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Abstract— A new adaptive equalizer for wireless systems op-
erating over time-varying and frequency selective multiple-input
multiple-output (MIMO) channels is proposed. The equalizer
consists of a number of decision feedback equalizer (DFE) stages,
each one detecting a single stream. The equalizer filters, as well
as the ordering by which the streams are extracted, are updated
according to a LS cost function in a VBLAST-like fashion. By
taking advantage of the underlying order recursive problem
structure, a computationally efficient and numerically robust
algorithm is developed based on the Cholesky factorization of the
input data autocorrelation matrix. The convergence and track-
ing capabilities of the equalizer are studied through extensive
computer simulations, and its BER performance is evaluated for
hostile, time and frequency selective channels.

I. I NTRODUCTION

Equalization of wireless MIMO communication channels is
a challenging task mainly due to the fact that the respective
MIMO equalizers should cope with intersymbol, as well as
interstream interference. A theoretical framework for design-
ing optimum in the Minimum Mean Square Error (MMSE)
sense finite-length MIMO DFEs was given in [1], where
three detection scenarios were considered. The first scenario
assumes that at each time instant, only previous decisions from
all streams are available. In the second and third scenarios,
current decisions from already detected streams are also ex-
ploited by the feedback filters. In [2], the VBLAST concept
[3] was extended for frequency selective channels and two
equalizer architectures with ordered successive cancellation
were proposed. Frequency domain MIMO DFEs have also
been considered in [4], [5]. All the above equalizers assume
that the channel is static and known at the receiver, while
the detection ordering is predetermined and fixed. In a time-
varying environment, however, adaptive channel estimation
should be employed, and detection ordering need to be up-
dated quite frequently, thus leading to an overall prohibitive
computational complexity. To the best of our knowledge, the
only adaptive MIMO DFE is the one of [6], where a recursive
LS (RLS) algorithm is employed for the first scenario of [1].

In this paper, we extend our previous work of [7] and
develop an adaptive DFE for frequency selective MIMO
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channels. The proposed method performs direct equalization,
without making use of any channel estimation. By properly
formulating the problem and taking advantage of its special
structure (as was originally done in [8] for flat fading chan-
nels), we end up with a computationally efficient equalization
scheme for the second scenario of [1]. The new algorithm
originates from a set of LS cost functions and thus exhibits
a fast convergence behavior. Moreover, it is expected to be
numerically robust, since the equalizer filters are designed and
updated based on the Cholesky factorization of the equalizers’
input autocorrelation matrix. Finally, in the proposed method
both the equalizer filters and detection ordering are updated
at each time instant, rendering it appropriate for fast fading
conditions.

II. CHANNEL MODEL

Let us consider a MIMO communication system operating
over a frequency selective and time-varying wireless channel.
The system employsM transmit andN receive antennas, with
M≤N , while spatial multiplexing is assumed for high data
rate communication. The received signals are sampled at the
symbol rate and the system can be described via a discrete-
time complex baseband model. The transmitted signal at time
k can be expressed as

s(k) =
1√
M

[
s1(k) s2(k) . . . sM (k)

]T
(1)

wheresm(k), for m = 1, . . . , M , are i.i.d. symbols taken from
a finite alphabet. Note that the total average transmit power
is kept fixed and independent ofM . Operators(·)T and (·)H

denote transposition and Hermitian transposition, respectively.
The sampled impulse response, including pulse shaping

filters, between transmitterm and receivern at time k, is
denoted byhnm(k; l), for l=0, . . . , L. The channel length
(L+1) is considered to be common for all subchannels. By
assembling thel-th impulse response coefficients from all
subchannels into theN×M matrices

H(k; l) =




h11(k; l) · · · h1M (k; l)
...

. . .
...

hN1(k; l) · · · hNM (k; l)


 , l = 0, . . . , L (2)
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Fig. 1. Adaptive VBLAST MIMO Decision Feedback Equalizer Architecture.

the signal received at theN receive antennas at timek is
expressed as follows:

x(k) =
[
x1(k) . . .xN (k)

]T =
L∑

l=0

H(k; l)s(k−l)+n(k) (3)

wheren(k) is a N×1 vector containing additive white Gaus-
sian noise (AWGN) samples of varianceσ2.

III. E QUALIZER ARCHITECTURE

The intersymbol and interstream interference involved in the
system described by (3) can be mitigated through the equalizer
architecture illustrated in Fig. 1. The proposed architecture is
a structure ofM serially connected DFEs. The DFE of thei-th
stage equalizes one of theM symbol streams, according to the
assignmentoi(k), whereoi(k) ∈ {1, 2, . . . , M}. The sequence
{o1(k), o2(k), . . . , oM (k)} indicates the ordering at which the
streams are extracted at timek, and is adaptively updated in a
VBLAST manner. Although the ordering of streams depends
on timek, we will skip this notation for the sake of simplicity.
Thus, for the rest of the paper,oi denotes the stream assigned
to the i-th stage at timek, unless otherwise stated.

Each DFE consists of a feedforward filter,fi(k), with a
temporal span ofKf taps. The input of the feedforward filters
is common for all DFEs, and is described by theNKf×1
vector

x(k) =
[

xT (k −Kf + 1) · · · xT (k)
]T

. (4)

The feedback filter at stagei, bi(k), has a temporal span of
Kb, or Kb+1 taps. At each stage,Kb postcursor decisions
from all streams are available. Furthermore, the DFE of thei-
th stage can exploit the current decisions made for the streams
already acquired at the previous(i−1) stages. Ifd̃oi(k) is the
output of thei-th DFE anddoi(k)=f{d̃oi} is the decision
device output, then vector

do(k) =
[

do1(k) . . . doM (k)
]T

(5)

contains the decisions made for all streams at timek, permuted
according to the current ordering. Hence, the input of thei-th
feedback filter is described by the(MKb+i−1)×1 vector

di(k) =
[
dT

o (k−Kb) · · · dT
o (k−1) do1(k) · · · doi−1(k)

]T
.

By using the above definitions, the output of thei-th DFE can
be compactly expressed as

d̃oi(k) = wH
i (k)yi(k) (6)

where

wi(k) =
[

fT
i (k) bT

i (k)
]T

(7)

yi(k) =
[

xT (k) dT
i (k)

]T
, i = 1, . . . ,M,

and, thus, the input of thei-th DFE, yi(k), is of dimension
Ki=NKf+MKb+(i−1).

To completely describe the proposed equalizer architecture,
we need to specify how the detection ordering is determined.
Following the idea of VBLAST, the streams achieving lower
mean squared detection error must be obtained at earlier
stages. By feeding those more reliable decisions into the
feedback filters of the next stages, weaker streams can be
detected more reliably as well. Apparently, under fast fading
conditions not only the equalizer filters, but also the detection
ordering should be adapted at each time instant.

Next, we follow a LS approach to satisfy both require-
ments. More specifically, let us assume that the equalizer
of the i-th stage should be updated, provided that the
DFEs of the previous stages have been determined and
symbol decisions have been extracted according to the or-
dering {o1, . . . , oi−1}. The remaining streams form the set
Si(k)={1, . . . , M}r{o1, . . . , oi−1}. To find out which of
these streams will be detected at the current stage, all the
respective equalizers must be updated first. Each equalizer
wi,j(k), corresponding to thej-th stream, is updated as the
minimizing argument of the following LS cost function:

Ei,j(k) =
k∑

l=1

λk−l
∣∣dj(l)−wH

i,j(k)yi(l)
∣∣2 , j∈Si(k) (8)

whereλ is the usual forgetting factor. After having computed
all tentative equalizers,wi,j(k) for j∈Si(k), the one achieving
the lowest squared error is finally applied at the current stage.
In other words, we set

oi = arg min
j∈Si(k)

Ei,j(k), (9)

wi(k) = wi,oi(k), Ei(k) = Ei,oi(k)



The procedure continues until the last stage is reached. During
the next time instant, theNM subchannels may have been
changed significantly, and thus, a new ordering is needed.

It is not difficult to show that the above minimization is
equivalent to a VBLAST-type ordered cancellation scheme as
it was also the case with the two equalizers of [2]. In [2], how-
ever, to perform cancellation, channel estimation is required.
In the following section we develop a new computationally
efficient adaptive algorithm for direct equalization of MIMO
frequency selective channels.

IV. D ERIVATION OF THE ALGORITHM

It is well known that minimization ofEi,j(k) in (8) with
respect towi,j(k) leads to the following solution:

wi,j(k) = Φ−1
i (k)zi,j(k) (10)

where Φi(k) stands for theKi×Ki exponentially time-
averaged input data autocorrelation matrix, andzi,j(k) for the
Ki×1 crosscorrelation vector, which are defined as

Φi(k) =
k∑

l=1

λk−lyi(l)yH
i (l), (11)

zi,j(k) =
k∑

l=1

λk−lyi(l)d∗j (l). (12)

As it can be seen from (10) and (12), to update the tentative
equalizerswi,j(k) at stagei, current decisions from all streams
must be known. To overcome this causality problem during
the decision-directed mode, we assume as in [8], that the
decisions at timek are extracted using the optimum equalizers
and detection ordering found at time(k−1), i.e.

doi(k) = wH
i (k − 1)yi(k), doi(k) = f{doi(k)}

whereoi refers to the detection ordering at time(k−1).

A. Square-Root Transformations

Estimation of the equalizers in (10) can be carried out by
applying the conventional RLS approach. However, in order
to ensure numerical robustness, a square-root algorithm is
developed, which stems from the Cholesky factorization of the
input autocorrelation matrix. Moreover, to reduce complexity
we take advantage of the order recursive structure of the
problem as described in the following analysis.

Let Ri(k) denote the upper triangular Cholesky factor of
Φi(k), i.e. Φi(k)=RH

i (k)Ri(k). Then (10) is transformed to

wi,j(k) = R−1
i (k)pi,j(k) (13)

wherepi,j(k) is defined as

pi,j(k) = R−1
i (k)zi,j(k). (14)

By using (10)-(14) in (8), the minimum LS error energy with
respect towi,j(k) can be expressed as

Ei,j(k) =

(
k∑

l=1

λk−l |dj(l)|2
)
− |pi,j(k)|2 . (15)

Moreover, by defining theM×M matrix

Q(k) =
k∑

l=1

λk−ld(l)dH(l) = λQ(k−1)+d(k)dH(k) (16)

whered(k)=
[

d1(k) . . . dM (k)
]T

, it is straightforward
to show that

Ei,j(k) = qj,j(k)− |pi,j(k)|2 (17)

whereqj,j(k) stands for the(j, j)-th entry ofQ(k).
Finally, using the transformations enforced by the Cholesky

factorization of the input autocorrelation matrix, the output of
the i-th equalizer,doi

(k), is described by

doi
(k) = pH

i (k − 1)gi(k), doi
(k) = f

{
doi

(k)
}

(18)

where
gi(k) = R−H

i (k − 1)yi(k) (19)

is the transformed input vector, andpi(k− 1) corresponds to
wi(k − 1) via an expression similar to (13).

B. Order-Update Recursions

To reduce complexity, we may exploit the order increasing
nature of the input vectors between successive stages, i.e.,

yi(k) =
[

yT
i−1(k) doi−1(k)

]T
. (20)

It can be shown [8], [9], that the same property holds true for
the correlation quantities of thei-th stage, since

Ri(k) =
[

Ri−1(k) pi−1(k)
0T

√
Ei−1(k)

]
(21)

and
zi,j(k) =

[
zT

i−1,j(k) qoi−1,j(k)
]T

. (22)

Moreover, by using (14), (21), and (22), we get:

pi,j(k) =


 R−H

i−1(k) 0

−pH
i−1(k)R−H

i−1(k)√
Ei−1(k)

1√
Ei−1(k)




[
zi−1,j(k)
qoi−1,j(k)

]

=




pi−1,j(k)
qoi−1,j(k)−pH

i−1(k)pi−1,j(k)√
Ei−1(k)


 . (23)

Having computed matrixQ(k) from (16), vectorspi,j(k)
for j∈Si(k) are order updated through (23). Then, the LS error
energiesEi,j(k) given by (17) can be efficiently order-updated
as well through

Ei,j(k) = Ei−1,j(k)−
∣∣∣[pi,j(k)]Ki

∣∣∣
2

(24)

where[pi,j(k)]Ki
is the last element ofpi,j(k). The minimum

of these energies is denoted asEi(k), and the corresponding
vector aspi(k).

Furthermore, an efficient order update operation can be
applied to the transformed input vectorgi(k). By substituting



the inverse Cholesky factorR−H
i (k) in (19) as performed in

(23), and using the property of (20), it is easily shown that

gi(k) =




gi−1(k)
doi−1 (k)−doi−1 (k)√

Ei−1(k−1)


 . (25)

Thus, if g1(k) is available,gi(k) can be order updated.

C. Initial Time-Update Recursions

To complete the proposed algorithm, the involved first order
quantities, i.e. fori=1, must be computed at each time instant
k. More precisely, vectorsp1,j(k) for j = 1, . . . , M can
be time updated using the recursions described below. If
R−1

1 (k− 1) has already been computed, then the transformed
input vector for the first stage is given by

g1(k) = R−H
1 (k − 1)y1(k). (26)

Next, we produce a sequence ofK1 elementary complex
Givens rotation matrices, whose product is denoted byT(k),
according to the following expression:

T(k)

[
−g1(k)√

λ

1

]
=

[
0
?

]
(27)

where? denotes a ‘don’t care’ element. Thel-th elementary
matrix, l=1, 2, . . . ,K1, annihilates thel-th element of−g1(k)√

λ
with respect to the last element of the whole vector, which
initially equals 1. It can be shown [9], that the same rotation
matrices can be used for time updating the inverse Cholesky
factor as

T(k)
[

λ−1/2R−H
1 (k − 1)
0T

]
=

[
R−H

1 (k)
?

]
. (28)

Moreover, and more importantly,T(k) can be applied for the
time-update ofp1,j(k) for j = 1, . . . , M as well, i.e., [9]

T(k)
[

λ1/2p1,j(k − 1)
d̂∗j (k)

]
=

[
p1,j(k)

?

]
. (29)

Note that it is not necessary to compute matrixT(k) explicitly.
Instead, the rotation parameters are calculated from (27) and
are then used in rotations (28) and (29).

D. The Algorithm

The basic steps of the proposed equalization algorithm are
summarized in Table I. During the initial training mode, step
4 of the equalizer is skipped, since the respective decisions
are replaced by known training symbols. After convergence,
the equalizer switches to decision-directed mode, and the
decisions are computed as described in step 4. Following
the generic rule for DFE design, a decision delay should be
inserted between equalizer decisions and transmitted symbols.
As in [1], [2], we consider a decision delay parameter∆
common for all streams, and set it to∆=Kf−1. Hence, the
decisiondoi(k) corresponds to symbolsoi(k −∆).

The computational complexity of the new algorithm is
O(K2

1+M2K1) complex multiply-add operations per symbol
period, whereK1=NKf+MKb. Note that when the channel

TABLE I

SUMMARY OF THE PROPOSED ALGORITHM

Initialization: For i = 1, . . . , M , oi(0)=i, pi(0) = 0,
Ei(0)=0. For j = 1, . . . , M , p1,j(0) = 0. Q(0)=0.
R−1(0)=δ−1I whereδ is a small positive constant.
1) Computeg1(k) from (26).
2) Find rotation parameters from (27).
3) Time update the inverse Cholesky factor from (28).
4) Order updategi(k) from (25), and compute decisions

doi(k) from (18).
5) Time update matrixQ(k) by using (16).
6) Time updatep1,j(k) for j = 1, . . . , M by rotation (29).
7) EvaluateE1,j(k) for j = 1, . . . , M from (17).
8) Set asE1(k) the minimum, and asp1(k) the

correspondingp1,j(k).
9) For i = 2, . . . , M

a) Order updatepi,j(k) andEi,j(k) ∀ j∈Si(k), from
(23) and (24).

b) Set asEi(k) the minimum, and aspi(k) the
correspondingpi,j(k).

changes in a rather slow rate, detection ordering can be
updated less frequently, and thus its complexity can be further
reduced toO(K2

1+MK1).
Although the proposed equalizer looks similar to those

in [6], [2], they differ in architecture. The equalizer of [6]
corresponds to the first scenario of [1], in which ordered
cancellation is not performed. Its computational complexity is
O(K2

1 +MK1), however its performance is seriously affected
as shown in Section V. The two equalizers presented in
[2] perform ordered successive cancellation of past, as well
as future decisions from already detected streams, but the
channel is considered known at the receiver and the detection
ordering is computed once. Their computational complexity
is O(MK2

1 ) without accounting for ordering update, channel
estimation, and filtering.

V. PERFORMANCEEVALUATION

The performance of the proposed equalizer was evaluated
through extensive computer simulations. More specifically,
we considered a system transmitting uncoded QPSK symbols
of duration Ts=0.25µsec over a wireless channel modeled
according to the UMTS Vehicular Channel Model A [10]. This
channel model consists of six independent, Rayleigh faded
paths, with a power delay profile described in [10], and a RMS
delay spread of1.48Ts. The physical channel was convolved
with a raised cosine pulse of roll-off factor 0.3. The SNR was
defined as the expected SNR (over the ensemble of channel
realizations) on each receive antenna. The feedforward and
feedback filters had a temporal span ofKf=20, andKb=10
taps respectively, andλ=0.995 was used.

Initially, to study the convergence of the equalizer, the
Doppler effect was ignored and the channel was kept static
for an interval of4096Ts. An M=N=3 antenna configuration
operating at SNR=16dB was simulated, while the system
was in training mode. Three different equalizer algorithms
were tested: (1) the proposed algorithm, (2) the proposed
algorithm with a randomly selected ordering that was kept
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Fig. 2. Convergence of different equalizer architectures for a system operating
in training mode over a3×3 static MIMO channel at SNR=16dB.
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Fig. 3. Tracking performance of different equalizer architectures for a system
operating over a3×3 time-varying MIMO channel at SNR=16dB.

fixed, and (3) the equalizer of [6]. Square-root RLS adaptation
was used by all three equalizers, similar to the approach
described in this paper. The equalizers of [2] were not included
since an adaptive implementation was neither available, nor
straightforward. In Fig. 2, the Mean Square Error (MSE) is
plotted, i.e., the instantaneous squared error at the filter outputs
averaged over all streams and over 500 independent runs. As
expected, all three schemes converge very fast, however, the
proposed method achieves the lowest MSE.

The tracking performance and the error propagation effects
in decision-directed mode were studied by simulating a system
that operates over a3×3 time-varying channel. Assuming
operation in the 2.4GHz band, and a maximum mobile velocity
of 100Km/h, a normalized Doppler frequencyfDTs=5.5 10−5

was simulated by using the Jakes method. Moreover, the initial
512 symbol periods were used for training, and the rest of the
equalizer parameters were as described above. In Fig. 3, the
error curves for the three equalizers are plotted as the average
of 500 runs. As shown in the figure, the proposed algorithm
tracks very effectively channel variations and its superiority
is further enhanced compared to the other two methods. This
fact indicates the significance of tracking optimal detection
ordering for time-varying channels. Note that in comparison
to the MSE of Fig. 2, a degradation of less than 1dB is caused
due to error propagation effects for the new algorithm.
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Fig. 4. Uncoded BER curves for a time and frequency selective channel.

Finally, the equalizer of Table I was evaluated in terms of
uncoded BER for five MIMO configurations. The conclusion
drawn by the BER curves of Fig. 4 is that the proposed
equalizer can operate under the hostile environment simulated.
Moreover, it is indicated that error propagation effects can
degrade system’s performance at low SNR.

VI. CONCLUSIONS

A new adaptive equalizer for time and frequency selective
MIMO channels has been derived. Extending the ideas of [8],
[7], to the frequency selective channel case, we arrived at a
square-root RLS adaptive MIMO DFE. By efficiently updating
equalizer filters and detection ordering, the proposed algorithm
offers improved convergence and tracking performance at rea-
sonable computational complexity. Simulation results indicate
the applicability of the equalizer in practical systems.
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