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ABSTRACT

One of the key challenges in sensor networks is the extrac-
tion of trusted and relevant information by fusing data from
a multitude of heterogeneous, distinct, but possibly unreli-
able or irrelevant sensors. Recovering the desirable view of
the environment from the maximum number of dependable
sensors while specifying the unreliable ones is an issue of
paramount importance for active sensing and robust opera-
tion of the entire network. This problem of robust sensing is
formulated here, and proved to be NP-hard. In the quest of
sub-optimum but practically feasible solutions with quantifi-
able performance guarantees, two algorithms are developed
for selecting reliable sensors via convex programming. The
first relies on a convex relaxation of the original problem,
while the second one is based on approximating the initial
objective function by a concave one. Their performance is
tested analytically, and through simulations.

1. INTRODUCTION

Recent advances in sensor technology have made it feasible
to deploy a network of inexpensive sensors for carrying out
synergistically even sophisticated inference tasks. In applica-
tions such as environmental monitoring, surveillance of criti-
cal infrastructure, agriculture, or medical imaging, the typical
concept of operation involves a large and possibly heteroge-
neous set of sensors locally observing the signal of interest,
and transmitting their measurements to a higher-layer agent.

This so-termed layered sensing apparatus entails three op-
erational conditions: (c1) Each node’s measurement vector
comprising either scalar observations across time, or a snap-
shot of different sensor readings, is typically linearly related
to the unknown variable. Such alinear model can arise when
the sensing system is viewed as a linear filter with a known
impulse response, or when a complex phenomenon is linearly
represented over a fixed basis; (c2) Either because readings
are costly to sense and transmit, or due to delay constraints,
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or simply because dimensionality reduction is invoked to cope
with the “curse of dimensionality,” the linear model is often-
timesunder-determined, i.e., the dimension of the unknown
variable is larger than the dimension of a single sensor ob-
servation; (c3) Not all sensors arereliable because failures
in the sensing devices, fades of the sensor-agent communi-
cation link, physical obstruction of the scene of interest,and
(un)intentional interference, all can severely deteriorate the
consistency and reliability of sensor data.

Conditions (c1)-(c3) suggest that the fusion center should
not simply aggregate all sensor measurements. A joint detec-
tion and parameter estimation task based on reliable sensor
data, henceforth referred to asrobust (active) sensing(RS),
should be performed instead. Discerning the unreliable sen-
sors promises higher estimation accuracy, and also enables
corrective actions to re-establish a sensor’s reliability, by e.g.,
remotely directing the sensor to the area of interest, or, in-
creasing its sensitivity.

One possible approach to addressing this RS challenge
is to formulate it as a robust estimation problem [10], [15].
Unfortunately, such a formulation treats each linear equation
separately, and ignores the per-sensor structure of the prob-
lem. Alternatively, one could approach RS as asensor selec-
tion [11], or, as a D/A/E-optimal experimental design prob-
lem [3, Sec. 7.5]. However, both approaches refer to the de-
sign phase of a sensor network (experiment), and are based on
suitably defined criteria to choose a subset of predetermined
sensors (inputs), without having acquired any observations.

The present contribution first shows that the RS task can
be formulated and proved equivalent to an NP-hard problem.
Then it develops two (sub-) optimum yet computationally af-
fordable solvers. The first one relies on a convex relaxationof
the original NP-hard problem, which can be efficiently solved
as a second-order cone program (SOCP). It is also shown that
for measurement matrices drawn from the Gaussian ensem-
ble, and under reasonable conditions on the problem dimen-
sions, the SOCP approach is exact almost surely. In the sec-
ond method, the original objective function is surrogated by
a concave function, which is (locally) minimized through a
sequence of weighted SOCPs.



Fig. 1. A wireless sensor network linked with a fusion center
(UAV). (Un)reliable sensors are color coded as (red) green.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider an agent, e.g., an unmanned aerial vehicle (UAV),
collecting data vectors{bi = Aix}k

i=1 fromk sensors, where
the mi × n matrices are known, whilex ∈ R

n denotes the
unknown vector of interest. The task of estimatingx is chal-
lenged by the fact that certain subsystems of equations are
inconsistent in the sense that a commonx satisfies only an
unknown subsetof sensors. Thegoal of robust sensing is to
obtain anx satisfying the maximum number of linear subsys-
tems of equations.

Vectorx could model a scene (lexicographically ordered
image) of interest viewed by multiple and possibly heteroge-
neous, e.g., Infrared, SAR, or, Lidar imaging systems. Matri-
cesAi may capture variable fields of view, different perspec-
tives and resolutions (e.g., in the wavelet domain), or, cali-
bration parameters of the respective sensors. Alternatively, in
an environmental monitoring application,x could represent
the unknown parameters of a chemical/biological compound
diffusion field described by the Green’s function which is cap-
tured in the matrices{Ai}k

i=1, and is measured by a wireless
sensor network deployed over the region of interest.

Suppose without loss of generality thatmi = m and
rank(Ai) = min{m,n}, for all i = 1, . . . , k. The under-
and over-determined cases are considered separately. In the
over-determined case(m ≥ n), each one of the linear systems
bi = Aix admits a unique solution whenbi ∈ range(Ai);
otherwise, it is not feasible. Thus, the infeasible subsystems
can be discarded, and the vector simultaneously satisfying
most of the consistent subsystems is selected readily. How-
ever, in the under-determined case(m < n), every subsys-
tem admits an infinite number of feasible solutions, and only
the fusion center can in principle recoverx. The focus of
this work is on the under-determined case, which apart from
being more challenging, it adheres to stringent power, band-
width, delay, or, stationarity constraints. Irrelevant orunre-

liable systems may arise due to obstruction, fading propaga-
tion effects, sensor failures, jamming, or, even because sen-
sors collect data corresponding to an irrelevantx

′ 6= x; see
Fig. 1.

Using an auxiliary vectort ∈ R
k and letting‖t‖0 denote

its ℓ0-(pseudo)norm, the RS problem can be formulated as

min
x,t

{‖t‖0 : ‖bi − Aix‖2 = ti, i = 1, . . . , k} . (1)

If the i-th subsystem is feasible, thenti = 0; otherwise,ti
is strictly positive and the cost increases. The problem (1)is
equivalent to

min
x,t

{‖t‖0 : ‖bi − Aix‖2 ≤ ti, i = 1, . . . , k} , (P0)

which entails convex constraints, but remains non-convex.
Supposing that there exist at leasts reliable sensors, a

naive approach to tackle (P0) would be to check the feasibil-
ity of all the

(

k
s

)

linear systems formed bys out of k subsys-
tems. But this approach incurs combinatorial complexity, and
can only be computationally feasible for small-size networks.
Unfortunately, the following result holds.

Proposition 1. The RS problem is NP-hard.

Proof. Consider first the related to RS problem of consistent
linear equations maximization (CLEM):“Given a system of
linear equationsCx = d, whereC ∈ R

p×n and d ∈ R
p,

find a vectorx ∈ R
n satisfying as many equations as possi-

ble.” The CLEM problem is known to be NP-hard [1, Th. 1].
Now notice that CLEM is a special case of RS form = 1 and
k = p. Hence, if there were a deterministically polynomial-
time algorithm for solving (P0), this algorithm could also
solve CLEM. This contradicts the NP-hardness of CLEM, and
establishes the proposition.

In search of sub-optimum yet computationally affordable
RS solvers, one could adopt the least-squares (LS) approach

min
x

‖b − Ax‖2
2 (2)

whereb
T :=

[

b
T
1 . . . b

T
k

]

, andA
T :=

[

A
T
1 . . . A

T
k

]

. Al-
ternatively, one could consider a robust estimation method
based on theℓ1-regression

min
x

‖b − Ax‖1 (3)

or, even rely on robust M-estimators [10], [15]. Unfortu-
nately, all these approaches handle separately every linear
equation, ignore the underlying per-sensor linear subsystem;
and more importantly, they cannot reliably identify the unre-
liable sensors. Note also that (P0) is reminiscent of the com-
pressive sampling (CS) problem [7, 5]; but neitherx here has
to be sparse, nor the constraints have to be linear.



3. A CONVEX RELAXATION

It is known that if‖t‖∞ ≤ 1, then‖t‖1 is the convex envelope
(a.k.a. the largest convex under-estimator) of‖t‖0; see e.g.,
[3, p. 119]. This has been used for compressed sensing in
[17], and prompted us to relax the NP-hard problem (P0) to

min
x,t

{‖t‖1 : ‖bi − Aix‖2 ≤ ti, i = 1, . . . , k} . (4)

The latter is a second-order cone program (SOCP) in the stan-
dard form, and can be efficiently implemented by several ex-
isting solvers [3]. By exploiting the implicit constraintt ≥ 0,
the problem (4) is equivalent to

min
x

k
∑

i=1

‖bi − Aix‖2 (P1)

which is still an SOCP, albeit unconstrained.
The cost is the sum of theℓ2-norms of the residual vectors

associated with the linear subsystems, it is continuous, but
non-smooth (almost everywhere differentiable). This prob-
lem is known in the optimization parlance as theminimization
of the sum of (Euclidean) norms(MSN) problem [3, Sec. 6.4].
It has served as a heuristic for optimizing Steiner trees, loca-
tions, as well as in total-variation image restoration problems;
see e.g., [14, Sec. 2.2], and the references therein. Algorith-
mically, it can be solved either by generic SOCP solvers [14],
or, by customized interior-point algorithms [2], [6].

The following remarks are now in order.
Remark 1. Interestingly, the LS problem in (2) can be rewrit-
ten as

min
x,t

{‖t‖2 : ‖bi − Aix‖2 ≤ ti, i = 1, . . . , k}

which is again a convex approximation of (P0), though not
the closest one.
Remark 2. A problem equivalent to (P1) can be obtained by
simply squaring its objective function:

min
x

‖b−Ax‖2
2+2

k
∑

i=1

k
∑

j=i+1

‖bi−Aix‖2‖bj−Ajx‖2. (5)

This last form reveals that (P1) actually minimizes the con-
ventional LS error (2)regularizedby the sum of the products
of Euclidean error norms between subsystem pairs.
Remark 3. In the degenerate casem = 1, where every sub-
system reduces to a single equation, (P1) becomes identical
to a regression problem minimizing theℓ1-norm of the error,
which is known to be robust against outliers [3], [10].
Remark 4. Assuming againm = 1 and additionallyk > n,
problem (P1) can be equivalently expressed as

min
t

{‖t‖1 : Ct = Cb} (6)

whereC ∈ R
(k−n)×k such thatCA = 0. Problem (6) is in

the form of a basis pursuit (BP) scheme [5].

Remark 5. For the genericm ≥ 1 case, we may define the
residual error vectorsri := bi − Aix for i = 1, . . . , k and
the collective vectorrT := [rT

1 . . . r
T
k ], and rewrite (P1) as

min
r

{

k
∑

i=1

‖ri‖2 : Cr = Cb

}

(7)

whereC ∈ R
(km−n)×km such that againCA = 0. The

problem in (7) has been proposed for the reconstruction of
a block-sparsesignalr, i.e., a signal which is partitioned in
predetermined blocks that are likely to be zero, through in-
complete linear measurements; see [16] and the references
therein. For the RS task, each block corresponds to the resid-
ual error vector of a sensor.

Having replaced the NP-hard (P0) with the convex (P1), a
legitimate question is whether the latter can provide a solution
identical to the former. Apparently, due to the NP-hardness
of (P0), the two solvers cannot be equivalent for every in-
stance (b,A) of the problem. Surprisingly though, by using
concentration of measure tools, we have proved the follow-
ing theorem which quantifies the probability of exactness for
Gaussian measurement matrices [12].

Theorem 1. Consider the matrixA ∈ R
km×n with entries

drawn independently fromN (0, 1), and suppose there exist
at leasts consistent subsystems. If

r :=
s

k
>

√
γ + 1

2
(8)

whereγ := n/(km), there exist positivec1(r, γ) andc2(r, γ)
such that wheneverm ≥ c2(r, γ)r log

(

e
r

)

, the solution of
(P1) is identical to the solution of(P0) with probability ex-
ceeding1 − e−c1(r,γ)km+o(km).

By using the probability bound of this theorem and the
Borel-Cantelli lemma [9], the next result follows readily.

Corollary 1. Whenever the quadruplet(n,m, k, s) satisfies
the conditions of Theorem 1, the(P1) minimization problem
recovers the(P0) solution almost surely asn → ∞.

Two comments on the condition (8) are worth mentioning.
Firstly, the condition in (8) implies thats > k/2, meaning that
the reliable sensors should be strictly more than the inconsis-
tent ones for the relaxation to yield the exact solution with
high probability. Secondly, the inequalities

√
γ < 2r − 1 <√

r for r ∈ (0.5, 1) lead to the requirementkm > sm > n,
which implies that not only the initial linear systemb = Ax,
but also the linear system eventually obtained after discarding
the irrelevant subsystems should be over-determined.

4. A CONCAVE APPROXIMATION

In the previous section, the nonconvex cost‖t‖0 was replaced
by its closest convex approximation, namely‖t‖1. However,



by letting the surrogate function to be nonconvex, tighter ap-
proximations are possible. For example, theℓ0-norm of a vec-
tor x ∈ R

n is surrogated by the logarithm of its geometric
mean, that is

∑n
i=1 log (|xi|) [4]. Likewise, in the context of

the matrix rank minimization problem (RMP),rank(X) for
X ∈ Sn

+ is replaced bylog det(X + δI) for a smallδ > 0
[8, Sec. 5.2]. Building on this idea, the problem (P0) can be
surrogated by

min
x,t

k
∑

i=1

log (ti + δ) (P2)

s.t. ‖bi − Aix‖2 ≤ ti, i = 1, . . . , k

whereδ is a small positive constant introduced to avoid nu-
merical instability.

The new problem (P2) is concave, and its minimization
is thus nontrivial. However, due to the smoothness of the
logarithmic function inR

n
+, local optimization methods can

be employed. Specifically, given an initial point
(

x
(0), t(0)

)

,
iterative linearization will lead to a local minimum. The con-
cavity of the logarithm implies that the first-order approxima-
tion of log (ti + δ) aroundt(0)i is upper bounded by

log (ti + δ) ≤ log
(

t
(0)
i + δ

)

+
1

t
(0)
i + δ

(

ti − t
(0)
i

)

. (9)

By viewing (9) under the majorization - minimization (MM)
framework [13], instead of minimizinglog(ti +δ), it is possi-
ble to minimize itsmajorizingcost function on the right-hand
side of (9), and then iterate. Thus, the problem (P2) can be
iteratively driven to a (local) minimum as

(

x
(l), t(l)

)

:= arg min
x,t

k
∑

i=1

ti

t
(l−1)
i + δ

s.t. ‖bi − Aix‖2 ≤ ti, i = 1, . . . , k,

or equivalently,

x
(l) := arg min

x

k
∑

i=1

w
(l)
i ‖bi − Aix‖2, where (10)

w
(l)
i :=

(

‖bi − Aix
(l−1)‖2 + δ

)

−1

, i = 1, . . . , k. (11)

Remarkably, this iterative method involves convex optimiza-
tion of the weighted cost in (10) at every iteration. When the
residual error of a sensor is small, the sensor becomes more
influential at the minimization of the next iteration. Iterations
can be initialized by the solution of the (P1) problem, which
corresponds to one iteration of (10) with equal weights.

5. SIMULATED TESTS

In this section, the performance of the developed methods
is evaluated through computer simulations. The simulation

Table 1. Empirical probability of successful recovery of the
consistent sensors (%) forn = 20, m = 4, andk = 16.

Number of consistent sensors s

Method 6 8 10 12 14

LS-GA 100.0 100.0 100.0 100.0 100.0

LS 0.0 0.0 0.0 0.0 0.0

l1 0.0 0.0 11.3 90.6 100.0

Huber 0.0 0.0 0.0 0.0 0.0

Bisquare 0.0 0.0 0.0 0.0 0.0

P1 0.0 0.4 45.2 99.2 100.0

P2(1) 1.0 50.3 99.0 100.0 100.0

setup involves a network ofk = 16 sensors with size of obser-
vation vectorsm = 4, and an unknown vector of sizen = 20.
The unknown vector is modeled asxo ∼ N (0, n−1/2

In),
and the entries of matrixA are drawn independently from
N (0, 1). The comparison includes: (i) the LS estimator of
(2); (ii) the ℓ1 estimator of (3); (iii) the Huber estimator;
(iv) the bisquare M-estimator [15], [10]; (v) the (P1) estima-
tor; and (vi) the (P2) with a single iteration. In addition, a
genie-aidedLS estimator knowing a-priori the reliable sen-
sors serves as a benchmark. Note that for each of the two
robust M-estimators, a cutoff parameter should be specified.
For our experiments, the parameters were set so that the esti-
mators are 95% efficient to the normal distribution [15]. Sim-
ilar simulation tests were performed for other values.

In the first scenario, a subset ofs ∈ [6, 14] sensors have
consistent observationsbi = Aixo, while the remaining(k−
s) unreliable sensor data are modeled asbi ∼ N (0, Im),
so thatE[‖bi‖2

2] = m for all sensors. The reliable sensor
detection probability is empirically estimated through 1,000
Monte Carlo experiments. An estimatêx is considered to
have successfully recovered the dependable subset, whenever
‖bi−Aix̂‖∞ ≤ 10−4 for all consistent sensors. As evidenced
by Table 1, the LS, the Huber, and the bisquare estimators fail
to recover the reliable subset. The novel scheme correspond-
ing to (P1) has a clear advantage over theℓ1 estimator, while
the empirical detection probability further improves for the
(P2) method, even after a single iteration.

In a second more practical scenario, there ares = 14
reliable sensors but their measurements do not exactly sat-
isfy the linear equations; instead, they obey the noisy model
bi = Aixo + vi, where the noise is distributed asvi ∼
N (0, σ2

Im). The vectorxo and the matrixA follow the same
model as in the previous experiment. For the unreliable sen-
sors,bi ∼ N (0, (1 + σ2)Im), so thatE[‖bi‖2

2] remains the
same for all sensors. The average signal-to-noise ratio (SNR)
is defined over the reliable sensors as10 log10 σ−2. The fig-
ure of merit in this setup is the mean-square error (MSE),
E[‖xo − x̂‖2

2], which is empirically estimated over 10,000
Monte Carlo experiments.
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Fig. 2. MSE performance for(n,m, k, s) = (20, 4, 16, 14).

The MSE curves plotted in Fig. 2 confirm that the LS es-
timator is not appropriate for the RS problem. Theℓ1 and
the Huber estimators belong to a second tier of MSE perfor-
mance, while the (P1), the bisquare, and the (P2) estimators
perform comparably. In the high SNR regime, the perfor-
mance of (P1) is improved by just a single re-weighting per-
formed by (P2). The results of Fig. 2 should be examined
jointly with the probabilities of Table 1 fors = 14, which
correspond to the asymptotic SNR regime (SNR→ ∞). It is
evident that the proposed robust sensing methods can simul-
taneously attain high estimation accuracy, and high detection
probability without having to tune a cutoff parameter.

6. CONCLUSIONS

This paper dealt with selecting reliable sensors, a problem
inherently challenging the performance of robust active sens-
ing applications. The quest for a joint sensor detector and
parameter estimator led to an NP-hard problem. Two sub-
optimum alternatives were developed based on a convex re-
laxation and a concave approximation of the original objec-
tive function. Both methods can be efficiently implemented
by SOCP solvers. Analysis and corroborating simulations es-
tablish that the novel schemes can provide high estimation
accuracy and high detection probability.
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