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Abstract—Distribution grids undergo a transformative change
with the emergence of renewables, demand-response programs,
and electric vehicles. Fluctuations in active power injections
can dramatically affect voltage magnitudes across the grid.
The power electronics of distributed generation (DG) units can
provide an effective means of the much needed voltage regulation.
On the other hand, the scalability and time-variability of DGs
call for localized and fast-responding control schemes. In this
context, a reactive power control rule recommended by the
IEEE 1547 standard is interpreted here as a proximal gradient
algorithm. Upon understanding its convergence rate limitations,
an accelerated voltage regulation scheme is developed. The latter
not only affords localized processing, but it further enjoys a
notable speedup advantage with only a slight modification of the
original control rule. Numerical tests on the IEEE 13-bus and 34-
bus systems with high solar penetration corroborate its superior
convergence rates.

I. INTRODUCTION

Environmental challenges together with the potential energy
crisis have been transforming power distribution grids. On
top of the conventional smooth consumer demand, distribution
grids should nowadays accommodate renewables, elastic loads,
and electric vehicles. Different from transmission grids, where
bus voltage magnitudes are relatively invariant to active power
injections, renewable generation and demand-response pro-
grams can give rise to major voltage fluctuations in medium-
and low-voltage grids [22]. Rather than relying on slow-
responding utility-owned voltage regulators and shunt capaci-
tors, the advanced power electronics found in photovoltaics
(PV), batteries, and electric vehicles, coupled with proper
control algorithms, are capable of providing an effective means
of auxiliary services such as voltage regulation.

Reactive power control leveraging distributed generation
(DG) units has been an active area of research. Voltage
regulation policies relying on linearized models are proposed
in [22], while a successive convex approximation is adopted
in [7]; see also [2] for a multi-agent technique. In [6], power
loss minimization is effected using a decentralized consensus-
type algorithm. The aforementioned schemes depend on ap-
proximate grid models and entail algorithms requiring fast
two-way communication between adjacent buses.

If further resources are provided, a grid operator can employ
DGs for power loss minimization while satisfying voltage
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regulation constraints. Reactive power management can then
be solved centrally using a full AC grid model after collecting
all nodal generations and demands; see e.g., [8], [15]. Con-
sidering the scale of DGs, decentralized algorithms based on
the alternating-direction method of multipliers are also well
motivated [21], [19], [5]. By exploiting the tree structure of
distribution grids, these schemes require communication only
between neighboring buses.

Nevertheless, real-time communication may be unrealistic in
current distribution grids. For example, although 8,544 MW of
solar energy has been installed in California, real-time com-
munication between buses is rare [1]. Hence, local algorithms
without communication requirements are needed. In this con-
text, [20] advocates reactive power injections adjusted propor-
tionally to the local voltage violations. Assuming unlimited
reactive power resources, sufficient conditions guaranteeing
convergence of the latter scheme are developed in [24]. Under
a linearized power flow model and for constrained reactive
power resources, a similar local control rule has been shown
to minimize a modified voltage regulation cost [9]. A droop
control strategy that adjusts the inverter voltage output by
measuring the reactive power flow is proposed in [11].

In this work, the linear distribution flow model is postulated
to derive localized voltage regulation schemes for single-phase
grids. With an emphasis on the speed at which DG units solve
this grid-wide resource allocation problem, our contribution is
two-fold. First, a control rule advocated by the IEEE 1547
standard and reverse engineered in [9], is interpreted here as a
proximal gradient algorithm. By doing so, its convergence and,
perhaps more importantly, its convergence rate properties are
fully characterized. Second, realizing that the convergence rate
of this control rule depends on the grid topology, we propose
an accelerated proximal gradient scheme. We further show that
the novel scheme involves a minor modification in the control
rule and it can still be implemented locally. Numerical tests
on the IEEE 13-bus and 34-bus distribution grid benchmarks
verify that the novel voltage regulation scheme offers a sig-
nificant speedup advantage over its conventional alternative.

Notation. Lower- (upper-) case boldface letters denote col-
umn vectors (matrices), with the exception of line power
flow vectors (P,Q). Calligraphic symbols are reserved for
sets. Symbol > stands for vector and matrix transposition.
Vectors 0, 1, and en, are the all-zeros, all-ones, and the n-th
canonical vectors, respectively; while ‖x‖2 denotes the `2-



Fig. 1. Bus n is connected to its unique parent πn via line n.

norm of vector x. Symbol λi(X) stands for the i-th largest
eigenvalue; diag(x) defines a diagonal matrix having vector x
on its diagonal, whereas diag(X) is the vector formed by the
main diagonal of X. Operators Re(z) and Im(z) return the
real and imaginary part of complex number z. A matrix with
non-negative entries is denoted by X ≥ 0, while a symmetric
positive semi-definite matrix is indicated by X � 0.

II. RADIAL DISTRIBUTION GRID MODELING

Consider a radial single-phase distribution grid consisting
of N + 1 buses. Such a grid can be modeled by a tree graph
T = (No,L) whose nodes No := {0, . . . , N} correspond to
buses, and whose edges L to distribution lines with cardinality
|L| = N . The tree is rooted at the substation bus indexed by
n = 0. For every bus n ∈ No, let vn be its squared voltage
magnitude and sn = pn + jqn its complex power injection.
Every non-root bus n ∈ N := {1, . . . , N} has a unique parent
bus denoted by πn; see Figure 1. Hence, the directed edge
(πn, n) ∈ L corresponding to the line feeding bus n will be
simply indexed by n. Without loss of generality, nodes can
be numbered such that πn < n for all n ∈ N , e.g., by a
simple depth-first traversing of the tree. For every bus n, we
further define the augmented set Dn including bus n and its
descendant buses.

The grid is modeled by the branch flow equations [3]

sn =
∑
k∈Cn

Sk − Sn + `nzn (1)

vn = vπn − 2 Re[z?nSn] + `n|zn|2 (2)

|Sn|2 = vπn`n (3)

where zn = rn + jxn is the impedance of line n; `n is the
squared current magnitude on line n; Sn = Pn + jQn is the
complex power flow on line n seen at the sending end; and
Cn := {k ∈ N : πk = n} is the set of children nodes for
bus n. Equation (1) follows from power conservation; (2) is
derived upon squaring the second Kirchoff’s law; and (3) is the
definition of power flow. The branch flow model is essentially
derived from the full AC model, after ignoring voltage and
current phases. For the feeder, power injection satisfies s0 =∑
k∈C0 Sk, and its voltage is fixed at the nominal level v0.
The aforementioned model involves two linear equalities

(1)-(2), and the quadratic equality (3) that complicates calcu-

lations. For everyday grid operations, an approximate model
is oftentimes used instead. The so termed LinDistFlow model
ignores (3), and because {rn, xn}n∈L have relatively small
entries, it drops the third summands in the right-hand sides of
(1) and (2), yielding the approximate linear model [3]

sn =
∑
k∈Cn

Sk − Sn (4)

vn = vπn − 2 Re[z?nSn]. (5)

In the voltage regulation setup, active power injections
{pn}Nn=1 are assumed known. The goal is to control reactive
power injections {qn}Nn=1 so that squared voltage magnitudes
vn are kept close to their nominal value v0. Conventionally,
injections {(pn, qn)} represent non-controllable loads with the
exception of a few buses with shunt capacitors whose qn can
be adjusted at a slow pace. In the distribution grid setup, the
pn’s from DGs may fluctuate significantly, yet the associated
PV inverters have digitally controllable qn’s.

To characterize the behavior of voltage regulation schemes,
the branch-bus incidence matrix Ã ∈ RL×(N+1) is studied
next. Matrix Ã defines the connectivity of the grid, since its
entries are Ãn,πn+1 = 1 and Ãn,n+1 = −1 for all n ∈ N ,
and zero otherwise [12]. Partition Ã into the first and the rest
of its columns as

Ã := [a0 A].

For a radial grid, the reduced branch-bus incidence matrix A is
square and invertible. Matrix A and its negative inverse F :=
−A−1 enjoy the following properties shown in the Appendix.

Proposition 1. The reduced branch-bus incidence matrix A
of a radial grid and its negative inverse F := −A−1 satisfy:
(a) −A−1a0 = 1N ;
(b) A and F are lower triangular;
(c) −A and F have eigenvalues equal to one;
(d) −A is an M-matrix and thus F ≥ 0; and
(e) the entries of F are Fm,n = 1 for n ∈ N and m ∈ Dn;
and zero, otherwise.

Collect all nodal quantities related to non-root buses in
vectors p, q, and v; and all line quantities in vectors r, x,
P, and Q. Their associated complex quantities are denoted by
s := p + jq, z := r + jx, and S := P + jQ. Having defined
A, the model in (4)-(5) can be compactly expressed as

s = A>S (6)
Av = 2 Re[Z?S]− a0v0 (7)

where Z := diag(z). Premultiplying (7) by A−1, substituting
S = A−>s = −F>s from (6), and using the property
A−1a0 = −1N , we obtain

v = Rp + Xq + v01N (8)

where R := 2Fdiag(r)F> and X := 2Fdiag(x)F>, see also
[9] for a similar derivation. As evidenced by (8) and different
from transmission grids, voltage magnitudes in distribution
grids depend not only on reactive, but on active injections as
well. Model (8) shows that the dependence is roughly linear.



III. VOLTAGE REGULATION SCHEMES

Regulating voltage v by controlling q through the reactive
power capabilities of DGs can be posed as

min
q∈Q

f(q) + c(q) (9)

where f(q) is the cost of squared voltage magnitudes in
v deviating from their nominal value v01; c(q) models the
potential cost for reactive power compensation; and Q is the
feasible set of reactive injections. These three components are
elaborated next.

Starting with the feasible set Q, DG units have limited
reactive power resources. The PV power inverter found on
bus n has limited apparent power capability sn. Thus, reactive
injections q should satisfy the box constraints

Q := {q : −q̄ ≤ q ≤ q̄} (10)

with q̄ := [
√
s2

1 − p2
1 . . .

√
s2
N − p2

N ]>.
A meaningful choice for function f(q) in (9) would be

the Euclidean distance between squared voltage magnitudes
and their nominal value, that is ‖v − v01‖22. Unfortunately,
such a choice is not amenable to localized solutions. Then,
a reasonable alternative for f(q) would be to minimize the
sum of the squared voltage differences between every bus and
its parent bus. Such a criterion is meaningful, since the grid
is connected and the substation voltage is fixed at v0. As
originally shown in [9], in order to arrive at localized updates,
the squared differences are actually normalized by xn. If
ṽ = [v0 v>]>, the vector Ãṽ provides the voltage differences
between buses and their parent buses. These differences can
be alternatively expressed as

Ãṽ = Av + a0v0 = A(v − v01)

and the voltage deviation cost can be defined as

f(q) :=
1

4

N∑
n=1

(vπn − vn)2

xn

=
1

4
‖ diag−1/2(x)A[v(q)− v01]‖22

=
1

2
‖X−1/2[v(q)− v01]‖22

=
1

2
‖X−1/2(Rp + Xq)‖22. (11)

The voltage deviation cost of (11) has been reported in [9]
by reverse engineering the IEEE 1547.8 standard [14]. The
critical property for this choice of voltage deviation cost is
that its gradient is simply the deviation of squared voltage
magnitudes from the nominal namely [cf. (11)]

∇f(qt) = Rp + Xqt = v(qt)− v01 (12)

whose n-th entry can be measured locally at every bus n. It
is assumed here that loads follow a constant-power model;
therefore, voltage magnitude fluctuations do not automatically
alter power injections.

Concerning the reactive power compensation cost c(q), it
is typically separable over buses, i.e., c(q) =

∑N
n=1 cn(qn).

Algorithm 1 Proximal Gradient for Voltage Regulation
Input: Step size µ ∈ (0, 2/λmax(X)).

1: Initialize q0 = 0
2: for t = 1, 2, . . . and at every bus n do
3: Locally measure ytn = qtn − µ(vtn − v0).
4: Update qt+1

n = proxµc,Q[ytn] based on (19).
5: end for

Since negative and positive reactive power injections are
equally important, a reasonable option could be

c(q) =

N∑
n=1

cn|qn| (13)

where cn is the marginal reactive support cost for DG unit n.

A. Voltage Regulation via Proximal Gradient

Putting pieces together, the proposed approach to voltage
regulation would result by solving the problem [cf. (9)–(13)]

min
q

1

2
‖X−1/2(Rp + Xq)‖22 +

N∑
n=1

cn|qn| (14)

s.to − q̄ ≤ q ≤ q̄.

Since the objective in (14) is the sum of a differentiable
convex function and a non-differentiable one, the problem can
be solved via a proximal gradient scheme [18]. Specifically,
reactive power injections can be iteratively updated as

qt+1 = proxµc,Q[qt − µ∇f(qt)] (15)

for an appropriately selected step size µ > 0. Expanding the
proximal operator yields the equivalent formulation

qt+1 := arg min
q

N∑
n=1

cn|qn|+
1

2µ
‖q− qt + µ∇f(qt)‖22

s.to − q̄ ≤ q ≤ q̄. (16)

The optimization in (16) is separable across buses. In partic-
ular, if bus n computes locally the quantity

ytn := qtn − µ(vtn − v0) (17)

then solving problem (16) amounts to solving in parallel the
ensuing problems for all n ∈ N

qt+1
n = arg min

−qn≤qn≤q̄n
cn|qn|+

1

2µ

(
qn − ytn

)2
. (18)

The minimizer of (18) yields the local control rule (see [15,
Prop. 1] for a proof):

qt+1
n =


qn , ytn > qn + µcn
ytn − µcn , µcn < ytn ≤ qn + µcn
0 , − µcn ≤ ytn ≤ µcn
ytn + µcn , − qn − µcn ≤ ytn < −µcn
−qn , ytn < −qn − µcn

. (19)

Hence, it has been shown that the proximal gradient algorithm
tabulated as Algorithm 1 solves the voltage regulation problem
in (14).



Algorithm 2 Accelerated Voltage Regulation Scheme
Input: Step size µ ∈ (0, 2/λmax(X)).

1: Initialize q0 = 0
2: for t = 1, 2, . . . , 2

√
κ(X), and at every bus n do

3: Locally measure ytn = qtn − µ(vtn − v0).
4: Update γt and θt from (20)–(21).
5: Extrapolate as ỹtn = (1 + γt)y

t
n − γtyt−1

n .
6: Update qt+1

n = proxµc,Q[ỹtn] based on (19).
7: end for

The proximal gradient scheme of (19) converges to the
minimizer of (14) when the step size µ lies in (0, 2/λmax(X));
see e.g., [18]. If µ = λ−1

max(X), the convergence of (19)
is linear. The latter means that an ε-optimal cost value can
be attained within − 2 log ε

log 2 κ(X) iterations, where κ(X) :=
λmax(X)/λmin(X) is the condition number of X. Given that
actual distribution grids can exhibit relatively large κ(X)
(cf. Section IV for examples), schemes with faster convergence
are highly desirable.

B. Accelerated Voltage Regulation

To improve the convergence rate of Algorithm 1, Nesterov’s
accelerated method [17] is adapted to the present context.
Define first the sequence

γt =
θt−1 − 1

θt
, t ≥ 1 (20)

where θt is recursively defined as

θt =
1

2

(
1 +

√
1 + 4θ2

t−1

)
(21)

and it is initialized at θ−1 = 0.
Based on sequence γt, standard proximal gradient iterations

can be modified as follows. At iteration t, an intermediate point
q̃ is constructed by extrapolating the two most recent values
of the original variable, that is

q̃t := (1 + γt)q
t − γtqt−1. (22)

It is worth mentioning that albeit both qt and qt−1 belong to
Q, the auxiliary point q̃t may not.

The accelerated scheme performs a proximal gradient step
not on the original variable qt, but rather on the intermediate
point q̃t, that is

qt+1 := proxµc,Q[q̃t − µ∇f(q̃t)]. (23)

To implement (23), we only need to measure the entries
of ∇f(q̃t) at every bus since q̃t is readily available. Using
(12), one can apply q̃t to the distribution grid and then
measure the incurred voltage deviations v(q̃t) − v01. Such
an approach faces two challenges. It first doubles the number
of control actions on the grid by applying both qt and q̃t. It is
further impractical since the reactive injection vector q̃t may
be infeasible.

Fig. 2. IEEE 34-bus feeder.

Fortunately, the linearity of ∇f allows us to evaluate the
gradient at the intermediate point ∇f(q̃t) in a practically
feasible way as

∇f(q̃t) = (1 + γt)∇f(qt)− γt∇f(qt−1)

= (1 + γt)(v
t − v01)− γt(vt−1 − v01). (24)

Equation (24) suggests that the gradient of f(q) can be
evaluated at the intermediate point q̃t via an extrapolation step
between the two most recent voltage deviation measurements.

The modified voltage regulation scheme is listed as Alg. 2.
Its convergence is guaranteed for µ ∈ (0, 1/λmax(X)) [17].
Moreover, if µ = λ−1

max(X) and the sequences {θt, γt} are
reset every 2

√
κ(X) iterations, then an ε-optimal cost value

can be attained after − 2 log ε
log 2

√
κ(X) iterations. For grids

with high condition numbers, the proposed voltage regulation
scheme offers significantly accelerated convergence as verified
in the next section.

IV. NUMERICAL TESTS

The novel voltage regulation schemes are evaluated using
the IEEE 13-bus and 34-bus feeders (shown in Figure 2) [23].
The original multiphase grids are converted to single-phase
ones via the procedure described in [10]: All buses are as-
sumed to be served by all three phases, and loads are averaged
over the phases. Mutual phase impedances are ignored, and the
diagonal entries of the bus impedance matrix are substituted
by their mean. Thus, a three-phase grid decouples to three
identical single-phase grids. Distributed load is modeled as two
identical spot loads at each end of the line. Closed switches
are modeled as distribution lines of the same conductor type
and length as its direct descendant with the smallest number.
Tranformer tap ratios are fixed. To realistically simulate re-
newables, real PV solar data were obtained from the Smart*
project [4]. Solar generation data from 13:00 EDT on August
24, 2011, and from three panels were normalized to unity.

The first experiment uses the 13-bus feeder with condition
number κ(X) = 716. Loads are set to 80% of their peak value.
Solar generation is installed on buses 2, 3, 5-7, 10, 11 and 13;
while 52% PV penetration, defined as peak PV power to peak
load apparent power, is assumed. Marginal reactive support
costs cn are set to 0.0125 ¢/kVar& h for all n.

To serve as a benchmark, the optimization problem in (14)
is solved centrally using MATLAB, and the optimal cost value
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Fig. 3. Convergence performance in the IEEE 13-bus feeder with the optimal
step size (µ = 1/λmax(X)).

is thus obtained. The relative cost value error attained by the
proposed schemes for µ = 1/λmax(X) is shown in Fig. 3.
The curves clearly demonstrate that Alg. 2 converges much
faster even without resetting sequences (γt, θt).

Due to the occasional reconfiguration of distribution grids,
λmax(X) may not be precisely known. In this case, the
step size should be conservatively set to a smaller value to
guarantee convergence. Figure 4 depicts the performance of
the two algorithms for µ = 0.1/λmax(X). The plots indicate
that the speedup advantage of Algorithm 2 is robust to the
choice of step size.

To evaluate accuracy of the linearized grid model, the two
algorithms were also tested using the full AC model. In this
case, actual nodal voltage magnitudes were obtained using the
forward-backward sweep algorithm [16]. The squared voltage
magnitudes obtained under the two control rules for both the
approximate linearized and the full AC model, are shown
in Fig. 5. The curves indicate superior convergence of the
accelerated algorithm. They further suggest that the linearized
model offers a good approximation.

The second experiment involves the 34-bus feeder shown
in Fig. 2 having condition number 5.5 × 104. A 50% PV
penetration level has been assumed on the buses 11, 12,
and 24-34. In addition, 6 solar farms are located on buses
9, 10, 19, and 21-23. The solar capacity for the first two
farms is 0.15 MVA and for the rest is 0.2 MVA, while
they are all assumed to generate 45% of their capacity. The
step size is conservatively set to µ = 0.1/λmax(X). The
curves for Alg. 2 with and without resetting coincide because
the algorithm converges very fast. Figure 6 corroborates the
superior convergence of Alg. 2 over Alg. 1.

Checking the accuracy of the linearized model in (8), the
initial condition for DG reactive power injections was also
tested using the full AC model for the two systems. The
maximum error in the voltage magnitudes over all buses and
the corresponding relative error are listed in Table I.
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Fig. 4. Convergence performance in the IEEE 13-bus feeder with the
suboptimal step size (µ = 0.1/λmax(X)).
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Bus 12

Bus 10

Bus 13

Fig. 5. Voltage profiles of buses 10, 12 and 13 in the IEEE 13-bus feeder.

V. CONCLUSIONS

Voltage regulation schemes for single-phase distribution
grids have been considered in this work. Considering limited
reactive power resources, a reactive compensation cost, and a
rotated voltage deviation penalty, a control rule suggested by
the IEEE 1547 standard was implemented as a proximal gra-
dient algorithm. Interpreted as such, its speed of convergence
was shown to be bounded by the grid topology. Upon applying
Nesterov’s acceleration method, a novel localized control rule
was developed. The latter converges to the same voltage
regulation cost within one fourth of the time needed by the
original rule. Therefore, a minor modification in the reactive
control rule implemented by DGs offers faster regulation of
voltage magnitude profiles. Extensions to unbalanced grids is
an interesting research direction.

APPENDIX

Proof of Proposition 1: Claim (a) follows directly from
the nullspace property Ã1N+1 = 0 and the invertibility of A.
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TABLE I
ACCURACY OF LINEARIZED POWER FLOW

Feeders error v [p.u.] relative error [%]
IEEE 13-bus 1.3× 10−3 1.4× 10−1

IEEE 34-bus 8.4× 10−4 8.7× 10−2

For claim (b), consider the n-th row of −A related to line n
between buses (πn, n). By definition, An,πn = 1, An,n = −1,
and the remaining entries of row n are zero. Since πn < n,
matrix A is lower triangular, and as such, its negative inverse
is lower triangular too.

Concerning (c), −A has unity eigenvalues because it is
lower triangular with all ones on the diagonal. Its inverse F
has obviously unity eigenvalues as well.

For claim (d), −A is an M-matrix because it has non-
positive off-diagonal entries and positive (unity) eigenval-
ues [13, Sec. 2.1]. It follows that its inverse is non-negative.

For claim (e), note first that F has all ones on the diagonal
due to claim (c). From −AF = I, the n-th column of F
denoted by fn should satisfy −Afn = en. The first n equations
of −Afn = en are trivially satisfied; the remaining ones yield∑N
k=1 Am,kFk,n = 0 for m = n + 1, . . . , N . Since the only

non-zero entries of the m-th row of A are Am,πm = 1 and
Am,m = −1, the last equations yield

N∑
k=1

Am,kFk,n = Am,πmFπm,n − Fm,n = 0 (25)

for m = n+ 1, . . . , N . Three cases can be identified.
(c1) If πm < n, equation (25) implies Fm,n = 0 since

Fπm,n = 0 since Fis lower triangular.
(c2) If πm = n, equation (25) yields Fm,n = 1 because

Am,πm = Fn,n = 1.
(c3) If πm > n, it follows that Fm,n = Fπm,n. The

recursion Fm,n = Fπm,n = Fππm ,n = . . . can be terminated
either in (c2) yielding Fm,n = 1 if m ∈ Dn, or in (c1) if
m /∈ Dn yielding Fm,n = 0, thus proving claim (e).
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