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Abstract—Fluctuations of active power injections by rooftop
photovoltaics (PVs) and distributed energy resources (DERs)
challenge voltage regulation in distribution grids. Reactive power
support by DERs following Volt/VAR (VVR) rules driven by local
data has been advocated as an effective fast-response mechanism
to regulate voltage. Customizing the parameters of VVR rules
is a non-trivial task for grid operators as VVR rules give rise
to nonlinear dynamics and should operate under diverse and
uncertain loading conditions. Existing works typically resort to
linearized models of presumably balanced grids, and design
VVR rules to regulate voltage magnitudes alone. Under the
practical setting of single-phase DERs operating over unbalanced
feeders modeled according to the exact AC power flow equations,
injecting reactive power to regulate voltage could aggravate
voltage phase imbalance issues. This work optimally designs VVR
rules to regulate voltage and reduce voltage unbalance factors
(VUF) in multiphase distribution grids. To avoid mixed-integer
programs, we formulate a stochastic optimization program and
surrogate chance constraints by smooth approximations. The
program is solved via an iterative primal-dual algorithm, for
which gradients are computed via implicit differentiation at grid
equilibrium states. Numerical tests corroborate that if properly
designed, VVR rules can regulate voltage magnitudes and phase
imbalance alike.

Index Terms—IEEE Standard 1547, Volt/VAR control rules,
chance constraints, multiphase feeders, ohmic line losses.

I. INTRODUCTION

1 With the proliferation of PVs and DERs following fre-
quency regulation signals, voltage regulation is exacerbated
in modern power distribution grids. Although reactive power
control has been deemed an effective means of regulating
voltage, deciding the reactive power setpoints for thousands
of DERs in near real-time can be technically challenging.
Reactive power setpoints could be optimally determined by
solving an optimal power flow (OPF) at the control cen-
ter [1]. Nonetheless, this strategy entails computational burden
and communication delays. As a subpar yet fast-responding
mechanism, the IEEE Std. 1547 suggests that reactive power
setpoints should be decided autonomously by each DER based
on local data and predetermined control rules [2], [3]. Among
the options of constant VAR, fixed power factor, Watt/VAR [4],
and Volt/VAR (VVR) control, the latter may be the most
effective given that voltage depends on grid-wide conditions
and is the quantity under control, anyway. This work deals
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with the task of optimal rule design (ORD) of VVR control
on multiphase distribution feeders.

Although the standard specifies that VVR rules should be
particular non-increasing and piecewise-linear functions of
local voltage magnitudes, their precise form is left for the
grid operator to determine. The operator could customize
VVR rules per node and update them periodically based on
the anticipated grid loading scenarios [5]. The task of ORD
is technically challenging as it involves nonlinear dynamics
and uncertain grid conditions. Under VVR dynamics, stability
is non-trivial to ensure, and the grid equilibrium state is
hard to incorporate into optimization formulations [6], [7].
One approach is to capture the piecewise-linear rules using
binary decision variables and formulate ORD as a mixed-
integer program [8]–[10]. Unfortunately, these models scale
unfavorably with the problem size and involve products be-
tween continuous variables for which McCormick relaxation
is known not to be exact. Alternatively, ORD can be handled
using gradient-based continuous optimization to pursue local
minima. These approaches involve computing gradients of
grid quantities (such as ohmic losses or voltage magnitudes)
with respect to the VVR rule parameters, all evaluated at the
grid equilibrium point under VVR dynamics. Under linearized
grid models, such gradients have been computed efficiently
leveraging automatic differentiation upon reformulating VVR
dynamics as recursive neural networks (RNNs) [5], [11].

Most existing ORD studies resort to linearized grid models,
are confined to single-phase or balanced multiphase distri-
bution feeders, and/or target only regulating voltage mag-
nitudes within specified limits [12]–[15]. Industry practice,
however, entails single-phase DERs operating on multiphase
untransposed feeders. Although operators may allocate DERs
uniformly across phases while approving interconnection,
real-time conditions could give rise to unbalanced condi-
tions. Departures of three-phase voltages from a balanced set
could compromise the operation of large three-phase motors.
Severely unbalanced power injections at feeder heads could
complicate transmission-level operations. Reference [16] puts
forth a VAR control scheme at the inverter level to minimize
phase imbalance, and [17] formulates a chance-constrained
AC-OPF problem to decide optimal DER setpoints, yet not
VVR rules. Designing VVR rules to regulate voltage mag-
nitude could exacerbate voltage phase imbalance. Therefore,



voltage magnitude regulation and voltage phase imbalance
should be carefully considered during ORD.

Having identified the gaps mentioned above, this work
advances ORD in three aspects: c1) It designs stable VVR
rules that jointly mitigate voltage phase imbalance and regu-
late voltage magnitudes while minimizing ohmic losses; c2)
The ORD design relies on the exact AC power flow (PF)
model of multiphase distribution feeders; and c3) To improve
on computational complexity, gradients are computed using
implicit rather than automatic differentiation. Numerical tests
corroborate that the proposed ORD algorithms find VVR
rules that can successfully regulate voltage magnitude and
imbalance simultaneously.

The rest of the paper is organized as follows. Section II
formulates a stochastic ORD problem. Section III derives
mathematically amenable formulations for voltage magnitude
and phase imbalance chance constraints. Section IV presents
the proposed primal-dual algorithm. Numerical tests are pro-
vided in Section V and the work is concluded in Section VI.

II. PROBLEM FORMULATION

Consider a multiphase radial distribution feeder with B+1
buses collected in set B. The substation bus is indexed by 0.
A bus can be multi-phase or single-phase. Each phase in a bus
is called a node and is indexed by n ∈ N := {1, . . . , N}. The
set N excludes the three nodes corresponding to the phases of
the substation bus. DERs may be present at some or all nodes.
Let vectors u and v collect the complex voltage phasors un

and voltage magnitudes vn for every node n ∈ N . Let the set
M ⊂ B contain the index of buses that host multiple phases,
and vector um = [ua

mub
muc

m] carry the voltage phasors in all
three phases of bus m for any m ∈ M.

Let vector sg = pg + jqg collect the complex power
generated by DERs at all node. Vector pg denotes the fixed
real power generated by DERs (generally at the maximum
power point), and qg denotes the controllable reactive power
to be designed. The power consumed by fixed loads at each
node is stacked in vector sl = pl+jql. The vector of complex
power injections across the feeder can be decomposed as

s = sg − sl = (pg − pl) + j(qg − ql) = p+ jq.

The mapping from complex power injections to complex
voltages is the inverse mapping of the AC power flow equa-
tions. In other words, given the substation voltage and the
complex power injections s, vector u can be found upon
solving the power flow problem if the latter is feasible. This
inverse power mapping will be abstractly denoted as

u = F(qg;θ) (1)

where qg are the reactive power injections to be controlled,
and vector θ collects the uncontrolled power injections
(pg,pl,ql). Each θ corresponds to a grid loading scenario.
We will slightly abuse notation and henceforth refer to qg

simply as q, given that ql is included in θ anyway.

Fig. 1. A VVR control rule suggested by IEEE Std. 1547 [2].

The goal is to control reactive power injections q by DERs
to regulate voltage. One way to control reactive power injec-
tions by DERs autonomously is through Volt/VAR (VVR) rules.
As specified by the IEEE Std. 1547 [2], the reactive power
injected by each DER can be determined by a piecewise-
linear, non-increasing function of its local voltage magnitude
qn = fn(vn) like the one illustrated in Fig. 1. To simplify
ORD, let us assume that the rule fn is odd symmetric around
the nominal voltage v̄n so that it can be described by four
parameters (v̄n, δn, σn, q̄n). The last three parameters are used
to describe the negative slope of the decreasing segment
αn = q̄n

σn−δn
> 0. The standard determines the general shape

of the rules by constraining parameters [2]:

0.95 ≤ v̄n ≤ 1.05 (2a)
0 ≤ δn ≤ 0.03 (2b)

δn + 0.02 ≤ σn ≤ 0.18 (2c)
0 ≤ qn ≤ q̂. (2d)

for all DERs. Nevertheless, the grid operator can customize
the exact shape of VVR rules. Let vector z collect the VVR
parameters for all nodes hosting DERs.

Determining voltages u and DER reactive power injections
q entails solving the AC-PF problem for multiphase systems
F [18], iteratively along with the Volt/VAR dynamics f until
convergence. This gives rise to the discrete-time non-linear
dynamical system

ut = F(qt;θ) (3a)

qt+1
n = fn(v

t
n), ∀n ∈ N (3b)

According to [7], [19], and under a linearized grid model, the
dynamical system of (3) enjoys exponential stability provided
∥dg(α)J∥2 < 1, where matrix J contains the rows and
columns of the Jacobian matrix ∇qu corresponding to the
nodes that host DERs, and dg(α) is a diagonal matrix that
carries the slope parameters across all DER nodes on its main
diagonal. Because optimization solvers cannot handle strict
inequalities, the VVR stability condition can be tightened as
∥dg(α)J∥2 ≤ 1− ϵ for a small positive ϵ. The spectral norm
in the stability condition gives rise to a linear matrix inequality
constraint. To avoid this complication, the stability constraint
can be inner approximated by a set of linear inequalities [5]:

|J|Tα ≤ (1− ϵ)1 (4a)



0 ≤ αn ≤ 1− ϵ∑
m∈N Jnm

, ∀n ∈ N . (4b)

Therefore, in addition to the constraints imposed by the IEEE
standard in (2), VVR rule parameters should also satisfy the
stability constraints in (4). In other words, the feasible set of
VVR parameters z is defined as:

Zϵ := {z satisfying (2) and (4)}.

At equilibrium, voltages u∗ and power injections q∗ satisfy

u∗ = F(q∗;θ) (5a)
q∗n = fn(v

∗
n), ∀n ∈ N . (5b)

To compute voltages and power injections at equilibrium under
scenario θ, one has to iterate between solving the power flow
(PF) problem in (5a) and applying the VVR rules in (5b). The
equilibrium voltage magnitude at node n is not necessarily v̄n.
Hence, the PF equations cannot capture the equilibrium grid
state, and VVR rules cannot be designed by standard optimal
power flow (OPF) formulations.

We aim to optimize VVR rules per grid node for the
following few hours. The grid operator designs the rules
centrally once every few hours. Because the VVR control
rules should perform reasonably well despite the uncertainty of
load and solar injections, the grid operator may design these
curves based on a dataset of grid loading scenarios deemed
representative for the ensuing 2-4 hours. This task can be
posed as a stochastic optimization problem

min
z∈Zϵ

Eθ[ℓ(u
∗(z;θ))] (6a)

subject to (s.to) Prθ(gc(u
∗(z;θ))) ≥ 1− β, ∀c ∈ C (6b)

where the expectation operator is taken over the distribution
of θ and subscript c indexes constraints enforced per bus or
node. All constraint indices c are collected in set C. Function
l(u∗(z;θ)) appearing in the objective denotes the ohmic power
losses on distribution lines. Function gc(u

∗(z;θ)) can be
interpreted as bounding the voltage magnitude at nodes within
limits or maintaining the voltage imbalance between phases.
Constraint (6b) ensures voltages have allowable values with a
probability of at least 1−β. Here, β ∈ (0, 1) is a small constant
modeling the allowable constraint violation probability. The
objective functions are evaluated at the equilibrium of the non-
linear dynamical system in (3).

A similar problem was addressed in [5], [11]. However,
those earlier studies were restricted to single-phase feeders,
presumed a linearized grid model, and leveraged automatic
differentiation (AD) to compute gradients. Unfortunately, AD
can become inefficient under an exact AC grid model as
solving every PF appearing in (5b) involves another internal
loop of PF solver iterations. This work considers the more
practical setting of multiphase feeders and incorporates voltage
phase imbalance metrics under the exact AC grid model.
Further, it replaces automatic with implicit differentiation; i.e.,
gradients are computed via total differentiation at the equilib-
rium. We next explain how chance constraints are surrogated

Fig. 2. Logistic function approximation of the unit step function.

by differentiable functions to eventually approximately solve
(6) using a primal-dual algorithm.

III. SMOOTH APPROXIMATION OF CHANCE CONSTRAINTS

Suppose one of the constraints in (6b) ensures that the
probability of voltage magnitude vn lying within the desirable
range of [0.97, 1.03] pu is larger than 1− β1:

Prθ(|vn(z;θ)− 1| ≤ 0.03) ≥ 1− β1, ∀n ∈ N (7)

for a small β1 > 0. Although the constraint is evaluated at
the equilibrium grid state, superscript ∗ has been dropped for
simplicity. The voltage magnitude deviations can be squared
to obtain the equivalent constraint

Pr((vn(z;θ)− 1)2 − 0.032 ≤ 0) ≥ 1− β1, ∀n ∈ N . (8)

We would like to approximate this chance constraint by one
captured by a differentiable function. To this end, first note that
for a random variable x, it holds that

Pr(x ≥ 0) = E [u(x)]

where u(x) is the unit step function. Because u(x) is nons-
mooth, it is often replaced by the logistic function

1̃γ(x) :=
1

1 + e−x/γ
(9)

where parameter γ > 0 controls the closeness of the logistic
function to the step function (see Figure 2). Using the logistic
function and upon some algebraic manipulations, constraint
(8) can be approximated by [11]:

E
[
1̃γ

(
(vn − 1)2 − 0.032

)]
≤ β1. (10)

Even though most prior works on DER reactive power con-
trol focus on regulating voltage magnitudes, voltage imbalance
can also be an essential issue. Among different metrics [17],
voltage imbalance can be quantified by the so-termed voltage
unbalance factor (VUF) on a three-phase bus, defined as the
ratio of negative- to positive-sequence voltages of that bus. In
detail, if vector um carries the voltage phasors at the three
phases of bus m ∈ M, the VUF factor can be computed as

ωm =
|V −

m |
|V +

m |
=

|ρHum|
|ρ⊤um|

(11)



where ρ := [1 ej
2π
3 ej

4π
3 ]⊤. According to IEC, the VUF

should be maintained below 2%. Reducing phase imbalance
can be critical for the operation of large three-phase motors.
Although DERs may be approximately uniformly distributed
across phases, imbalances in power injections during real-time
operation may result in phase imbalance. Additionally, reactive
power injections attempting to regulate voltage magnitudes
may inadvertently exacerbate voltage imbalance.

To address these concerns, we incorporate voltage balance
constraints into the ORD problem. For specific three-phase
buses, consider the constraint

Prθ (ωm(z;θ) ≤ 0.02) ≥ 1− β2, ∀m ∈ M. (12)

While voltage magnitude constraints are enforced per node,
voltage imbalance constraints are enforced per bus. If the
voltage imbalance constraint is rearranged as |ρHum|2 ≤
0.022 · |ρ⊤um|2, it can be alternatively expressed as

Prθ(u
HΦmu ≤ 0) ≥ 1− β2, ∀m ∈ M (13)

where Φm := Sm(ρρH − 0.022 · ρ∗ρT )S⊤
m, and Sm is a

selection matrix to obtain um from u as um = S⊤
mu. We can

again use the logistic function to simplify (13) as

Eθ

[
1̃γ(u

H
mΦum)

]
≤ β2 (14)

Constraints (10) and (14) can be enforced on suitable nodes
and buses, and are substituted in (6) to give rise to a stochastic
optimization problem. Solving this problem, however, is chal-
lenging as the probability density function of θ is unknown.
This challenge is addressed next using the standard technique
of stochastic sample approximation.

IV. SOLUTION METHODOLOGY

The expectation appearing in the objective and constraints
in (10) and (14), can be approximated by sample averages:

Eθ [ℓ(z;θ)] ≃
1

S

S∑
s=1

ℓ(z;θs)

where {θs}Ss=1 is a set of representative grid scenarios antici-
pated for the next two hours. Therefore, VVR rule parameters
can be optimized by solving the problem

min
z∈Zϵ

1

S

S∑
s=1

ℓ(z;θs) (15)

s.to
1

S

S∑
s=1

gc(z;θs) ≤ β, ∀c ∈ C.

The function gc represents the function inside the expectation
operator in (10) and (14). Because objective and constraints are
differentiable, problem (15) can be solved using the projected
primal-dual decomposition method.

The Lagrangian function of problem (15) is

L(z;λ) =
1

S

S∑
s=1

ℓ(z;θs) +
∑
c∈C

λc

(
1

S

S∑
s=1

gc(z;θs)− β

)

Fig. 3. Overview of the proposed algorithm for optimizing VVR rule
parameters in multiphase feeders. Given the current iterate of VVR parameters
zk and for each grid loading scenario θ, we find the grid equilibrium state
by iterating between the PF problem and the VVR rules. Constraints are
evaluated across all scenarios and passed into the logistic function to update
dual variables. Primal variables are updated by linearly combining Lagrange
multipliers and constraint gradients.

where λc is the Lagrange multipliers corresponding constraint
c. Lagrange multipliers are collected in vector λ. The primal-
dual decomposition method seeks to minimize L over primal
variables z ∈ Zϵ, and maximize L over dual variables λ ≥ 0.
This is accomplished using successive primal gradient descent
and dual gradient ascent iterations:

λk+1
c =

[
λk
c + µλ

(
1

S

S∑
s=1

gc(z
k;θs)− β

)]
+

, ∀c ∈ C

(16a)

zk+1 :=
[
zk − µz∇zL(z

k;λk+1)
]
Zϵ

(16b)

where k denotes the iteration number and (µz, µλ) are positive
step sizes. Primal variables z are projected onto set Zϵ, while
operator [·]+ ensures the non-negativity of dual variables. The
updated primal variable zk+1 is fed back to the dynamical
system (3) to obtain new equilibrium states.

Gradient ∇zgc can be calculated using the chain rule as:

(∇zgc)
⊤ = (∇ugc)

⊤ · ∇qu · ∇zq. (17)

Knowing that the PF equations map u to power injections s,
we can use the inverse function theorem to compute

(∇zgc)
⊤ = (∇ugc)

⊤ · (∇us)
−1 ·T · ∇zq (18)

where matrix T selects the columns from the inverse Jacobian
∇su corresponding to ∇qu. We next elaborate on computing
the components appearing in (18).

1) Evaluating ∇zq: Determining the Jacobian ∇zq in-
volves differentiating the VVR control rules f(z;v) with
respect to z. Note that f is a function of both z and voltage v,
which, in turn, depends on q through the PF equations. There-
fore, to differentiate over the implicit equation q = f(z;v),
we must use total differentiation [15]:

∇zq =
∂f

∂v
· (∇zv) +

∂f

∂z
· ∇zz



=
∂f

∂v
· (∇uv · ∇qu · ∇zq) +

∂f

∂z
· I.

After some trivial manipulations, we get that

∇zq =

(
I− ∂f

∂v
· ∇uv · ∇qu

)−1

· ∂f
∂z

2) Evaluating ∇uℓ and ∇ugc: Ohmic losses can be ex-
pressed as the sum of active power injections across all nodes.
As such, they can be expressed as a quadratic function of
u, and thus, the gradient ∇uℓ can be readily computed. The
gradient ∇ugc for constraints related to voltage magnitude
violations as in (10) can be computed as:

∇ugc =
1

γ
· gc · (1− gc) · 2(vc − 1) · ∇uvc.

The formula can be obtained by differentiating the logistic
function and applying the chain rule. The gradient ∇ugc for
constraints related to voltage imbalance as in (14) is:

∇ugc =
1

γ
· gc · (1− gc) · 2uT

c ·Φ · ∇uuc.

Figure 3 depicts the workflow of the algorithm.

V. NUMERICAL TESTS

The proposed method was numerically evaluated using the
IEEE 37-bus multi-phase feeder, wherein all buses are three-
phase nodes. Real-world active load demands and solar gen-
eration were obtained from the Smart* project at one-minute
intervals for April 2, 2011 [20]. The dataset contains active
load demands from 443 houses and solar generation from
50 rooftop solar panels. The testing dataset was created by
randomly selecting homes and assigning them to the non-zero
injection nodes of the benchmark feeder. Each load time series
was normalized so its peak value equals 3 times the nominal
active load of the corresponding node. This accommodates
the anticipated load growth due to electrified vehicles and/or
heating. Because the original dataset does not include kVAR
demands, reactive power injections were simulated based on
the active power loads and the power factors reported by
the benchmark. Solar generation was scaled so its maximum
daily value is 3 times the peak load demand based on the
original benchmark loads. We added single-phase DERs on
non-zero load nodes as shown in Fig. 4. To evaluate the
performance of the proposed method, we conducted tests
during the 11:30—13:30 period, during which solar generation
exhibited high fluctuations due to clouds. This period includes
120 scenarios. To generate additional scenarios, we introduced
small perturbations by adding zero-mean Gaussian noise with
a variance of 0.001 to 30 randomly selected scenarios.

All tests were conducted on a laptop computer with an
Apple M3 Pro processor and 32GB of RAM. The control rules
were designed and evaluated using MATLAB R2022a, with
YALMIP and Gurobi 11.0 employed for the projection step.
The rule parameters were initialized as (v̄n, δn, σn, αn) =
(1.00, 0.1, 0.06, q̄n

σn−δn
) for all n, and the stability margin ϵ

was set to 0.1. Iterations were terminated when the relative
error between consecutive parameter updates z became less

Fig. 4. Single-phase DERs with VVR control capabilities added to the IEEE
37-bus multi-phase feeder.

than 10−6. Upon experimentation, step sizes were chosen as
µz = 0.1 · 0.99k and µλ = 0.01 · 0.99k, respectively.

To evaluate our ORD methodology, we tested four design
options: a) No VVR control; b) VVR rules designed for
(β1, β2) = (0.2, 1.0); c) VVR rules designed for (β1, β2) =
(0.1, 1.0); and d) VVR rules designed for (β1, β2) =
(0.1, 0.1). Figure 5 presents the histograms of voltage mag-
nitudes for all nodes and VUF metrics for all three-phase
buses, across the four design options a)-d). Under option a),
voltage magnitudes exceed the limit of ±3% for several nodes
and scenarios, and the VUF exceeds 2% for several buses,
too. Compared to option a), option b) shows a decrease in
the probability of voltage magnitudes exceeding the ±3%
limit, although the VUF increases. This trend becomes more
pronounced under option c), where voltage magnitudes are
more tightly distributed within the range of [0.97, 1.03], but
the probability of the VUF exceeding 2% is higher than in
b). In contrast, option d) improves both voltage magnitude
and VUF, with the maximum violation probabilities reduced
to 10%. Table I summarizes ohmic losses and the worst-
case probabilities of voltage violation and imbalance violation
across all scenarios for different values of (β1, β2). As the val-
ues of (β1, β2) decrease, the worst-case probabilities decrease
accordingly, while the ohmic losses increase, as expected.

TABLE I
WORST-CASE PROBABILITIES AND OHMIC LOSSES

(β1,β2) Voltage Imbalance Ohmic
Probability [%] Probability [%] Losses [kW]

(0.2,1.0) 20.11 34.77 46.91
(0.2,0,2) 19.99 19.81 46.95
(0.1,1.0) 10.20 40.37 47.99
(0.1,0.2) 11.47 20.42 49.41
(0.1,0.1) 11.60 10.87 53.88



Fig. 5. Histograms of voltage magnitude and VUF for various (β1, β2) settings. From a) to b), magnitudes become more tightly regulated. In c), magnitudes
are further confined at the expense of wider voltage imbalance violations. Panel d) attains tighter regulation in voltage magnitude and imbalance alike.

VI. CONCLUSIONS

This work has devised a chance-constrained ORD formu-
lation to minimize ohmic losses in multiphase distribution
feeders. The formulation incorporates chance constraints on
voltage magnitude and imbalance to address issues arising
from the uncertainty of load and solar power injections. A
primal-dual gradient algorithm has been proposed to find near-
optimal VVR rule parameters. Numerical tests using real-
world load and solar data on the IEEE-37 feeder validate the
effectiveness of the proposed method in ORD while satisfying
chance constraints. To further improve upon computational
complexity, one could explore stochastic primal-dual algo-
rithms and attempt to avoid the nested loop incurring with
the dynamical loop and the AC-PF solver.
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