IEEE SIGNAL PROCESSING MAGAZINE (TO APPEAR) 1

Monitoring and Optimization for Power Grids:
A Signal Processing Perspective

Georgios B. Giannakis Fellow, IEEE Vassilis KekatosMember, IEEE Nikolaos GatsisMember, IEEE
Seung-Jun KimSenior Member, IEEEHao Zhu,Member, IEEE
and Bruce F. Wollenbergsellow, IEEE

I. INTRODUCTION upon network instability, and accurate risk analysis ansto

Albeit the North American power grid has been recognized/€Nnt assessment for failure prevention. _
as the most important engineering achievement of the 20th! "€ Provision of such enhanced monitoring and communi-
century, the modern power grid faces major challenges [Sﬂa_\tlon c_ap_abll_mes lays the foundation for various grlahtno!
Increasingly complex interconnections even at the contine2Nd optimization components. Demand response (DR) aims to
size render prevention of the rare yet catastrophic casc&fPt the end-user power usage in response to energy pricing
failures a strenuous concern. Environmental incentivgaire Which is advantageously controlled by utility companiea vi
carefully revisiting how electrical power is generatedngmit-  Smart meters [29]. Renewable sources such as solar, widd, an
ted, and consumed, with particular emphasis on the integrattidal, and electric vehicles are important pieces of therit
of renewable energy resources. Pervasive use of digitat te§Md landscape. Microgrids will become widespread based on
nology in grid operation demands resiliency against phasicdistributed energy sources that include distributed geifuer
and cyber attacks on the power infrastructure. Enhanciity gRnd Storage systems. Bidirectional power flow to/from the gr
efficiency without compromising stability and quality ineth due to such distributed sources has potentials to improge th
face of deregulation is imperative. Soliciting consumer- padfid economy and robustness. New services and businesses
ticipation and exploring new business opportunities fatid will be generated through open grid architectures and ntsrke

by the intelligent grid infrastructure hold a great economi
potential. S . B. SP for the Grid in a Nutshell: Past, Present, and Future
The smart grid vision aspires to address such challenges

by capitalizing on state-of-the-art information techrpés in  —OWer engllneers in the GIOS were ffar::mg the prqb_lsm of
sensing, control, communication, and machine learning [ mputing voltages at critical points of the transmission,g

[24]. The resultant grid is envisioned to have an unprec ased on power flow readings taken at current and voltage
dented level of situational awareness and controllabditgr Fransformers. Local personnel manually collected thead-re
its services and infrastructure to provide fast and aceurat9s ?nd for\{varded(_j then& li)y p'?_onhe tﬁoyaco;tg)rl]c?ntler, where a
diagnosis/prognosis, operation resiliency upon contiogs set of equations dictated by KircholT's an ms laws were

and malicious attacks, as well as seamless integration s&lved f-or.the glegtnc CII‘CUIF model of t.he 9“0'- However,
distributed energy resources. due to timing misalignment, instrumentation inaccuracyl a

modeling uncertainties present in these measurements, the
equations were always infeasible. Schweppe and othenzdffe
A. Basic Elements of the Smart Grid a statistical signal processing (SP) problem formulatim
A cornerstone of the smart grid is the advanced monitoradvocated a least-squares approach for solving_ it [69]—what
bility on its assets and operations. Increasingly pereagiv enabled the power grid monitoring infrastructure usedtpret
stallation of the phasor measurement units (PMUs) allows tmuch invariant till now [[57], [[1].
so-termed synchrophasor measurements to be taken roughfyhis is a simple but striking example of how SP expertise
100 times faster than the legacy supervisory control and dagn have a strong impact in power grid operation. Moving
acquisition (SCADA) measurements, time-stamped using tfrem the early 70’s to nowadays, the environment of the power
global positioning system (GPS) signals to capture the giiystem operation has become considerably more complex.
dynamics. In addition, the availability of low-latency tweay New opportunities have emerged in the smart grid context,
communication networks will pave the way to high-precisionecessitating a fresh look. As will be surveyed in this &tic
real-time grid state estimation and detection, remediibas modern grid challenges urge for innovative solutions that t

into diverse SP techniques from estimation, machine lagrni
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out to be a challenging yet essential gdall[78]. Opportesiti ¥ Vn
abound in synchrophasor technology, ranging from judigiou Zinn

placement of PMUs to their role in enhancing observability, — j|—> Ymvi
estimation accuracy, and bad data diagnosis. Unveiling-top

logical changes given a limited set of power meter readisags i T

critical yet demanding task. Applications of machine léagn —>

to the power grid for clustering, topology inference, and j be,mn 392.”12

—p
Big Data processing for e.g., load/price forecasting dturist
additional promising directions.

Power grid operations that can benefit from the SP expertis
include also traditional operations such as economic tiibpa — —
power flow, and unit commitment [84]. [70]. [25], as well a Equivalentr model for a transmission line; yellow box when an
contemporary ones related to demand scheduling, control,dﬁ’m transformer is also present [dE110)].
plug-in electric vehicles, and integration of renewablgsn-
sideration of distributed coordination of the partakingite®s a resistive part-,,, and a reactive (actually inductive) one
along with the associated signaling practices and ardhite€ ,,, > 0, that iS zyn = Tmn + jZmn. The line series
require careful studies by the SP, control, and optimiratiadmittancey,,.,, ‘= 1/Zmn = Gmn + jbmn iS Often used in
experts. place of the impedance. Its real and imaginary parts arectall

Without any doubt, computationally intelligent approasheconductance and susceptance, respectively. Lettinglenote
based on SP methodologies will play a crucial role in thisie complex voltage at node, Z,,,, the current flowing from
exciting endeavor. From grid informatics to inference fomodem to n, and invoking Ohm’s and Kirchoff's laws on the
monitoring and optimization tools, energy-related issoféer circuit of Fig.[d, yields
a fertile ground for SP growth whose time has come. )

The rest of the article is organized as follows. Modeling Linn = (beamn/2 + Ymn) Vi = YV - @
preliminaries for power system analysis are provided inBec The reverse-direction curref,,,, is expressed symmetrically.
Sec[Tll deals with the monitoring aspect, delineating®asi Unlessb.. ., is zero, it holds thatZ,,, # —Z,,. A small
SP-intensive topics including state estimation and PMUshunt susceptandg .., is typically assumed between every
as well as the inference, learning and cyber-security task®dem and the ground (neutral), yielding the curréit,,, =
Section[IV is devoted to grid optimization issues, touching_ ...V,
upon both traditional problems in economic power system Building on the two-node module, consider next a power
operations, as well as more contemporary topics such @gtem consisting of a set’ of N, buses along with a set
demand response, electric vehicles, and renewables. fitle are of N; transmission lines. By Kirchoff's current law, the
is wrapped up with a few open research directions in S&c. ¥omplex current at bus: denoted byZ,, must equal the sum

of currents on the lines incident to bus, that is,

Il. MODELING PRELIMINARIES T, = Z Ton + Lo
Power systems can be thought of as electric circuits of even neNm
continent-wide dimensions. They obey multivariate versio
of Kirchoff's and Ohm's laws, which in this section are = < XN: ymn+ymm> Vin = XN: Ymn Vo (2)
neNm, neNm,

overviewed using a matrix-vector notation. As the focusiid |
on alternating current (AC) circuits, all electrical quéiss where\,, is the set of buses directly connected to busand
involved (voltage, current, impedance, power) are compledmm = j (bsmm + Y oneN, be,mn/2) = jbmm. Collecting
valued. Further, quantities are measured in the per unit)(p.node voltages (currents) in th¥, x 1 vector v (i), leads to
system, which means that they are assumed properly nornthe multivariate Ohm’s law
ized. For example, if the “base voltage” 188 kV, then a bus Y 3
voltage of140 kV is 1.01 p.u. The p.u. system enables uniform PV (3)
single- and three-phase system analysis, bounds the dynawiiere Y ¢ CM*™ js the so-termecbus admittance ma
range of calculations, and allows for uniform treatmentroverix with (m,m)-th diagonal entryZneNm Ymn + Ymm and
the different voltage levels present in the power drid [§25].  (m, n)-th off-diagonal entry—y,,,, if n € N,,, and zero oth-
Consider first a power system module of two nodesand erwise (cf. [2)). MatrixY is symmetric and more importantly
n, connected through a line. A node, also referred to as a Bparse, thus facilitating efficient storage and computatio
in the power engineering nomenclature, can represent,a&.gOon the contrary, the bus impedance matfixdefined as the
generator or a load substation. A line (a.k.a. branch) camdst inverse ofY (and not as the matrix of bus pair impedances),
for a transmission or distribution line (overhead/undeugd), is full and therefore it is seldom used.
or even a transformer. Two-node connections can be repreA major implication of [8) is control of power flows. Let
sented by the equivalentmodel depicted in Fid]199]157], S, := P + jQ.m be the complex power injected at bus
which entails the line series impedaneg,, := 1/y.., and whose real and imaginary parts are the active (reactiveppow
the total charging susceptanég,,,. The former comprises P,, (Q,). Physically, S,, represents the power generated
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and/or consumed by plants and loads residing at bus  Under (A1)-(A3) and upon exploiting the structure®f(cf.
For busm and with * denoting conjugation, it holds that(3)), the model in[{6) boils down to

Sm = VnZI}, or after collecting all power injections in
s € CV (diag(v) denotes a diagonal matrix holding on Pr== bun (O — 0r) (7a)
its diagonal) one arrives at (cfl(3)) n#m

s = diag(v)i* = diag(v)Y*v". (4) Qm = ~bmm = ; bn (Vin = Va) (7)
Complex power flowing from bus: to a neighboring bus
~Ompiex pov 9 9 g where b,,, = —1/z,,, is the susceptance of then,n)
is similarly given by . o e

branch, and in derivingd{7), approximation of nodal voltage
Sin = V- (5) magnitudes to unity implie¥,,,V,, ~ 1, yet V,, (V,, — Vi) ~

The ensuing analysis pertains mainly to nodal quantitie‘é.n_vn' o )

However, line quantities such as line currents and powersflow 1he DC model[() entailéinear equations that are neatly

over lines can be modeled accordingly usifiy (1) 40d (5). decoupled: acyve powers depend only on \_/oltagg phases,
Typically, the complex bus admittance matrix is written iff'néreas reactive powers are solely expressible via voltage

rectangular coordinates & = G -+ jB. Two options become magnitudes. Furthermore, the linear dependence is ongeolta

available from [#), depending on whether the complex noddifferences. In fact, sincefy, = —bmn(0m — 0,) and
voltages are expressed in polar or rectangular forms. The pdmn < 0, active power flows across lines from the larger-
representation}m — Vmeij y|e|dS [Cf m)] to the smaller-voltage phase buses.

Consider now the active subproblem described by (7a).
Stacking the nodal real power injectionspne R™> and the

Ny,
P =3 ViV (G €08 O + B 5in0n) - (68) nodal voltage phases i € R™t, leads to

n=1

N
b = B$0 8
Qm = Z ViV (G 810 0y, — Bip, €08 010) (6b) P ®)
n=1

where the symmetricB, is defined similar toY by
where 6,,,, := 6,, — 0,, Ym. Since P,, and Q,,, depend on only accounting for reactances. SpecificalB.|nm =
phase difference§d,..,, }, power injections{S,,} are invariant - .- ;. for all m, and[B.],n, = —x,,, if (m,n) line
to phase shifts of bus voltages. This explains why a selectexists, and zero otherwise.

bus called the reference, slack, or swing bus is converitjona An alternative representation B, is presented next. Define
assumed to have zero voltage phase without loss of geeralatrix D := diag ({mfl}Zes), and the branch-bud/; x N,

If Y is known, the2 N, equations in[{6) involve the variablesincidence matrixA, such that if itsi-th row al corresponds
{Pm,Qm,Vm,em}%b:l. Among the4 N, nodal variables, (i) to the (m,n) branch, thena],, := +1, [a], := —1, and
the reference bus has fixed’,,0.,); (i) pairs (P,,V,,) zero elsewhere. Based on these definitidBs, = ATDA
are controlled at generator buses (and are thus termed & be viewed as a weighted Laplacian of the graph¢&)
buses); while, (iii) power demand$’,,, Q,,,) are predicted for describing the power network. This in turn implies tHat
load buses (also called PQ buses). Fixing th&¥g variables is positive semidefinite, and the all-ones veclolies in its
and solving the non-linear equatiorls (6) for the remaininqull space. Further, its rank i&V, — 1) if and only if the
ones constitutes the standard power flow problem [84, Ch. gbwer network is connected. Sin&:.1 = 0, it follows that
Algorithms for controlling PV buses and predicting load & P p”1 = 0; stated differently, the total active power generated
buses are presented in Sec.1V-A and $ec. Tll-D3, respégtiveequals the active power consumed by all loads, since nesisti

Pairs (P, Vinn) satisfying (approximately) power flow elements and incurred thermal losses are ignored.
equations paralleling6) can be found n][25, Ch. 3]. Among As a trivia, the terminologypC modelstems from the fact
the approximations of the latter as well & (6), the so calleidat [8) models the AC power system as a purely resistive DC
DC modelis reviewed next due to its importance in grictircuit by identifying the active powers, reactances, ane t
monitoring and optimization. The DC model hinges on thregltage phases of the former to the currents, the resistance
assumptions: and the voltages of the latter.

(A1) The power network is purely inductive, which means that Coming back to the exact power flow model gf (4), consider
Tmn iS Negligible. In high-voltage transmission lines, théaat now expressing nodal voltages in rectangular coordinates.
Tin/Tmn = —bmn/gmn IS large enough so that resistancey,, = V,.,, + jV; ,, for all buses, it follows that

can be ignored and the conductance p@rtof Y can be

. Ny
approximated by zero; B
(A2) In regular power system conditions, the voltage phase P = Veim Z (VenGinn = VisnBrnn)
differences across directly connected buses are smak;, thu ”_le
Omn =~ 0 for every pair of neighboring busdsn,n), and the Vi Z (VeG4 Vi B (9a)

trigonometric functions in[{6) are approximatedsasd,),, ~

O — 0, andcos 0,,,, ~ 1, and N,

(A3) Due to typical operating conditions, the magnitude of Qm = Vim Z (Vo Gomn — Vi Bonm)
n=1

n=1

nodal voltages is approximated by one p.u.
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ol signaling and the SCADA scanning process, conventional me-
- Vim 2—:1 (VinGmn + Vo Bimn) - (9b) tering cannot utilize phase information of the AC waveforms

Hence, legacy measurements involve (active/reactive)epow
Based on [(Ja) and_{Bb), it is clear that (re)active powgijections and flows, as well as voltage and current magegud
flows depend quadratically on the rectangular coordinates g specific grid points. Given the SCADA measurements
nodal voltages. Becaudd (9) is not amenable to approximatigng assuming stationarity over a scanning cycle, the PSSE
invoked in deriving [(B), the polar representation has begRodule estimates the state, namely all complex nodal vedtag
traditionally preferred over the rectangular one. collected inv. Recall that according to the power flow models
Before closing this section, a few words are due on mogresented in Se€lll, all grid quantities can be expressed in
eling transformers that were not explicitly accounted so faerms ofv. Thus, theM x 1 vector of SCADA measurements
Upon adding the circuit surrounded by the yellow square t4n be modeled ag = h(v) 4 €, whereh(-) is a properly
the model of Fig[lL, the possibility of having a transformegefined vector-valued function, andcaptures measurement
on a branch is considered in its most general setling [2%pise and modeling uncertainties. Upon prewhiteningan
[99]. An ideal transformer residing on then, n) line at the pe assumed standard Gaussian. The maximum-likelihood es-
m-th bus side yields/,, = Vi ppun @nd Ly = pr L, timate (MLE) of v can be then simply expressed as the

where p,;, 1= Tyne? s its turn ratio. Hence[1) readily nonlinear least-squares (LS) estimate
generalizes to

| V :=arg min ||Z - h(V)Hg (11)
T Mbc’;ﬂ"ﬂ —Ymn V P ; ¥ iniecti
{ Imn } _ \p%\n /{zn ) { V’" ] . Prior information, such as zero-injection busés,(= Q,,, =
nim " pmn Ymn + be,mn/ " 0) and feasible ranges (df,, and#,,), can be included as
(10)

(ionstraints in[(71). In any case, the optimization problem i
onconvex. For example, when states are expressed in fectan
t&ular coordinates, the functionsli{-) are quadratic; cf[{9). In
S eneral, PSSE falls under the class of nonlinear LS prohlems
Note though that the DC model dfI(8) holds as is, since %r which Gauss-Newton iterations are known to offer the

ignores the effects of transformers anyway. “workhorse” solution Ch. 21. Specifically. upon expri
The multivariate current-voltage law (cf](3)), the power I3, ch.2]. Sp Y, up PIoes

in polar coordinates, the quadrafh can be linearized
flow equations (cf.[6) oi[{9)), along with their linear apgiro vinp q ficv)

. 2 ) : using Taylor’s expansion around a starting point. The Gauss
mation (cf. [8)) and generalization (cE_{10)), will playstnu- o100 method hence approximates the cosn (11) with a
mental roles in the grid monitoring, control, and optimiaat

: . X . linear LS one, and relies on its minimizer to initialize thévs
tasks outlined in the ensuing sections. sequent iteration. This iterative procedure is closelgtssl to
gradient descent algorithms for solving nonconvex proklem
I1l. GRID MONITORING which are known to encounter two issues: i) sensitivity ® th

In this section, SP tools and their roles in various grithitial guess; and i) convergence concerns. Without gized
monitoring tasks are highlighted, encompassing state eg@nvergence to the global optimum, existing variants ingro
mation with associated observability and cyber-attackdss humerical stability of the matrix inversions per iteratiff].

synchrophasor measurements, as well as intriguing inferedn @ nutshell, the grand challenge so far remains to develop
and learning topics. a solver attaining or approximating thglobal optimumat

polynomial-time
. Recently, asemidefinite relaxatio(SDR) approach has been

A. Power System State Estimation recognized to develop polynomial-time PSSE algorithmé wit

Simple inspection of the equations in Sectlgh Il confirmghe potential to find a globally optimal solutioh |95]._[96].
that all nodal and line quantities become available if on€hallenged by the nonconvexity of {11), the measurement
knows the grid parametes,,, }, and all nodal voltage¥,,, model is reformulated as a linear function of the outer-patd
that constitute the system state. Power system state éstimamatrix V := vv!, where the state is now expressed in
(PSSE) is an important module in the supervisory control amglctangular coordinates. This allows reformulatihgl (1d )at
data acquisition (SCADA) system for power grid operatiorsemidefinite program (SDP) with the additional constraint
Apart from situational awareness, PSSE is essential in adnk(V) = 1. Dropping the nonconvex rank constraint to
ditional tasks, namely load forecasting, reliability ays#$, acquire a convex SDP has been well-appreciated in signal
the grid economic operations detailed in SEC] IV, netwofkocessing and communications; see elg.] [52]. The SDR-
planning, and billing [[25, Ch. 4]. Building on Sec] Il, thishased PSSE has been shown to approximate well the global
section reviews conventional solutions and recent ad#nceptimum, while it is possible to further improve computatib
as well as pertinent smart grid challenges and opportsnitiefficiency by exploiting the SDP problem structurel[95].
for PSSE. 2) Dynamic State EstimationAs power systems evolve in

1) Static State EstimationMeters installed across the gridtime, dynamic PSSE is well motivated thanks to its predéctiv
continuously measure electric quantities, and forwardntheability emerging when additional temporal information is
every few seconds via remote terminal units (RTUS) to thevailable. In practice, it is challenged by both the unknown
control center for grid monitoring. Due to imprecise timalynamics and the requirement of real-time implementation.

Using [T0) in lieu of [[1), a similar analysis can be followe
with the exception that in the presence of phase shiftess,
corresponding bus admittance mafkixwill not be symmetric.
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While the latter could become tractable with (extended)
Kalman filtering (KF) techniques, it is more difficult to de-
velop simple state-space models to capture the power system
dynamics.

There have been various proposals for state transition mod-
els in order to perform the prediction step, mostly relying o
a quasi-steady state behavior; skel [67] for a review of the
main developments. One simplified and widely used model
poses a “random-walk” behavior expressing the state inrpola
coordinates per time slatasv(t + 1) = v(t) + w(t), where

w(t) is zero-mean white Gaussian with a diagonal covariance '
Fig. 2. The IEEE 14-bus power system partitioned into foeaaff80]. Dotted

matrix estimated online [$7]. A more sophisticated dynahic|,ssos show the buses belonging to extended area states.bBMuboltage
model readsv(t + 1) = F(t)v(t) + e(t) + w(t), where (line current) measurements are depicted by green circles gguares).

F(t) is a diagonal transition matrix and(t) captures the
process mismatch. Recently, a quasi-static state model has
been introduced to determirét) by approximating first-order is optimally solved.
effects of load datd [7]. It was early realized that for a chain of serially intercon-
For the correction step, the extended KF (EKF) is commontyected areas, KF-type updates can be implemented incremen-
used via linearizing the measurement model around the sttelly in space [[6D9, Pt. Ill]. For arbitrarily connected asea
predictor [57], [67]. To overcome the reduced accuracy oFEKthough, a two-level approach with a global coordinator is
linearization, unscented KF (UKF) of higher complexity hagequired [69]: Local measurements involving only locakesa
been reported i [81]. Particle filtering may also be of iagtr are processed to estimate the latter. Local estimates oégha
if its computational efficiency can be tolerated by the tgak states, their associated covariance matrices, and tiavigee
requirements of power systems. surements are forwarded to a global coordinator. The coardi
3) Distributed State EstimationParallel and distributed tor then updates the shared states and their statisticerédev
solvers were investigated early dn [69]. The motivation wascent renditions of this hierarchical approach are abkila
primarily computational, even though additional meritscof under the assumption of local observabilify 1[27].1[28]. A
ordination across adjacent control areas were also repegni central coordinator becomes a single point of failure, ahil
In vertically integrated electricity markets, each locdlity the sought algorithms may be infeasible due to computdtiona
estimated its own state and modeled the rest of the systeammunication, or policy limitations. Decentralized d@uos
at boundary points using only local measurements. Adjacénclude block Jacobi iterations [[L6], and the auxiliary e
power systems were connected ti@lines which were basi- principle [19]. Local observability is waived in [88], wrela
cally used in emergency situations, and PSSE was perforntapy of the entire high-dimensional state vector is maiedi
locally with limited interaction among control centers. per area, and linear convergence of the proposed first-order
Currently, the deregulation of energy markets has led @gorithm scales unfavorably with the interconnectionesiz
continent-wide interconnections that are split into siwmoeks A systematic framework based on the alternating direction
monitored by independent system operators (ISOs). Incrgasmethod of multipliers is put forth i [34]. Depending solely
amount of power is transferred over multiple control araas, existing PSSE software, it respects privacy policies, laihi
tie lines must be accurately monitored for reliability ared a low communication load, and its convergence is guaranteed
counting [27]. The ongoing penetration of renewables frtheven in the absence of local observability. Finally, for evey
intensifies long-distance power transfers, while theiermit- on multi-area PSSE, refer tb [28].
tent nature calls for frequent monitoring. Interconnettievel 4) Generalized State Estimation (G-SHYSSE presumes
PSSE is therefore a key factor for modernizing power gridéhat grid connectivity and the electrical parameters iwedl
Even though advanced instrumentation can provide prenide ge.g., line admittances) are known. Since these are aftesti
timely measurements (cf. S€c.TII-C), an interconnectiould unavailable, generalized state estimation (G-SE) extenels
consist of thousands of buses. The latter together wittapyiv PSSE task to jointly recovering them togl [1, Ch. &],1[25,
policies deem decentralized PSSE a pertinent solution.  Sec. 4.10]. PSSE operates on the bus/branch grid model;
To understand the specifications of distributed PSSE, caf: Fig.[3(@). A more meticulous view of this grid is offered
sider the toy example of Fid.] 2. Area 2 consists of buséy the corresponding bus section/switch model depicted in
{3,4,7,8}, but it also collects current measurements on tigig. [3(b). This shows how a bus is partitioned by circuit
lines {(4,5), (4,9),(7,9)}. Its control center has two optionsbreakers into sections (e.g., bus 1 to secti¢hsl5—19}),
regarding these measurements: either to ignore them and foor how a substation can appear as two different buses (e.g.,
on the internal state, or to consider them and augment iis steections{10, 52—54} and {14,55—57} mapped to buse$0
by the external buse$5,9}. The first option is statistically and 14, respectively). Circuit breakers are zero-impedance
suboptimal; let alone it may incur observability loss (dhecswitching components and are used for seasonal, maintenanc
for example Area 3). For the second option, neighboringsarear emergency reconfiguration of substations. For some of
should consent on shared variables. This way, agreementhism, the status and/or the power they carry may be reported
achieved over tie line charges and the global PSSE problémthe control center. A topology processing unit colletis t
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(b) Bus section/switch model

Fig. 3. The IEEE 14-bus power system benchmark [80]: (a) Tineeamtional
model. (b) An assumed substation-level model [26]. Solid ¢wollsquares
indicate closed (open) circuit breakers. The original 14dsu preserve
their numbering. Thick (thin) lines correspond to finite- rz¢impedance
transmission lines (circuit breaker connections).

information and validates network connectivity prior toSES
[57].

Even though topology malfunctions can be detected
large PSSE residual errors, they are not easily identifiglle
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status may be erroneou§] [1]. Nowadays, G-SE is further
challenged: the penetration of renewables and DR programs
will cause frequent substation reconfigurations. Yet, Ge&&

be aided by advanced substation automation and contengporar
intelligent electronic devices (IEDs).

Identifying substation configuration errors has been tra-
ditionally treated by extending robust PSSE methods
(cf. Sec[I-B2) to the G-SE framework. Examples include th
largest normalized residual test, and the least-absoliigev
and the Huber’s estimatorsi[1, Ch. 8]. To reduce the dimen-
sionality of G-SE, an equivalent smaller-size model hasnbee
developed in[[26]. The method ih [37] leverages advances in
compressive sampling and instrumentation technology.nUpo
regularizing the G-SE cost b§-norms of selected vectors,
it promotes block sparsity on real and imaginary pairs of
suspected breakers.

B. Observability, Bad Data, and Cyber-attacks

The PSSE module presumes that meters are sufficiently
many and well distributed across the grid so that the power
system is observable. Since this may not always be the
case, observability analysis is the prerequisite of PSSEnE
when the set of measurements guarantees system state ob-
servability, resilience to erroneous readings should be so
licited by robust PSSE methods. Nonetheless, specific read-
ings (un)intentionally corrupted can harm PSSE resultss Th
section studies these intertwined topics.

1) Observability Analysis:Given the network model and
measurements, observability amounts to the ability of welig
identifying the states. Even when the overall system is unob-
servable, power system operators are interested in oliderva
islands. An observable island is a maximally connected sub-
grid, whose states become observable upon selecting one of
its buses as a reference. Identifying observable islands is
important because it determines which line flows and nodal
injections can be uniquely recovered. Identifying unobskie
islands further provides candidate locations for addélon
(pseudo-)measurements needed to restore global obdéyvabi
Pseudo-measurements are prior state information aboyt e.g
scheduled generations, forecasted loads, or predictegeval
(based on historical data) to aid PSSE in the form of measure-
ments with high-variance additive noise (estimation grror

Due to instrument failures, communication delays, and net-
work reconfigurations, observability must be checked @nlin
Byhe analysis typically resorts to the DC mod€l (7), and
hence, it can be performed separately per active and reactiv

Hence, joint PSSE with topology processing under the G-Sbproblems thanks to thB-0 and Q-1 decoupling. Since
task has been a well-appreciated solution [57]. G-SE ess@ower measurements oftentimes come in (re)active paies, th
tially performs state estimation using the bus sectioritdwi observability results obtained for the active subprobl&@y (
model. Due to the zero impedances though, breaker flosarry over to the reactive one, assuming additionally that a
are appended to the system state. For regular transmisdgast one nodal voltage magnitude is available per obskrvab
lines of unknown status or parameters, G-SE augments thkand (the reactive analogue of the reference bus).

system state by their flows likewise. In any case, to tackde th Commonly used observability checks include topological
increased state dimensionality, breakers of known stateis as well as numerical ones; sefl [1, Ch. 4] for a review.
treated as constraints: open (closed) breakers corresfgondopological observability testing follows a graph-theare

zero flows (voltage drops). Practically, not all circuit &kers

approach[[14]. Given the graph of the grid and the available

are monitored; and even for those monitored, the reportsét of measurements, this test builds a maximal spannieg tre
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Its branches are either lines directly metered or linesdierei outlier-robust estimators, such as the least-absolut@tiav,
to a metered bus, while every branch should correspond tehe least median of squares, or Huber's estimator have been
different measurement. If such a tree exists, the grid isn@ee considered too; segl[1]. Recently;norm based methods have
observable; otherwise, the so-derived maximal spanniresfo been devised; see e.d., [42], [90], [34].
defines the observable islands. Unfortunately, all bad data cleansing techniques are vulne
On the other hand, numerical observability considers tlable to the so called “critical measurements” [1]. A measure
identifiability of the noiseless approximate DC model= ment is critical if once removed from the measurement set,
HO [58]. Linear system theory asserts that the sttés the power system becomes unobservable. If for example one
observable i is full column rank. Recall however that activeremoves the current measurement on [{ig8) from the grid
power measurements introduce a voltage phase shift anyiguif Fig. [2, then bus3 voltage cannot be recovered. Actually,
(cf. @)-[)). That is why a power system with branch-buis can be shown that théth measurement is critical if the
incidence matrixA is deemed observable simply X0 = 0 i-th column of P is zero, which translates tg being always
for every 0 satisfying HO = 0, i.e., null(H) C null(A). zero too. Due to the latter, the LNRT is undefined for critical
Observe now that the entries @@ are proportional to line measurements.
power flows. Hence, intuitively, whenever there is a norezer Intuitively, a critical measurement is the only observatio
power flow in the power grid, at least one of its measurememdated to some state. Thus, this measurement cannot k& cros
should be non-zero for it to be fully observable. When thigalidated or questioned as an outlier, but it should be blind
condition does not hold, observable islands can be identifizusted. The existence of critical measurements in PSSE
via the iterative process developed [in1[58]. reveals the connection between bad data and observability
2) Robust State Estimation by Cleansing Bad Data: analysis. Apparently, the notion of critical measuremeas
Observability analysis treats all measurements received k& generalized to multiple simultaneously corrupted nmegsli
reliable and trustworthy. Nonetheless, time skews, comcadn Even though such events are naturally rare, their study be-
tion failures, parameter uncertainty, and infrequentrimsent comes timely nowadays under the threat of targeted cyber-
calibration can yield corrupted power system readingy alattacks as explained next.
known as“bad data” in the power engineering parlance. If 3) Cyber-attacks: As a complex cyber-physical system
bad data pass through simple screening tests, e.g., patarit spanning a large geographical area, the power grid indyitab
range checks, they can severely deteriorate PSSE perfoemafaces challenges in terms of cyber-security. With more deata
Coping with them draws methods from robust statistical SRuisition and two-way communication required for the fetur
to identify outlying measurements, or at least detect thajrid, enhancing cyber-security is of paramount importance
presence in the measurement set. From working experience in dealing with the Internet and
Two statistical tests, namely thg?-test and the largest telecommunication networks, there is potential for malisi
normalized residual test (LNRT), were proposed[inl [69, Paahd well-motivated adversaries to either physically &ttac
[1], and are traditionally used for bad data detection arehid the grid infrastructure, or remotely intrude the SCADA sys-
tification, respectively[[57],[1, Ch. 5]. Both tests rely dre tem. Among all targeted power grid monitoring and control
modelz = HO + ¢, assuming a full column rank x n matrix operations, the PSSE task in S&c._Tll-A appears to be of
H and a zero voltage phase at the reference bus. The two testiseme interest as adversaries can readily mislead aopgrat
check the residual error of the LS estimator which can led manipulate electric markets by altering the systene stat
expressed as:= Pz = Pe, whereP .= 1-H(H'H) 'H? [42], [89].
satisfyingP = P” = P2. Apparently, where is standardized Most works analyzing cyber-attacks consider the linear
Gaussiany is Gaussian too with covariand®; hence,||r||2 measurement model modified as= HO + € + a, where
follows a x? distribution with (m — n) degrees of freedom. the attack vectora has non-zero entries corresponding to
The x2-test then declares an LS-based PSSE possibly affectainpromised meters. It was initially pointed out [in][50] ttha
by outliers wheneveflr||3 exceeds a predefined threshold. if the adversary know#l, the attacka can be constructed to
LNRT exploits further the Gaussianity aof. Indeed, as lie in the range space df so that the system operator can be
r:/+/P;,i; should be standard Gaussian forialthen bad data arbitrarily misled. Under such a scenario, the attack cabhao
are absent, LNRT finds the maximum absolute value amodgtected. Such attacks are related to the observabilitypadd
these ratios and compares it against a threshold to ideatifylata analysis described earlier, since by deleting the cbb
single bad datum[1, Sec. 5.7]. Practically, if a bad datum ®rresponding to the nonzero entriesagthe resultant system
detected, it is removed from the measurement set, and the lh&omes unobservable [42]. Various strategies to construc
estimator is re-computed. The process is repeated till mo ba have been derived iri [50], constrained by the number of
data are identified. Successive LS estimates can be efficiemounterfeit meters; see aldo [42] for the minimum number of
computed using recursive least-squares (RLS). The LNRTsach meters. Cyber-attacks under linear state-space snaczl
essentially the leave-one-out approach, a classical igatn considered in[[63].
for identifying single outliers. Interesting links betweeutlier A major limitation of existing works lies in the linear mea-
identification and ¢y-(pseudo)-norm minimization are pre-surement model assumption, not to mention the practicality
sented in[[4R] and_[34] under the Bayesian and the frequentié requiring attackers to know the full system configuration
frameworks, respectively. Attacks in nonlinear measurement models for AC systems are
Apart from the two tests treating bad data a posteriostudied in [97]. Granted that a nonlinear PSSE model can be
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approximated around a given state point, it is not obviows haather than observability is probably a more meaningful cri
the attacker can acquire such dynamically varying inforomat terion. Towards that end, PMU placement is formulated as a
in real time in order to construct the approximation. Thigariation of the optimal experimental design problem[in][48
requires a per-adversary PSSE and assessment of a signifif@]. The approach iri [48] considers estimating voltagespba
portion of meter measurements. On the defender’s sidesfobanly, ignores PMU current measurements, and proposes a
tifying PSSE against bad data is a first countermeasureeSiggeedy algorithm. In[[35], the state is expressed in reattang
cyber-attacks can be judiciously designed by adversatieg, coordinates, all PMU measurements are considered, and the
may be more challenging to identify, thus requiring furtheBDP relaxation of the problem is solved via a projected
prior information e.g., on the state vector statist(cs [42] gradient algorithm. For a detailed review of PMU placements
the reader is referred t0_[63].

3) State Estimation with PMUs: As explained in
Sec[I[-A7, PSSE is conventionally performed using SCADA

1) Phasor Estimation:PMUs are contemporary devicesmeasurements$ [84, Ch. 12]. PMU-based PSSE improves esti-
complementing legacy (SCADA) meters in advancing powefiation accuracy when conventional and PMU measurements
system applications via their high-accuracy and timexe jointly used[[66],[[65]. However, aggregating conventil
synchronized measuremeritsl[65]. Different from SCADA mend synchrophasor readings involves several issues., First
ters which provide amplitude (power) related informatiorCADA measurements are available every 4 secs, whereas 30-
PMUs offer also phase information. At the implementatioB0 synchrophasors can be reported per sec. Second, dyplicit
level, current and voltage transformers residing at stibsi® including conventional measurements reduces the lineds-PM
provide the analog input waveforms to a PMU. After antibased PSSE problem into a non-linear one. Third, compati-
alias filtering, each one of these analog signals is samgledbity to existing PSSE software and phase alignment should
a rate several times the nominal power system frequéicy be also considered. An approach to address these challenges
(50/60 Hz). If the signal of interest has frequerfgyits phasor s treating SCADA-based estimates as pseudo-measurements
information (magnitude and phase) can be obtained simply Byring PMU-driven state estimatiori [65]. Essentially, the
correlating a window of its samples with the sampled cosirgower rate SCADA-based state estimates, expressed in rect
and sine functions, or equivalently by keeping the first (nomngular coordinates, together with their associated vee
DC) discrete Fourier transform component. Such correlatiomatrix can be used as a Gaussian prior for the faster rate
can be implemented also recursively. Since power system cdifear PSSE problem based on PMU measurements [65], [35].
ponents operate in the frequency rarfge- 0.5 Hz, acquiring Regarding phase alignment, as already explained SCADA-
phasor information for off-nominal frequency signals hasib based estimates assume the phase of the reference bus to be
also considered [65, Ch. 3]. zero, whereas PMUs record phases with respect to GPS timing.

The critical contribution of PMU technology to grid instru-Aligning the phases of the two estimates can be accomplished
mentation is time-tagging. Using precise GPS timing (the oyy PMU-instrumenting the reference bus, and then simply
pulse-per-second signal), synchrophasors are time-s@m@p adding its phase to all SCADA-based state estimates [65].
the universal time coordinated (UTC). PMU data can thus beSynchrophasor measurements do not contribute only to
consistently aggregated across large geographic areast APSSE. Several other monitoring, protection, and contsisa
from phasors, PMUs acquire the signal frequency and itgnging from local to interconnection-wide scope can benefi
frequency derivative too. Data from several PMUs are cakom PMU technology. Voltage stability, line parameteri-est
lected by a phasor data concentrator (PDC) which performsation, dynamic line rating, oscillation and angular safian
time-aligning, local cleansing of bad data, and potentialimonitoring, small signal analysis are just a few entriesnfro
data compression before forwarding data flows to the conttpk list of targeted applications [78], [65].
center. The IEEE standards C37.118.1/2-2011 determine PMU
functional requirements.

2) PMU Placement: Although PMU technology is su
ficiently mature, PMU penetration has been limited so far, PSSE offers a prototype class of problems that SP tools can
mainly due to the installation and networking costs invdlvebe readily employed to advance grid monitoring performance
[78]. Being the key technology towards wide area monitoringspecially after leveraging recent PMU technology to com-
though guarantees their wide deployment. During this instrplement SCADA measurements. However, additional areas
mentation stage, prioritizing PMU locations is currenttyim- can benefit from SP algorithms applied to change detection,
portant issue for utilities and reliability operators wiwide. estimation, classification, prediction, and clusteringesss of
Many PMU placement methods are based on the notion tbe grid.
topological observability; cf. Se€_1-B1. A search algom 1) Line Outage Identification:Unexpected events, such
for placing a limited number of PMUs on a maximal spannings a breaker failure, a tree fall, or a lightning strike, can
forest is developed if [61]. Even though topological obsermake transmission lines inoperative. Unless the contnolece
ability in general does not imply numerical observabilfiyy becomes aware of the outage promptly, power generation and
practical measurement matrices it dogs! [57]. In any casec@sumption will remain almost unchanged across the grid.
full column rank yet ill-conditioned linear regression mwat Due to flow conservation though, electric currents will be
can yield numerically unstable estimators. Estimationueaty automatically altered in the outaged transmission network

C. Phasor Measurement Units

¢. D. Additional Inference and Learning Issues
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line parameters, is thus critical for wide-area monitoring 5
One could resort to the generalized PSSE module to ident;f)?r't
line outages (cf. Sed_T-A4). Yet most existing topology

processors rely. on data of the local control area (a.kgyarse Building on compressive sampling approaches, sparse
internal) system; see also Figl 4. On the other hand, floyya| recovery algorithms have been tested[in [98] using
conservation can potentially reveal line changes eveexter- |Ece benchmark systems, and near-optimal performance was

nal systems. This would be a non-issue if inter-system dafgyained at computational complexity growing only lingar
were available at a sufficiently high rate. Unfortunatehg t the number of outages

system datg e?<.change (SD.X) module of the quth-Amerlcanz) Mode Estimation:Oscillations emerge in power systems
El_ectnc Reliability Corporation (NERC) can provide thaagr when generators are interconnected for enhanced capacity
wide ba_secase topology only on an hou_rly b@_ [7_6]’ whi d reliability. Generator rotor oscillations are due tokla
the desideratum here is near-real-time line momtorlngalnOf damping torque, and give rise to oscillations of bus

nutshell, each .internal system needs to tirr_1e|y identifye ”r\/ciltages, frequency, and (re)active power flows. Osailfeti
ghangesd er\1/er_1 |fn the e>|<tern3l sydstgms, relying olnly on loc(ﬁe characterized by the so-termed electromechanical snode
a_tra and the 'T rvlequentyrlljp atebl asecasc_edtopc;]ogy_ whose properties include frequency, damping, and shafe [44
o concretely lay out the problem, consider the pre- a epending on the size of the power system, modal frequencies
post-event states, and I€t C £ denote the subset of Imesﬁre often in the range df.1— 2 Hz. While a single generator

in outage. Suppose that the inter_connect_ed grid has reac ﬁigally leads to local oscillations at the higher range Hz),
a stable post-event state, and it remains connedied (4 er-area oscillations among groups of generators liehen t

With reference to the linear DC model il (8), its post-evenf .. range (.1 — 1 Hz). Typically, the latter ones are
counterpart readp’ = p + n = B.L6', wheren captures y ' ’

T . . more troublesome, and without sufficient damping they grow

small zero-mean pgwer injection perturbations. Recaliog in magnitude and may finally result in even grid breakups

= i = —_— U . . . . ’
Secﬂ] thath %A_DA’ the_dllffergncv?/%[ﬁ é_ ]_3”; , Bg (;ﬁn Hence, estimating electromechanical modes, especially th
be expressed as, = Dopeg vy aay - With 0:= 6" — 6, the | feqiency ones, is truly important, and known as the
difference mo:;jell can be written a86 =5, ¢ Medr 1, small-signal stability problem in power system analysi][4
wherem, := a; 6 /x,, VI € £. Based on the latter, to identify  a|peit near-and-dear to SP expertise on retrieving harmon-
& of a given cardinalityNy := |£], one can enumerate all;,

N, s LY s, modal estimation is challenging primarily due to the
(n#) possible topologies in outage, and select the one offeriggniinear and time varying properties of power systems, as

the minimum LS fit. Such an approach incurs combinatorigle|| as the co-existence of several oscillation modes atoyea
complexity, and has thus limited the existing exhausti&@ct® frequencies. Fortunately, the system behaves relatiirepily
methods to identifying single[[76], or at most double lingyhen operating at steady state, and can thus be approxi-
outages [[7I7]. A mixed-integer programming approach Wagated by the continuous-time vector differential equation
proposed in[[20], which again deals with single line outageg(¢) = A, (t)x(t) + Byu(t) + w(t), where the eigenvalues
To bypass this combinatorial complexity. [98] considergf A () characterize the oscillation modes, and) and
an overcomplete representation capturing all possible |iQV(t) correspond to the exogenous input and the random
outages. By constructing a¥ x 1 vectorm, whosel-th entry - perturbing noise, respectively. Assuming linear dynantites
equalsmy, if £ € £, and0 otherwise, it is possible to reducemodels, mode estimation approaches are either model- or
the previous model to a sparse linear regression one giveni¥asurement-based. The former construct the exact nanline
B.6 = ATm + 7. (12) c_Jiffere_ntiaI equations from system configu_rations, andjthe
linearize them at the steady-state to obt#n(¢) for esti-
Since the control center only has estimates of the intermahting electromechanical modés|[55]. In measurementebase
bus phases, it is necessary to soliel (12) lprand extract methods, oscillation modes are acquired directly by peak-
the rows corresponding to the internal buses. This leads gizking the spectral estimates obtained using linear nreasu
a linear model slightly different from[{12); but thanks tamentsx(t) [79]. Since the complexity of model-based methods
the overcomplete representation, identifyidgamounts to grows with the network size, scalability issues arise fogéa
recoveringm. The key point here is the small number ofystems. With PMUs, modes can be estimated directly from
line outages(N;, < N;) that makes the sought vectan synchrophasors, and even updated in real time.

5. Real power flow on a major transmission line during th@61@/estern
h American power system breakiip [79].
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Depending on the input(t), the measurements are eithe

ambient, or ring-down (a.k.a. transient), or probing; seg, e Nogh American Regional
. . . . eliability Councils
Fig.[B. With only random noisev(t) attributed to load per- and Interconnections

turbations, the system operates under an equilibrium tondi
and the ambient measurements look like pseudo-noise. A rit
down response occurs after some major disturbance, suct
line tripping or a pulse inputu(¢), and results in observ-
able oscillations. Probing measurements are obtained a
intentionally injecting known pseudo-random inputs (pngp
signals), and can be considered as a special case of ri
down data. Missing entries and outliers are also expected
meter measurements, hence robust schemes are of intares
mode estimation [94]. Measurement-based algorithms can
either batch or recursive. In batch modal analysis, of-lir
ring-down data are modeled as a sum of damped sinuso
and solved using e.g., Prony’s method to obtain linear fesins
functions. Ambient data are handled by either parametric
nonparametric spectral analysis methdds [79]. To receissiv :
incorporate incoming data, several adaptive SP methods h. £ hec® 5 s & oo
been successfully applied, including least-mean squaiS) T SERC M sPP Asce
and RLS [94]. Apart from utilizing powerful statistical SP —
tools for mode estimation, it is also imperative to judigbu , _ o _ _ _
design efficient probing signals for improved accuracy withe: > NERCs regional relabrlly councils and mtercamtions [Source:
p:/ien.wikipedia.org/wiki/Flle: map en.\.vg]
minimal impact to power system operations![79].

3) Load and Electricity Price ForecastingSmooth opera- L . .
tion of the grid depends heavily on load forecasts. DifferelSiNg auto-regressive (integrated) moving average (witige-

applications require load predictions of varying time esal N0US variables) models (ARMA, ARIMA, ARIMAX); state-
Minute- and hour-ahead load estimates are fed to the uRR2ce models with Kalman and particle filtering; neural net-
commitment and economic dispatch modules as described/§{fiks. expert systems, and artificial intelligence appineac
Sec[IV-A. Predictions at the week scale are used for rdifgbi RECENt academic works and current industry practices are
purposes and hydro-thermal coordination: while forecémts variations and combinations of theseT themgs reviewed in
years ahead facilitate strategic generation and tranmnissiZO Ch- 2. Low-rank models for load imputation have been
planning. The granularity of load forecasts varies sptialPursued inl[S4].
too, ranging from a substation, utility, to an interconiatt Load forecasting is not the only prediction task in modern
level. Load forecasting tools are essential for elecriziarket Power systems. Under a deregulated power industry, market
participants and system operators. Even though such toBfticipants can also leverage estimates of future ebégtri
are widely used in vertically organized utilities, balamgi Prices. To appreciate the value of such estimates, conaider
supply and demand at a deregulated electricity market malday-ahead market: an ISO determines the prices of electric
load forecasting even more important. At the same time, tR@wer scheduled for generation and consumption at the-trans
introduction of electric vehicles and DR programs furthehission level during the 24 hours of the following day. The
complicates the problem. ISO collects the hourly supply and demand bids submitted
Load prediction can be simply stated as the problem By generator owners and utilities. Using the optimization
inferring future power demand given past observations. Ofethods described later in Séc. TV-A, the grid is dispatched
tentimes, historical and predicted values of weather datg,( in the most economical way while complying with network
temperature and humidity) are included as prediction tatega a@nd reliability constraints. The output of this dispatcte ar
too. The particular characteristics of power consumptiem- r the power schedules for generators and utilities, alondy wit
der it an intriguing inference task. On top of a slowly in@ea associated costs. Modern electricity markets are complex.
ing trend, load exhibits hourly, weekly, and seasonal perioTrading and hedging strategies, weather and life pattéues,
icities. Holidays, extreme weather conditions, big eveatsa Prices, government policies, scheduled and random outages
factory interruption create outlying data. Moreover, desitial, reliability rules, all these factors influence electricjtyices.
commercial, and industrial consumers exhibit differenvpo Even though prices are harder to predict than loads, the task
profiles. Apart from the predicted load, uncertainty dextoris IS truly critical in financial decision making[3]. The saions
such as confidence intervals are important. Actually, forape Proposed so far include econometric methods, physicaésyst
reliability and security applications, daily, weekly, @asonal modeling, time series and statistical methods, artificiglli-
peak values are critically needed. gence approaches, and kernel-based approaches; se8je.g., [
Several statistical inference methods have been appll§8]. [36] and references therein.
for load forecasting: ordinary linear regression; kedo@ted  4) Grid Clustering: Modularizing power networks is in-
regression and support vector machines; time series asalygrumental for grid operation as it facilitates decenzedi and
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parallel computation. Partitioning the grid into contrefjions one hour, over which the generation output is supposed to be

can also be beneficial for implementing “self-healing” teas, roughly constant.

including islanding under contingenciés [47]. For exampfe Specifically, consider a network wittV, generators. Let

ter catastrophic events, such as earthquakes, altermetiver P, be the output of theth generator in MWh. The cost

supplies from different management regions may be negessaf the ith generator is determined by a functi@n(Pg,),

due to power shortage and system instability. Furthermosehich represents the cost in $ for producing energyPef

grid partitioning is essential for the zonal analysis of pow MWh (i.e., maintaining power output’;, MW for one

systems, to aid load reliability assessment, and opemdtiohour). The costC;(Pg,) is modeled as strictly increasing

market analysis[[8]. In general, it is imperative to paotiti and convex, with typical choices including piecewise linea

the grid judiciously in order to cope with issues involvinggmooth quadratic functions. The output of each generator is

connected or disconnected “subgrids.” Regional pariitign an optimization variable in ED, constrained within minimum

of the North American grid is illustrated in Fif] 6, whereand maximum bounds.Pg{,in and Pz, determined by the

each interconnection is further divided into several zdioes generator’s physical characteristi€s [84, Ch. 2]. Sinceeca

various planning and operation purposes. However, the stgiower plant is on, it has substantial power outhg{j“ is

and manual grid partitioning currently in operation mayrsooccommonly around 25% ofg'**.

become obsolete with the growing incorporation of reneesbl With P; denoting the load forecasted as described in

and the overall system scaling. Section[1[-D3, the prototype ED problem is to minimize the
The clustering criterion must be in accordance with gritbtal generation cost so that there is supply-demand balanc

partitioning goals. In islanding applications, sub-grsupf within the generators’ physical limits:

generators are traditionally formed by minimizing the real

NQ
generator-load imbalance to regulate the system frequency min Zci( Pg,) (13a)
within each island. Recently, reactive power balance has be {Pe;} '
incorporated in a multi-objective grid partitioning prebi to N,
support voltage stability in islanding [47]. For these noeth, subj. to Z Pg, =Py, (13b)
it is necessary to reflect the real-time operating conditithrat =1
depend on the slow-coherency among generators, and the flow Poin < P < pEex, (13c)

density along transmission lines.

Different from the islanding methods that deal with real- Problem [IB) is convex, so long as the functiaiig;, )
time contingencies, zonal analysis intends to addresotige | @ré convex. In this case, it can be solved very efficiently.
term planning of transmission systems. Therefore, it iicali Convex choices of’;(Fg;, ) offer a model approximating the
to define appropriate distance metrics between buses. MBY€ generation cost quite well and are used widely in the
existing works on long-term reliability have focused on thiiterature. Nevertheless, the true cost in practice mayheot
knowledge of network topology, including the seminal worRtrictly increasing or convex, while the power output may
of [83], which pointed out the “small-world” effects in powe be c_:onstrained to lie in a collection of disjoint subintdsva
networks. To account for the structure imposed by Kirchioff [P, P These specifications make ED nonconvex, and
laws, it was proposed i [8] to define “electrical distanced*ence hard to solve. A gamut of approaches for solving the

between buses using the inverse admittance matrix. ED problem can be found in_[84, Ch. 3].
Following a duality approach, suppose that Lagrange mul-

tiplier \ corresponds to constraidf_(13b). The multiplier has

) ) o ) _.units $/MWh, which has the meaning of price. Then, the KKT
Leveraging the extensive monitoring and learning mocwltloptima"ty condition implies that for the optimal geneati

outlined in the_ pre_viou_,l_s sectic_m, the next-_gv_aneration wriidl output 7, and the optimal multiplien\*, it holds that
be operated with significantly improved efficiency and restiic !

margins. After reviewing classical results on optimal gitis- P, =  argmin = {Ci(Pg,) — A" Pg,}, i=1,...,N.
patch, this section outlines challenges and opportunitiesed PGt <Pe, PG 14
to demand-response programs, electric vehicle chargimg), a Y . , )

the integration of renewable energy sources with parliculQue to [13),C;(F,) is the i-th generator's cost in dollars.

emphasis on the common optimization tools engaged. Mqreover, ifA* is the price at which gach gengrator is getting
paid to produce electricity, thekr P, is the profit for thei-th

) _ generator. Hence, the minimum [0 {14) is the net cost, he., t

A. Economic Operation of Power Systems cost minus the profit, for generator The latter reveals that
1) Economic Dispatch:Economic dispatch (ED) amountsthe optimal generation dispatch is the one minimizing thie ne

to optimally setting the generation output in an electrizepo cost for each generator. If an electricity market is in pldce
network so that the load is served and the cost of generatisrsolved by the ISO, wit{C; (P, )} representing the supply
is minimized. ED pertains to generators which consume sorbigls.
sort of non-renewable fuel in order to produce electricgper There are two take-home messages here. First, a very
the most typical fuel types being oil, coal, natural gas, /@ u important operational feature of an electrical power nekws
nium. In what follows, a prototype ED problem is describedp balance supply and demand in the most economical manner,
with focus placed on a specific time span, e.g. 10 minutes amd this can be cast as an optimization problem. Second, the

IV. OPTIMAL GRID OPERATION
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Lagrange multiplier corresponding to the supply-demane bahat it is used for the day-to-day operation in several North
ance equation can be readily interpreted as a price. Howevemerican ISOs.

the formulation in [(IB) entails two simplifying assumption  Consider next replacing the DC with the AC load flow
(i) it does not account for the transmission network; ang (imodel (cf. Sec[l) in the OPF context. Generators and loads
it only pertains to a specific time interval, e.g., one houar. lare now characterized not only by their real powers, but also
practice, the power output across consecutive time inteisa the reactive ones, denoted &s;,, and @, . The AC OPF
limited by the generator physical characteristics. Evenugfin  takes the form

the more complex formulations presented next alleviatsehe Ny
simplifications, the two take-home messages are still large min Z Cm(Pg,,) (16a)
valid. {Pa Qe Vm} 5=

2) Optimal Power Flow:The first generalization is to in- subj. to
clude the transmission network, using the DC load flow mod _
of Sec[l; cf. [8). The resultant formulation constitutae DC %G —Pr, = Z Re{Sin }

optimal power flon(DC OPF) problem[[12]. Specifically, it is neNm

postulated that at each bus there exist a generator and a 164d, — Q.. = > Tm{S,} (16b)

with output Pg, , and demandP;, ,, respectively. The cases neNm

of no or multiple generators/loads on a bus can be readi§), ()

accommodated. PEIn < Pg, < PR QBN < Qg, < QR (16¢)
Recall from [7h) that the real power flow from busto n Re{Spn}| < P [S,0] < SMaX, pmin < 1) | < ymax,

is approximated byP,,,, ~ —b,,,,(0,, — 0,,). The bus angles

{6,,} are also variables in the DC OPF problem that reads (16d)

Constraint [(I6b) reveals that now both the real and reactive

Ny
. powers must be balanced per bus. Recall further&hat rep-
( péf}%m } Z Cm(Fa) (153) resents the complex power flowing over lifte, n). Therefore,

. m=l the first constraint in[{18d) refers to the real power flowing
subj. to over line (m,n) [cf. (T&d)], while the second to the apparent
Pg, — P, =— Z bmn(Om — 0n), m=1,..., N, power. The last constraint if (16d) calls for voltage anojolé

nENm limits.
(15b)  Due to the nonlinear (quadratic equality) couplings betwee
Pg‘j”“ <P, <PZ*,m=1,...,Ny (15c) the power quantities and the complex voltage phasors, the AC
1 Prn] = b (0 — 00| < P25 n=1,..., Ny OPF in [18) is highly nonconvex. Various nonlinear program-

(15d) ming algorithms have been applied for solving it, including
the gradient method, Newton-Raphson, linear programming,
The objective in[(I5a) is the total generation cost. Coirdtraand interior-point algorithms; see e.d., [84, Ch. 13]. Ehes
(I58) is the per bus balance. Specifically, the left-hane sidigorithms are based on the KKT necessary conditions for
of (I5H) amounts to the net power injected to busfrom optimality, and can only guarantee convergence to a statjon
the generator and the load situated at the bus, while thé rigpoint at best. Taking advantage of the quadratic relatioos f
hand side is the total power that flows towards all neighlgprirvoltage phasors to all power quantities as in SE, the SDR
buses. Upon defining vectors for the generator and the lo@dhnique has been successfully applied, while a zerotguali

powers, [[I5b) could be written in vector form pg — p;, = gap has been observed for many practical instances of the
B, 6 [cf. @)]. Finally, constraint[(I8d) enforces power flowAC OPF, and theoretically established for tree networks; se
limits for line protection. [46], [45], and references therein. SDR-based solversfeet

For convex generation costs,,(Pg,, ), the DC-OPF prob- phase OPF in distribution networks is considered_id [17].
lem is convex too, and hence, efficiently solvable. A major The AC OPF offers the most detailed and accurate model
consequence of considering per bus balance equationstis tfathe transmission network. Two main advantages over its
every bus may have a different Lagrange multiplier. ThBC counterpart are: i) the ability to capture ohmic losses;
pricing interpretation of Lagrange multipliers impliesatha and ii) its flexibility to incorporate voltage constrainfshe
different price, called locational marginal price, copesds former is possible because the resistive part of the fine
to each bus. The ED probleri {13) can be thought of asn@del is included in the formulation. Recall in contrastttha
special case of DC OPF, where the entire network consistsagsumption (Al) in the DC model sets,, = 0. But it is
a single bus on which all generators and loads reside. exactly the resistive nature of the line that causes theetoss
Due to the DC load flow approximation, the accuracy of thia view of (I8), the total ohmic losses can be expressed as
DC OPF greatly depends on how well assumptions (A1)-(A3),,(Ps,, — Pr,.). Such losses in the transmission network
hold for the actual power system. For better consistencl withay be as high as 5% of the total load so that they cannot be
(A2), it is further suggested to penalize the cdsi{15a) witheglected[[25, Sec. 5.2].
the sum of squared voltage angle differenges (0 — The discussion on OPF—with DC or AC power flow—
6,,)?, which retains convexity. Even if the DC OPF is a ratheso far has focused on economic operation objectives. System
simplified model for actual power systems, it is worth stiregs reliability is another important consideration, and theFQRn
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be modified in order to incorporate security constraints too DC power flow AC power flow
. . . . ED DC OPF AC OPF
leading to thesecurity-constrained OPKSCOPF). Security

constraints aim to ensure that if a system component fails—
e.g., if a line outage occurs—then the remaining system
remains operational. Such failures are called contingsnci
Specifically, the SCOPF aims to find an operating point such
that even if a line outage occurs, all post-contingencyesgst ., . Relationship between the ED, OPF (DC and AC) and UGMFr
variables (powers, line flows, bus voltages, etc.) are Wlthleft to right, increasing detail in the transmission netwankdel. From top
limits. The primary concern is to avoid cascading failufestt to bottom, single- to multi-period scheduling (also applieato ED and AC
are the main reasons for system blackouts. As explamed% )

Sec[I-D1, if a line is in outage, the power flows on all other

lines are adjusted automatically to carry the generatecepow t=2,...,7 (17e)

SCOPF is a challenging problem due to the large number . . ’
of possible contingencies. For the case of the DC OPF, powetm — Um =1 =y,
flows after a line outage are linearly related to the flows T =¢+1,...,min{t + 79" — 1. T}, t=2,..., T (17f)
before the outage through the line outage distributionofact by (0L, — 02N < P2 mon=1,... Ny, t=1,...,T
(LODFs) [12], [84, Ch. 11]. The LODFs can be efficiently (179)
calculated based on the bus admittance maBix and are t
instrumental in the security-constrained DC OPF. The cése otim € 0.1, m=1...Np, t =1,...T (L7h)
AC OPF is much more challenging, and a possible approathe termS! ({u” }._,) in the cost[(I7a) captures generator
is enumeration of all possible contingency cases; see[B4j., start-up or shut-down costs. Such costs are generally depen
Sec. 13.5] for different approaches. dent on the previous on/off activity. For instance, the more

3) Unit Commitment: Here, the scope of DC OPF istime a generator has been off, the more expensive it may be
broadened to incorporate the scheduling of generatorssicrw bring it on again. The initial condition?, is known. It
multiple time periods, leading to the so-termexit commit- is also assumed that’,(0) = 0. The balance equation is
ment(UC) problem. It is postulated that the scheduling horizogiven next by [I7b). Generation limits are captured[by}(17c)
consists of periods labeled as..,T (e.g., a day consisting Constraint [[T7d) represents the ramp-up/down limits, wher
of 24 1-hour periods). LelPG be the output of then-th the boundsk'P and RI°"" and the initial conditionPg are
generator at period, and Pt "the respective demand. Thegiven. ConstramtlI[]e) means that if generatoris turned
generation cost is allowed to be time- -varying, and is dehoten at periodt, it must remain on for the next** periods;
by C? (PGm) A binary variableu!, per generator and periodand similarly for the minimum down time constraint [n_({L7f),
is introduced, so that!, = 1 if generatorm is on att, and where both7" and T9°¥" are given [[75]. The line flow

ul, = 0 otherwise. Moreover, theith bus angle atis denoted constraints are given bﬂI[?g) while the binary feasible se
by 6¢ .. for the scheduling variables!, is shown in [I7h).

Consideration of multiple time periods allows inclusion of It is clear that probleml]]?) is a mixed integer program.
practical generator constraints into the scheduling pmbl What makes it particularly hard to solve is the coupling agros
These are the ramp-up/down and minimum up/down timie binary variables expressed by (17e) dnd](17f). Note that
constraints. The former indicate that the difference in @owthe DC OPF in[(Ib) is a special case of the UC] (17) with
generation between two successive periods is bounded. The on/off scheduling fixed and the time horizon limited to
latter mean that if a unit is turned on, it must stay on faa single period. It is noted in passing that a multi-period
a minimum number of hours; similarly, if it is turned off, itversion of the DC OPF can also be considered, by adding the
cannot be turned back on before a number of periods. The Wfnp constraints td_(15) while keeping the on/off schedylin

Multi-period
on/off scheduling

problem is formulated as follows. fixed in (1), therefore obtaining a convex program. Most
T N, importantly, note that the UC dimension can be brought into

min Z Z [CL(PE )+ 8L ({ul Y )] the remaining two problems described here, that is, the ED an

(PG, Ohuin} 1 21 the AC OPF. In the latter, the problem has two mathematical

(17a) reasons for being hard, namely, the integer variables a&d th
nonconvexity due to the AC load flow. The problems discussed

subj. to i e
here are illustrated in Fid] 7.
PL, =P, = Y bun(6h, —06h), A traditional approach to solving the UC is to apply
nENm Langrangian relaxation with respect to the balance equstio
m=1,...,Np, t=1,...,7 (17b) [84, Ch. 5], [5], [75]. The dual problem can be solved by
mpmm < pém < umpmax, =1,...,Ny, t=1,...,7 a non-differentiable optimization method (e.g., a subignatd

(17c) or bundle method), while the Lagrangian minimization step i
solved via dynamic programming. An interesting result with
the Lagrangian duality framework is that the duality gaphef t
=1L... Ny, t=1,....T (17d) yc problem without a transmission network diminishes as the
T=t+1,...,min{t+ T —1,T}, number of generators increasgs [5]. One of the state-edithe

P, = P! S R P! R, < R

t t—1
Uy — Uy w <UL
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measure not just the total power consumption, but also the
power consumption profile throughout the day, and report it
to the utility company at regular time intervals—e.g., every
ten minutes or every hour. The utility company sends pric-
ing signals to the smart meters through the AMI, for the
smart meters to adjust the power consumption profile of the
Fig. 8. Communications infrastructure facilitating DR caifities. various residential electric devices, in order to minimike
electricity bill and maximize the end-user satisfactioneEyy
methods for UC is Benders decomposition, which decomposceosnsumption Is thus scheduled through fhe smqrt meter. The
communication network at the customer’s premises between

the problem into a master problem and tractable subproblems . , .
€ smart meter and the smart appliances’ controllers is par

Electricity price

- & | DR controller
Utility
(smart meter)

Power
consumption

[70. Ch. 8] of the so-called home area network (HAN).
Time-varying pricing has been a classical research
B. Demand Response topic [10]. The innovation DR brings is that the end-users’

Demand response (DR) or load response is the adaptatiopoiver consumption becomes controllable, and therefmas,
end-user power consumption to time-varying (or time-bpasedf the system optimizatiofNovel formulations addressing the
energy pricing, which is judiciously controlled by the iijil various research issues are therefore called for. DRecklat
companies to elicit desirable energy usagel [24]) [29]. Thiesearch issues can be classified in two groups. The firspgrou
smart grid vision entails engaging residential end-usears deals with joint optimization of DR for a set of end-users,
DR programs. Residential loads have the potential to offathich will be termed hereafter multi-user DR. The second
considerable gains in terms of flexible load response, tsecagroup focuses on optimal algorithm design for a single smart
their consumption can be adjusted—e.g., an air conditioningeter with the aim of minimizing the electricity bill and the
unit (A/C)—or deferred for later or shifted to an earlieuser discomfort in response to real-time pricing signaéche
time. Examples of flexible loads include pool pumps ampproach has unique characteristics, as explained next.
plug-in (hybrid) electric vehicles. The advent of smartdgri Multi-user DR sets a system-wide performance objective
technologies have also made available at the residential leaccounting for the cost of the energy provider and the uder sa
energy storage devices (batteries), which can be chargéd &fiaction. Joint scheduling must be performed in a distadu
discharged according to residential needs, and thus tatesti fashion, and much of the effort is to come up with pricing
an additional device for control. schemes that achieve this goal. Privacy of the customers

Widespread adoption of DR programs can bring significamtust be protected, in the sense that they do not reveal their
benefits to the future grid. First, the peak demand is redasedindividual power consumption preferences to the utilityt the
a result of the load shifting capability, which can have majalesired power consumption profile is elicited by the pricing
economical benefits. Without DR, the peak demand must bignals. One of the chief advantages of joint DR schedulimng f
satisfied by generation units such as gas turbines that can tonultiple users is that the peak power consumption is reduced
on and be brought in very fast during those peaks. Such urdis compared to a baseline non-DR approach. The reason is
are very costly to operate, and markedly increase the &iggtr that joint scheduling opens up the possibility of loads gein
wholesale prices. This can be explained in a simple mannerdayanged across time so that valleys are filled and peaks are
recalling the ED problem and specifically {14). Consideringhaved.

a gas turbine that is brought in and does not operate at it<On the other hand, energy consumption scheduling formu-
limits, (14) implies that\* = C"(Pz, ). Expensive units lations for a single user can model in great detail the variou
have exactly very high derivativ€’, that is, increasing their smart appliance characteristics, often leading to diffiooh-
power output requires a lot of fuel. convex optimization problems. This is in contrast with the

A second benefit of DR is that it has the potential twast majority of multi-user algorithms, which tend to adept
reduce the end-user bills. This is due to the time-basedhgric more abstract and less refined description of the end-users’
schemes, which encourage consumption during reduced-pischeduling capabilities. More details on the two groups of
hours, but also because the wholesale prices become lgszblems are given next.
volatile as explained earlier, which means that the elgttri 1) Multi-user DR: ConsiderR residential end-users, con-
retailers can procure cheaper sources. A third benefit is tiected to a single load-serving entity (LSE), as illusttate
DR can strengthen the adoption of renewable energy. TRig[9. The LSE can be an electricity retailer or an aggregator
reason is that the random and intermittent nature of renlewatwvhose role is to coordinate th& users’ consumption and
energy can be compensated by the ability of the load to follgwesent it as a larger flexible load to the main grid. The time
such effects. More light into the latter concept will be slied horizon consists of" periods, which can be a bunch of 1-hour
Sec[1V-D. or ten-minute intervals. User has a set of smart appliances

DR is facilitated by deployment of thadvanced metering A,.. Let pf,, be the power consumption of applianc®f user
infrastructure (AMI), which comprises a two-way commu-r at time periodt (typically in kwh), andp,., a7 x 1 vector
nication network between utility companies and end-usecsllecting the corresponding power consumptions acrass.sl
(see Fig[B)[[24],[129]. Smart meters installed at end-users The LSE incurs cosf*(s!) for providing energys’ to the
premises are the AMI terminals at the end-users’ side. Thasgers. This cost is essentially the cost of energy procureme
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- 4;&1 relaxation and Newton method [62]; and dual decomposition
4 i Communication Network with the bisection and lllinois methods [39].
Wein S et Bl U i) B 4 Formulation [[IB) refers to ahead-of-time scheduling. Real
Electicty Distribution time scheduling is also important. A real-time load resgons
approach operating on a second-to-second scale is dedelope
Fig. 9. Power network consisting of electricity end-userd the LSE. in [41] and references thereof. The aim is to have the agtgega

power consumption of a set of thermostatically controlled

loads (TCLs), such as A/C units, follow a desired signal.
from the wholesale market or through direct contracts witliodel predictive control is employed to this end. Moreover,
energy generation units, and may also include other operatbrder to come up with a simple description of the state space

and maintenance costs. Each user also adopts a utility furfodel pertaining to the set of TCLs, system identification
tion U,..(pr«), Which represents user willingness to consumgeas are brought to bear.

power. 2) Single-user DRThe problems here focus on minimizing
The prototype multi-user DR problem takes the followinghe total cost due to energy consumption or the peak instanta
form neous cost over a billing interval (or possibly a combinatio

T R thereof). User comfort levels and preferences must also be
min Ct(sh) — U,o(Pra 18a) taken into account.
{s"hAprat ; ) ;a; (Pra) (182 Detailed modeling of appliance characteristics and sdhedu
R ing capabilities typically introduces integer variablesoi
subj. tos* = Z Z pl., t=1,...,T (18b) the formulation, which is somewhat reminiscent of the unit
r=1a€cA, commitment problem [cf.[(A7)]; see e.gl. [64]. [40[._[74]
Pra € Pra, a €A, 7=1,...,R (18c) and references therein. Solution approaches include stan-
gmin < gt < gmax g T (18d) dard mixed-integer programming technlques—e.g., pranch-
and-bound, Lagrangian relaxation, dynamic programming—as
Clearly, the objective is optimizing the systersiscial welfare  well as random search methods such as genetic algorithms and
Constraint [I8b) amounts to a balance equation for each perticle swarm optimization. An interesting result is thditen
riod. Moreover, the seP,., in (I83) represents the schedulinghe problem is formulated over a continuous time horizon and
constraints for every appliance, while constrainf {18d)rims accounts for the fact that appliances can be turned on or off
the power provided by the LSE. anytime within the horizon, then it has zero duality gap [22]
Problem [(I8) is convex as long aS*(s') is convex, Real-time approaches have also been pursued. A linear
Uy,o(pra) is concave, and sef®,, are convex. This is typically programming DR model with robustness against price un-
the case, and different works in the literature address Dfiyus certainty and time-series-based price prediction fronmoper
versions of the previous formulation [11], [56], 68, [23]to period is developed in_[15]. Moreovef, |60] focuses on
Various examples of appliance models—including batteriesTCLs, and specifically, on a building with multiple zonesttwi
together with their utility functions and constraint sesm@lso each zone having its own heater. The aim is to minimize the
be found in the aforementioned works. peak instantaneous cost due to the power consumption of all
Problem [IB) as described so far amounteet@rgy con- heaters, while keeping each zone at a specified temperature
sumption schedulingAnother instance of DR that can beinterval. The problem is tackled through a decompositidn in
described by the previous formulationlgad curtailment In @ master mixed-integer program and per zone heater control
this context, there is an energy deficit in the main grid for $ubproblems.
particular time period, and the LSE must regulate the power
consumption to cover for this deficit. The situation can be. Plug-in (Hybrid) Electric Vehicles
captured in[(IB) by setting = 1 (single time period), and the As an important component of the future smart grid vi-
power deficit ag™i® = s™#* = 5, The costC* does not affect sion, electric vehicles (EVs) including plug-in (hybridVE
the optimization, while the negative &%.,(p..) represents the (P(H)EVs) are receiving a lot of attention. A global driving
discomfort of the end-user due to the power curtailmentheo tfactor behind the research and development efforts on EVs
total discomfort— )" U,.(prq) is minimized. This problem is the environmental concern of the greenhouse gases dmitte
is addressed i@Z]EBQ] and the references therein. by the conventional fossil fuel-based transportation. As t
One of the main research objectives regarding (18) is tature grids accommodate the renewable energy resources in
solve the scheduling problem in a distributed fashion, eith an increasing scale, the carbon footprint is expected to be
having the functiondJ,.,(p,.) and setsP,., communicated markedly curbed by high EV penetration. Electric driving
to the LSE in order to respect customer privacy. Algorithmialso bears strategic relevance in the context of growing in-
approaches typically entail message exchanges between téraational tension over key natural resources includingle
LSE and the users or among the users, and lead to differeiit From the simple perspective of improving overall energ
pricing interpretations and models. Specific approaches #ifficiency, electrification of transportation offers an ebent
clude gradient projection [11]; block coordinate desc&®; potential.
dual decomposition and subgradient method [23]] [62]; the PEVs interact directly with the power grid through plug-in
Vickrey-Clarke-Groves (VCG) mechanism _[68]; Lagrangiacharging of built-in batteries. As such, judicious contamid
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optimization of PEV charging pose paramount challenges awntiere D(¢) is the given base demand, andr, specify

opportunities for the grid economy and efficiency. Since PEMe limits on charging rates, and, represents the total

charging constitutes an elastic energy load that can be tinemergy expended for charging PEVto the desired state-of-

shifted and warped, the benefits of DR are to be magnifielarge (SoC). The formulation is referred to as “valleyrigl

when PEV charging is included in DR programs. In fact, aa [21], as it schedules PEV loads in the valleys of the base

the scale of PEV adoption grows, it is clear that smart codead curve.

dination of the charging task will become crucial to mitggat An optimal solution to [(I9) can be obtained iteratively

overloading of current distribution networks [13], [85L8]. [21]. Supposing that the initial pricing signaf(t) = D(t),

Without proper coordination, PEV charging can potentially = 1,2,...,7, and the initial charging profiles () are

create new peaks in the load curves with detrimental effedtientically zero for iterationk = 0, each PEVn updates

on generation cost. On the other hand, it is possible for thbarging profiles**! via

PEV aggregators that have control over a fleet of PEVS to T N

provide ancillary services by modulating the charging iiate min Zpk(t)rn(t) + = (Tn(t) — Tfl’(t))Q (20a)

the vehicle-to-grid (V2G) concept [72]. This in turn allowse HC—) 2

utilities to depend less on conventional generators wittlgo T

reserve capacities, and facilitates mitigation of the witia subj.tor, <r, =T, andz rn(t) = Bp. (20b)

of renewable energy resources integrated to the grid [3&. T t=1

aforementioned topics are discussed in more detail next. A central entity such as the utility or a PEV aggregator then
1) Coordination of PEV Chargingit is widely recognized collects the profiles{r’!} from all PEVs, and updates the

that uncoordinated PEV charging can pose serious issuespoiging signal as

the economy of power generation and the quality of power de- N
livered through the distribution networks. PEVs are eqeibp PPt (t) = D(t) + Z rETL(E). (21)
with batteries with sizable capacities, and it is not difficu n=1

to imagine that most people would opt to start charging thefihe new pricing signals are then fed back to the PEVs and
vehicles immediately after their evening commute, which the procedure iterates until convergence. It is clear figf) (
the time of the day that already exhibits a significant peak that the per-vehicle objective il (20a) corresponds to & firs
power demand [18]. Fortunately, the smart grid AMI reviewedrder estimate of the overall objective in_(19a), augmented
in Sec[1V-B provides the groundwork for effective schedgli with a proximal term. The overall procedure turns out to be a
and control of PEV charging to meet the challenges and sustprojected gradient search.
mass adoption. 2) Integration with Renewables and V2@&:is only when

A variety of approaches have been proposed for PEV chathe wide adoption of PEVs is coupled with large-scale inte-
ing coordination. The power losses in the distribution rekw gration of renewable energy sources that the emission gmobl
were minimized by optimizing the day-ahead charging rat&n be alleviated, as the conventional generation itseif co
schedules for given PEV charging demands [in] [13]. RedHbutes heavily to the emission. However, renewable gnerg
time coordination was considered [n [18], where the cost dgeurces are by nature intermittent, and often hard to pradic
to time-varying electricity price as well as the distrilauti curately. By allowing the PEV batteries or fuel cells to siypp
losses were minimized by performing a simple sensitivitiheir stored power to the grid based on the V2G concept, it was
analysis of the cost and accommodating the charging gesrit observed in[[38] that photovoltaic (PV) resources harriebge
Extending recent results on globally optimal solution of ththe EVs could competitively provide peak power (since the PV
OPF problem via its Lagrangian dudl [46], the optimalitpower becomes highest few hours earlier than the daily load
of similar approaches for PEV coordination problems waseak quite predictably), and large-scale wind power coeld b
investigated in[[71]. stabilized for providing base power, via intelligent cahtr

Interestingly, PEV charging can be also pursued in a disor specific control strategies to accomplish such benefits,
tributed fashion. Further, optimizing feeder losses ofritig- formulations that maximize the profit for providing anaifa
tion networks, load factor, and load variance are oftergiméervices were considered in_[72] and references therein.
equivalent problemg [73]. Leveraging the latter, mininima ~ 3) Charging Demand PredictionAn important prerequisite
of load variance was investigated in [21]. Specifically, thisk to support optimal coordination of PEVs is modeling
optimal day-ahead charging profiles := [r,,(1),...,7.(T)] and prediction of the PEV charging demand. The probability

for vehiclen € {1,..., N} over aT*-slot horizon, are obtained distributions of the charging demand were characterized in
by solving [51] and references therein. Spatio-temporal PEV charging
demand was analyzed for highway traffic scenarios using a
T N 2 fluid traffic model and a queuing model inhl[4]. However,
rl{%}?f;N Z (D(t) + Z Tn (ﬂ) (19a) there are many interesting issues remaining that deservefu
' t=1 n=1 research in this forecasting task.

<r, Xt,, n=1,....N (19b)
D. Renewables

r,
T

Zrn(t) =B, n=1,...,.N (19¢) The theme of Se¢_TVZA has been economic scheduling of
t=1 generators, which consume non-renewable fuels. The subjec
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of the present section is on including generation from reneimmediately obtained from the one ih_{23)) is often called
able energy sources (RESs), with the two prime exampliess of load probability. Related sophisticated method&lwh
being wind and solar energy. RESs are random and intaccount for chance constraints are also described in [82]. A
mittent, which makes themondispatchableThat is, RESs alternative approach not requiring the joint spatio-terapo
are not only hard to predict, but their intermittency givewind distribution is presented in [92].
rise to high variability even within time periods as short 3) Robust (Minmax) OptimizationThis approach postu-
as 10 minutes. Therefore, they cannot be readily treated |ags that the power generation from all RESs across space
conventional generators, and be included in the formulataf and time belongs to a deterministic uncertainty set. The aim
Sec[IV-A. In this context, methods for integrating genemt is to minimize the worst-case operational costs, whileirggtt
from RESs to the smart grid operations are outlined next. the dispatchable generation and other optimization vkasato

1) Forecast-Based Method3b illustrate the forecast-basedsuch levels so that the balance is satisfied for any possiB& R
methods, recall the ED problem [cf{13)], and suppose thatitput within the uncertainty set. The main attractive teat
there is also a wind power generator that can serve the loadre is that no detailed probabilistic models are needeti On
The output of the wind power generator for the next timghe uncertainty set must be obtained, e.g., from histodatd,
period is a random variable denoted By. It is assumed that or, meteorological factors.
a forecasti’ is available, and that the wind power generator A robust version of UC [cf.[{17)] is presented next. Fol-
has no cost (as it does not consume fuel). Then, the balansging the notation of Sed_IVAA, it is postulated that there

constraint is replaced by [c_(IBb)] are RESs with power output’!, per bus and time period.
N, Let w := {W} },..t, andW denote the uncertainty set for.
ZPG&, —P, - W (22) Thg optimizatiorl variables are set in'two stages. The on/off
= variablesu := {u!, },, . are chosen during the first stage. The

power generation variables and bus angles are set afteB8e R

while the remainder of the ED problem remains the sam§q e output is realized—which constitutes the second stage
Since the load is actually forecasted (cf. Sec. TI-D3), CORperefore, the power outputs and bus angles are functions of

straint [22) essentially treats the uncertain RES no differ o commitments as well as the RES power outputs, and are

than a negative load. , _ denoted asP!, (u,w) and#!,(u, w). The robust two-stage
In order for the forecast to be accurate, the time period pj problem takes the form

ED is recommended to be short, such as 10 minutes. Building

on this, a multi-period ED is advocated in_[32], where the T N
main feature is a model-predictive control approach with a minet Z St ({ul o)
moving horizon. Specifically, the ED over multiple periods ™t ém (%) 0m(ww)l =7 =)
and accompanying forecasts is solved for e.g., 6 ten-minute r M

i i ion is di +max Y Y CL(PL (u,w))
periods representing an hour. The generation is dispatched A m\a,, (W,
during the first period according to the obtained solution. t=1m=1

Then, the horizon is moved, and a new multi-period ED with (242)

updated forecasts is solved, whose results are appliedtonly Subj. to
the next period, and so on. Such a method can accommodaf&7é) (I 79), (I70) (24b)
the ramping constraints, and is computationally efficient. (73) (I7d) (I7d)

2) Chance-Constrained Method§o account for the ran- P (u,w)+ W =Pt

dom nature of RES in ED, the probability distribution of + Z b [08, (0, W) — 0% (1, w)]
W comes handy. Specifically, the constraint is now that the nENm " "
supply-demand balance holds with high probability say Yw e W. (24c)

99%. Hence,[(22) is substituted by the chance constraint

The objective [[24a) consists of the startup/shutdown costs
related to the on/off scheduling decisions, as well as thestvo
case generation costs. The constraints[in](24b) pertaiyn onl
to the on/off variables, and are identical to those in the UC
Note that the equality of the balance equation has beproblem. The remaining UC constraints must be satisfied for
replaced by an inequality il (23), because excess power frath possible realizations of the uncertain RES, as indtate
RESs can in principle be curtailed. in 244).

To solve the chance-constrained ED, the distributiomof  The solution of problem[{24) proceeds as follows. The
must be known. For wind power, this is derived from the windn/off decisionsu!, determine the UC ahead of the horizon
speed distribution, and the speed-power output mappinigeof {1, ...,7}. Then, at each period, after the RES power output
generator[[49]. The most typical speed distribution is Whjb is realized, functionng7n(u7w) yield the power generation
while the speed-power output mapping is nonlinear. Evigientdispatch. The punch line of this two-stage robust program
this approach poses formidable modeling and computing chil that generation becomes adaptive to the RES uncertainty.
lenges when multiple RESs and their spatio-temporal anrrelSolution methods typically involve pertinent decompasit
tion are considered. The probability that the load is notesgtr and approximationg [93][6].

N!}
Prob [Y Pg,+W > Pp| > . (23)

=1
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6) Network Optimization Based on Long-Term Average
Criteria: This approach relies on queueing-theoretic and
Lyapunov-based stochastic network optimization methods
popular in resource allocation tasks for wireless netwobks
load-serving entity obtaining energy from the market asl wel
Fig. 10. Distributed control and computation architecture microgrid sys- as from .RI.ESS. 'S cons@ered IE[SQE:[S.]']'. The o'bjectlve IS
tem. The microgrid energy manager (MGEM) coordinates the lczatrollers  COSt Minimization or social welfare maximization in a long-
(LCs) of DERs and dispatchable loads. term average fashion over an infinite horizon, and the datisi

variables include pricing and power provided to end-ussgs;

A different robust approach for energy management &iso [43] for energy storage management policies.
microgrids is pursued in[[91]. Microgrids are power sys-
tems comprising many distributed energy resources (DERS) V. OPENISSUES
and electricity end-users, all deployed across a limited- ge Although the SP research efforts on power grid are fast
graphical area. Depending on their origin, DERs can cong@owing, there are a lot of open issues awaiting investiga-
either from distributed generation (DG), meaning smadllsc tion. Regarding situational awareness, integrating |pcaver
power generators based on fuels or RESs, or from distribuigglds into interconnections poses modeling and compuratio
storage (DS), such as batteries. The case where a microgfigllenges. Monitoring grids of dimensionality and detaills
is connected to the main grid, while energy can be sold gr scalable and modular algorithms. To communicate and
or purchased from the main grid, is consideredlin [91]. Thsrocess the massive volume of measurements in real time
approach adopts a worst-case transaction cost. Levertiggngwith tractable complexity, the issues related to compregsi
dual decomposition, its solution is obtained in a distelit |ayering, relaying, and storing these data must be coresider
fashion by local controllers of the DG units and dispatchabtoo. The “big data” challenges further extend to addressing
loads. the missing data and the under-determinacy of the resultant

4) Scenario-based Stochastic Programmirithis method systems of equations, as well as model reduction tasks, for
also amounts to a two-stage adaptive approach, albeit invBich contemporary statistical learning approaches cptid
different manner than the previous one. Here, a discrete ggfe viable solutions.
of possible scenarios for the RES power output across theThe control and optimization dimensions entail converaion
horizon is considered. For instance, considering 8 houtis wyeneration as well as RESs, interconnected via transmissio
power output taking 7 possible values, there &tepossible and distribution networks, serving large industrial cuséos
scenarios. A probability is attached to a each of these sisnaand residential end-users with smart appliances and P(8)EV
(or only to a selection thereof). Similar t0 (24a), the objec as well as microgrids with distributed generation and sfera
includes startup/shutdown costs due to on/off scheduBug. SP researchers can cross-fertilize their ample expertise o
instead of a worst-case part, the expected cost of generatigsource allocation gained in the context of communication
dispatch with respect to the scenario probabilities isuidetl networks to optimize power network operations. Major chal-
in the objective. lenges include the successful coordination of system-leve

The aforementioned approach is pursuedlin [9], wherelkyonomic operations such as OPF and UC, while embracing
the scheduling of spinning reserves is also included. 3piNn small-scale end-users through DR and coordinated P(H)EV
reserve is generation capacity that is not currently used dRarging. Integrating random and intermittent RESs acatiss
serve the load, but is connected to the system (spinning) d8dels poses further challenges. Issues related to |eveysoe
is available to serve the load in case there is loss of gaoarat markedly improved monitoring modalities in grid operagon
Spinning reserves are instrumental components of any povége worth careful study. Albeit research efforts tacklingii
system, and the premise here is that they can be provisionggual problems have yielded promising outcomes, achgvin
in @ manner adaptive to the RES uncertainty. the grand goal of reliable and efficient grid operations sills

5) Multi-Stage Stochastic Dynamic Programminithe aim  for novel formulations, insightful approximations, intagon,
here is to address the decision making challenges for an L&kd major algorithmic breakthroughs.
obtaining energy from the market as well as from RESs (cf.
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