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ABSTRACT or simply because dimensionality reduction is invoked foeco

with the “curse of dimensionality,” the linear model is afte

One of the key challenges in sensor networks is the extrac- o . .
. . . . imesunder-determinedi.e., the dimension of the unknown
tion of trusted and relevant information by fusing data from . ! . . .

variable is larger than the dimension of a single sensor ob-

a multitude of heterogeneous, distinct, but possibly unrel o . :
. . ) servation; (c3) Not all sensors areliable because failures
able or irrelevant sensors. Recovering the desirable view 0 ) . .
: ; In the sensing devices, fades of the sensor-agent communi-
the environment from the maximum number of dependable . = . . )
) o . : : c;rat|on link, physical obstruction of the scene of interasigl
sensors while specifying the unreliable ones is an issue : . ) .
. . : Zun)lntentmnal interference, all can severely detet®itae
paramount importance for active sensing and robust opera- 7. L
. A X - ~. consistency and reliability of sensor data.
tion of the entire network. This problem of robust sensing is - _
formulated here, and proved to be NP-hard. In the quest of Conditions (c1)-(c3) suggest that the fusion center should
sub-optimum but practically feasible solutions with quént not simply aggregate all sensor measurements. A joint detec
able performance guarantees, two algorithms are developd@n and parameter estimation task based on reliable sensor
for selecting reliable sensors via convex programming. Théata, henceforth referred to asbust (active) sensin(RS),
first relies on a convex relaxation of the original problem,should be performed instead. Discerning the unreliable sen
while the second one is based on approximating the initia$ors promises higher estimation accuracy, and also enables

objective function by a concave one. Their performance i§orrective actions to re-establish a sensor’s reliabitigye.g.,
tested analytically, and through simulations. remotely directing the sensor to the area of interest, er, in
creasing its sensitivity.
1. INTRODUCTION One possible approach to addressing this RS challenge
is to formulate it as a robust estimation problem [10], [15].
Recent advances in sensor technology have made it feasid#fortunately, such a formulation treats each linear eqoat
to deploy a network of inexpensive sensors for carrying ouseparately, and ignores the per-sensor structure of the pro
synergistically even sophisticated inference tasks. plieg-  |€m. Alternatively, one could approach RS asemsor selec-
tions such as environmental monitoring, surveillance if-cr tion [11], or, as a D/A/E-optimal experimental design prob-
cal infrastructure, agriculture, or medical imaging, thegical  lem [3, Sec. 7.5]. However, both approaches refer to the de-
concept of operation involves a large and possibly heterogé&ign phase of a sensor network (experiment), and are based on
neous set of sensors locally observing the signal of interessuitably defined criteria to choose a subset of predetednine
and transmitting their measurements to a higher-layertagen Sensors (inputs), without having acquired any observation
This so-termed layered sensing apparatus entails three op- The present contribution first shows that the RS task can
erational conditions: (cl) Each node’s measurement vectaje formulated and proved equivalent to an NP-hard problem.
comprising either scalar observations across time, or p-snaThen it develops two (sub-) optimum yet computationally af-
shot of different sensor readings, is typically linearljated  fordable solvers. The first one relies on a convex relaxatfon
to the unknown variable. Suchiaear model can arise when the original NP-hard problem, which can be efficiently sdlve
the sensing system is viewed as a linear filter with a knowms a second-order cone program (SOCP). It is also shown that
impulse response, or when a complex phenomenon is linearfgr measurement matrices drawn from the Gaussian ensem-
represented over a fixed basis; (c2) Either because readingr, and under reasonable conditions on the problem dimen-
are costly to sense and transmit, or due to delay constraintsions, the SOCP approach is exact almost surely. In the sec-
This research was supported by the Marie Curie Intl. Outyéiellow- ond method, the original objective function is surrogatgd b

ship “DIESIS™No. 234914 within the? European Community Framework & concave funCt_ion’ which is (locally) minimized through a
Programme. sequence of weighted SOCPs.




#\ liable systems may arise due to obstruction, fading propaga
tion effects, sensor failures, jamming, or, even because se
sors collect data corresponding to an irrelevehtt x; see
Fig. 1.

Using an auxiliary vectot € R* and letting||t||o denote
its £o-(pseudo)norm, the RS problem can be formulated as

Inlgl{HtHO : Hbz_AzXH2 :ti, 1= 1,,]{?} (1)

If the i-th subsystem is feasible, thén = 0; otherwise,t;
is strictly positive and the cost increases. The problems(1)
equivalent to

Fig. 1. A wireless sensor network linked with a fusion center

(UAV). (Un)reliable sensors are color coded as (red) green. which entai_ls convex constra_ints, but rem_ains NnonN-ConNvex.
Supposing that there exist at leasteliable sensors, a

naive approach to tackle?() would be to check the feasibil-
2. PROBLEM STATEMENT AND PRELIMINARIES ity of all the (’;) linear systems formed byout of &£ subsys-
tems. But this approach incurs combinatorial complexityg a
Consider an agent, e.g., an unmanned aerial vehicle (UAVEan only be computationally feasible for small-size netsor
collecting data vectorfb;, = A;x}*_, from k sensors, where Unfortunately, the following result holds.
the m; x n matrices are known, whil& € R™ denotes the
unknown vector of interest. The task of estimatings chal-  Proposition 1. The RS problem is NP-hard.

lenged by the fact that certain subsystems of equations are ) ] )
inconsistent in the sense that a commosatisfies only an Proof. Consider first the related to RS problem of consistent

unknown subsetif sensors. Theoal of robust sensing is to Inéar equations maximization (CLEM)Given a system of

obtain anx satisfying the maximum number of linear subsys-inéar equationsCx = d, whereC < R”*" andd € R”,
tems of equations. find a vectorx € R™ satisfying as many equations as possi-

Vectorx could model a scene (lexicographically orderedP!e” The CLEM problem is known to be NP-hard [1, Th. 1].

image) of interest viewed by multiple and possibly heterogeNOW notice that CLEM is a special case of RS for= 1 and
neous, e.g., Infrared, SAR, or, Lidar imaging systems. Matr k = p. Hence, if there were a deterministically polynomial-

cesA; may capture variable fields of view, different perspec-ime algorithm for solving Lb), this algorithm could also

tives and resolutions (e.g., in the wavelet domain), oii- cal SCIV& CLEM. This contradicts the NP-hardness of CLEM, and

bration parameters of the respective sensors. Altergtive  €Stablishes the proposition. N

an environmental monitoring applicatior, could represent ) )

the unknown parameters of a chemical/biological compound N S€arch of sub-optimum yet computationally affordable

diffusion field described by the Green’s function which ipca RS Solvers, one could adopt the least-squares (LS) approach

tured in the matrice$A;}*_,, and is measured by a wireless

sensor network deployed over the region of interest.
Suppose without loss of generality that; = m and

rank(A;) = min{m,n}, foralli = 1,...,k The under- Wwhereb” := [b ... b{], andA” := [AT ... AT]. Al-

and over-determined cases are considered separatelye In tiernatively, one could consider a robust estimation method

over-determined cage: > n), each one of the linear systems based on thé, -regression

b; = A;x admits a unique solution whdm, € range(A,);

otherwise, it is not feasible. Thus, the infeasible sulesyst min [[b — Ax||, 3)

can be discarded, and the vector simultaneously satisfying

most of the consistent subsystems is selected readily. Hover, even rely on robust M-estimators [10], [15]. Unfortu-

ever, in the under-determined cage < n), every subsys- nately, all these approaches handle separately everyrlinea

tem admits an infinite number of feasible solutions, and onlyequation, ignore the underlying per-sensor linear subsyst

the fusion center can in principle recover The focus of and more importantly, they cannot reliably identify theemr

this work is on the under-determined case, which apart frorliable sensors. Note also thdty) is reminiscent of the com-

being more challenging, it adheres to stringent power, bandgressive sampling (CS) problem [7, 5]; but neitlketere has

width, delay, or, stationarity constraints. Irrelevantuore- to be sparse, nor the constraints have to be linear.

min b — Ax|3 @



3. ACONVEX RELAXATION Remark 5. For the generian > 1 case, we may define the
residual error vectors; := b; — A;xfori = 1,...,k and
Itis known that ff|t[|c < 1, then]|t||, is the convex envelope the collective vector” := [r] ... r]], and rewrite P;) as
(a.k.a. the largest convex under-estimator) tf; see e.g.,
[3, p- 119]. This has been used for compressed sensing in k
[17], and prompted us to relax the NP-hard problefy) to min {Z [ril[2 : Cr= Cb} ™
i=1

mln{Ht||1 : ||bi—A7;X||2 Sti7 121,7]6} (4)
Xt whereC € R(Fm—n)xkm gych that agailCA = 0. The
The latter is a second-order cone program (SOCP) in the staproblem in (7) has been proposed for the reconstruction of
dard form, and can be efficiently implemented by several exa block-sparsesignalr, i.e., a signal which is partitioned in
isting solvers [3]. By exploiting the implicit constraiit> 0, ~ predetermined blocks that are likely to be zero, through in-
the problem (4) is equivalent to complete linear measurements; see [16] and the references
therein. For the RS task, each block corresponds to the-resid
ual error vector of a sensor.

Having replaced the NP-har@y) with the convex ), a
legitimate question is whether the latter can provide atgwiu
which is still an SOCP, albeit unconstrained. identical to the former. Apparently, due to the NP-hardness

The cost is the sum of thig-norms of the residual vectors of (P), the two solvers cannot be equivalent for every in-
associated with the linear subsystems, it is continuous, bgtance b, A) of the problem. Surprisingly though, by using
non-smooth (almost everywhere differentiable). This probconcentration of measure tools, we have proved the follow-
lem is known in the optimization parlance as thimimization  ing theorem which quantifies the probability of exactness fo
of the sum of (Euclidean) norn®ISN) problem [3, Sec. 6.4]. Gaussian measurement matrices [12].

It has served as a heuristic for optimizing Steiner trees-lo ) ) ) .

tions, as well as in total-variation image restoration feots;  1heorem 1. Consider the matrixA € R*"" with entries

see e.g., [14, Sec. 2.2], and the references therein. Afigori drawn independently fro!\/ (0, 1), and suppose there exist
mically, it can be solved either by generic SOCP solvers,[14]at leasts consistent subsystems. If
or, by customized interior-point algorithms [2], [6]. S+

. . S
The following remarks are now in order. = z > 5

k
m}znz [b; — Aix]|2 (P))
i=1

®)

Remark 1. Interestingly, the LS problem in (2) can be rewrit-
ten as wherey := n/(km), there exist positive; (r,v) andca(r, )
such that whenevemn > c;(r,y)rlog (£), the solution of

(P,) is identical to the solution of ) with probability ex-
ceedingl — e—c1(ry)kmto(km)

rgltn{||t||2 : Hbz — A.»L'XHQ é ti7 1= 1, .. ,k}

which is again a convex approximation afy), though not
the closest one. By using the probability bound of this theorem and the
Remark 2. A problem equivalent to#;) can be obtained by Borel-Cantelli lemma [9], the next result follows readily.
simply squaring its objective function:
Corollary 1. Whenever the quadrupléh, m, k, s) satisfies
ok the conditions of Theorem 1, tt{&;) minimization problem

. 2
min [b—Ax|[3+2 Z Z [bi—Ax|l2[|bj—A;xll2- (5)  recovers the ) solution almost surely as — oo.
i=1 j=i+1

Two comments on the condition (8) are worth mentioning.
Firstly, the condition in (8) implies that > £ /2, meaning that
the reliable sensors should be strictly more than the irisens
tent ones for the relaxation to yield the exact solution with
high probability. Secondly, the inequalitiggy < 2r — 1 <
V/r forr € (0.5,1) lead to the requiremerttn > sm > n,
which implies that not only the initial linear systdm= Ax,
but also the linear system eventually obtained after diogr
the irrelevant subsystems should be over-determined.

This last form reveals thaty) actually minimizes the con-
ventional LS error (2Jegularizedby the sum of the products
of Euclidean error norms between subsystem pairs.
Remark 3. In the degenerate case = 1, where every sub-
system reduces to a single equatioR, )(becomes identical
to a regression problem minimizing tiie-norm of the error,
which is known to be robust against outliers [3], [10].
Remark 4. Assuming againn = 1 and additionallyk > n,
problem (P;) can be equivalently expressed as

min {[|t], : Ct = Cb} (6) 4. A CONCAVE APPROXIMATION

whereC € R(—)** gych thatCA = 0. Problem (6) isin  In the previous section, the nonconvex cfist, was replaced
the form of a basis pursuit (BP) scheme [5]. by its closest convex approximation, naméty|;. However,



by letting the surrogate function to be nonconvex, tighfer a Table 1. Empirical probability of successful recovery of the
proximations are possible. For example, fhgorm of avec-  consistent sensors (%) for= 20, m = 4, andk = 16.

tor x € R™ is surrogated by the logarithm of its geometric
mean, that i$" ", log (|z;|) [4]. Likewise, in the context of

Number of consistent sensors s

the matrix rank minimization problem (RMPyank(X) for Method 6 8 10 12 14
X € S} is replaced byog det(X + I) for a small§ > 0 LS-GA | 100.0| 100.0| 100.0| 100.0| 100.0
[8, Sec. 5.2]. Building on this idea, the problei®] can be LS 0.0 0.0 0.0 0.0 0.0
surrogated by I 00| 00| 11.3| 90.6| 100.0
k Huber 0.0 0.0 0.0 0.0 0.0

min > log (£ +9) (72) Bisquare] 0.0/ 00| 00| 00| 00

ot II?—A-XIIQ i P, 00| 04| 452| 99.2| 100.0

! ! - B Py(1) 1.0| 50.3| 99.0| 100.0| 100.0

where is a small positive constant introduced to avoid nu-
merical instability.
The new problem ) is concave, and its minimization Setup involves a network @f = 16 sensors with size of obser-
is thus nontrivial. However, due to the smoothness of th&ation vectorsn = 4, and an unknown vector of size= 20.
logarithmic function inR”:, local optimization methods can The unknown vector is modeled as ~ A/(0,n~"/?L,),
be employed. Specifically, given an initial poift(®), t(?)), and the entries of ma_ltriA.are drawn. independen.tly from
iterative linearization will lead to a local minimum. Thereo -V (0,1). The comparison includes: (i) the LS estimator of
cavity of the logarithm implies that the first-order approgi ~ (2); (ii) the £, estimator of (3); (iii) the Huber estimator;
tion of log (#; -+ 8) aroundt§0) is upper bounded by (iv) the b|sguare M—est.|mator. [15], .[10]; .(v) theé() es_t!ma-
tor; and (vi) the %) with a single iteration. In addition, a
(t t(°)> ) genie-aidedLS estimator knowing a-priori the reliable sen-
v ) sors serves as a benchmark. Note that for each of the two
robust M-estimators, a cutoff parameter should be specified
By viewing (9) under the majorization - minimization (MM) For our experiments, the parameters were set so that the esti
framework [13], instead of minimizinpg (¢; 4-9), itis possi-  mators are 95% efficient to the normal distribution [15]. Sim
ble to minimize itsmajorizingcost function on the right-hand jlar simulation tests were performed for other values.
side of (9), and then iterate. Thus, the problefh)(can be In the first scenario, a subset ofc [6,14] sensors have

iteratively driven to a (local) minimum as consistent observatiots = A;x,, while the remainingk —

IOg (ti + 5) < IOg (tl(o) + 5) + m

& s) unreliable sensor data are modeledbas~ N(0,1,,),
(x(U,t(l)) .= arg min (l,f; SO tha_tE[||bi||§] =m for aII_ sensors. The reliable sensor
xt =t +4 detection probability is empirically estimated througbdQ
st |b; — Aix|ls <ti, i=1,....,k, Monte Carlo experiments. An estimakeis considered to
have successfully recovered the dependable subset, wdrenev
or equivalently, |b;—A;%|ls < 10~* for all consistent sensors. As evidenced

by Table 1, the LS, the Huber, and the bisquare estimatdrs fai
to recover the reliable subset. The novel scheme correspond
ing to (P;) has a clear advantage over theestimator, while
. the empirical detection probability further improves foet
w® = <||bi —AxY)y 4 5) ,i=1,...,k. (11) (&) method, even after a single iteration.

In a second more practical scenario, there are 14
Remarkably, this iterative method involves convex optawiz reliable sensors but their measurements do not exactly sat-
tion of the weighted cost in (10) at every iteration. When thesfy the linear equations; instead, they obey the noisy mode
residual error of a sensor is small, the sensor becomes mogg = A,x, + v;, where the noise is distributed as ~
influential at the minimization of the next iteration. Iteoms ./\/'(()7 O'QIm). The vector, and the matrixA follow the same
can be initialized by the solution of thé*() problem, which  model as in the previous experiment. For the unreliable sen-

k
x) = arg minz wgl) IIb; — A;x||2, where (10)

i=1

corresponds to one iteration of (10) with equal weights. sors,b; ~ N (0, (1 + 02)I,,,), so thatE[||b;||2] remains the
same for all sensors. The average signal-to-noise rati®jSN
5. SSIMULATED TESTS is defined over the reliable sensorslédog,, o 2. The fig-

ure of merit in this setup is the mean-square error (MSE),
In this section, the performance of the developed methodB||x, — %||2], which is empirically estimated over 10,000
is evaluated through computer simulations. The simulatiofMonte Carlo experiments.
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Fig. 2. MSE performance fofn, m, k, s) = (20,4, 16, 14).

The MSE curves plotted in Fig. 2 confirm that the LS es-

timator is not appropriate for the RS problem. Theand

the Huber estimators belong to a second tier of MSE perfor-

mance, while the;), the bisquare, and thé>) estimators

perform comparably. In the high SNR regime, the perfor-
mance of ;) is improved by just a single re-weighting per-
formed by (7). The results of Fig. 2 should be examined

jointly with the probabilities of Table 1 fog = 14, which
correspond to the asymptotic SNR regime (SNRo). Itis

evident that the proposed robust sensing methods can sim
taneously attain high estimation accuracy, and high detect

probability without having to tune a cutoff parameter.

6. CONCLUSIONS

This paper dealt with selecting reliable sensors, a problem
inherently challenging the performance of robust activesse

ing applications. The quest for a joint sensor detector an
parameter estimator led to an NP-hard problem. Two sub-
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optimum alternatives were developed based on a convex re-

laxation and a concave approximation of the original objec-

tive function. Both methods can be efficiently implemented[14)

by SOCP solvers. Analysis and corroborating simulatiors es
tablish that the novel schemes can provide high estimation

accuracy and high detection probability.
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