. While solving the GF task is central for numerous
NGN operations, it is hard to do so even under steady-state
and balanced conditions for non-tree networks [1].

The GF task is usually handled by Newton-Raphson (NR)-
based solvers. However, their convergence can be sensitive
to initialization [11]. A semidefinite program (SDP)-based
GF solver attaining a higher success probability than the NR
scheme, is developed in [10]. Nevertheless, the SDP based
solver fails to solve the GF problem if the network state is
far from the states considered in designing the solver. The
necessity of proper initialization may be avoided for simpler
networks without compressors as the flows and pressures
may be found as optimal primal-dual solutions of a convex
minimization [12]. Nevertheless, for practical meshed NGNs
with compressors, an initialization-independent GF solver is
still a research pursuit [8]. Setting scalability aside, if one uses
a nonlinear solver for the GF task, the uniqueness of a solution
becomes critical. References [9] and [13] prove the uniqueness
of a GF solution for NGNs with additive compressors.

The contribution of this work is on four fronts: First,
Section III establishes that the nonlinear steady-state GF
equations enjoy a unique solution even with multiplicative
compressors. Building on [8] where uniqueness was shown for
GF setups with a single fixed-pressure node, here uniqueness
is non-trivially generalized to setups with multiple fixed-
pressure nodes. Second, Section IV reformulates the GF task
as a convex minimization. The obtained solver can handle
GF setups with a single fixed-pressure node and compres-
sors not on cycles. Third, Section V expands the analytical
claims for the MI-QCQP gas flow solver of [8]. Different
from the convex minimization approach, this solver applies
to any GF setup and any network. The MI-QCQP solver
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introduces binary variables to capture flow directions; relaxes
the nonlinear GF equations to quadratic inequalities; and uses
a carefully selected objective to promote the exactness of the
relaxation. The relaxation is provably exact in NGNs with
non-overlapping cycles and a single fixed-pressure node. This
significantly extends the claim of [8], where exactness was
proved for non-overlapping cycles and a single fixed-pressure
node, but did not allow for compressors in cycles. Having
compressors in cycles is a typical arrangement, e.g., when two
compressors are connected in parallel. Fourth, to accelerate
the MI-QCQP solver, the bilinear terms involved are handled
through McCormick linearization. Numerical tests on meshed
networks with overlapping cycles and multiple fixed-pressure
nodes demonstrate that the MI-QCQP solver finds the unique
GF solution even when the assumed sufficient conditions are
violated.

II. GAS FLOW PROBLEM

A natural gas network (NGN) can be represented by a
directed graph G = (N ,P). The nodes in the graph represent
points of gas supply, demand, or network junctions. The
edges are directed, and represent pipelines or compressors.
Nodes are indexed by n ∈ N := {1, · · · , N} and edges by
` ∈ P := {1, . . . , P}. Each edge ` = (m,n) is assigned a
direction from the origin node m to the destination node n.
If (m,n) ∈ P , then (n,m) /∈ P . For edges corresponding to
pipes, this direction is selected arbitrarily. For edges denoting
compressors, the direction coincides with the direction of gas
flow, since compressors allow only unidirectional flow of gas.

For each node n ∈ N , let qn be the gas injection rate
from node n to the NGN. By convention, the gas injection qn
is positive for gas source nodes; negative for demand nodes;
and zero for junction nodes. Vector q ∈ RN collects the gas
injections across all nodes.

For each edge ` = (m,n) ∈ P , let φ` denote its gas flow
rate. By convention, the flow φ` is positive if gas flows from
node m to n; and negative, otherwise. The conservation of
mass at each node n ∈ N dictates that

qn =
∑

`:(n,k)∈P

φ` −
∑

`:(k,n)∈P

φ`. (1)

Under steady-state conditions, the input and output flows on
a pipe are identical, and so gas injections are balanced at all
times, that is

∑N
n=1 qn = 0. Because of this, from the N linear

equations in (1), only (N − 1) are linearly independent.
The topology of the NGN is captured by its edge-node

incidence matrix A ∈ RP×N with entries

A`,k :=


+1 , k = m

−1 , k = n

0 , otherwise
∀ ` = (m,n) ∈ P.

Using A, equation (1) can be compactly expressed as

A>φ = q. (2)

where vector φ ∈ RP stacks the flows φ`’s along all edges.
For medium- and high-pressure networks, the gas flows on

pipelines relate to nodal pressures through a set of nonlinear

partial differential equations [14], [15]. These equations model
the gas flow dynamics evolving across time and spatially along
the pipeline length. However, simplifying assumptions such
as ignoring friction, geographical tilt, variations in ambient
temperature, and time-varying gas injections, yield the popular
steady-state Weymouth equation [16]. If ψn > 0 denotes the
squared gas pressure at node n ∈ N , the pressure drop across
pipeline ` = (m,n) ∈ P is given by

ψm − ψn = a` sign(φ`)φ
2
` (3a)

ψn ≥ 0 (3b)

where parameter a` > 0 depends on physical properties of the
pipeline [14]. The function sign(x) returns +1 if x > 0; −1 if
x < 0; and 0 if x = 0. The absolute value in (3a) signifies that
pressure drops along the direction of flow. In particular, the
drop in squared pressures is proportional to the squared flow.
We will henceforth refer to ψm as pressure rather than squared
pressure for brevity. Let us collect all ψn’s in ψ ∈ RN .

To enable the desired flow of gas in an NGN while main-
taining pressures within acceptable limits, system operators
install compressors at selected pipelines. A pipeline hosting
a compressor can be modeled by an ideal compressor which
increases the gas pressure, followed by a lossy pipeline that
incurs a pressure drop per (3). Apparently, the gas flows on the
two edges are identical. Let the subset of edges hosting ideal
compressors be Pa ⊂ P . The edges in Pa are also referred to
as active pipelines. The pressures across an active pipeline or
compressor ` = (m,n) ∈ Pa are related as

ψn = α`ψm (4a)
φ` ≥ 0, (4b)

where α` > 0 is the multiplicative compression factor for com-
pressor `. The unidirectional flow permitted for a compressor
is enforced by (4b). The remaining edges, that is the edges
not hosting ideal compressors, constitute the set P̄a := P \Pa
and abide by (3) instead of (4).

In an NGN, a node r ∈ N is selected as a reference node. Its
pressure is kept fixed. Given ψr, if the nodal pressures ψ are
known, the flows φ can be readily computed; and vice versa.
This fact follows immediately from (3)–(4), and is itemized
as the next lemma to be used in subsequent arguments.

Lemma 1. Given a reference pressure ψr for some r ∈ N ,
a pair (φ,ψ) satisfying (3)–(4) is uniquely characterized by
either φ or ψ.

The task of finding φ or ψ given a combination of nodal
injections and pressures constitutes the gas flow (GF) problem.
Oftentimes, gas supply nodes are tuned to maintain a fixed
pressure while injecting variable amounts of gas to meet the
prescribed pressure under variable demands [3], [17]. Let set
Nψ ⊂ N consist of all nodes with fixed pressures ψn’s. The
reference node r belongs to Nψ by definition. Its complement
set Nq := N \ Nψ consists of all nodes with fixed injections
qn’s. Then, the GF problem can be formally stated now.

Definition 1. Given pressures ψn for n ∈ Nψ; injections qn
for n ∈ Nq; the ratios α` for all compressors ` ∈ Pa; and
the friction parameters a` for all lossy pipes ` ∈ P̄a, the GF
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problem aims at finding the triplet (ψ,φ,q) satisfying the GF
equations (2)–(4).

The GF task involves N −1 +P equations over N −1 +P
unknowns. It can be posed as the feasibility problem

find {q,φ,ψ} (G1)
s.to (2)− (4)

given {qn}n∈Nq and {ψn}n∈Nψ .

Albeit (2) and (4) are linear, the piecewise quadratic Wey-
mouth equation in (3) is non-convex, while the requirement
{φ` ≥ 0}`∈Pa further complicates the task. The GF problem
is typically solved using the Newton-Raphson’s method, yet
its convergence depends on the initialization [11], [17], [10].
Commercially available software require careful manual tun-
ing by gas network operator personnel, though that could be
attributed to more detailed models of NGN components.

A popular rendition of the GF problem considers the refer-
ence node as the only fixed-pressure node, and all other nodes
as fixed-injection nodes [18], [10], [8]. For this rendition,
solving the GF problem becomes trivial for a tree network
by inverting (2) and using Lemma 1. However, for a meshed
NGN, solving the GF problem remains non-trivial. Before
developing new GF solvers, the next section establishes that
the GF problem in (G1) enjoys a unique solution.

III. UNIQUENESS OF THE GF SOLUTION

We commence with the uniqueness of the GF task under
the setup of a single fixed-pressure node, proved in [8, Th. 1].

Theorem 1 ([8]). If Nψ = {r} and Nq = N \ {r}, the gas
flow problem (G1) has a unique solution, if feasible.

Although the single fixed-pressure setup has been studied
widely, setups with multiple fixed-pressure nodes are of critical
interest too. This is because gas is typically injected at supplier
sites using a controller that maintains constant pressure, rather
than constant rate. To address this need, this section builds on
Th. 1 and establishes the uniqueness of the steady-state GF
equations for any (Nψ,Nq) setup. Before doing so, let us
briefly review some graph theory preliminaries.

A directed graph G = (N ,P) is connected if there exists
a sequence of adjacent edges between any two nodes. All
graphs considered in this work are assumed to be connected. A
sequence of adjacent edges between nodes m and n constitutes
a path Pmn ⊂ P . The directionality assigned to path Pmn is
from m to n. Note that nodes m and n could be connected
by multiple paths. Thus, with slight abuse in notation, path
Pmn shall represent any arbitrary path between m and n,
unless additional conditions are provided. For path Pmn, we
can define an indicator vector πmn ∈ {0, 1}P with `−th entry

πmn` :=


0 , if edge ` /∈ Pmn
+1 , if direction of ` agrees with path direction
−1 , otherwise.

A cycle is a sequence of adjacent edges (without edge or
node repetition) that starts and ends at the same node. With
a slight abuse of terminology, the statement ‘cycle C contains

node i’ will mean that there exists an edge in C that is incident
to node i. For any cycle C, we can select an arbitrary direction
and define its indicator vector nC with `-th entry

nC` =


0 , if edge ` /∈ C
+1 , if direction of ` agrees with cycle direction
−1 , otherwise.

A tree is a connected graph with no cycles.
After the graph theoretic preliminaries, we proceed with the

uniqueness of the GF solution for the general GF setup. This
proof builds upon the ensuing two lemmas, which are proved
in the appendix.

Lemma 2. Consider path Pmn along edges {`1, . . . , `k} with
indicator πmn. For fixed pressures ψm and ψn, if flow vectors
φ and φ′ with φ 6= φ′, satisfy (3)–(4), they cannot satisfy

sign(φ′ − φ)� πmn > 0 or (5a)
sign(φ′ − φ)� πmn < 0 (5b)

where the strict inequalities are understood entrywise.

To get some intuition, suppose that πmn takes the value of
+1 for edges {`1, . . . , `k}, and 0 for the remaining edges.
According to Lemma 2, if two pairs (φ,ψ) and (φ′,ψ′)
satisfy (3)–(4) with ψm = ψ′m and ψn = ψ′n, then the
flows along Pmn cannot uniformly increase from φ to φ′.
In other words, φ′` > φ` cannot occur simultaneously for all
` ∈ Pmn. Flows cannot uniformly decrease either (φ′` < φ`
for all ` ∈ Pmn). This holds merely because the pressure drop
across a pipe decreases monotonically with gas flow from and
compressors perform a linear scaling [cf. (3) and (4)].

The next lemma describes an interesting effect on how gas
flows get redistributed when gas injections change.

Lemma 3. Consider two pairs (q,φ) and (q′,φ′) satisfying
(2). If q 6= q′, there exists a path Pmn between nodes m and
n such that

sign(φ′ − φ)� πmn > 0 (6a)
q′m > qm and q′n < qn (6b)

where πmn is the indicator vector for Pmn.

Lemma 3 predicates that if gas injections change, there
exists a path: i) along which flows increase uniformly; ii) the
source node of the path has increased injection; and iii) the
destination node has decreased injection. Lemma 3 has been
established in [9] via mathematical induction; see the appendix
for an alternative perhaps more intuitive proof.

Using Theorem 1 and Lemmas 2–3, we next prove the
uniqueness of the GF task under the general setup.

Theorem 2. The gas flow problem (G1) has a unique solution,
if feasible.

Proof. Proving by contradiction, assume (q,φ,ψ) and
(q′,φ′,ψ′) are two distinct solutions of (G1). Consider the
GF setup where |Nψ| > 1; the special case of |Nψ| = 1 is
covered by Theorem 1. If q 6= q′, then Lemma 3 implies that
there exists a path Pmn with indicator vector πmn satisfying
(6a). Moreover, it holds that q′m > qm and q′n < qn from
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(6b). By definition, gas injections qi are fixed for all nodes
i ∈ Nq . Therefore, nodes m and n cannot be fixed-injection
nodes. They have to be fixed-pressure nodes belonging to
Nψ , implying ψm = ψ′m and ψn = ψn. However, with
the pressures at nodes m and n fixed, the inequality (6a)
contradicts Lemma 2. Hence, the assumption of unequal
injections is refuted, implying q = q′.

Given q and the reference pressure ψr, Theorem 1 asserts
that there is unique triplet (q,φ,ψ) satisfying the GF equa-
tions. Since q = q′, the triplets (q,φ,ψ) and (q′,φ′,ψ′) have
to coincide, which completes the proof.

The uniqueness claim of Theorem 2 is fairly general, since
it applies to any NGN topology and any GF setup with a single
or multiple fixed-pressure nodes. Having established unique-
ness, the next two sections develop a suite of GF solvers:
Section IV builds upon an existing convex solver for GF setups
with a single fixed-pressure node and no compressors. We
develop an unconstrained convex solver as well as an extension
that handles compressors on non-overlapping cycles. Section V
adopts a convex relaxation and puts forth an MI-QCQP to
handle more general GF setups. The relaxation is provably
exact for NGNs with a single fixed-pressure node and non-
overlapping cycles. Nonetheless, numerical tests demonstrate
that this MI-QCQP succeeds in finding the unique GF solution
in NGNs with multiple fixed-pressure nodes and overlapping
cycles as long as compressors are not on overlapping cycles.

IV. ENERGY FUNCTION MINIMIZATION

This section studies the GF task for the special case of
|Nψ| = 1. In an NGN without compressors, the GF task
is posed as a convex minimization. The approach can be
extended to networks having compressors, but not on cycles.

A. Existing Constrained Energy Function-based GF Solver
Consider solving the GF task for a single fixed-pressure

node (the reference node r) and in an NGN without compres-
sors. This task boils down to solving equations (2)–(3). As
shown in [12], the gas flows φ for this GF setup can be found
as the minimizer of the convex minimization

min
φ

∑
`∈P

a`
3
|φ`|3 (7a)

s.to A>φ = q. (7b)

This can be readily verified by the first-order optimality
conditions of (7). In addition, the pressures ψ can be recovered
from the optimal Lagrange multipliers ξ ∈ RN associated with
constraint (7b): If ξ is shifted by a constant so that its r-th
entry equals ψr, the remaining entries of this shifted ξ equal
ψ. Problem (7) can be reformulated as a second-order cone
program or tackled via dual decomposition; see [19].

B. Novel Unconstrained Energy Function-based GF Solver
Rather than solving (7) over φ, here we show that one can

alternatively find the GF solution via an unconstrained convex
minimization over ψ as

min
ψ

2

3

∑
(m,n)∈P

|ψm − ψn|
3
2

√
amn

− q>ψ. (8)

The convexity of this objective function follows from compo-
sition rules. Since this function is convex and differentiable, its
unconstrained minimization is equivalent to nulling its gradient
vector. Setting the n-th entry of this gradient to zero reveals
that the minimizer ψ∗ of (8) satisfies

∑
`=(m,n)∈P

sign(a>` ψ
∗)

√
|a>` ψ

∗|
a`

= qn (9)

where a>` is the `-th row of matrix A. Equation (9) is
equivalent to eliminating the flows φ from (2) and (3). As with
(7), the ambiguity in pressures could be handled by shifting ψ∗

by a constant, so that ψ∗r agrees with the given pressure at the
reference node r. Once pressures ψ∗ have been determined,
flows can be found using Lemma 1.

Remark 1. In the absence of compressors and when |Nψ| =
1, the GF task becomes structurally similar to the water flow
problem in water distribution networks without pumps [19].
Therefore, the (un)-constrained energy function minimization
approaches of (7)–(8) apply to the gas flow and water
flow problems alike. For water networks, the decomposition
technique of [19] extends (7)–(8) to water network setups
with |Nψ| = 1 and pumps, but pumps cannot lie on cycles.
A similar technique can be used to solve the GF problem
with compressors not on cycles and |Nψ| = 1. The only
modification needed relates to accounting for the multiplica-
tive pressure law in gas compressors [cf. (4a)] vis-à-vis the
additive pressure law of water pumps. Additionally, the de-
composition algorithm may be extended to accommodate com-
pressors on non-overlapping cycles using the flow-recovery
procedure provided later as Algorithm 1. Since carrying over
this decomposition technique from the water flow to the gas
flow context is straight-forward and due to space limitations,
it is not presented here.

To handle GF setups with |Nψ| > 1 and/or NGNs with
compressors in loops, a convex relaxation of the Weymouth
equation is pursued in the next section.

V. MI-QCQP RELAXATION

The minimization approaches of (7)–(8) provide compu-
tationally efficient methods to solve the GF problem, but
exhibit three limitations: i) they cannot handle multiple fixed-
pressure nodes (|Nψ| > 1); ii) cannot handle compressors
on cycles; and iii) cannot be extended to optimal gas flow
formulations (e.g., along the lines of [20]). To overcome these
limitations, this section presents an MI-QCQP-based solver
that is applicable to any GF setup.

A. Problem Reformulation

The non-convexity of (G1) is due to the Weymouth equation
in (3a). The piecewise quadratic equalities can be relaxed to
convex inequality constraints: The pressure drop along a lossy
pipe ` = (m,n) ∈ P̄a is relaxed to
• ψm − ψn ≥ a`φ2

` for φ` ≥ 0; or
• ψn − ψm ≥ a`φ2

` for φ` ≤ 0.
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The two cases can be differentiated using a binary variable x`
capturing the direction of flow φ`. The relaxed pressure drop
equations can be compactly written as

(2x` − 1)ψm + (1− 2x`)ψn ≥ a`φ2
`

where x` = 1 corresponds to φ` ≥ 0; and x` = 0 to φ` ≤
0. Despite the relaxation, the bilinear terms x`ψm make the
aforementioned constraint non-convex.

The McCormick linearization, popular for approximating
multilinear terms by their linear convex envelopes, can be
used to handle these bilinear terms [21]. For the special
case of bilinear terms involving at least one binary term,
the McCormick linearization becomes exact. In fact, it is
related to the so termed big-M trick, but instead of using a
single arbitrarily large value for M , it selects different values
for M that are specialized per product of variables, which
could potentially reduce the running time of mixed-integer
programming solvers. Let us briefly review the linearization.
Consider the constraint z`n = x`ψn, for which x` ∈ {0, 1} and
ψn ∈ [ψ

m
, ψn]. This constraint can be equivalently expressed

via four linear inequalities

x`ψn ≤ z`n ≤ x`ψn (10a)

ψn + (x` − 1)ψn ≤ z`n ≤ ψn + (x` − 1)ψ
n
. (10b)

To verify the exactness, observe that when x` = 1, constraint
(10b) yields z`n = ψn and (10a) holds trivially. When x` = 0,
constraint (10a) enforces z`n = 0 and (10b) holds trivially.
Hence, the constraints in (10) ensure that z`n = x`ψn.

To arrive at an MI-QCQP relaxation of (G1), for all lossy
pipes ` ∈ P̄a, the pressure drop constraint of (3a) is replaced
by (10) and

2z`m − 2z`n + ψn − ψm ≥ a`φ2
` , (11a)

− φ`(1− x`) ≤ φ` ≤ φ`x`, (11b)

where φ` is an upper bound on |φ`|. Constraint (11a) repre-
sents the relaxed Weymouth equation, and constraint (11b) de-
fines x` = sign(φ`). Similar relaxations have been previously
used in [4], [22], [8]; see Section VI for a detailed comparison.

When solving the GF problem with the Weymouth equations
relaxed, the obtained solution is useful only if the relaxation
is exact, that is when (11a) holds with equality for all `. To
render the relaxation provably exact, we convert the feasibility
problem (G1) to the MI-QCQP minimization

min r(ψ) (G2)
over q,φ,ψ,x

s.to (2), (4), (10), (11).

The optimization variable x stacks {x`}`∈P̄a , and the objective
function is judiciously selected as

r(ψ) :=
∑

(m,n)∈P̄a
(m,n)/∈SaC

|ψm − ψn|

where SaC is the set of cycles with compressors. These cycles
will be also termed as active cycles. The cost r(ψ) sums up
the absolute pressure differences across all lossy pipes not

in active cycles. Despite the non-convexity of (G2) due to
the binary variables, this minimization can be handled for
moderately sized networks thanks to the advancements in
mixed-integer second-order cone solvers. The computational
performance of (G2) is further corroborated by our tests. The
next section provides network conditions under which the
exactness of (G2) can be guaranteed analytically. The tests in
Section VII demonstrate numerically that solving (G2) renders
the relaxation exact for a much broader class of networks.

For solving tasks such as (G1), NR-based or fixed-point it-
eration solvers are often preferred as opposed to optimization-
based solvers due to computational superiority. However, in
addition to guaranteeing convergence irrespective of initial-
ization, problem (G2) can also be used as follows:
• Infeasibility: As a relaxation of (G1), (G2) can be used to

screen infeasible GF instances; see Section VII for tests.
Such screening is of practical use as suggested in [23].

• Initialization: Problem (G2) could be terminated before
reaching optimality to yield initializations for NR solvers,
hence combining the benefits of both approaches.

• Optimal gas flow: The cost of (G2) could be useful as
a penalty term that can be added to optimization prob-
lems [19], [20]. However, guaranteeing exact relaxation
for such problems would need further analysis.

B. Exactness of the Relaxation

The relaxation in (G2) will be analytically shown to be exact
under the following network conditions.

Condition 1. The GF setup has a single fixed-pressure node,
that is |Nψ| = 1.

Condition 2. Each edge of the NGN belongs to at most one
cycle.

Condition 3. The NGN does not exhibit circulation of gas,
that is nc � φ 6> 0 and nc � φ 6< 0 for every cycle C.

Under Condition 1, the nodal injections are fixed a pri-
ori and the GF task aims at finding the associated (ψ,φ).
Albeit Definition 1 considered the GF task with multiple
fixed-pressure nodes, the setup of a single fixed-pressure
node is commonly met; see [18], [10], [8], [24]. Regarding
Condition 2, although it may seem restrictive at the outset,
it is satisfied by several practical gas networks [25]. For
Condition 3, a circulation occurs when gas flows around a
cycle along the same direction. It is easy to verify that gas
cannot circulate in a cycle without compressors, since the
incurred pressure drops along the cycle will all be in the
same direction and thus cannot sum up to zero. In cycles with
compressors, gas circulation can occur though it would cause
an undesirable loss of energy. However, the tests of Section VII
demonstrate that the relaxation in (G2) is exact even in setups
where the sufficient Conditions 1–3 are all violated.

The next exactness claim applies to the GF setup with
known injections. From Lemma 1, we know that solving
the GF task is equivalent to finding the correct flows φ.
The next result provides conditions under which (G2) yields
flows φ with partially correct entries. An algorithm to retrieve
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the entire φ and thus eventually solve (G1) is presented
afterwards.

Theorem 3. Let φ be the unique flow vector solving (G1),
and φ′ the flow vector minimizing (G2). Under Cond. 1–3, it
holds φ′` = φ` for all edges ` not belonging to active cycles.

Theorem 3 establishes that the only possible mismatches
between φ′ and φ occur only at the edges lying on cycles with
compressors. Then, if there are no cycles with compressors,
the GF problem is solved correctly; see also [8, Th. 2].

Corollary 1. Under Cond. 1–2, for an NGN without compres-
sors in cycles, the minimizer of (G2) solves (G1) as well.

Corollary 1 identifies a setup where (G2) is equivalent
to solving (G1). Nonetheless, if there are no compressors
in cycles, one would prefer tackling (G1) using the solvers
of Section IV. This is because running the decomposition
technique discussed in Remark 1 and solving (7), are simpler
than solving the MI-QCQP of (G2).

C. Recovering the GF Solution

Returning to the general setup, we next provide a procedure
to retrieve the solution φ of (G1) given a minimizer φ′ of (G2).
From Theorem 3, vector φ′ needs to be corrected only at the
entries corresponding to edges in active cycles. To this end, we
first put forth an algorithm to correct the flows within a single
active cycle, and then delineate the steps to systematically
correct the flows for all active cycles of the network.

Consider an active cycle C with NC nodes. Let ψ0 be a
known pressure on node 0 ∈ C, and φ′C be the NC-length
subvector of φ′ collecting the flows on C. Similarly, let nC be
the NC-length subvector of the indicator vector for cycle C.
The next lemma explains how φC can be recovered from φ′C .

Lemma 4. Given a known pressure ψ0, and flows φ′C on
active cycle C obtained from (G2), Algorithm 1 determines
the corrected gas flows φC such that the relaxed Weymouth
equations in (11) are satisfied with equality.

Proof. Because φ and φ′ both satisfy (2), it follows that (φ−
φ′) ∈ null(A>). Since there are no overlapping cycles, we
have that φC = φ′C + λCnC for some λC ∈ R. To recover φC ,
we next provide a method for finding λC .

Suppose one is given a λ ∈ R. Given pressure ψ0 and
the candidate flow vector φ′C + λnC , one can calculate the
pressures along C sequentially using (3a) and (4a). Upon
completing the cycle, the pressure at node 0 ∈ C will be
evaluated to the value of ψ̂0(λ). The value ψ̂0(λ) may not
be equal to ψ0. Note that for λ > λC , it holds that

sign(φ′C − φC + λnC)� nC = sign ((λ− λC)nC)� nC > 0.

Using the above along with the argument used in the proof
of Lemma 2, it can be shown that ψ̂0(λ) < ψ0. In a similar
fashion, if λ < λC , then ψ̂0(λ) > ψ0. Therefore, the function
ψ̂0(λ) − ψ0 is monotonic in λ, and ψ̂0(λ) = ψ0 if and only
if λ = λC . Thanks to this monotonicity, one can find λC
iteratively using bisection, tabulated as Algorithm 1.

Algorithm 1 Recover flows on active cycles upon solving (G2)

Input : ψ0,φ
′
C ,nC , λ, λ; tolerance ε; pipe and compressor

parameters along C
Output : flow vector φC and pressure vector ψC along C
Initialize: Set λ← λ+λ

2 and ψ0(λ)←∞
while |ψ0(λ)− ψ0| ≥ ε do

Try flow vector φ′C+λnC . Starting from node 0, compute
pressures ψn(λ) along all nodes in n ∈ C using (3a) and
(4a) until you return to node 0.

if ψ0(λ) > ψ0 then
Set λ← λ, λ← λ+λ

2
else

Set λ← λ, λ← λ+λ
2

end
end
Return : flows φC = φ′C + λnC and pressures ψC(λ)

Lemma 4 shows that φC can be recovered from ψ0 and φ′C
using a bisection technique on λ. The limits for the search
space [λ, λ] of λ can be found using engineering constraints
on gas flows. In fact, these limits can be tightened since the
entries of φ′C and φC(λ) = φ′C + λnC corresponding to any
compressor in C must have the same sign due to (4b).

We next provide the steps to find the correct GF solution
using the flow φ′ obtained from (G2):

T1) Select a spanning tree T of the NGN graph G rooted
at the reference node r.

T2) Starting from node r, traverse T via a depth-first search.
T3) If a node n does not belong to an active cycle of G,

calculate its pressure as follows: If the edge connecting node
n to its parent node in T is a lossy pipe, use (3a); else, if this
edge is a compressor, use (4a).

T3) If a node n belongs to an active cycle C, check if the
flows in cycle C have been corrected. If the flows are already
corrected or if i is the first node in C that is encountered,
compute the nodal pressure as in step T3). Else, pass the
pressure at the parent node of i (which is also in C) along
with the non-corrected flow subvector φ′C to Algorithm 1 and
obtain the corrected flows on C.

T4) Continue until all nodes in T have been traversed.

VI. COMPARISON TO PRIOR WORK

This work puts forth three novel components: c1) proving
the uniqueness of the GF problem solution under steady-state
conditions; c2) proposing GF solvers based on energy function
minimization; and c3) devising a provably exact MI-QCQP
relaxation. These components are next contrasted to existing
related works:

c1) Uniqueness: For an NGN with no compressors, the GF
solution may be found as a minimizer of (7); see [12], [23].
A linearization technique has also been put forth to accelerate
solving (7) [23]. References [9] and [13] broaden the unique-
ness claim for NGNs with additive compressors of constant
gain. These works formulate strictly convex problems that
yield a GF solution; hence proving uniqueness by convex-
ity. However, gas compressors are oftentimes multiplicative,
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so that the previous uniqueness claims do not carry over.
In our work [8], uniqueness was proved for multiplicative
compressors under any network topology, but with a single
fixed-pressure node. Theorem 2 generalizes all past claims for
NGNs with multiplicative compressors, any topology, and an
arbitrary number of fixed-pressure nodes.

c2) Energy Function Minimization: Problem (7) dates back
to [12], and has since been used for solving the GF task; veri-
fying the feasibility and uniqueness of a GF instance [23]; and
initializing optimization problems. However, its applicability
was limited to NGNs without compressors. As explained in
Remark 1, this work suggests using (7) to handle NGNs with
compressors on non-overlapping cycles. We also present the
unconstrained energy function formulation of (8).

c3) MI-QCQP relaxation of GF: The key difficulty in
solving (optimal) GF problems stems from the non-linear
Weymouth equation. A disjunctive convex relaxation of this
equation was found to be efficient in [4], [22]. Numerous
studies have thereon employed similar convex relaxations;
see [5], [7], [26]. Unfortunately, it is hard to guarantee the
exactness of these relaxations. An effective heuristic is to fix
the binary variables involved to the values obtained by the
convex relaxation and handle the resultant non-convex nonlin-
ear program through a general solver [4], [5]. A gas-electric
flow problem was solved in [26], wherein a cost function was
proposed that was numerically found useful towards attaining
exact relaxation. Unlike previous works, the MI-QCQP formu-
lation of Section V provides theoretical guarantees for exact
relaxation, while expanding the claims of [8]. The GF solver
developed in [8] was applicable to NGN’s with compressors
not on cycles. However, in this work, the cost function of
(G2) is meticulously designed to ensure that correct flows are
obtained outside active cycles. Additionally, Algorithm 1 is
developed to enable flow correction on active cycles efficiently.
Although the GF problem is intrinsically simpler than the
optimal gas (and possible electric) flow problem considered
in prior works, this work lays a foundation towards analytical
guarantees for exact relaxation. It has been recently shown
that exact relaxation of network flow optimization problems
may be guaranteed using a convex penalty [27]. It is worth
mentioning that a related MI-QCQP formulation of the water
flow problem in [19], can also provably yield an exact convex
relaxation for the optimal water flow task [20].

VII. NUMERICAL TESTS

The proposed GF solver based on the relaxed MI-QCQP
(G2) and Algorithm 1 was tested on the modified Belgian
benchmark NGN and the GasLib-40 NGN of Fig. 1. Starting
with the Belgian NGN, the pipe coefficients and compressor
ratios were derived based on the nodal pressures and edge
flows reported in [12]. The network contains three compres-
sors, which are modeled as ideal compressors followed by
lossy pipes. Problem (G2) was solved using the MATLAB-
based optimization toolbox YALMIP using CPLEX as the MI-
QCQP solver [28], [29]. All tests were conducted on a 2.7 GHz
Intel Core i5 computer with 8 GB RAM.

As a model validation step, we first tested the (G2) solver
on the original Belgian network, which is a tree, except for one

7
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12 13 18 19 20
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93
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1
New pipeCompressorExisting pipe

23

22

21

1

Fig. 1. Top: Modified Belgian natural gas network. Bottom: GasLib-40
network with red edges representing compressors.

cycle formed by parallel compressors, see Fig. 1. The pressure
at node 1 was treated as reference. The flow values obtained
from (G2) agreed with those of [12] for all edges except for the
edges along the active cycle. Similarly, the pressures agreed
for all nodes other than node 20. Therefore, the pressure at
node 19 and the flows on edges (19, 21), (19, 22), (20, 21),
(20, 22) were passed to Algorithm 1 for correction. The final
result was found to coincide with [12].

The Belgian network was subsequently augmented by ad-
ditional pipelines; see Fig. 1. The resulting modified network
has overlapping cycles, thus violating Condition 2 required in
Theorem 3. To get reasonable friction coefficients, for every
added line (m,n), the coefficient amn was set equal to the
sum of a′`s along the m − n path, yielding a2,5 = 0.1936,
a10,14 = 0.0439, a7,12 = 0.0419. We kept the reference
pressure at node 1 and the compression ratios constant as in
[12], and drew 1, 500 random gas injections q. To construct
these samples, we perturbed the benchmark injections q0 that
lie in the range [−15.61, 22.01] by a standardized normal
deviation. The injection at node 20 was set to the negative sum
of the remaining injections to get 1>q = 0 for all samples.

Using the modified meshed Belgian NGN of Fig. 1 and the
random gas injections, we tested the exactness of (G2) and the
performance of Algorithm 1. Not all of the random injections
were feasible for the GF problem – some violated (4b) or (3b).
Problem (G2) was infeasible for 876 out of the 1, 500 random
instances. Since (G2) is a relaxation of (G1), these instances
are apparently infeasible for (G1) too. The performance of
(G2) and Algorithm 1 was tested on the remaining 624 gas
injection instances. To evaluate the success of (G2) in solving
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Fig. 2. Inexactness gap attained by (G2) followed by Algorithm 1 over random
feasible instances of the GF problem.
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Fig. 3. Running time for (G2) and Alg. 1 over random feasible GF instances.

(G1), we calculated the inexactness gap G defined as

G := max
(m,n)∈P̄a

|ψm − ψn| − amnφ2
mn

amnφ2
mn

≥ 0

for the pressures and flows obtained by (G2) and Algorithm 1.
The ranked inexactness gap for the feasible GF instances

is shown by the first curve in Fig. 2. The gap was less than
10−3 for more than 97% of the feasible instances, while the
maximum gap over all instances was 0.009. This corroborates
that the proposed solver performs well even when Condition 2
is not met. Fig. 3 shows the running time for solving (G2)
and Algorithm 1 over the 624 feasible instances. The average
(median) running time was 0.96 sec (0.89 sec).

Considering Condition 1, we used the fixed pressure at node
1 and the pressures obtained at node 7 for the feasible GF
instances, we solved (G2) again. Although the hypothesis of
Th. 3 does not hold anymore, the inexactness gap was found
to be less than 10−3 for more than 94% of the instances;
see the second curve in Fig. 2. Thus, the tests reveal that the
novel solver successfully finds the GF solution even when the
sufficient Conditions 1–2 are violated. However, Condition 3
prohibiting gas circulations could not be violated for the
Belgian NGN because the only active cycle in this NGN has
parallel compressors, hence avoiding circulations from (4b).
We next deal with GF instances on the GasLib-40 network,
wherein a circulation could potentially occur.

GasLib-40 roughly represents a part of the German gas
transport network [30]. The network exhibits 40 nodes, 39
pipes, and 6 compressors; see Fig. 1 (Bottom). The pipe dimen-
sions, roughness coefficients, and a nominal demand vector q0

were derived from [30]. The goals for conducting additional
tests on GasLib-40 include: i) Evaluating our solvers on a
realistic setup; ii) Testing our MI-QCQP when Condition 3
is violated; and iii) Benchmarking the performance of our
solvers against NR-based solver. We next briefly introduce the
NR-based solver used for benchmarking. Given an injection
q, compressor ratios α`’s, and reference pressure ψ1, stack
the unknowns as y = [φ1, . . . , φL, ψ2, . . . , ψN ]>. Define the
equality constraints (2), (3a), and (4a) collectively as g(y) =
0. Given an initial estimate y0, the NR-based solver would
iterate as

yt+1 = yt − µ[J(yt)]
−1g(yt)

where t is the iteration count; matrix J(yt) is the Jacobian
of g(y) evaluated at yt; and µ a step size. A solution y?

obtained on convergence of NR updates would be deemed
feasible if the inequalities (3b) and (4b) are satisfied. Since,
the NR updates target at attaining g(y) = 0, the performance
evaluation criteria for our results would be ‖g(y)‖2 in lieu of
the inexactness gap G.

In the first set of tests on GasLib-40, we generated 500
gas injection instances q by scaling the entries of q0 indepen-
dently, by random factors chosen uniformly on [0.75, 1.25].
The pressure at node 1 was set to 50 bar and its injection
was set to the negative sum of other nodes for all instances.
Next, the compression ratios for the 6 compressors were drawn
uniformly within [1, 2]. All 500 instances were solved using
three approaches: a1) the MI-QCQP and Algorithm 1; a2) NR
with flows initialized at (A>)†q, and all pressures initialized
at ψ1; and a3) NR with flows and pressures initialized at the
solution of MI-QCQP and Algorithm 1. The stopping criteria
for NR was set to ‖g(y)‖2 < 10−3, subject to a maximum
iteration count of 50. The step size for both initialization
scenarios was kept as µ = 1. The MI-QCQP deemed 5 out
of the 500 instances as infeasible and the performance criteria
‖g(y)‖2 was found to lie in [0.005, 0.183] with the median at
0.009. To compare to the index of inexactness gap, the range
for G for the 495 feasible cases was [8 · 10−5, 6 · 10−2].
Thus, the MI-QCQP alongside Algorithm 1 was successful in
finding the GF solution for all 495 instances. Interestingly,
474 of the 495 feasible GF instances exhibit circulations, and
hence violate Condition 3. Thus, the numerical results em-
pirically demonstrate that the developed MI-QCQP alongside
Algorithm 1 successfully solves the GF problem even when
the conditions of Theorem 3 are violated. The NR solver, if
initialized at the solution of MI-QCQP improves the solution
accuracy, resulting in ‖g(y?)‖2 within 1.2·10−4−0.13. For the
5 instances deemed infeasible by MI-QCQP, the NR solver was
initialized at all zero flows and pressures; all 5 instances failed
to converge. Surprisingly, when the NR solver was initialized
with (A>)†q as flows and ψ′0s as pressures, all 500 instances
failed to converge. The non-convergence of the NR solver is
however alleviated when µ was reduced as discussed next.
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Fig. 4. Accuracy measure ‖g(y)‖2 for GF solutions obtained by MI-QCQP
in (G2) followed by Algorithm 1, and GF solutions found by the Newton
Raphson iterations for different initializations.

A second set of tests were conducted on the GasLib-
40 NGN with 500 random injections and compressor ratios
generated as described earlier. The MI-QCQP solver deemed
7 of the 500 instances as infeasible. All 500 instances were
then solved with the NR-based solver with flows initialized
at (A>)†q and pressures at ψ1, and µ was set to µ = 0.9.
A steep decline in ‖g(yt)‖2 was observed in the first few
(roughly 10) iterations, while the tolerance of 10−3 was
not attained within the 50 iterations limit. However, if the
NR solver is initialized at the solution of MI-QCQP and
Algorithm 1, the convergence criteria of 10−3 was attained at
an average of 7.8 iterations. The values of ‖g(y)‖2 attained
by three solution techniques a1)–a3) are shown in Fig. 4.
The results suggest that the accuracy of the MI-QCQP solver
is better than that of a2), which is a prudent initialization.
However, if the NR-based solver is warm-started with the
solution of MI-QCQP, an order of magnitude improvement
in accuracy is observed. On the computational front, the MI-
QCQP solver alongside Algorithm 1 is efficient with median
solving time of 1.52 sec. However, as anticipated, the NR
solvers have superior performance with median solving time of
0.17 sec. Finally, inspecting the 7 instances deemed infeasible
by the MI-QCQP solver, the solution obtained by a2) indicates
violation of (4b); demonstrating the merit of the proposed MI-
QCQP towards certifying infeasibility of GF instances.

VIII. CONCLUSIONS

Exploiting recent results from graph theory and convex
relaxations, this work provides a fresh perspective on the
steady-state GF problem. The uniqueness of the GF solution
has been established in a generalized setting for arbitrary NGN
topologies, multiplicative compressors and multiple fixed-
pressure nodes. Granted that the GF solution is unique, con-
strained and unconstrained versions of convex energy function
minimization-based GF solvers have been proposed. These
solvers can efficiently solve any GF task instance with a single
fixed-pressure node and networks with compressors not on
cycles. To expand the scope, an MI-QCQP GF solver had been
also proposed relying on a convex relaxation of the Weymouth
equation. The relaxation has been shown to be exact under
specific network conditions. Numerical tests reveal that the

developed MI-QCQP solver succeeds in finding the unique
GF solution even when the needed conditions are violated.
The success of the MI-QCQP relaxation is attributed to a judi-
ciously designed objective. The developed approach sets forth
an analytical platform for ensuring exact relaxation. Evaluating
the performance of the developed approach for various optimal
gas flow tasks constitutes an interesting research direction.

APPENDIX

Proof of Lemma 2. For an edge `i ∈ Pmn, let us name the
incident node closer to m as mi, and the other node as mi+1,
as shown in Fig. 5.

m1 = m m2

`1

mi mi+1

`i

mk
mk+1 = n

`k

Fig. 5. Nomenclature for nodes and edges along Pmn.

Let ψ and ψ′ be the pressure vectors corresponding to φ
and φ′. Since pressures ψm and ψn are fixed, it follows ψm =
ψ′m and ψn = ψ′n. Proving by contradiction, suppose (5a)
holds. If that is the case, first it will be shown that ψ′mi −
ψ′mi+1

> ψmi − ψmi+1
for every lossy pipe `i ∈ Pmn.

Suppose that sign(φ′−φ)·πmn > 0. Let us denote the RHS
of (3a) by w(φ`). It is evident that w(φ`) is monotonically
increasing in φ`. Hence, for any lossy pipe `i ∈ Pmn, it holds

0
a
< πmn`i sign(φ′`i − φ`i)
b
= πmn`i sign(w(φ′`i)− w(φ`i))
c
= sign(πmn`i ) sign(w(φ′`i)− w(φ`i))
d
= sign(πmn`i w(φ′`i)− π

mn
`i w(φ`i))

e
= sign((ψ′mi − ψ

′
mi+1

)− (ψmi − ψmi+1
)), (12)

where (a) holds by hypothesis; (b) stems from the mono-
tonicity of w(φ`); (c) holds because πmn`i ∈ {0, 1,−1}; (d)
holds from the property of sign by definition; and (e) from
the definition of πmn and (3a). The inequality (12) implies

ψ′mi − ψ
′
mi+1

> ψmi − ψmi+1 . (13)

Let us now apply (13) and (4a) for the edges `1 to `k along
Pmn. For the fixed pressure node m, we have ψm = ψ′m.
If `1 is a lossy pipe, we get ψ′m2

< ψm2 from (13);
otherwise ψ′m2

= ψm2 from (4a). Similarly, we can show
that ψ′m3

≤ ψm3
, where the equality holds only if both `1 and

`2 are compressors. However, this is practically impossible as
every compressor is modeled as an ideal compressor followed
by a lossy pipe, necessitating ψ′m3

< ψm3
. Continuing the

process for all edges along Pmn yields ψ′n < ψn, which
contradicts with node n being a fixed-pressure node. Similarly,
the assumption sign(φ′−φ)·πmn < 0 leads to a contradiction
by yielding ψ′n > ψn.

Proof of Lemma 3. Given the two pairs (q,φ) and (q′,φ′)
satisfying (2) and q 6= q′, let us define φ̃ := φ′ − φ and
q̃ := q′ − q. By applying (2) on (q,φ) and (q′,φ′), and
taking the difference, we get

A>φ̃ = q̃. (14)
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s t

G

N+ N−
Fig. 6. Augmented NGN graph.

Since 1 ∈ null(A), premultiplying (14) by 1> provides

1>q̃ = 0. (15)

From (14)–(15), the pair (q̃, φ̃) qualifies as a set of balanced
gas injections. By definition of (q̃, φ̃), proving (6) is equiva-
lent to showing there exists a path Pmn for which

φ̃� πmn > 0 (16a)
q̃m > 0 and q̃n < 0. (16b)

To prove the existence of such a path, we use the ensuing
result based on [31, Th. 8.8].

Lemma 5 ([31]). Given a graph with injection q at node s,
demand q at node t, and zero injections at all other nodes,
there exists an s-t path with flow directions along the path
from s to t.

Lemma 5 considers a single-source single-destination net-
work flow setup. We transform our problem to this setup
through the next steps; see also Fig. 6:

1) The nodes of graph G are partitioned into the subset with
positive N+ : {n ∈ N : q̃n > 0}; negative N− : {n ∈
N : q̃n < 0}; and zero injectionsN0 : {n ∈ N : q̃n = 0}.
Because q̃ 6= 0, the sets N+ and N− are non-empty.

2) Augment G by adding nodes s and t.
3) All nodes in N+ are connected to node s, and all nodes

in N− are connected to node t.
4) The injections in N+ are lumped in node s by setting the

flows φ̃sn = q̃n for all n ∈ N+. Similarly, the demands in
N− are lumped in node t by setting the flows φ̃nt = −q̃n
for all n ∈ N−.

Applying Lemma 5 on this augmented graph, there exists a
path Pst with flow directions from s to t. For any such path
Pst, eliminate the first and last edges to get a path Pmn with
m ∈ N+ and n ∈ N−. Claim (16b) follows by construction.
We next show (16a): For each edge ` ∈ Pmn, it was shown
that the direction of φ̃` is along the path Pmn. If πmn` = +1,
the direction of edge ` agrees with the direction of Pmn. Since
φ̃` is along Pmn, then φ̃` > 0. If πmn` = −1, the direction of
edge ` is opposite to the direction of Pmn. Since φ̃` is along
Pmn, then φ̃` < 0. Either way, it holds that φ̃`πmn` > 0 for
all ` ∈ Pmn, which proves (6a).

k1 k2

k

k1 k2

k

(a) (b)

k1 k2

k

(c)

k
0

1
k
0

2

k1 k2

k

(d)

k
0

1

Fig. 7. Four possible scenarios for a cycle with non-circulating gas flow. The
arrows represent the actual gas flow directions.

Proof of Theorem 3. Before proving the main result, we will
need two preliminary results.

Lemma 6. For a lossy pipe ` = (m,n) not on an active
cycle, if the triplet (ψm, ψn, φ`) satisfies (11), then the triplet
(ψm + δ, ψn + δ, φ`) also satisfies (11) for any finite δ.

Lemma 6 follows directly from the fact that (11) involves
pressure differences rather than pressures.

Lemma 7. Consider an active cycle C0 and index its nodes
as {0, . . . , k}. Given a fixed pressure ψ0 and flows {φ`}`∈C0
satisfying Condition 3 and (4b), there exists a set of pressures
{ψi}ki=1 satisfying (11) and (4a).

Proof. From Condition 3 and the fact that a compressor is
modeled as an ideal compressor followed by a lossy pipe, it is
not hard to see that there must exist a node k ∈ C0 that leads
to one of the four flow scenarios shown in Fig. 7.

Proving by construction, we will next define pressures
{ψi}ki=1 such that (11) and (4a) are satisfied for all edges
in C0. Traversing the paths 0 → k1 and 0 → k2, one can
recursively define pressures for all nodes using ψ0 and flows
{φ`}`∈C0 based on the exact Weymouth equation (3) and (4a).
The pressures on the remaining nodes of C0 can be defined
for the four scenarios of Fig. 7 as follows:

(a) ψk := min{ψk1 − ak1kφ2
k1k, ψk2 − ak2kφ

2
k2k}

(b) ψk := max{ψk1 + akk1φ
2
kk1 , ψk2 + akk2φ

2
kk2}

(c) ψk := max

{
ψk1 + ak′1k1φ

2
k′1k1

αkk′1
,
ψk2 + ak′2k2φ

2
k′2k2

αkk′2

}
ψk′1 := αkk′1ψk, ψk′2 := αkk′2ψk

(d) ψk := max

{
ψk1 + ak′1k1φ

2
k′1k1

αkk′1
, ψk2 + akk2φ

2
kk2

}
ψk′1 := αkk′1ψk.

To see that the constructed pressures satisfy (11), take for
example scenario (a). Applying (11) along the edges (k1, k)
and (k2, k) yield that ψk should satisfy ψk ≤ ψk1 − ak1kφ2

k1k

and ψk ≤ ψk2−ak2kφ2
k2k

. This is indeed the case by selecting
ψk as the minimum of the two RHS. Similar reasoning applies
to the other scenarios.
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Proceeding with the proof of Theorem 3, let (φ,ψ) be the
unique solution to (G1), and (φ′,ψ′) a minimizer of (G2).
Proving by contradiction, assume that there exists an edge `
not belonging to an active cycle, such that φ′` 6= φ`. Recall
that the set of all active cycles is denoted by SaC . Since both
flow vectors satisfy (2), their difference n := φ − φ′ must
lie in the nullspace of A>. The nullspace of A> is spanned
by the indicator vectors for all fundamental cycles in the gas
network graph [32, Corollary 14.2.3]. Therefore, the entries
of n related to edges not on a cycle must be zero. Since by
hypothesis ` /∈ SaC , edge ` should belong to one of the cycles
in SC \SaC . This non-active cycle will be henceforth termed C.

The rest of the proof is organized in three parts: Part I
constructs a flow vector φ̂ that satisfies (2) and (4b). Part II
shows there exists a ψ̂ so that the pair (φ̂, ψ̂) is feasible for
(G2). Part III shows that (φ̂, ψ̂) attains a smaller objective for
(G2), thus contradicting the optimality of (φ′,ψ′).

Part I: Define the flow vector φ̂ as

φ̂` :=


φ`, ` ∈ C
φ`, ` belongs to any active cycle
φ′`, otherwise

. (17)

By construction, vector φ̂ satisfies

φ′ − φ̂ = λnC + na (18)

where nC is the indicator vector for cycle C; the constant λ is
nonzero; and vector na ∈ null(A>) can have nonzero entries
only for edges in active cycles. Since φ′ satisfies constraint
(2) and A>nC = A>na = 0, then A>φ̂ = A>φ′ = q.
This proves that φ̂ satisfies (2). Note that φ̂ is constructed
by selecting entries from φ and φ′. Granted both φ and φ′

satisfy (4b), vector φ̂ trivially satisfies (4b) too.
Part II: We will delineate the steps for constructing a vector

of pressures ψ̂ such that (φ̂, ψ̂) is feasible for (G2). Let us
select a spanning tree T of the NGN graph G rooted at the
reference r. We shall define the pressures ψ̂n’s while traversing
T via depth-first search. In such a traversal, the following three
cases may be identified on arriving at any node n:

Case 1: Node n is neither in C nor on an active cycle. Let
n− 1 be the parent node of n in T and define

ψ̂n :=

{
αn−1,nψ̂n−1 , if (n− 1, n) ∈ Pa
ψ̂n−1 + (ψ′n − ψ′n−1) , if (n− 1, n) ∈ P̄a

.

Since the edge (n− 1, n) is not in C ∪SaC , we have φ̂n−1,n =
φ′n−1,n from (17). Therefore, if (n − 1, n) is a lossy pipe,
Lemma 6 ensures that the defined pressure ψ̂n satisfies (11).
Moreover, if (n − 1, n) is a compressor, constraint (4a) is
satisfied trivially by definition.

Case 2: Node n is in C. If n is the first node in C to be
visited, define ψ̂n as in Case 1. Then, define the pressures
for the remaining nodes i ∈ C as ψ̂i := ψi + (ψ̂n − ψn).
Note from (17) that the flows along C are assigned from φ,
the pair (φ,ψ) satisfies (3) and hence the relaxed Weymouth
(11) as well. The constructed pressures ψ̂i’s for i ∈ C are
simply a shifted version of the pressures ψi’s. Therefore, the
pressures ψ̂i’s satisfy (11) from Lemma 6. Mark all nodes in
C as traversed and continue.

Case 3: Node n is in an active cycle Ca. If n is the first node
in Ca to be traversed, define the ψ̂n as in Case 1. Then, define
the pressure for the remaining nodes i ∈ Ca using Lemma 7.
Mark all nodes in Ca as traversed and continue.

Since the constructed pressures satisfy (11) and (4a), the
pair (φ̂, ψ̂) is feasible for (G2). Observe that the pressure
drop across lossy pipes not in C is ψ̂m − ψ̂n = ψ′m − ψ′n for
Case 1; and ψ̂m − ψ̂n = ψm − ψn for lossy pipes in C under
Case 2. This fact is imperative for the ensuing Part III.

Part III: We will next show that r(ψ′) > r(ψ̂) to contradict
the optimality of ψ′. Note that the objective r(ψ) in (G2) sums
up the absolute pressure differences along lossy pipes, but not
on active cycles. Since by construction these differences have
changed only along C, we get

r(ψ′)− r(ψ̂) =
∑

(m,n)∈C

|ψ′m − ψ′n| − |ψ̂m − ψ̂n|. (19)

As the pressure differences depend on flows, we next compare
the entries of φ̂ and φ′ along C using (18). Since the edge
directions are assigned arbitrarily, assume wlog that φ̂mn ≥ 0
for all (m,n) ∈ C. Given nC and (18), one can find the value
of λ. If λ < 0, reverse the reference direction for cycle C to
get a positive λ. Because of this, we can assume λ > 0.

Recall that nC ∈ {0,±1}P . Partition the set of edges in C
into mutually exclusive sets P̂+ and P̂− based on positive and
negative entries of nC , respectively. From (18), it follows

0 ≤φ̂` < φ′`, ∀` ∈ P̂+. (20)

Summing up the pressure drops along C for ψ̂ should be zero.
Since the pressure drops along C are positive for the edges in
P̂+, and negative along the edges in P̂−, it holds that∑

(m,n)∈P̂+

(ψ̂m − ψ̂n) =
∑

(m,n)∈P̂−

(ψ̂m − ψ̂n)

=⇒
∑

(m,n)∈C

|ψ̂m − ψ̂n| = 2
∑

(m,n)∈P̂+

(ψ̂m − ψ̂n) (21)

where the absolute value is trivial since φ̂mn ≥ 0 for all
(m,n) ∈ C.

Drawing similar relations on ψ′, define the set P ′+ ⊂ C
containing any edge (m,n) ∈ C such that the flow φ′mn is
along the direction of nC . Using the same argument as in (21)
for ψ′, we obtain∑

(m,n)∈C

|ψ′m − ψ′n| = 2
∑

(m,n)∈P′+

(ψ′m − ψ′n). (22)

Because the flows in φ̂ for the edges in P̂+ are aligned with
nC and φ′` > φ̂` for these edges from (20), it follows that
P̂+ ⊆ P ′+. Using the latter in (22), we get

2
∑

(m,n)∈P̂+

(ψ′m − ψ′n) ≤ 2
∑

(m,n)∈P′+

(ψ′m − ψ′n)

=
∑

(m,n)∈C

|ψ′m − ψ′n|. (23)

For every edge ` = (m,n) ∈ P̂+, it holds that

ψ̂m − ψ̂n
(a)
= a`φ̂

2
`

(b)
< a`φ

′2
`

(c)

≤ ψ′m − ψ′n (24)
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where (a) comes from the definition of pressures in Case 2
of Part II; (b) descends from φ′` > φ̂` > 0; and (c) from (11).
Summing (24) over all ` ∈ P̂+ and multiplying by 2 gives

2
∑

(m,n)∈P̂+

(ψ̂m − ψ̂n) < 2
∑

(m,n)∈P̂+

(ψ′m − ψ′n)

=⇒
∑

(m,n)∈C

|ψ̂m − ψ̂n| <
∑

(m,n)∈C

|ψ′m − ψ′n|

where the inequality stems from (22) and (23). From (19),
the latter implies that r(ψ′) > r(ψ̂), hence contradicting the
optimality of ψ′.
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