
Deep Learning for Reactive Power Control of Smart
Inverters under Communication Constraints

Sarthak Gupta, Vassilis Kekatos, and Ming Jin
Bradley Dept. of Electrical & Computer Engineering

Virginia Tech, Blacksburg, VA 24061, USA
Emails: {gsarthak,kekatos,jinming}@vt.edu

Abstract—Aiming for the median solution between cyber-
intensive optimal power flow (OPF) solutions and subpar local
control, this work advocates deciding inverter injection setpoints
using deep neural networks (DNNs). Instead of fitting OPF
solutions in a black-box manner, inverter DNNs are naturally
integrated with the feeder model and trained to minimize a
grid-wide objective subject to inverter and network constraints
enforced on the average over uncertain grid conditions. Learning
occurs in a quasi-stationary fashion and is posed as a stochastic
OPF, handled via stochastic primal-dual updates acting on grid
data scenarios. Although trained as a whole, the proposed DNN
is operated in a master-slave architecture. Its master part is run
at the utility to output a condensed control signal broadcast to
all inverters. Its slave parts are implemented by inverters and
are driven by the utility signal along with local inverter readings.
This novel DNN structure uniquely addresses the small-big data
conundrum where utilities collect detailed smart meter readings
yet on an hourly basis, while in real time inverters should be
driven by local inputs and minimal utility coordination to save
on communication. Numerical tests corroborate the efficacy of
this physics-aware DNN-based inverter solution over an optimal
control policy.

Index Terms—Neural networks; voltage regulation; power loss
minimization; optimal power flow.

I. INTRODUCTION

Distribution grids are currently challenged by voltage fluc-
tuations due to the proliferation of distributed energy resources
(DERs). The voltages experienced at buses of a feeder depend
heavily on the power injected or withdrawn, while the power
generated by a PV under intermittent cloud coverage may
vary by 80% within one-minute intervals [1]. The inverters
interfacing DERs have been suggested as a promising fast-
responding mechanism and are now allowed to provide re-
active power support per the amended IEEE 1547 standard.
If properly orchestrated, inverters can regulate nodal voltages
and/or reduce ohmic line losses. Nonetheless, coordinating
hundreds of inverters in real-time is a formidable task.

The literature on inverter control can be broadly classified
into optimization- and learning-based approaches. The former
class includes approaches where inverter control is posed as an
optimal power flow (OPF) problem. Under a centralized OPF
setup [2], [3], the utility reads the values of solar generation
and loads, solves an OPF, and communicates the optimal
setpoints to inverters. To avoid any cyber overhead, inverter
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setpoints can be decided using simple Volt/VAR or Watt/VAR
control rules driven by local readings [1]. Nonetheless, the
equilibria of such rules do not coincide with the sought OPF
solutions and can be subpar [4], [5].

Learning-based approaches shift the computational effort
offline, and perform numerically less intensive tasks during
real-time operation. Learning-based approaches can be further
clustered into the OPF-then-learn and the OPF-and-learn
philosophies. According to the former, one first solves a
large number of OPF instances parameterized by their inputs
(solar/load conditions). The pairs of OPF inputs or instances
and OPF minimizers are subsequently used for the ML model
to learn the OPF mapping in a supervised manner. In real
time, the ML model approximates OPF decisions on the fly
as soon as it is presented with a new OPF instance. Under this
paradigm, references [6] and [7] use kernel–based regression
to learn inverter control rules. DNNs have alternatively been
employed to learn OPF solutions under a linearized [8]; or an
exact AC grid model [9], [10], [11], [12].

Rather than fitting OPF minimizers, the OPF-and-learn
paradigm trains an ML model directly through an OPF in a
single step. Therefore, it does not require solving multiple
OPFs to generate a labeled training set. Under the OPF-and-
learn paradigm, reference [13] adopts kernel-based learning to
design inverter control rules, adjusted to grid conditions in a
quasi-stationary fashion. Although rules can be learned using
a convex program, the kernel functions have to be specified
beforehand. In [14], inverter control rules are optimized along
with capacitor status decisions to minimize voltage deviations
using a two-timescale reinforcement learning (RL) approach.
Nonetheless, no feeder-level constraints are involved. Enforc-
ing network constraints is challenging for learning-based OPF
methods. One could heuristically project the ML prediction for
the OPF solution [9], [13]. Other approaches to coping with
constraints include penalizing constraint deviations [7], [8],
[13], [14]; or enforcing constraints in a discounted sense [15].
Reference [15] models inverter policies as DNNs. It suc-
cessively linearizes feeder constraints and updates policies
continuously through communication exchanges between in-
terconnected microgrids. A similar safe RL learning scheme
is put forth in [16], but with a centralized implementation.

A key promise of designing policies is to alleviate the cyber
burden of inverter control. This critical aspect has been largely
overlooked by the existing literature. In particular, references



[15] and [16], which are most closely related to this work,
update policies continuously and require considerable amounts
of data to be communicated in real time. To account for this
aspect, the contributions of this work are in two fronts: First,
inverter policies are modeled as DNNs that are jointly trained
in a quasi-stationary fashion, while feeder constraints are
enforced explicitly in a stochastic sense. Second, a carefully
designed DNN architecture accommodates application scenar-
ios where inverter rules are driven by local measurements as
well as a low-bandwidth control signal broadcast by the utility.

Outline: Section II formulates the task of designing inverter
control policies after reviewing an approximate grid model.
Section III adopts a stochastic primal-dual algorithm to find
the optimal inverter control policies. Section IV puts forth the
novel communication-cognizant DNN-based inverter control
architecture. The proposed schemes are evaluated using real-
world solar generation and load data on the IEEE 13-bus
feeder in Section V. Conclusions along with ongoing and
future research directions are discussed in Section VI.

Notation: lower- (upper-) case boldface letters denote col-
umn vectors (matrices), and calligraphic symbols are reserved
for sets. Symbol > stands for transposition and ‖x‖2 denotes
the `2-norm of x. Vectors 0 and 1 are respectively the vectors
of all zeros and ones of appropriate dimensions.

II. GRID MODELING AND PROBLEM FORMULATION

Consider a feeder with N+1 buses, including the substation
indexed by 0. Let pn + jqn be the complex power injection
at bus n. Its active power component can be decomposed as
pn = pgn − pcn, where pgn is the solar generation and pcn the
inelastic load at bus n. Its reactive power component can be
similarly expressed as qn = qgn − qcn. If vectors (p,q) collect
the power injections at all non-substation buses, they can be
decomposed as p = pg − pc and q = qg − qc. We refer to
the values of (re)active loads and active solar generation at all
non-substation buses as grid conditions

z := [(pc)> (qc)> (pg)>]>. (1)

Given z, the task of reactive power control by DERs aims at
optimally setting qg to minimize a feeder-wide objective while
complying with network and inverter limitations. Starting with
the latter, the reactive power injected by inverter n is limited
by a given q̄gn due to apparent power limits. Apparent power
constraints are local and will be collectively denoted by

qg ∈ Q := {q : |qgn| ≤ q̄gn ∀n} . (2)

Regarding feeder constraints, the focus is on confining volt-
ages within the regulation range of [0.97, 1.03] per unit (pu).
Albeit voltages are nonlinearly related to power injections, for
simplicity we adopt a widely used linearized grid model [17].
According to this model, the vector of voltage magnitudes at
all N buses is approximately

v = Rp + Xq + v01 (3)

where v0 is the substation voltage, while the symmetric
positive semidefinite matrices (R,X) depend on the feeder

and are assumed to be known. If each voltage vn is to be
maintained within [vn, vn], the reactive power injections qg

should satisfy the network constraints

g(qg, z) :=

[
Xqg + y − v
−Xqg − y + v

]
≤ 0 (4)

where vector y := R(pg − pc) −Xqc + v01 depends on z,
and vectors (v,v) contain the limits (vn, vn) across buses.

According to the same grid model, ohmic losses on lines
can be approximated as a convex quadratic function of power
injections as p>Rp + q>Rq; see [17] for details. Upon
defining b := 2Rqc, the part of ohmic losses that is dependent
on the control variable qg can be approximated as

`(qg, z) = (qg)>Rqg − b>qg. (5)

We henceforth abuse notation and use q in lieu of qg . This
should not cause any confusion since qc has been included in
z. DER reactive setpoints q can be found as the minimizer of

min
q∈Q

`(q, z) (6)

s.to g(q, z) ≤ 0.

Under the linearized grid model, the approximate OPF task of
(6) is a convex quadratic program (QP). Solving (6) can be
computationally and communication-wise taxing if z changes
frequently. Moreover, by the time (6) is solved and decisions
are downloaded to DERs, grid conditions z may have changed
rendering the computed setpoints obsolete.

To account for the uncertainty in z, one may pursue a
stochastic formulation such as [3]

min
q∈Q

E[`(q, z)] (7)

s.to E[g(q, z)] ≤ 0

where the expectation E is with respect to z. Nonetheless, the
obtained ‘one-size-fits-all’ q does not adapt to different z’s.

To come up with DER setpoints that are responsive to grid
conditions, we resort to control policies or rules, where the
reactive power setpoint for each inverter n is captured by a
function πn(wn;θn) acting upon a control input wn and is
parameterized by vector θn. Ideally, inverter control policies
should be driven by the complete z, that is wn = z for all n.
Nevertheless, that would entail high communication overhead.
If the utility knows the complete z, it might as well solve (6)
and communicate the optimal setpoints to inverters. For an
inverter control scheme to be communication-cognizant, the
inputs wn should primarily involve local readings of z, such
as (pgn, q

g
n, p

g
n), and possibly few remote entries. Regarding the

parameter vectors θn’s, these may be unique per inverter or
share some entries as detailed in Section IV. To capture the
aforementioned scenarios, let us abstractly refer to the vector
of inverter policies πn(wn;θn)’s as

q(w) = π(w;θ) (8)

where w is the union of wn’s and θ the union of θn’s.



The control policies for DERs can be found jointly by
solving the constrained stochastic minimization

P ∗ := min
θ:π(w;θ)∈Q

E[`(π(w;θ), z)] (9)

s.to E[g(π(w;θ), z)] ≤ 0

over the parameter vector θ. Problem (9) couples policies in
two ways. First, for a fixed z, policies are coupled across
inverters through the cost and constraint functions since the
entries of qg appearing in (3) and (5) are now computed via
(8). Second, the expectations in (7) and (9) couple system’s
performance across OPF instances characterized by z.

Local and linear policies of the form πn(wn;θn) = θ>nwn

have been previously studied for inverter control [5], [18], [19].
Nonetheless, the optimal policies qn(wn) are not necessarily
affine in wn, especially when wn is only a partial observation
of z. The grand challenge towards scalable inverter control
is to design nonlinear control curves. In [13], we dealt with
by modeling each qn(wn) as a kernel-based support vector
machine (SVM), and designing all rules jointly under an OPF
formulation. The advantage of SVM-based policies is that
they can be trained to optimality using convex optimization.
Nonetheless, selecting the appropriate kernel and control in-
puts wn’s can be challenging. Inspired by their field-changing
performance in various engineering tasks, here we propose
modeling inverter rules using DNNs, and train the parameters
θ in a data-driven physics-aware fashion.

III. PRIMAL-DUAL DNN LEARNING

Solving (9) is challenging since it is a constrained stochastic
minimization over a DNN. To train the inverter policy DNN,
we adopt the stochastic primal-dual updates of [20], which are
briefly reviewed next. Consider the Lagrangian function of (9)

L(θ;λ) = E[`(π(w;θ), z)] + λ>E[g(π(w;θ), z)] (10)

where λ is the vector of Lagrange multipliers corresponding
to constraint (9). The dual problem can be posed as

D∗ = max
λ≥0

min
θ:π(w;θ)∈Q

L(θ;λ). (11)

Standard duality results predicate that D∗ ≤ P ∗. When the
primal problem is convex, the previous inequality typically
holds with equality. Problem (9) however is non-convex even
if (6) is a convex QP, since the DNN mapping π(w;θ) is
generally non-convex in θ. Nonetheless [20] establishes that:
i) under relatively mild conditions satisfied by (9), and ii) if
the underlying DNN architecture is rich enough, the duality
gap P ∗ −D∗ is sufficiently small. This motivates solving (9)
through the primal-dual updates indexed by k [20]

θk+1 =
[
θk − µθ∇θL(θk;λk)

]
Q (12a)

λk+1 =
[
λk + µλ∇λL(θk+1;λk)

]
+

(12b)

where the operator [·]Q projects θk+1 such that π(w;θk+1) ∈
Q for all w; operator [·]+ ensures λ ≥ 0 at all times;
and (µθ, µλ) are positive step sizes. Regarding [·]Q, the
DNN output corresponding to qgn can be constrained within

[−q̄gn,+q̄gn] by using tanh(·) as the output activation function
and then scaling by the constant qgn.

The updates in (12) are complicated by the expectation
operator. The pdf of z (and hence w) may not be known
beforehand. Even if it is known, propagating that pdf through
nonlinear functions such as π(w;θ), z) is non-trivial. To
deal with this, the primal-dual updates of (12) can be sur-
rogated by their stochastic approximation counterparts. In
particular, the utility is assumed to have a set of scenarios
(zk,wk) indexed by k = 1, . . . ,K, with which the ensemble
averages of (10) are approximated as E[`(π(w;θ), z)] '
1
K

∑K
k=1 `(π(wk;θ), zk). To simplify the updates of (12), the

sample averages can be approximated by a single scenario per
iteration to yield the stochastic primal-dual updates [20]

θk+1 =

[
θk − µθ

(
∇θ`

k − (∇θg
k)>λk

)]
Q

(13a)

λk+1 =
[
λk + µλg

(
π(wk;θk+1), zk

)]
+
. (13b)

Here ∇θ`
k is the gradient of `(π(w;θ), z) and ∇θg

k the
Jacobian matrix of g(π(w;θ), z), both with respect to θ and
evaluated at (wk,θk, zk). The updates are known to converge
to a stationary point of (9) for sufficiently small step sizes.

For the objective and constraint functions of (4)–(5), the
needed sensitivities can be computed as

∇θ`
k =

(
∇θπ(wk;θk)

)> (
2Rπ(wk;θk)− bk

)
∇θg

k = [X −X]
>∇θπ(wk;θk).

Here bk := 2R(qc)k and∇θπ(wk;θk) is the Jacobian matrix
of the DNN output with respect to its weight parameters.
The latter can be evaluated using gradient back-propagation
across the DNN, a standard tool readily available in all DNN-
related software. If the number of available grid scenarios K
is relatively small, additional scenarios can be synthesized
by applying small perturbations on the available zk’s. As
customary in DNN training, the updates (13) can be iterated
over multiple epochs or in mini-batch forms.

It is worth contrasting the DNN input w and the vector
of grid conditions z. Despite some possible overlap, the two
vectors are used differently. The former one feeds the DNN
to compute the setpoints q(w) = π(w;θ). The latter one
is involved in the OPF objective and constraint functions,
i.e., it appears in b for computing ∇θ` and when evaluating
g(π(w;θ), z). While z should be known to the utility during
training to perform the updates of (13), it is not needed
during real-time operation. This resonates with the small/big
data setup, since a utility has offline access to an extensive
smart meter dataset of z’s; yet its control center and each
inverter individually are driven by limited real-time data feeds.
The updates of (13) apply for inverters DNNs of arbitrary
architecture. We next particularize the structure of π(w;θ) to
comply with communication limitations in inverter control.

IV. COMMUNICATION-COGNIZANT DNN ARCHITECTURE

To coordinate inverters on a tight communication budget,
our proposed inverter policy DNN π(w;θ) comes with the



Fig. 1. Top: DNN π(w;θ) is organized in one utility sub-NN and inverter
sub-NNs, all trained as a single DNN by the utility offline. Bottom: During
real-time operation, the utility sub-NN uses real-time data to compute and
broadcast the control signal, while inverter sub-NNs are run at inverters.

two-tier architecture shown on Figure 1 (top). Its first layers
constitute the utility sub-NN, while the final layers constitute
the inverter sub-NNs, one for each inverter. Figure 1 shows
only two inverters for simplicity. The utility sub-NN (shown
in purple) is fully connected, is driven by input wu, and
outputs control u. Inverter sub-NNs (in blue and green) are
disconnected from each other and both fed with the common
control u. Each inverter sub-NN is also fed with its own local
data wn,`. The n-th inverter sub-NN predicts the setpoint qn.

Inverter policy n can be expressed as qn(wn) =
πn(wn;θn) where wn = [w>u w>n,`]

> and θn collects the
DNN parameters for the shared utility sub-NN and inverter
sub-NN n. Vectors wn,` may carry local load and solar genera-
tion available on bus n. Input wu carries information available
to the utility control center in real time. Such information can
be power flow readings from major distribution lines, trans-
formers, and/or voltage regulators. Vector wu may also carry
the solar generation from a solar farm or any other DER that is
telemetered in real time. Rather than actual grid measurements,
vector wu may also include predictions the utility can make
on grid conditions. For example, that could be the case if the
utility uses cameras to monitor cloud coverage as a proxy to
solar generation or temperature/humidity readings to load.

During training and given grid scenario zk, the inputs wk
u

and wk
n’s can be: i) found readily as partial entries of zk

(loads and solar generation); ii) inferred from zk (a line
flow can be computed through the power flow equations, or
approximated as the sum of all downstream power injections);
or iii) found through historical data (dataset combining cloud
coverage with solar generation). The particular structure of
the proposed DNN with individualized inputs and partially

Algorithm 1 Inverter control through DNN-based policies
Training

1: Collect grid scenarios {zk}Kk=1 from smart meter data
2: Collect or calculate DNN inputs {wk}Kk=1

3: Initialize θ0 and λ0

4: for all K scenarios and E epochs do
5: Update θ using (13a)
6: Update λ using (13b)
7: end for
8: Download θ parameters to inverter sub-NNs

Real-time operation
1: for t = 0, 1, . . . , T, do
2: Utility receives wt

u from real-time telemetry
3: Feed wt

u to utility sub-NN to compute ut

4: Utility broadcasts ut to inverters
5: for each inverter n do
6: Inverter n reads ut and local data wt

n

7: Feed (ut,wt
n) to inverter sub-NN to decide qtn

8: end for
9: end for

connected layers can be easily implemented by skipping and
masking connections, respectively.

Although trained as a whole, the inverter policy DNN
π(w;θ) is implemented in parts; see bottom panel of Fig. 1.
After training is completed for the upcoming 30- or 60 min
period, the weights corresponding to inverter NNs are down-
loaded to inverters. A unique component of our DNN archi-
tecture is the control signal u, which is broadcast from the
utility NN to inverter NNs. To save on downlink (utility to
inverters) communications, signal u is designed to be much
shorter than wu. Considering that u is actually designed along
with the operation of inverter sub-NNs through the OPF of (9),
this signal carries all the information the utility can provide
to coordinate inverters in a condensed form. Its broadcast
nature further contributes to communication savings. The steps
involved during the training and real-time operation of the
proposed DNN are summarized in Algorithm 1.

This DNN architecture can cater to a wide range of com-
munication specifications. If no downlink communication is
allowed in real time, the utility sub-NN can be ignored all
together and inverter sub-NNs are driven based on local inputs.
If downlink bandwidth is abundant, inverter sub-NNs can
be dropped and inverter setpoints can be decided by the
utility sub-NN in real time. Practical application scenarios
are expected to lie somewhere between these two extremes,
whence the hybrid architecture of Fig. 1 becomes relevant.

V. NUMERICAL TESTS

The proposed DNN-based inverter control was evaluated on
a single-phase version of the IEEE 13-bus feeder. Real-world
active load data was extracted for March 1, 2018, on a one-
minute resolution from Pecan Street. Solar generation data was
also added to buses {1, 5, 9, 10, 11, 12}, out of which buses
{9, 12} were equipped with inverters. Load time series were



Fig. 2. The IEEE 13-bus feeder. Numbers in parentheses indicate the house
index from the Pecan Street dataset mapped to each bus.

scaled so that monthly peaks were 7.5 times the benchmark
values. The same ratio was used to scale solar. Reactive
loads were added with lagging power factors sampled from
a uniform distribution between 0.9 and 1. The utility was
assumed to have telemetry wu for the active line flows feeding
buses {2, 3, 7} from their parent buses.

The utility sub-NN was constructed using an input layer of
dimension 3 and an output layer u of dimension 1. Inverter
sub-NNs were made up of one input, hidden, and output layers
of dimensions 5, 6 and 1, respectively. The local readings
{pn, qcn} along with u were fed as inputs to each inverter
sub-NN n. Initial values for DNN parameters were uniformly
sampled from the range [−0.1, 0.1] and updated using Adam
with a learning rate of 0.01. The dual variables were all
initialized at 0 and updated with step sizes of 1 that decayed
with the square-root of the iteration index [21]. Our approach
was contrasted with an optimal policy q(w) that directly
solves (7) without being confined to a DNN parameterization
using dual decomposition [21]. As in (7), the optimal policy
regulates the average rather than the instantaneous voltages.

We assumed one-hour long control periods. Training scenar-
ios were obtained from the 60 one-minute data observed over
the preceding control period. The original grid scenarios were
augmented by adding zero-mean additive white Gaussian noise
to generate a total of K = 240 scenarios. All scenarions were
then randomly shuffled. The variance of the additive noise was
decided on the basis of training samples observed and was set
to 10−6 pu for low-solar and 10−2 pu for high-solar hours.
DNN π(w;θ) was trained using Alg. 1 for 30 epochs.

Figure 3 shows the average losses obtained during training.
The losses under our solution were found to be only slightly
larger than those attained by the optimal policy. During the
low-solar scenario, the base case without any reactive power
compensation does not experience any voltage excursions.
Therefore, both the optimal policy and our solution focus
on decreasing the average losses. On the other hand, when
solar generation is high, the basecase experiences high voltage
excursions as seen in panel 3. Consequently, the optimal
policy and our solution focus on lowering average voltages
by withdrawing reactive power at the expense of increased
ohmic losses. As demonstrated by the third panel, the proposed
scheme attained voltage deviations close to those achieved by

Fig. 3. Training: Average losses under no solar for 12–1 am (top) and
high solar for 1–2 pm (second). Voltage excursions for 1–2 pm (third). Dual
variable for active constraint on bus 11 for 1–2 pm (bottom).

the optimal policy. This near-optimal behavior is also shown in
the bottom panel presenting the convergence of dual variables
for the active constraint on bus 11 during 1:00–2:00 pm.

The DNNs trained over 12:00–1:00 am and 1:00–2:00 pm
were tested on the subsequent hours 1:00–2:00 am and 2:00–
3:00 pm, respectively. The results are presented in Fig. 4. The
proposed scheme again closely matches the performance of
the optimal policy in terms of both minimizing loses and
imposing voltage constraints. This is remarkable especially
because the optimal policy has access to perfect forecasts
and incurs a large real-time communication overhead, while
the DNN-based scheme is trained only on historical data and



Fig. 4. Testing. Average losses for 1–2 am (top) and 2–3 pm ((middle));
voltage excursions for 2–3 pm (bottom).

requires only 1 data point to be transmitted in real time.

VI. CONCLUSIONS AND ONGOING WORK

This work has introduced nonlinear control policies for in-
verter setpoints via a novel two-tier communication-cognizant
DNN architecture. The DNN consists of a utility sub-NN
and inverter sub-NNs, all jointly trained at the utility at the
beginning of every control period, while explicitly incorporat-
ing average feeder constraints via primal-dual learning. Upon
training, the weights of inverter sub-NNs are downloaded
to inverters for real-time implementation. Inverter sub-NNs
are driven by local inputs and a control signal broadcast by
the utility. Depending on communication specifications, the
proposed architecture can accommodate from purely local to
centralized and hybrid protocols. Tests on real-world data
validate this methodology is capable of reducing ohmic losses
and enforcing feeder constraints with little communication
overhead. Furthermore, the proposed DNN-based policies per-
form comparably to stochastic approximation-based optimal
policies during both training and testing.

These promising results set the foundations for relevant
generalizations. We are currently working on the following
directions: d1) Model-free primal-dual learning of DNNs that
does not require explicit knowledge of the feeder topology, pa-
rameters, and/or precise loading conditions during training; d2)
Chance-constraint formulations; d3) Quantify the performance

of the proposed DNN-based approach when compared to the
optimal policy; d4) incorporating exact AC feeder models; and
d5) testing on larger feeders to demonstrate scalability.
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