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The optimal power flow (OPF) is a large-scale
optimization problem that is central in the op-
eration of electric power systems. Although it
can be posed as a nonconvex quadratically con-
strained quadratic program, the complexity of
modern-day power grids raises scalability and
optimality challenges. In this context, this work
proposes a variational quantum paradigm for
solving the OPF. We encode primal variables
through the state of a parameterized quantum
circuit (PQC), and dual variables through the
probability mass function associated with a sec-
ond PQC. The Lagrangian function can thus be
expressed as scaled expectations of quantum ob-
servables. An OPF solution can be found by
minimizing/maximizing the Lagrangian over the
parameters of the first/second PQC. We pur-
sue saddle points of the Lagrangian in a hybrid
fashion. Gradients of the Lagrangian are esti-
mated using the two PQCs, while PQC parame-
ters are updated classically using a primal-dual
method. We propose permuting primal vari-
ables so that OPF observables are expressed in a
banded form, allowing them to be measured ef-
ficiently. Numerical tests on the IEEE 57-node
power system using Pennylane’s simulator cor-
roborate that the proposed doubly variational
quantum framework can find high-quality OPF
solutions. Although showcased for the OPF,
this framework features a broader scope, in-
cluding conic programs with numerous variables
and constraints, problems defined over sparse
graphs, and training quantum machine learning
models to satisfy constraints.
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1 Introduction

Optimal power flow (OPF) is a fundamental problem in
the operation of electric power systems. It aims to de-
termine the most economical, reliable, and secure sched-
ule for generators to meet electric power demand while
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adhering to engineering limitations. Given the increas-
ing load growth and amid a multi-faceted energy tran-
sition, grid operators must solve the OPF to optimally
operate power systems of ever-increasing size and com-
plexity at finer spatiotemporal scales.

OPF can be posed as an optimization problem over
thousands of variables and constraints. If power flows
need to be modeled precisely through the alternating-
current (AC) power flow equations, the OPF can be for-
mulated as a quadratically-constrained quadratic pro-
gram (QCQP). Although this QCQP is not convex, the
OPF can be relaxed to a convex semidefinite program
(SDP) and solved to global optimality under certain
conditions [1, 2]. Nonetheless, classical algorithms for
solving SDPs [3], such as interior-point methods, may
not scale well for large-scale OPF instances. More-
over, the SDP relaxation may not be always success-
ful. In this context, and leveraging the success of vari-
ational quantum algorithms (VQAs) in other compu-
tational tasks, this work explores VQA alternatives to
SDP solvers for addressing the OPF problem.

1.1 Contributions

The contribution of our paper is on three fronts:

c1) Modeling of the OPF using parameterized quan-
tum circuits (PQC). The OPF can be posed as a non-
convex QCQP. Both the number of variables and the
number of constraints scale with the size of the power
system. Given that modern power systems may consist
of thousands of nodes, OPF is a large-scale optimization
problem. To cope with the high dimensionality, we pro-
pose representing the OPF variables using two PQCs.
Primal optimization variables are captured upon scaling
the state of a primal PQC. Dual variables or Lagrange
multipliers corresponding to constraints are captured by
scaling the probability mass function (PMF) associated
with a dual PQC. Due to this modeling, the Lagrangian
function associated with the OPF can be expressed as
an expectation over quantum observables operating on
either or both PQCs. It is worth emphasizing that, al-
though showcased for the OPF problem, the proposed
modeling applies to other QCQP or more general prob-
lems that can be expressed in terms of expectations of
quantum observables.

c2) Optimizing a doubly parameterized Lagrangian
function. To find approximate primal/dual OPF so-
lutions, we propose a VQA seeking a saddle point of
the associated Lagrangian function. In particular, we
aim to minimize the Lagrangian function with respect
to the parameters of the primal PQC and maximize
it with respect to the parameters of the dual PQC.
This is accomplished in a hybrid fashion. The two
PQCs are used to measure gradients of the Lagrangian

with respect to PQC parameters. A classical com-
puter subsequently uses the gradient information to up-
date PQC parameters iteratively based on the primal-
dual method. The proposed primal-dual updates ap-
ply directly to a broader class of optimization prob-
lems that can be solved via VQAs. Moreover, the pro-
posed method unlocks potential towards training quan-
tum machine learning (QML) models to comply with
constraints. Such functionality is essential for endow-
ing QML models with safety and stability features.

¢8) Efficient measurement of OPF observables. Al-
though OPF observables involve sparse Hermitian ma-
trices, standard LCU-based decomposition methods do
not yield qubit-efficient measurement protocols. To
address this challenge, we utilize the structure of the
OPF problem and the recently proposed method of
extended Bell measurements (XBM) [4], to design a
qubit-efficient protocol for measuring gradients of the
Lagrangian function associated with the OPF. Specif-
ically, the XBM method partitions the entries of an
N x N Hermitian measurement matrix into groups, al-
lowing entries within each group to be measured simul-
taneously using at most O(log N) additional quantum
gates. If a matrix can be decomposed into O(log N)
such groups, the XBM method is qubit-efficient. Two
key points for successfully adopting the XBM method
to the OPF are: i) The sparsity pattern (the positions
of nonzero entries) of OPF observables is determined by
the graph defined by the nodes and transmission lines
of the power system, which is sparse; and i) According
to numerical tests, nodes in a power system can be per-
muted so that OPF observables can be partitioned in
O((log N)3) groups. Finding the node permutation that
yields the number of groups is an NP-hard problem [5].
Instead, we adopt the reverse Cuthill-McKee (RCM) al-
gorithm [6], a greedy heuristic algorithm of linear com-
plexity O(N), to permute nodes so that OPF observ-
ables are banded. This is effective because banded ma-
trices are known to feature a small number of groups [4].
Beyond the OPF setting, the devised workflow can be
instrumental in effectively measuring quantum observ-
ables associated with sparse connectivity graphs arising
in ML and optimization applications over natural or en-
gineered networked systems.

1.2 Literature review

Quantum computing for the OPF. A previous quantum
computing effort to the OPF problem has focused on
the classical primal-dual interior point method, wherein
the Harrow—Hassidim-Lloyd (HHL) algorithm serves as
a linear system solver in each Newton step [7]. The
idea of utilizing the HHL algorithm as a linear system
solver has also been explored for solving the nonlin-




ear AC power flow equations, which constitute a sub-
set of constraints of the AC OPF problem [8, 9, 10].
Nonetheless, the computational complexity of the HHL
algorithm does not scale well for linear systems involv-
ing the Jacobian matrix of the AC power flow equa-
tions, as established in [11]. Reference [12] integrates a
PQC as an intermediate layer of a classical neural net-
work, trained in a supervised fashion to predict OPF
solutions. However, it is not clear which measurement
outputs are encoded into the subsequent classical hid-
den layer, nor how the parameter-shift rule is applied
under such a design.

Handling constrained optimization problems wusing
VQAs. VQAs have emerged as a promising approach
for solving optimization problems on current-day quan-
tum computers. A well-studied exemplar of VQAs is the
variational quantum eigensolver (VQE), which aims to
find the smallest eigenvalue of a quantum observable by
employing a PQC [13]. The quantum approximate op-
timization algorithm (QAOA) is a variant of VQE with
a problem-dependent PQC and a diagonal observable
targeting combinatorial problems [14]. While VQE and
QAOA were originally devised for unconstrained prob-
lems, extensions to optimization problems with con-
straints have been proposed in [15, 16, 17, 18, 19, 20, 21,
22]. References [15, 19] convert constrained problems to
unconstrained ones by penalizing constraint violations
on the objective function. However, selecting a suitable
penalty parameter is a nontrivial task. Unreasonably
large values can cause ill-conditioning, while unreason-
ably small values can yield infeasible solutions. In [20],
the QAOA’s ansatz is adapted to ensure that the output
state stays within the feasible subspace; yet, this strat-
egy applies only to binary problems with linear con-
straints. References [21] propose a hybrid method for
solving SDPs. The idea is to approximate the matrix
variable of the original SDP by a semidefinite matrix
of smaller dimension. The resultant SDP of reduced
dimension is solved classically using standard interior
point-based methods. Quantum measurements are used
to translate the cost and constraint functions of the orig-
inal to the compressed SDP formulation. Nonetheless,
the solution of the compressed SDP may be infeasible
or suboptimal for the original SDP.

An alternative approach to cope with constrained
problems is via Lagrangian duality. Reference [16]
seeks a saddle point of the Lagrangian function with
respect to the PQC parameters and the dual variables.
To tackle problems with numerous constraints, refer-
ence [18] encodes dual variables through a parameter-
ized quantum state, in addition to the primal vari-
ables. Both [16] and [18] solve the associated dual prob-
lem using the iterative method of dual decomposition.
Nevertheless, each iteration of dual decomposition in-

volves solving a VQE-type problem to optimality, which
is computationally overwhelming. In [17], this draw-
back is circumvented by using the primal-dual update
method, which only requires estimating gradients of the
Lagrangian function. Nonetheless, reference [17] applies
only to binary and linear programs. In this work, we
combine [17] and [18] to deal with a doubly variational
VQA formulation of the OPF.

Measuring quantum observables. Measuring quantum
observables is key to the effective implementation of
VQAs. A prominent measurement method decomposes
a Hermitian matrix into a linear combination of uni-
taries (LCU), and measures the resultant unitary ob-
servables via the destructive swap test [23, 24]. This
method is practically relevant only if the resultant uni-
taries can be implemented efficiently using quantum
gates. This is the case, for example, if the unitaries
can be expressed as Pauli strings (tensor products of
Pauli matrices), and the number of Pauli strings scales
polynomially with the number of qubits, n; see [25, 26,
27]. Unfortunately, a general matrix may involve O(4")
Pauli strings [28]. The number of Pauli strings grows ex-
ponentially with n, even for some structured sparse ma-
trices, such as k-banded matrices that involve O(kn2™)
Pauli strings [28]. One possible strategy to reduce the
number of measurements is to group Pauli strings into
sets of terms that pairwise commute. If two Hermi-
tian matrices commute, they can be jointly diagonal-
ized, and thus, measured simultaneously [29, pg. 43]. To
this end, various grouping methods have been proposed,
including qubit-wise commutativity grouping [30, 31],
general commutativity grouping [32], and unitary parti-
tioning [33, 34]. Nevertheless, partitioning Pauli strings
to achieve the minimum number of groups is an NP-
hard problem [32].

Classical shadowing is an alternative technique for
measuring observables [35]. It is particularly effective
when the measurement matrix can be expressed as lo-
cal Pauli strings, i.e., Pauli strings that act non-trivially
on a small number of qubits. For observables that do
not admit this form, however, the number of measure-
ments scales linearly with the squared Frobenius norm
of the matrix. Unfortunately, for connectivity matrices
of sparse graphs, this quantity generally grows linearly
with the network size.

Another recent method for measuring observables in-
volves extended Bell measurements [4]. This method
decomposes the measurement matrix into matrices
whose associated observables are simultaneously mea-
surable using qubit-efficient rotation unitaries. Never-
theless, the number of induced observables may reach
2" for a general sparse measurement matrix [4]. Our key
idea is to permute nodes once and beforehand, so that
OPF quantum observables can be measured efficiently.




1.3 Notation

Column vectors are denoted by boldface lower-case let-
ters. Matrices are denoted by boldface upper-case let-
ters. The symbol | stands for transposition, and T for
conjugate transposition. The operator dg(x) returns
a diagonal matrix with vector x on its main diagonal,
while dg(X) returns a vector with the diagonal entries
of matrix X. The set of real-valued symmetric matri-
ces of dimension M is denoted by S™. Logarithmic
functions are of the binary base. The imaginary unit is
denoted by ¢ := v/—1. The notation m = 1 : M means
that index m takes values from 1 to M. Symbol |H]|
denotes the spectral norm of a matrix H.

2 Optimal power flow as a QCQP

The OPF is a large-scale, nonconvex optimization prob-
lem. Given forecasts of electric load demands for the
next control period, the goal of the OPF is to sched-
ule generators and flexible demand most economically
while complying with engineering constraints imposed
by the power transmission system and the generation
units. This section states the OPF and poses it as a
QCQP.

Let us first review a power system model; see [36] and
references therein. An electric power system can be rep-
resented by an undirected connected graph G := {N, £}.
The vertex set N' :== {1,..., N} comprises N nodes.
Nodes correspond to points where electric power is pro-
duced by generators or consumed by loads. The edge
set £ = {€ = (n,m) : n,m € N} consists of L, = |&]
transmission lines, each connecting two nodes. Because
each node is connected only to a few other nodes, the
number of lines, L., is typically a small multiple of N.

The power system can be described by a vector v €
CV of the complex AC voltages (voltage phasors) ex-
perienced at all nodes. Because many other quantities
of interest can be expressed as functions of nodal volt-
ages, the vector v is typically selected as the state of the
power system. For example, the vector of AC currents,
i, injected into all nodes can be expressed as i = Yv,
where Y € CNV*¥ is the node admittance matrix, which
can be thought of as a complex-valued Laplacian matrix
of the power system graph G. Other grid quantities,
such as the nodal power injections, line power flows,
squared voltage magnitudes, and squared line magni-
tudes, can all be expressed as quadratic functions of v,
as viM,,,v for some Hermitian matrix M,,. If v,, and
in are the AC voltage and current at node n, respec-
tively, the complex power injected into the power net-
work through node n is defined as s,, = vy,i} = pp+tqn,
whose real part p, is termed active power, and imagi-
nary part q, is reactive power.

The cost function of the OPF is usually a linear func-
tion of some of the active power injections. To comply
with generation capacities and load demands, the OPF
imposes upper and lower limits on active and reactive
power injections in the form of

Pn <pp<Pn and ¢, <q, <@g, forallneN.

Nodal voltage magnitudes are constrained within upper
and lower limits as

v2 <|vp|? <92 forallmeN.

Line current magnitudes are upper-limited by line ca-
pacities as -
lig]? <i? forallleé&.

Since all quantities mentioned above are quadratic
in v, the OPF can be posed as a quadratically con-
strained quadratic program (QCQP) over v as [2, 36]:

P* = min viMgyv (QCQP)
veCN
subject to (s.to) viM,,v <b,, for m=1:M

where b,,, for all m, is a given real-valued parameter
determined by lower/upper limits and each M,, is a
known Hermitian matrix. For example, if constraint
Pn < ppn is indexed as the m-th constraint, then b, =
—pyn. The OPF involves quadratic equality constraints,
e.g., when p,, = p,, for a subset of nodes n € N/. Each of
these equality constraints corresponds to two inequality
constraints in (QCQP). Overall, the number of OPF
constraints can be several times the network size, such
as M ~ 8N.

The precise form of Mg and {(M,,, b,,,)}M_; is delin-
eated in Appendix A.1. It is worth stressing that every
matrix M, is highly sparse. This is because every node
of a power system is directly connected to only a few
other nodes. The number of nonzero entries per matrix
M,,, is upper bounded by a small constant much smaller
than N. The (i,j)-th off-diagonal entry across every
matrix M, is nonzero only if nodes 7 and j are con-
nected through a transmission line, that is, if (4,7) € £.
Consequently, the sparsity pattern (location of nonzero
entries) for each M, is determined by a small subset of
E. Therefore, the union of the sparsity patterns across
all matrices M,,, coincides with the sparsity pattern of
the nodal admittance matrix Y. This feature will be
crucial for efficiently measuring the quantum observ-
ables involved in the OPF, as expounded in Section 6.

3 Primal-dual iterations for the OPF

Although (QCQP) is nonconvex, it can be relaxed to
an SDP and solved by standard interior-point solvers.




For many practical settings, this convex relaxation is
successful in the sense that a globally optimal v can be
readily recovered from the SDP solution. Nonetheless,
the memory and time requirements imposed by SDP
solvers may be challenging to meet as N increases. This
motivates us to explore a VQA for the OPF.

To motivate a PQC-based solver for large-scale OPFs,
let us discuss how (QCQP) could be solved on a classi-
cal computer. Among different approaches, we present
the method of primal-dual (PD) decomposition as a
representative example of a first-order optimization al-
gorithm. The PD method relies on Lagrangian dual-
ity [3]. Each constraint indexed by m in (QCQP) is
associated with a non-negative dual variable \,,. Let a
vector A € Rf collect all dual variables. The related
Lagrangian function is a function of both v and A:

M
LVIA) =vIMev+ Y A (VIMpv —bp). (1)

m=1
The corresponding dual problem is posed as

D* := max min L(v;A). (2)
A=0 veCN
A primal/dual solution (v*,X*) € CN x R} of (2)
satisfies

LV5A) S LVHAT) < L(v;AF)

for all (v,A) € C¥ x RY. Such a pair is called a
saddle point of the Lagrangian function. In essence,
v* is a minimizer of £(v;A*) and A" is a maximizer
of L(v*;\). For problems featuring strong duality (in
which case P* = D*), a point is an optimal primal/dual
point if and only if it is a saddle point of the Lagrangian
function [3, p. 239]. Furthermore, at a primal/dual
solution (v*; A*), the value of the Lagrangian satisfies
L(v*;A*) = P* = D*. Finding an exact saddle point of
the Lagrangian imposes stringent conditions on £(v; A).
However, approximate saddle points can be reached un-
der specific settings using gradient-based methods, such
as the PD method [37].

According to the PD method, during iteration ¢, the
primal and dual variables are updated as:

vitl = vt — utV L(v; AY, (3a)
At+1 — I:At _|_ Mg\v)\ﬁ(vt+1, At)} L (3b)

where pf and pf are positive step sizes, and [z]; =
max{z,0}. The update in (3a) is a gradient descent
step on L in terms of the primal variable. The update
in (3b) is a projected gradient ascent step on £ in terms
of the dual variable.

One may attempt to solve (QCQP) using the previous
PD iterations. In this case, computing the Lagrangian

gradients incurs complexity O(N). To see this, note
that the partial derivative of £ with respect to A, is

;\—fn =viM,,v — b,,.
This partial derivative can be computed in O(1) steps,
simply because M,,, has O(1) nonzero entries. There-
fore, computing the entire gradient VL entails com-
plexity O(M) = O(N) given that M is proportional to
N. Similarly, computing the gradient

M
VoL =2 <M0 + Z /\mMm> v

m=1

incurs O(N) operations. Contemporary power systems
consist of more than N = 30,000 nodes. Nonetheless,
it is anticipated that the size of the OPF could increase
dramatically due to the pressing need to schedule re-
newables at finer spatiotemporal scales. In this context,
can a VQA attain reduced computational complexity?
The next section proposes a variational model for the
OPF.

4 A doubly variational OPF model

Variational quantum computing is an algorithmic tool
for solving high-dimensional problems in a parame-
terized form using a parameterized quantum circuit
(PQC). The well-known variational quantum eigen-
solver (VQE) solves a specific form of (QCQP) [13]:

in viM 4
S VMov @

sto viv=1.

The optimal cost in (4) is the smallest eigenvalue of M.
Moreover, the eigenvector corresponding to the small-
est eigenvalue of My is the minimizer. The key idea
of VQE is to model the original high-dimensional vec-
tor v as a quantum state |¢)) using log N qubits. Sup-
pose for now that IV is a power of 2. The constraint
in (4) can be omitted as the quantum state has unit
Euclidean norm anyway. This quantum state is gener-
ated upon applying a PQC on an initial state [0),,, -
The PQC is modeled by a unitary matrix U(0) param-
eterized by vector 8 € R with P < N. The PQC
generates the state |1(0)) = U(0)|0), and then mea-
sures the expectation F(0) = (1(0)|Mo|1(0)) and its
gradient Vg Fy(0). Subsequently, a classical computer
receives the gradient information and updates 6 to min-
imize Fy(@) using gradient descent or other classical op-
timization methods.

We propose solving the OPF using a similar workflow.
Because the primal variable of the OPF does not have




a unit Euclidean norm, we parameterize it as [38]:

v(8) = aly(6)) ()

where a > 0 is an auxiliary optimization variable. The
PQC used to generate |¢(0)) will be henceforth termed
the primal PQC or PQC,,.

Given the parameterization in (5), the prob-
lem (QCQP) can be expressed in the variational form:

(QCQPy)
m=1:M

* : 2
Py = Juin - o Fy(0)
s.to a®F,(0) < by,
where expectations are defined as
Fn(0) = ((0)[ M., |4(0)) ,

As in VQE, the original (QCQP) over v has been re-
placed by the variational problem (QCQPjy) over the
parameter vector . Attempting to solve (QCQPy) us-
ing Lagrangian duality entails solving the dual problem:

m=0:M. (6)

Dy :=max min L£(6,a; )
A>0 6,a>0

over X € RJE. The related Lagrangian function is

M
L(6,05X) = ”Fp(0) + Y A (07 Fpn(6) = b) . (7)

m=1

Unfortunately, because the dual variable A has length
O(N), the curse of dimensionality remains.

To bypass this difficulty, dual variables can also be
represented using a variational model. A similar idea
was proposed in [18] for capturing the primal and dual
variables of an SDP. To model A variationally, we intro-
duce a second PQC, henceforth termed the dual PQC
or PQC,;. The dual PQC operates on log M qubits,
supposing again that the number of constraints, M, is
a power of two. The dual PQC is modeled by a unitary
matrix V(¢) parameterized by vector ¢ € R? such that
@ < M. The state of PQCy is |&(¢)) = V(¢) |0); see
Fig. 1.

With the aid of PQC,, the m-th entry of A is param-
eterized as

>\m(¢) = 62 : |£7n(¢)|27

where 8 > 0 is an auxiliary variable and &,,(¢) is the
m-th entry of the state |£(¢)). Like v in (5), variable 3
is introduced for scaling purposes. Unlike (5), however,
dual variables are related to the squared magnitudes of
quantum state entries. This ensures that A, (¢) takes
real nonnegative values.

The Lagrangian function related to this doubly pa-
rameterized OPF can be expanded into three terms:

L(0,;¢,8) = a*Fo(0) + a5 F (0, 9) — 5°G(s), (9)

form=1:M (8)

|0>10gM:§ ren E i /:45
“I V(o) .
= — —HA]
! 1y (9)) | =:|:
- T ' : :/AE
‘0>log]\l°E {IQC; E : i . E
i @) | ' D
5 ; Al

_____________________________________

_____________________________________
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______________________________________

D quantum processor C] classical processor [:] measurement

Figure 1: Workflow of approximately solving (QCQP) using
a doubly variational approach. The primal PQC (bottom) pa-
rameterizes the primal variables. The dual PQC (top) param-
eterizes the dual variables.

where v
F(8.9) =) [6m(8)*Fu(6) (10)
m=1
and
M
G(¢) = Z bm|€m(¢)|2 (11)
m=1
The variational dual problem is defined as
Dj 4= f,}ea;(o 9%1§0£(07 a; ¢, B). (12)

One may wonder why we do not parameterize the pri-
mal and dual variables jointly using a single PQC op-
erating on log N + log M qubits. Unfortunately, under
that design, we would not be able to update the PQC
parameters in a meaningful way. Having two PQCs
parameterized separately, as depicted in Figure 1, al-
lows us to minimize the Lagrangian function in (9) over
(0, ) and maximize it over (¢, 3).

The standard Lagrangian dual function is known to
be concave with respect to the dual variables, even if the
primal problem is nonconvex. That is not the case for
the dual function ming >0 £(0, ; ¢, 5) in (12). This is
because the dual variables are now parameterized, and

L(6,a; ¢, 5) is not concave in (¢, 5).

5 Solving the doubly variational OPF

We propose seeking a saddle point of the Lagrangian
function in (9) using a PD algorithm. The ¢-th iteration
of the algorithm comprises four steps:

0"t = 0" — ubVeL (0", 0t 9", BY), (13a)




ot i= [ — pl Vo L(0, ol d)t,ﬁt)h, (13b)
P =" + VL0, 0l ¢, BY), (13¢)
B = [B' + u VL (6", o d)t7ﬁt)]+, (13d)

where g, pf, pl, and pj are positive step sizes.
Steps (13a)—(13b) constitute gradient descent steps to
update the primal variables, while (13c)—(13d) are gra-
dient ascent steps to update the dual variables. The
updates of (13) run on a classical computer. The sug-
gested workflow is shown in Fig. 1.

The gradients in (13) can be estimated with the help
of the two PQCs. The key observation is that each term
of the Lagrangian function can be expressed as an ex-
pectation over an observable. More specifically, the first
term can be computed using an observable operating on
PQC, through the expectation:

Fo(0) = (¥(0)[Mo|9(8)) - (14)

The third term can be computed using an observable
operating on PQC, through the expectation:

G(¢) = (&(d)ISIE(9)) (15)
where S := dg({b,,}¥_,) is a diagonal matrix with the

OPF parameters b, on its main diagonal. Due to the
parameterization in (8), the Lagrangian of the doubly
parameterized problem is quadratic in |£(¢)), although
the Lagrangian in (7) was linear in A.

The second term of the Lagrangian can be expressed
as the expectation over an observable operating jointly
on PQC, and PQCy, as shown in the ensuing lemma
proved in Appendix A.2.

Lemma 1. The second summand in (10) can be com-
puted as the expectation

F(0,¢) = (£(),%(0)[M[£(¢),4(0))  (16)
defined by the MN x M N Hermitian matrix

M
M= Z eme, ©M,, (17)

m=1
and e, is the m-th column of I;.

Lemma 1 asserts that F'(0,¢) is an expectation ap-
plied to the composite state of the two PQCs. This
is important as it bypasses the need to measure sepa-
rately each one of the M constraint expectations F;, (0)
of the OPF. This powerful feature was first identified
in [18] for solving doubly variational SDPs on a quan-
tum computer. In this work, we adopt this idea to the
OPF setting. We also propose a method for efficiently
measuring the joint observable for the OPF associated

with sparse graphs in general. We uniquely leverage the
graph structure of a power system to efficiently measure
the three observables using the two PQCs. We defer
this discussion to Section 6. If the observables can be
measured efficiently, their gradients can be measured
efficiently as well via the so-called parameter-shift rule
(PSR). We review this rule and adapt it to the PD it-
erations in (13).

Let us focus on the gradient Vg Fy(0"). Suppose that
the unitary matrix modeling the primal PQC takes the
form

p
U0) =Wpiy H exp(—j0,G,)W,, (18)

p=1

where each G, is a single-qubit Hermitian generator
with two distinct eigenvalues +r, and {Wp}gill is a set

of fixed gates. Then, the partial derivative of Fy(6")
with respect to the p-th entry of @ can be computed by
evaluating Fy(0) at two values of 8 [39, 40]:

Fy (6

age(p) =1 (Fp(0' + Eep) — Fo(0" — Ze,)), (19)
where e, is the p-th column of the identity matrix Ip.
If G, is a Pauli rotation from the set 3{o,,0y,0.}, we
get r = 1 and each 0}, is shifted by +7.

The expectation value Fj(€) cannot be evaluated ex-
actly; it can only be estimated via quantum measure-
ments: To estimate Fy(0) for a particular 6 with pre-
cision ¢, PQC,, has to be sampled S = O(e~?2) times.
To obtain the complete gradient VgFy(0"), the previ-
ous process is repeated 2P times and involves a total of
2PS measurement samples.

The gradient of the expectation value in (15) with re-
spect to ¢ can be computed similarly by running PQC,
by shifting the values of ¢ for 2Q times or 2QS mea-
surement samples. The gradient VoF (8", ¢") can be
computed by running both PQCs while only shifting the
entries of @°; and vice versa for computing the gradient
V4 F(0', ¢"). Tt should be clear by now that, due to the
PSR, evaluating gradients of expectations is equivalent
to measuring expectations. Section 6 discusses how to
measure the observables involved in the OPF.

Although the plain PD method has been extensively
studied for convex/concave and nonconvex/concave
saddle-point problems [41, 42, 43, 44], its conver-
gence has not been fully understood in the noncon-
vex/nonconcave setting, like the one in (12). Recently,
a variation of the PD method, termed the extragradient
(EG) method [45], has been shown to converge under
certain conditions for nonconvex/nonconcave saddle-
point problems [46]. Compared to the plain PD method,
each EG iteration doubles the number of gradient evalu-
ations of the Lagrangian function. More specifically, let




vector z' == [0";a%; ¢'; 5] collect the primal and dual
variables at iterate ¢, and define the vector:

g(z') = [VoL(2"); VaL(2'); ~VL(z'); —VsL(2")].
(20)
Then, the EG iterations can be expressed as
7' =z' —2ulg(z"), (21a)
o =2 ulg(z) (21D)

for a step size p! > 0. In essence, the EG method first
computes an intermediate point Z' based on the plain
PD method, and then updates z‘ to zT! upon evalu-
ating the gradient operator at the intermediate point.
Despite doubling the number of gradient evaluations,
EG iterates feature favorable convergence properties as
established analytically in Section 7 and corroborated
numerically in Section 8.

Before concluding this section, it is worth noting that,
as with other VQAs, training the primal-dual PQC pair
could be impeded by the so-called barren plateaus issue,
according to which gradients vanish exponentially fast
in terms of the number of qubits and depth of PQCs [47,
48]. This phenomenon can occur when designing VQAs
for large-scale problems and/or using overly expres-
sive PQCs. A related concern is that the PQC archi-
tectures that are both sufficiently expressive and free
from barren plateaus are often efficiently simulated by
classical algorithms [49]. Interestingly, recent results
show that the so-called dynamic quantum phase gates
(PQCs) [50], which incorporate early measurements fol-
lowed by measurement-conditional unitaries, and quan-
tum recurrent embedding neural networks [51]| can prov-
ably avoid barren plateaus while retaining high expres-
sivity. Moreover, dynamic PQCs inherit the worst-case
classical hardness of the universal unitary circuits, pre-
cluding the possibility of classical simulatability. In-
vestigating the performance of the doubly variational
OPF on dynamic PQCs or quantum recurrent embed-
ding neural networks for large-scale networks is an in-
teresting future direction.

6 Measuring OPF observables

This section reviews the extended Bell measurement
(XBM) method proposed in [4] and explains how it can
be adapted to efficiently measure OPF observables.

6.1 Extended Bell measurement (XBM) method

Consider ~ measuring  the  expectation  value
(¥(0)| M, |1p(0)) associated with the observable M,,,
which is a N x N Hermitian matrix. The matrix M,,

Bitwise XOR Color Matrix

-111
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101- 010
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Figure 2: The XBM method of [4] groups the entries of an N x
N Hermitian matrix M,,, into N groups or colors. This XBM
grouping or entry coloring is shown here for an 8 x 8 matrix
associated with log8 = 3 qubits. Each color ¢ is identified
by the binary form of its index c. Color ¢ includes all matrix
entries with index pairs (i, 7) for which ¢ @ j = ¢. For example,
the grey color ¢ = 7 = [111) includes all entries lying on the
main anti-diagonal of M,,. Note that the color arrangement
is symmetric.

is conventionally expressed as

N-1N-1
> M) 1) (Gl (22)
i=0 j=0

The XBM method proposes the alternative expansion:

ZM

N—-1N-—

Ju

(i1 M, ]i @ c)
c=0 i=0

=M,

(23)
where @ denotes the bitwise exclusive OR (XOR) op-
erator if indices ¢ and c¢ are represented in binary form.
To establish the equivalence between (22) and (23), we
need to show that every pair (i,j) corresponds to a
unique pair (7,7 & ¢), which indeed holds for ¢ = i & j.
Due to this alternative indexing, the matrix M,, can be
decomposed into N matrices {M¢, }2 ;! defined as

(iMplg), fi®j=c
(1M, [j) = -
0, otherwise.

For example, the matrix M2, carries the diagonal en-
tries of M,, because i @ i = 0. Figure 2 uses color
coding to identify the index pairs (i,j) corresponding
to the same ¢ for an observable over three qubits [4].
We will henceforth say that all index pairs (i, j) satisfy-
ing ¢ ® j = c for a specific ¢ belong to the same color c.




Because 1 & j = j @1, every MY, is Hermitian. There-
fore, the matrices

M¢ =Re{M¢} and M¢ :=.Im{M¢} (24)

m

are also Hermitian for all ¢, and M9, = 0.
Based on (23), the expectation value associated with
M,,, can be expressed as a sum of 2N — 1 observables:

N-1

> (M, ) +Z (1ML, |ap) . (25)

c=0 c=1

(Y| M |9) =

Because l\A/I0 is diagonal, the expectation value
(p|M2,|4) can be measured in the computational basis.
Upon measuring |t), the binary vector outcome [i) is
observed with probability |4;|2. Define a random vari-
able taking the value (i|M?9 |i) when outcome |i) is ob-
served. Then, the expectation (4|M?, |4)) in (25) is the
expected value of this random variable.

The remaining expectation values in (25) are not
as_straightforward to measure because the matrices
(M¢,, M¢,) are non-diagonal for ¢ = 1,...,N — 1. The
advantage of XBM’s color decomposition is that these
matrices can be diagonalized by unitaries correspond-
ing to qubit-efficient circuits. This key result from [4]
is summarized in the following lemma.

Lemma 2 ([4]). Consider the color index ¢ > 1.
Let index k. denote the most significant bit taking the
value of one in the binary representation ofv|c> =
|clog N—1- - c1¢co). Then, the matrices MS, and MY, ad-
mit the eigenvalue decompositions:

¢ =UA U] and M¢ =SiU.ASU/S,
where

i) unitary matriz U, can be implemented using one
Hadamard gate and at most (logN — 1) CNOT
gates;

it) unitary matriz S. applies a phase gate S on qubit k.
and acts trivially on all other qubits; and

itt) the diagonal eigenvalue matrices are

Afn:*z (i [ @ ) (1) (0] — X, [0)(i] X.,)

=

\V]

N-1

m:LZWWWWMJWM%)

i=
with X, applying a NOT gate on qubit k..

The practical value of Lemma 2 is that the expecta-
tion value

(M, [9p) = ($|UAS U [9)

can be measured by transforming |¢) to U/ |4) and
then measuring the latter in the computational basis
using the diagonal matrix Afn The transformation
is qubit-efficient because the unitary U, involves at
most log N elementary gates. The expectation value
(¥|M¢, |) can be measured similarly, with at most
log N + 1 elementary gates; log N for U, plus one for
Sc. A critical feature is that the unitary U, diagonaliz-
ing (M¢,, M¢,) depends solely on the color (locations of
nonzero entries) of (M¢,, M¢, ), and not on the values of
those entries. Only the eigenvalue matrices (A, AS,)
depend on those values, and can be computed without
the need for an eigenvalue decomposition.

Although each expectation value in (25) can be esti-
mated efficiently, there are (2N — 1) of them. Unfortu-
nately, each one of them requires a different quantum
circuit. Therefore, the expectation value (1|M,,|1)
can be measured efliciently only if all nonzero entries of
M,,, are covered by a few colors. Let C denote the set of
colors for which either an or Mﬁn is nonzero, so that
M,,, is decomposed as M,,, = >~ .. My,. For the XBM
protocol to be qubit-efficient, the number of colors C =
|C| should scale polynomially in log N. Reference [4]
establishes that banded matrices occupy relatively few
colors. Specifically, it is shown that a k-banded matrix
can be decomposed using C = O(klog N) rather than
N colors. For the example of Figure 2, a matrix with
bandwidth & = 1 requires 4 colors.

Based on Lemma 2, if the expectation value F,,(0)
occupies C' colors, it can be decomposed into 2C — 1
expectations:

2C—-1 2C—-1
0)= > Fn(0)= Y (4.(0)lA7,[+.(0)), (26)

A~

where [1.(0)) = U] [1(0)) and AS, = A, for ¢ =
., C; and [4,.(0)) = U/S.[9(0)) and AS, = Af,
forc=C+1,...,2C — 1. Each one of the observables
involved can be diagonalized by a different unitary ma-
trix.
We next describe how to effect an OPF measurement
matrix M that uses a few colors.

6.2 Node permutation for qubit-efficient mea-
surements

To solve the doubly parameterized OPF, we need to
evaluate the Lagrangian function in (9) by measuring
the observable in Lemma 1 so that we can compute its
gradients over (0, a; ¢, (). We next adopt the XBM
protocol to efficiently measure OPF observables.
According to (17) observable matrix M has the N x
N matrices {M,, };._; as its diagonal blocks. Despite
being block- dlagonal, matrix M may still occupy up to




N colors. Critically, we do not necessarily have to work
with M. Instead, we can permute variables to effect
a new measurement matrix that is amenable to more
efficient measurements. Suppose we permute vector v
by a permutation matrix P to get Pv. This entails
reordering the nodes of the power system, which is a
trivial task that can be performed before solving the
OPF. The observable in Lemma 1 can be expressed as

M M
> AnviMLy =" AVPT(PM, PPV, (27)
m=1 m=1

Ideally, we would like to design a single P to minimize
the maximum bandwidth across all PM,,PT. To this
end, we suggest designing P to minimize the bandwidth
of PYPT, where Y is the node admittance matrix of
the power system. This is because the sparsity pat-
tern of Y captures the union of sparsity patterns of all
M,,,. Therefore, minimizing the bandwidth of PYP T
is equivalent to minimizing the maximum bandwidth
across all PM,,,PT.

Unfortunately, minimizing the bandwidth of a matrix
is an NP-hard problem even if the matrix is sparse [5].
Nonetheless, heuristic approaches, such as the reverse
Cuthill-McKee (RCM) algorithm [6], provide reason-
ably good solutions in linear complexity O(L.) = O(N),
where L. is the number of edges in the power system
graph. The RCM algorithm has been used to reduce the
bandwidth of the node admittance matrix Y in classical
computing [52, 53, 54]. Albeit permuting M,,’s using
the RCM algorithm takes O(N) operations, the crucial
point is that this permutation can be performed once.
This is because the power system topology changes in-
frequently, and such changes only affect a few lines. As
long as the network topology remains unchanged, an
instance of the OPF is characterized by parameters b,,,
which vary frequently. In contrast to the permutation
step, OPF instances over the same topology must be
solved repeatedly, every few minutes during real-time
operation and potentially millions of times in long-term
planning.

We numerically validated the effect of node permu-
tation on the bandwidth of M. We ran the RCM algo-
rithm on the 66 benchmark power system models of the
pglib dataset [55]. Figure 3 shows the bandwidth of M
before and after node permutation. Because the RCM
solution depends on the initial node, we conducted 200
Monte Carlo runs per power system, with the initial
node drawn uniformly at random per run. Out of the
200 runs, we retained the permutation that yielded the
smallest bandwidth. Evidently, permuting nodes re-
duces the bandwidth of M dramatically. Upon data
fitting and cross-validation, the reduced bandwidth was
numerically found to scale as (log N)3. We also empiri-
cally tested the effect of node permutation on the num-

70000 Original OPF measurement matrix
Permuted OPF measurement matrix
60000 Fitted permuted OPF measurement
= T matrix (logN)3
_'g 50000 3566
2 40000
© 1500
Q
X 30000
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©
= 20000
500
10000 =
0 2 4 10 ..cr'f' . .
2 4 6 8 10

Number of power system nodes in log-scale [log N]

Figure 3: The bandwidth of the original and permuted
OPF measurement matrices as a function of the loga-
rithmic network size (logN) for the power system graphs
in pglib. Nodes were permuted by the RCM algo-
rithm. Permuted matrices feature patently smaller band-
widths. Upon data fitting and 5-fold cross-validation over
different polynomial and exponential functions, the reduced
bandwidth was numerically found to scale as (log N)*. The
run time of the RCM algorithm (implemented by function
scipy.sparse.csgraph.reverse_cuthill_mckee in Python
3.11.9) on the largest power system graph of N = 78,784 is
a few seconds using a MacBook laptop equipped with an M3
Pro processor and 36 GB of RAM.

ber of colors in the OPF measurement matrix. Figure 4
shows that node permutation significantly reduces the
number of colors, too. If the bandwidth of PMP T is
k = O((log N)3) per data fitting in Figure 3, the anal-
ysis of [4] upper bounds the number of its colors as
C = O(klog N) = O((log N)*). However, the number
of colors in PMP T was found to scale as (log N)3.

We have so far focused on measuring the second ob-
servable of the Lagrangian function in (9). The third
observable is diagonal and is thus straightforward to
measure. The first observable F;(60), however, is defined
over the non-diagonal matrix M. In general, among
all M,,,’s, matrix My could have the most nonzero off-
diagonal entries. These entries correspond to power in-
jections from nodes hosting generators and can be O(N)
of those entries. Fortunately, the sparsity pattern of M
is a subset of the sparsity pattern of Y. Therefore, if
nodes are permuted so that M occupies a few colors C,
the same permutation works well also for Mg. In other
words, matrix PMoP " would occupy C colors or fewer.

Since node permutation yields OPF measurement
matrices with much fewer colors, we suggest the follow-
ing workflow: i) Given a power system model, feed the
sparsity pattern of Y into the RCM algorithm to find a
near-optimal node permutation matrix P; 7i) Formulate
the OPF based on the permuted nodes; ) Solve the
OPF using the VQA of Section 4; and iv) If needed, ap-
ply the reverse permutation to the OPF primal solution
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Figure 4: The number of colors in the original and permuted
OPF measurement matrices as a function of the logarithmic
network size (log N) for the power system graphs in pglib.
Permuting nodes using the RCM algorithm was numerically
found to significantly reduce the number of colors in use. Data
fitting and 5-fold cross validation showed that the number of
colors scales as (log N)3.

to recover the original node ordering. It is henceforth
assumed that primal variables and measurement ma-
trices have been permuted already. Therefore, we will
henceforth use the lighter notation M and M,,, instead
of PMP'" and PM,,,P".

6.3

We next explain how to estimate the Lagrangian gra-
dients needed in (13) using the primal/dual PQC pair.
We start with V, £ in (13b), which entails estimating
Fy(0) and F (6, ¢). To simplify the presentation of mea-
suring Fy(0), suppose My occupies all C' colors used in
Y. According to (26), measuring Fy(0) requires 2C — 1
circuits. Each rotated primal circuit ¢ involves the same
primal PQC U(8) followed by a different XBM unitary
U.. These 2C — 1 circuits can be executed sequentially
or in parallel, as shown in Figure 5. The sequential
implementation operates on log N qubits and requires
compiling 2C — 1 circuits in a sequential fashion. The
parallel implementation is 2C' — 1 times faster but op-
erates on log N(2C — 1) qubits and requires replicating
the primal PQC 2C — 1 times.

Measuring observable F(0, ¢) is more complicated as
it involves estimating the double summation

Implementation details

M 2C-1

D> lem(e

m=1 c=1
2C—-1 M

D> (@)

c=1 m=1

F(6,9) )*Fy,(0)

|2FC (0). (28)

Interestingly, for a specific index ¢, the correspond-
ing sum Zj\m/[:1 1€ (00)|2FC,(0) can be evaluated in two

|O>logN

Figure 5: Implementation of rotation unitaries. Top: A unitary
U, is recompiled 2C' — 1 times to consider for 2C' — 1 rotation
unitaries running in sequence. Bottom: 2C — 1 rotation uni-
taries running in parallel.

steps. We first measure the dual PQC and observe |m)
with probability |&,,(¢)|?>. Given the observed |m), we
can now easily estimate the expectation F<,(0) corre-
sponding to a diagonal observable.

Measuring VgL in (13d) is trivial as it depends on
F(0,¢) and G(¢).

The gradient Vo L£(0) can be estimated based on the
PSR. For example, the partial derivative of £ with re-
spect to 6, can be found as

oL a?

870]) = 7 (FO(GZ) - FO(H;))

042,82

M

F(o;

P

®)) (29)

(F(a;, ¢) -
where 0;[ = 0 £ Te,. According to (29), estimating
VoL requires running 2C — 1 rotated primal PQCs, 2P
times each for {6,,6,}"_,, while the dual PQC is set
at ¢.

Similarly, evaluating V4L in (13c) requires running
2C' — 1 rotated primal circuits set at 8, and the dual
PQC for 2@Q) values for {d)j, ¢;}§:1 as

p=0

oc a?B? _
%_ ) (F(07¢11+)_F(07¢q))
2
— 5 (Geg) —Gleg)  (30)
where ¢);t =@ * Je,.
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Altogether, each PD iteration requires running
(2C — 1) (2P + 1) rotated primal circuits and 2Q + 1
dual circuits. Each circuit is run for S samples. Ac-
cording to [13], the number of PQC parameters (P, Q)
is expected to be O(log N). If the number of colors
grows approximately as C = O((log N)?), each PD it-
eration in (13) incurs a computational complexity of
O(log N), which is more efficient compared to O(N) of
the PD iteration in (3) running on a classical computer.

7 Convergence analysis

This section studies the convergence of the EG iter-
ates in (21). For a general optimization problem, if
the Lagrangian function is convex in the primal vari-
ables, concave in the dual variables, and has a Lipschitz
gradient in primal and dual variables, the EG iterates
converge to a saddle point of the Lagrangian function;
see [45]. For nonconvex/nonconcave saddle-point prob-
lems, however, establishing convergence of the EG iter-
ates is challenging. Reference [46] has recently shown
that, under certain conditions, the EG iterates converge
to an approximately stationary point of the Lagrangian
function. Of course, a stationary point may not nec-
essarily be a saddle point of the Lagrangian. Similar
convergence claims have also been established in the
stochastic setting, where EG updates rely on noisy yet
unbiased gradient estimates in lieu of the actual La-
grangian gradients. Given that the Lagrangian function
in (12) is nonconvex in (@, «) and nonconcave in (¢, 3),
we adopt the convergence proof from [46] for the EG it-
erates in (21) and provide an upper bound on the num-
ber of measurement samples across all EG iterations.
To this end, the following lemma shows that the oper-
ator g(z) is L-Lipschitz continuous; see Appendix A.3
for a proof.

Lemma 3. The wvector-valued function g(z) defined
in (20) is Lipschitz continuous with the Lipschitz con-
stant

L = (P&*B% + Qa*B* + 2a8% + 267 B) max | M,y |
+max{(Pa® +2a) [Mol|, (QB? + 28) max b},
(31)
where & and B are upper bounds on the optimal values
of a and B, respectively.

The convergence analysis relies on the ensuing as-
sumption [46].

Assumption 1. There exists a stationary point z* of
L(z) such that:

g2) (2~ 7") = 2 |lg(a)], (3

for all z € RPTR+2 gnd some parameter p € [0
where L is defined in (31).

_1
’4\/§L>’

Another challenge for our problem is that the EG up-
dates in (21) rely on noisy estimates of g(z) because ob-
servables are measured only based on samples. Specifi-
cally, as discussed earlier, each PD iteration in (13) uti-
lizes S measurement samples per rotated primal/dual
circuit to evaluate the Lagrangian gradients. Similarly,
each step (21a) and (21b) of the EG updates requires S
measurement samples per circuit to estimate g(z) as:

s
8le) = ¢ D 8u(a), ()
s=1
where g.(z) denotes the estimate of g(z) based on the
single sample s. Under this stochastic setting, we adapt
the result from [46] to bound the number of iterations
T and measurement samples S such that

1 T—1
7 2 E[lle@)],] <e.

t=0

(34)

The expectation in (34) is taken over the randomness
of g(z). Suppose now that the final output z of the
EG method is drawn by uniformly sampling at random
from the EG iterates {z'}7_'. Then, it is easy to see
that Z satisfies

Ell&@)l,] <e, (35)
where the expectation is now taken over the noisy gra-
dients as well as the sampling process to draw the final
output z. The convergence result is formalized in the
following theorem from [46].

Theorem 1 ([46]). Let g(z) be an L-Lipschitz operator
that satisfies Assumption 1. Let g(z) be an unbiased es-
timator of g(z) such that the variance of §(z) is bounded
as

E[lg@ - e@)3] < %

where S is the number of measurement samples per ro-
tated primal/dual circuit. Given an arbitrary initial
point z°, run the EG iterations in (21) for T times with

the step size pt = 2\%L. Accordingly, let {z'}_, and

{Zt}zﬂ:_ol denote the sequences of points generated by the
EG iteration. Select a point z uniformly at random from
(2!}, If the number of iterations is selected as

(36)

T {SZL2 ’ z" — ZOHE—‘ (37)
21— 4vaLy)
and each step (21a) and (21b) uses
~ [80%(8 ++/2Lp)
o= L?(l — 4v/2Lp) W 38)

12



samples per iteration, then E[||g(2)||,] <

We next expound on whether the Lagrangian function
L(z) satisfies the requirements of Theorem 1. First, we
were unable to verify Assumption 1, so it is taken as
given. Second, the L-Lipschitz continuity of the oper-
ator g(z) has been shown in Lemma 3. Third, the es-
timator g(z) is unbiased because Lagrangian gradients
L(z) are computed via the PSR, and estimates of quan-
tum observables based on sample averages are known
to be unbiased estimators [56]. Lastly, the bound on
the variance in (36) is established in the ensuing lemma
shown in Appendix A.4.

Lemma 4. The parameter o upper bounding the vari-
ance of the gradient estimator in (36) can be found as:

> > 2C—-1
QpB* + 832 8a2 + Pat .
0% = = —— maxbj, + Z MG 12
8a23 +8a'B? + (P + Q)a'fp* * = )
+ 5 Z max M5, .

(39)

Having determined the Lipschitz constant L for g(z)
and the variance bound o2 for g(z), the following propo-
sition provides an upper bound on the total number of
measurement samples running on all circuits.

Proposition 1. Given an arbitrary point z°, run the
EG iteration in (21) for T times with the step size
ut = 2\/1§L. Accordingly, let {z'}F_, and {2'}]_)" de-
note the sequences of points generated by the EG itera-
tion in (21). Choose a point % uniformly from {z'}1_.
If the operator g(z) satisfies Assumption 1, then after

4,224L%0%||z* — 2°||3
(2P+1H)(2C—-1)+2Q +1) { (1~ av3Lp)? —‘
(40)
measurement samples across all iterations and for all
circuits, it holds that

Ellg@)],] <€

The proposition can be established by multiplying the
number of primal/dual circuits ((2P + 1)(2C — 1) +
2@ + 1), the number of iterations in (37), and twice the
number of samples in (38). Here, we upper bound the
factor (8 4+ v/2Lp) appearing in the numerator of (38)
by 8.25 for p € {0,4fL

Proposition 1 shows that the total number of mea-
surement samples scales polynomially with the number
of colors C, the number of PQC parameters (P, @), the
Lipschitz constant L, and the variance bound 2.

As discussed in Section 6.3, the number of colors
C and the number of PQC parameters (P,Q) grow

polynomially in log N. Nonetheless, the dependence
of L in (31) and o2 in (39) on @ and f is unfavor-
able. This is because the magnitudes of the entries
in v in (QCQP) are constrained to lie in the range of
[0.9,1.1], so that @ = 1.1v/N. Furthermore, as OPF en-
tails equality constraints for nodes connected to loads,
each of these equality constraints is converted to two
inequality constraints upon (QCQP). Since these in-
equalities should be active at optimality, the comple-
mentary slackness of the Karush-Kuhn-Tucker condi-
tions written for (QCQP) implies that the associated
dual variables are generally nonzero |3, Ch. 5]. Because
the number of load nodes in real-world power systems
is typically proportional to N, it follows that S may
scale with /N too. Overall, in practice, parameters L
in (31) and o2 in (39) could grow as N and N?, respec-
tively, which indicates the total number of measurement
samples in (40) could scale with N4. This large number
of measurement samples ultimately presents a challenge
to attaining quantum advantage. A similar undesirable
dependence of the measurement sample complexity on
the scaling prefactors has also been encountered in [57],
where the objective function entails expectations multi-
plied by prefactors exponentially in log IV, like the one
in (9).

8 Numerical tests

The performance of the proposed doubly variational
quantum OPF (Q-OPF) approach was validated us-
ing the IEEE 57-node power system benchmark [55].
For this benchmark, we have N = 57 primal variables
and M = 422 dual variables. Therefore, the number
of qubits needed to capture v(0) and A(¢) is 6 and
9, respectively. To simplify the implementation, nodes
hosting generators were assumed to have no load, i.e.,
pd = ¢l =0 for all n € N,. Reactive power demands
were set so that load nodes have ¢¢ = 0.33 x pd for
all n € N;. We generated 15 different instances of the
OPF by scaling original load demands {(p%, ¢%)}.en, by
factors drawn uniformly distributed within [0.90,1.05],
independently per node and problem instance. Each of
the 15 OPF instances was solved to global optimality
using MATPOWER, a power system toolbox in MAT-
LAB [58].

Selecting PQC' architecture. To select the architec-
ture of PQC,, we numerically tested different architec-
tures. Each candidate architecture was validated over
all 15 problem instances. For each problem instance k,
we found the OPF solution v} using MATPOWER, and
then solved the variational problem

(1 . <w<ek>vz>>

min "
Vil

0y
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Model | x[%] [A[%]]| (@) | () | (¢)
QCQP-PD 14.95 | 19.30 | 25.87 | 13.73 | 0.49
QCQP-EG 13.67 | 19.20 | 24.53 | 12.29 | 0.39
QCQP,-PD | 11.82 | 12.87 | 11.73 | 13.03 | 0.23
QCQP,-EG | 7.62 | 12.17 | 11.53 | 11.86 | 0.21

Table 1: Average relative errors and constraint violation statis-
tics across problem instances: (a) Number of constraint viola-
tions per instance; (b) maximum constraint violation [%]; (c)
average constraint violation [%].

with [9(0y)) generated by the specified PQC,, archi-
tecture. Assuming the previous cost is optimized to
global optimality, it measures the alignment between
the generated quantum state and the actual OPF so-
lution. The cost is inspired by [59] and is lower-
bounded by zero. We tested architectures with dif-
ferent gate types and number of layers L, as detailed
in Appendix A.5. We selected the PQC that attained
the smallest average cost across all 15 OPF problem in-
stances. A similar procedure was followed to determine
the PQCq4 architecture. The optimal PQC,, architecture
consists of 10 layers, with each layer comprising the se-
quence R, () — CX — R.(¢') — CX gates, resulting in
P =2 x 10 x 6 = 120 parameters. The optimal PQCy
architecture is formed by 35 layers of R, (¢) — CX gates,
yielding @ = 1 x 35 x 9 = 315 parameters. The average
fitting errors obtained were 2 x 10™* and 2 x 10~° for
PQC, and PQCy, respectively. This demonstrates that
the selected PQC pairs are sufficiently expressive.
Algorithm details. PQC parameters 8 and ¢ were
initialized uniformly at random within the range [0, 27].
Because voltages are normally around 1 per unit, the
scaling variable o was initialized to v/N; the variable
was initialized to 2 |NVy|. Step sizes were set according to
the exponentially decaying rule as pf, = 0.015x0.99985¢,
,uf;S = 0.01 x 0.99985", and pl, = ug = 107" x 0.999%.
Both PD and EG iterations were terminated when both
conditions HBt —Bt_1||2 < 107 and Hq&t —d)t_lHQ <
10~% were satisfied. Simulation scripts were written in
Python and run on Pennylane’s exact simulator [60].

We first explored the performance of Q-OPF in find-
ing AC OPF solutions. Rather than evaluating errors
on OPF solutions in terms of voltage phasors v, we
focused on finding the active power injection and volt-
age magnitude at all generator nodes. This is because
power system operators are primarily interested in gen-
erator setpoints. Define the vector of generator set-
points x = [py;v,y]" with p, and v, collecting gen-
erator active power injections and voltage magnitudes,
respectively. Generator active power injections can be
computed from (44b) given v and the corresponding
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5 0.6
0.4
0.2
0.0

*  Found by Q-OPF (EG) %
Found by classical QCQP (EG)
Optimal

i
)

alues

Dual

0 1000 2000

Entry index

3000 4000

Figure 6: Comparing dual entries obtained by the Q-OPF and
the classical QCQP, both solved by the EG iteration, to the
optimal values found by MATPOWER. Dual vectors of 15 in-
stances were concatenated and sorted in increasing order. En-
tries smaller than 10~ were assigned to 0.

load demand pZ. In terms of dual variables, we focus
on Lagrange multipliers \,, associated with power bal-
ance and line limit constraints because these are used in
electricity markets to compute the so-called locational
marginal prices.

We compared solving (QCQP) and (QCQPy) in
terms of the relative errors |x —x*[,/[x*[|, and
A =A%y /[IA"]], of the found generator setpoints x
and dual variables A from their global optimal solu-
tions found using MATPOWER. The entries of the dual
vector A correspond to the Lagrangian multipliers as-
sociated with 280 power balance and line limit con-
straints. The non-convex (QCQP) was solved classi-
cally using the PD iteration in (3) and the EG itera-
tion in (21) over voltage phasors v and dual variables
A. Voltages were initialized at the flat voltage profile
as v0 = 1, while the entries of XA were initialized in-
dependently at random based on the standard normal
distribution and scaled by 2|Np|. The related step sizes
were set as g, = px = 1072 x 0.9999! and PD iter-
ates were terminated when Hvt — vt_IH2 < 107% and
H)\t — )\t_lHQ < 1075 were met.

Table 1 shows the relative errors for generator set-
points and dual variables attained by solving (QCQPy)
and (QCQP) via the PD and EG iterations. Among
the four models, solving (QCQPy) using the EG itera-
tion achieved the smallest relative errors on x and A.
Comparing algorithms when solving either (QCQPy)
or (QCQP), the EG method consistently outperforms
the PD method. Similarly, fixing the algorithm to
be either EG or PD, solving (QCQPy) using a hybrid
quantum-classical computer offers smaller errors com-
pared to solving (QCQP) using the PD method.

Given that the EG iteration outperforms the PD iter-
ation, Fig. 6 demonstrates the dual variables obtained
by solving (QCQPy) and (QCQP) by the EG method.
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Figure 7: Comparing the relative error of the Lagrangian func-
tion for Q-OPF and the classical non-convex QCQP solved by
the EG iteration across 15 OPF instances. The globally optimal
value of the Lagrangian was computed using MATPOWER.

The Q-OPF approach can approximate dual variables
reasonably well. This test corroborates that Q-OPF is
capable of finding near-optimal AC OPF solutions.

Feasibility. Does the power system safely operate un-
der the generator setpoints computed by Q-OPFs? To
answer this question, for each instance, given the in-
put load demands and the setpoints x obtained by Q-
OPF, we found an AC power flow solution via MAT-
POWER. The obtained voltages were used to evaluate
all 222 inequality constraints in (44). Violations in line
current and generator constraints were normalized by
their maximum limits. We employed three constraint
violation metrics: a) the average number of constraint
violations surpassing a normalized magnitude of 1076
across OPF instances; b) the maximum constraint vi-
olation incurred across instances; ¢) the violations av-
eraged over all constraints and instances. As shown in
Table 1, solving (QCQPy) using the EG iteration at-
tains the best constraint violation metrics among the
tested models.

Figure 7 shows the relative errors in terms of the La-
grangian function |£ — Pj|/P; for the last EG itera-
tion. The relative errors of the Q-OPF are consistently
below 1.5% and smaller than those of QCQP in 14 out
of 15 instances. This test indicates that under the Q-
OPF’s generator setpoints, all physical constraints of
the network are nearly satisfied.

9 Conclusions

This work has proposed a doubly variational quantum
approach to solve the OPF, which is a large-scale non-
convex QCQP. Primal/dual OPF variables are modeled
by scaling the state and the PMF corresponding to two
PQCs. These two PQCs are trained using exclusively
the gradient estimates of the Lagrangian function. The
training procedure aims to seek an approximate sta-

tionary point of the Lagrangian function. By adopting
the XBM method and leveraging the sparsity patterns
of power systems, the OPF observables are judiciously
permuted, resulting in a banded form so that the La-
grangian function can be measured efficiently. Numer-
ical tests on the IEEE 57-node benchmark power sys-
tem using PennyLane’s quantum simulator have demon-
strated that: i) the EG iteration performs markedly
better than the PD iteration; i) solving (QCQPy) on
PQCs offers smaller errors in terms of the generator set-
point and dual variables, as well as smaller constraint
violations compared to solving (QCQP) on a classical
computer using PD; and 4i) the Q-OPF found genera-
tor setpoints and dual variables with small errors, and
under the generator setpoints obtained by the Q-OPF,
the network constraints are nearly satisfied.

The proposed doubly variational quantum framework
sets a solid foundation for exploring exciting directions:
d1) The Q-OPF can be a building block to investigate
other computational tasks, such as multi-period OPF,
which entails the time-coupled ramp constraints on gen-
erators; d2) Thus far, the PQC parameters (6, ¢) have
been optimized to solve one OPF instance, and param-
eters b,, have solely appeared on the diagonal of the
observable S. Nevertheless, vector b can be encoded as
parameters of another unitary T(b), under which the
corresponding primal and dual states are |¢(8,b)) =
T(b)U(0) 0) and [£(¢,b)) = T(b)V($)[0). Mea-
suring the states |1(0,b)) and |£(¢,b)) and utilizing
the proposed Q-OPF for the Lagrangian in (9) eval-
uated across instances can solve multiple instances of
the OPF; d3) Prudently construct an alternative ob-
jective function for (QCQP) to escape the problem of
measurement samples scaling with & and 3; and d4 )
Designing network-informed PQCs and/or testing the
Q-OPF using dynamic PQCs and quantum recurrent
embedding neural networks will be imperative for deal-
ing with large-scale networks.
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A Appendix

A.1 Power system modeling

A transmission line connecting node n to node m is rep-
resented by its series conductance G, and series sus-
ceptance B,,,,. Given G,,, and B,,,, power injections
at node n are computed through nodal voltages based
upon the following quadratic power flow equations:

N
Pn Z (1, G = Vi, B )+ 03, (03, G 07, B )
m=1

vfl(vfnGnm —vannm) — v;(vfnGnm +u;, Bnm),

M=

dn =
m=1

"l T, U ) are the real and imaginary

components of the voltages at nodes n and m, respec-

tively. Define the N x N node admittance matrix as
Y = G + (B, where G collects G, and B collects

where (v, v?) and (v7,, v?
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By, of the network lines. Then the power flow equa-
tions can be compactly represented as

Pn = VTM;D" v,
Q’n = VTquVa

where M, and M, are N x N Hermitian matrices
taken the forms as

—_

M, = -(Y'e,e, +e.elY),

\V]

1
M,, = Z—L(YTeneI —eqe, Y).
Similarly, the squared voltage magnitude at node n is
represented as
(0p)? + (v,)* =vIM,, v

n

(43)
where M, = e,e). Given a line (n,m) € £ with
the series admittance Y;,,,, the complex current flow-
ing on from node n to node m is provided as i, =
Yym(Un — vm). This poses |inm,| = vIM; v where
M, = |Yom|(en —en)(en —en)’.

The power injection (p,,q,) consists of a dispatch-
able constituent (pg,q?) and an inflexible constituent
(p,q) such that p, = pg§ — pi and ¢, = q¢f — g
The former represents the power dispatch of a genera-
tor or a flexible load placed at node n, and the latter
expresses the inelastic load supplied at node n. Let
nodes with dispatchable power injections belong to a
subset Ny € N. The remaining nodes hosted inelas-
tic loads form the subset Ny = N\N,. Node n =1
is referred to as the angle reference node, under which
it follows vieje] v = 1, where e; is the first column
of the identity. To simplify the exposition, each node
in N, is assumed to host only one dispatchable unit.
Given the inflexible loads {p?, ¢?},cnr, the OPF’s ob-
jective is to minimize the dispatch cost of generators
and flexible load while respecting the resource and net-
work limits. The OPF is formulated as the ensuing
quadratically constrained quadratic program (QCQP)
over nodal voltages and power of generators:

Tnm

min Z cnDd (44a)
neN,

over v €CN {p% ¢} nen,

sto vIM, v = pf —pl YneN, (44b)
viM,, v =¢l ¢ VneN, (44c)
VIM, v = i VneN; (44d)
viM, v =—¢! Vne Ny, (44e)
pd <viM,, v+pl <pl Vne N, (44f)
¢ <viM, v+¢l < YneN; (44g)

vn < VIM,, v <7, YneN  (44h)
VTeler =1 (44i)
viMG,, v <lipm V(n,m) €€  (44))

Constraints (44b)—(44e) capture the power flow equa-
tions at generator and load nodes. Constraints (44f)—
(44¢) confine limits of generators and flexible loads.
Constraint (44h) limits the squared voltage magnitudes
within the specified range, and constraint (44i) rep-
resents the squared magnitude of the angle reference
node. Constraint (44j) enforces the line current magni-
tude within the line ratings. By substituting {p9,q2}
in (44b)—(44c) into the objective of (44), the OPF model
is represented as a QCQP in terms of the nodal voltage
vector v.

A.2 Proof of Lemma 1

The claim follows readily by substituting M into the
observable as

M
<£7¢|M|€a ¢> = (E ® ¢)T (Z eme;;r@ ® Mm) (E ® ¢)

m=1

M
=> (@Y (eme,, ®M,,) (£® 1)
m=1
M
-y (ﬁfeme;l;ﬁ) ® (Wme)
m=1

M
= [em(@)Fn(6).

A.3 Proof of Lemma 3

Quantum observables are trigonometric functions of
(0,¢). Moreover, the Lagrangian function L(z) is
quadratic in («, ). Therefore, the operator g(z) is con-
tinuously differentiable with respect to z. Let J(z) :=
V.g(z) denote the Jacobian matrix of g(z). If the spec-
tral norm of J(z) is upper bounded by a constant L,
then g(z) is L-Lipschitz continuous [61, Lemma 2.6].
Based on matrix norm inequalities, the spectral norm

of J(z) can be bounded as:

13(z)[| < \/llJ(Z)||1 19(2) [l (45)
where || J(z)||; is the maximum absolute column sum
of J(z), and ||J(z)|,, is the maximum absolute row

sum. Because £(z) has continuous second-order partial
o’L
6zi8,zj -

so that [[J(z)||, = ||[J(z)| and (45) simplifies

derivatives, Schwarz’s theorem predicates that

%L
82.7‘ 0z;
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as

3@ < 3(2)

max

(46)
je{1,...,P+Q+2}

.
lej ()],
where e; is the j-th column of the identity.
Consider first the first P rows of J(z) corresponding
to the partial Hessian matrix V3 _£(z). More specifi-

cally, the absolute row sum for row j € {1,..., P} is
1eT3)], = XP: L)) | |PL)
AR 00,00, 90,0
p=1
Q 2 2
0°L(z) 0°L(z)
M (; 96,00, ) o050 40

Applying the triangle inequality on each summand of
the first term in (47) yields

M

2| CFO)| | a0 > ém(d)
m=1

96:00,

02F,,(0)
90;00,

L)
89j89p -

The second-order partial derivatives of quantum expec-
tations can be computed according to the PSR as [62]:

)| = 2| (05 + o) — B (07 - 3e2)
~Fu (0 + 5ep) + B (07 — Gey)
< 3 1Fn (67 + Fen) |+ 1 [P (8 ~ 30|
45 [Fo (67 + 3ea) [+ 1| (67 = o)
< M. ||

for all m, p, and j.
Based on the latter bounds, we get that:

P
> <||Mo|+ﬁ22|§m |||Mm>
p=1

< Pa? (Mo + 52 (€()€(6)) max M., )

= Pa? (1Mol + 8% max [ My )

0?L(z )
00,00,

(48)

The second term of (47) can be upper bounded sim-
ilarly using the PSR for first-order partial derivatives:

0*L(z) OF(9) ) 2| 0Fn (6)
| < 20| 20 40 > (@ |7 |
< 20| M| + 208 Z [&m ()% [|MLy, |

m=1

< 20| Mo || + 205% (£(9) |£(6)) max M, |

< 20 [My | + 205 max My, | (49)

The summands in the third term of (47) can be upper
bounded as:

PLE)| _ 20 N [em(D)F || 9Fm(0)
‘aa 26, =P Zl Dy 09 ‘
262
> Z Hfm ¢+ |§m(¢;>|2| : ”MmH

a®p?

2

M
D L@+ lml

( o )l2> MLy,

for all ¢. Then, the third term of (47) is bounded as

< o?B? max | M, ||
m

825( )

2 2

(50)

The fourth term in (47) can be bounded as

20°8 Z [ (b

<202 ﬁmax M, | -

82£
90,0

8Fm( ) '

(51)
Combining (48)—(51) yields

(Pa® + 2a) [ M|

max
Jj€{1,....,P}

+ (Pa?B% + Qo B* + 2a8% 4 27 3) max M, || -
(52)

He}rJ(Z)Hl <

For the remaining rows of J (z) corresponding to
the partial Hessian matrices V2 ,L(z), —V5 ,L(2),
and —V3 ,L(z), the norms HeTJ
bounded using similar arguments.
is that |[M|| maxy, |[M,,| because M in (17) is
block diagonal. To avoid repetition and tedious alge-
bra, we omit the detailed derivations and present the
final bounds.

lep 41 I (2]l < (2Pa+2) [Mo
+(2Paf? +4Qaf? +26° + 4af) max M|, (53)

H can be upper
A key point here

T 2
je{P+2: P+Q+1}||e J(z H < (@B +25)Hlﬂfitx|bm|

(Poz262 + Qa?B? +2a8% + 2a2ﬁ) max [IM,,. ||,
(54)

lepiqrad (@)1 < (2Q8 + 2) max by |
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+ (Pa’B +2Qa”8 + daf + 20%) max [My||. (55)

According to (46), the Lipschitz constant L of g(z)
is the maximum of the right-hand sides of (52)—(55).
If a > 4, the right-hand side (RHS) of (52) is larger
than the RHS of (53). The condition o > 4 holds triv-
ially if the number of power system nodes is N > 32.
Moreover, if 3 > 2, the RHS of (54) is larger than that
of (55). The condition 8 > 2 is expected to occur for
problems with many constraints. Therefore, we are left
with the RHS of (52) and (54), whose maximum can be
compactly expressed as

(PQQBQ + Qa?B? +2a8% + 2a2ﬁ) max || M,,||
+ max{(Pa? + 2a) [Mal|, Q8 +28) max b}

Then, the claim of Lemma 3 follows readily.

A.4 Proof of Lemma 4

We first upper bound the variance of the sample-average
estimators of the three terms in (9). Note that the
three terms in (9) can be decomposed into quantum
expectations across c¢. This is obvious for Fy(@) and
G(¢). Regarding F(0, ¢), we obtain from (28):

2C-1 M

= > lem(®)

c=1 m=1

201
= Z <€(¢ <Z eme?n

c=1

Because the three expectations in (9) are defined over
different states and observables, we consider a general
expectation E = (¢|N|¢), where |¢) and N are dimen-
sionally compatible and N is a Hermitian matrix with
the same color decomposition as OPF matrices M,,’s.
The expectation E can be color-decomposed as

(0)|A%,[4.(0))

2C—1 2C—-1
E= > (INC) = Y (CJAC),  (56)
c=1 c=1

where N¢ = U.A°U] is the eigendecomposition of N¢
and |¢.) = UL|¢).

Upon measuring |¢,) in the computational basis us-
ing S measurement samples, the binary outcome [i) is
observed with probability |¢i|? == | (i|¢.)|?>. For each
sample s, define a random variable E;, taking the value
(i]A°|i) when outcome |i) is observed while sampling
|€.). Subsequently, the sample-average estimator of F
can be expressed as

(57)

95 \

The variance of E is bounded in the next lemma.

® Afn> £(),%.(0)) -

Lemma 5. The variance of the estimator in (57) can
be computed as:

2C—-1

& O (eI -

c=1

Var(E) = (CJAIC)?), (58)

and can be upper bounded as

201

)< 5 Z N

Var(E (59)

Proof. The variance of each Eg can be computed and
upper bounded as follows:

Var(EY) = E[(E2)?] -

N-1 2
= 2 G AT (Zw W)

<C |(A(.)2‘C(,> - <CC|A‘C|CC>
(Cel(A9)?[C.)
INC2,

(E[E2])?

IN A

Because the random variables E¢ are independent
across ¢ and s, we get that

. 20-1 S 1 201
Var(E) 52 ; ;Var EC Z Var( EC

for any s. Substituting Var(Eg) above yields the expres-
sion in (58). The final bound in (59) follows readily. [

We are now ready to upper bound the variance of the
estimate g(z) per Theorem 1.

Proof of Lemma 4. The RHS of (36) can be expanded

[ -

E[|V., ( ) v ﬁ( )] +E[|[VoL(z) - VoL(z)||3]
=Var(V,L(z))
E[|VgL(z) — VoL(2) 3] +E[IVsL(z) — VsL(2)]"].
=Var(VsL(z))
(60)

Among four terms in (60), the terms Var(V,£(z)) and
Var(VgL(z)) are simpler to bound. Let Fy(6) and
F(0, ¢) denote the sample-based estimates of Fy(0) and
F (0, ¢), respectively. Then, we can express the first
term in (60) as

Var(V,£L(z)) = Var (20&%(0) + 20387 F (6, ¢)>
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No. | architecture of 1 layer L (primal) | P | error (primal) | L (dual) | @ | error (dual)
1 | R,—CX 20 120 9x 1071 35 315 | 8x107°
2 | R,—CX 20 120 5x 1073 35 315 | 2x107°
3 | R,—-CX 20 120 1 35 315 | 2x1073
4 | R,—CX-R,—CX 10 120 | 3x107* 18 324 | 7Tx107°
5 R,—CX-R,-CX 10 120 3x 104 18 324 7x107°
6 |R,~CX-R,-CX 10 120 | 2x107* 18 324 | 7Tx107°
7 R,-CX-R,—CX-R,-CX 6 108 3x 103 12 324 7x107°
8 R,-R,—R.-CX 7 126 1073 12 324 4 %1076

Table 2: Tested PQC architectures.
A2 a 24 [ ol 20-1 4 p4 20—1
e Vartlo(0)) et Var (110, ) o X MGl Po's > NG . (65)

It follows from (59) that

2C1

<* Z v 7.

Var F()

Regarding Var(F(

0,¢)), because M is a block-

diagonal matrix with blocks M,,, it follows that

2C—-1
n 2
Var(F (8, ¢)) < § Z max || M, %,

Substituting (62)—(63) into (61) provides

R 4a2 26 .
Var(VaL(z)) < Z IV

—

| d? c
aﬁ ZmaxHM 1.

Let (’59p Fy(0) and 59pF(9, ¢) denote the sample-based
estimates of dp, Fy(0) and 9y, I'(0, @), respectively. The
second expectation in (60) entails computing

E[|VeL(z) — VoL(z ZVar (Do, £
P A A

— 3 Var <a28gpFo(9) +a2B%dy F (O, ¢))
p=1

=at Z (Var 89 F() )) + 64 Val“(ag (0 d))))

— Ofpzz (Var Fyo( 0+ +Var(F0(9 )))
0444[34 pzl_); (Var ¢)) + Var(E'(6 b s ¢))

Analogously,

in (60) can be upper bounded as

E(|[VeL(z) -

—— maxb
m

28

Var(VsL(z)) <
4a462

2

2
—— maxb
S m ™

Summing (64)—(67

m

Vo Ll(z)|l3) <
Qa464

2C—-1

Z max || M, 2,

2C—-1

Z max || M, 2.

), the RHS of (36

the third and fourth expectations

) is bounded as:

E[llg(z) -
a4 oy 4 2C—1
+8 8a sa’+ Fa Pa
QP ST i, + S L > MG
8a2f + 8412 + (P + Q)a*p* ° = )
oS Z max | My, %,

A5 PQC architectures
The tested PQC architectures are reported in Table 2.
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