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Abstract—Contemporary power systems are experiencing a
growing integration of flexible resources on the consumer side.
Different from flexible demand that submits specific bids to
energy markets, price-responsive demand (PRD) adjusts its
power consumption without notice, simply based on the resulting
electricity prices as well as internal priorities and limitations. In
this paper, we demonstrate how a high penetration of PRD (the
behavior of which is invisible to the operator during the day-
ahead unit commitment stage) results in systematic inefficiency
costs and formulate the so-termed decision-focused learning
problem of learning to provide a demand forecast which, once
fed as an input to the operator’s economic dispatch optimiza-
tion problem, results in an efficient dispatch. Interestingly, the
prescribed demand forecast affects the resulting prices, which
in turn affect the actual demand realization, giving rise to
a decision-dependent uncertainty. Motivated by the problem’s
hard-to-evaluate objective function, we solve it using Bayesian
optimization. The empirical evaluations demonstrate significant
savings in the effective real-time system cost, compared to the
current practice of using the default demand forecast. Moreover,
the method is shown to achieve a system cost that is fairly close
to the one achieved by a system that fully integrates PRD into
the day-ahead process; but without requiring any change in the
operator’s existing dispatch algorithm while avoiding all efforts
necessary for the integration of flexible demand, which is a widely
pursued field of ongoing research.

Index Terms—decision-focused learning, value-oriented fore-
casting, decision-dependent uncertainty, Bayesian optimization,
economic dispatch.

I. INTRODUCTION

The primary role of a System Operator (SO) is to ensure
that load demand is met in a safe and economically optimal
way. This goal is typically pursued by SOs through two main
operations, one taking place in day-ahead and one in real-
time. The Day-Ahead (DA) process refers to solving the Unit
Commitment and Economic Dispatch problem for the next
day, while the Real-Time (RT) process refers to taking real-
time balancing measures to ensure supply-demand balance.

This work was partially supported by Horizon 2020 ARV project under grant
agreement no. 101036723 and by US NSF under Grant 2150596.

In the DA optimization problem, demand has been tra-
ditionally treated as a known parameter. The SO receives
price-quantity bids from generators and balances supply with
demand, which simultaneously establishes the DA electricity
prices. However, with the surge of flexible demand, this
traditional paradigm is challenged. Thereupon, there has been
a large body of literature modeling and quantifying demand-
side flexibility [1] and designing aggregation [2], [3], and
market frameworks [4], [5] for integrating it into the operator’s
DA process as a flexible demand that comes on top of the base
(inflexible) load forecast. Such developments necessarily per-
tain to loads with scheduling and communication capabilities.

On the flip side, there is a second type of flexible loads,
termed here as Price-Responsive Demand (PRD), that simply
shape their consumption by reacting to electricity prices,
and without communicating their flexibility capabilities to an
aggregator, which deems them invisible during the DA process.
This can result in important system inefficiencies since PRD
can render the base demand’s forecast inaccurate, granted it
constitutes an input parameter to the DA problem. Therefore,
although the operator may treat the DA dispatch as optimal, it
is in fact ill-informed and can trigger costly re-dispatch actions
during the RT process. Moreover, in this work, we observe that
PRD can systematically counteract the DA demand forecast:
In times with a higher demand forecast, electricity prices will
be higher, and thus, PRD is prompted to shift loads away from
those times. In turn, this results in a reduction of the actual
demand, thereby counteracting the forecast. Similarly, in times
with a lower demand forecast, electricity prices will be lower,
prompting PRD to shift loads into those times. This increases
the actual demand, again counteracting the forecast.

This observation spurs this work’s endeavor to engineer the
demand input of the DA task, such that the ex-post system’s
cost after both the DA and RT processes, is efficient. The
problem is to prescribe a forecast for next-day’s demand
profile, not with the goal of making an accurate prediction, but
of favorably biasing the DA dispatch towards making decisions
that will turn out to be efficient ex-post. Deliberately prescrib-
ing a forecast with the purpose of optimizing the resulting
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cost has been known in machine learning as Decision-Focused
Learning (DFL) or value-oriented forecasting [6], [7].

The sparse applications of related techniques in power
system operations are surveyed in [8]. Notable references
include [9] and [10]. SOs are also known to actively bias the
forecast empirically for similar purposes [11]. However, these
references consider exogenous uncertainties (renewable gen-
eration), whose realization does not depend on the prescribed
forecast. In stark contrast, in the presence of PRD, demand
depends on prices, which in turn, depend on the prescribed DA
forecast. This peculiarity brings the problem into the realm of
endogenous or decision-dependent uncertainty [12].

Stochastic optimization under decision-dependent uncer-
tainty has been recently considered in power system opera-
tions. Reference [13] introduces a robust model for energy and
reserve dispatch across multiple stages considering deferrable
loads and curtailable demand. Reference [14] uses decision-
dependent uncertainty to model the effect of unit commitment
decisions on forced outages, and takes it into account to
optimize operational reliability. A chance-constrained program
for optimal battery charging with battery’s bounds modeled
as uncertain and dependent on past service requests and
incentives is presented in [15]. Finally, [16] conceptualizes
a market for RES and load predictions, where the decision
on the prediction purchases affects the uncertainty set in
the subsequent robust generation dispatch problem. However,
the aforementioned works do not deal with decision-focused
learning problems.

To the best of our knowledge, the decision-focused learn-
ing problem of prescribing a demand forecast in systems
with price-responsive demand (and, thereby, with decision-
dependent uncertainty), has not been considered before. Ac-
cordingly, the first contribution of this work is to:

c1) Formulate the DFL problem (Section III) under PRD.
To this end, our approach models (Section II): i) the DA
task as a classic unit commitment and economic dispatch
problem with a given demand forecast; ii) a PRD model as
an optimization problem that performs load shifting based
on the DA prices (resulting as the dual variables of the
DA power-balance constraints); and iii) the RT task as an
economic dispatch that determines balancing actions with
given generator commitment decisions and known demand.

Compared to optimization with decision-dependent uncer-
tainty, the above problem bears additional complexities. The
uncertainty realization (demand) depends on the dual rather
than the primal variable of the economic dispatch, to which our
decision (demand forecast) is only an input. Thus, evaluating
the final system cost of any given DA demand forecast entails
simulating the whole chain of the DA, PRD, and RT processes.
This renders DFL not only non-convex but also plagued
with an objective function that is computationally costly even
to evaluate. These characteristics motivate using Bayesian
optimization (BO) – a surrogate-model-based learning method
for optimizing black-box, hard-to-evaluate functions, which
gives rise to our second contribution:

c2) Solve DFL using BO (Section IV). The proposed
solution is empirically evaluated on the standardized GMLC
case study [17] and compared to two benchmarks (Section V):
the status quo approach that uses standard demand forecast
methods and does not consider PRD in the DA process, and the
theoretically optimal approach of incorporating the (unknown
in practice) PRD model into the DA process as if it was fully
integrated.

II. SYSTEM MODEL

Consider a power system where a set G of generators is
managed across a set T of discrete intervals. The operational
status of a generator g ∈ G at time t ∈ T is described by three
binary variables (ng,t, rg,t, eg,t), as in

ng,t, rg,t, eg,t ∈ {0, 1}, g ∈ G, t ∈ T , (1)

where ng,t = 1 captures the case where the generator is
ON, the start-up variable rg,t = 1 encodes the case that the
generator is turned from OFF to ON at time t, and the shut-
down variable eg,t takes the value of 1 if the generator is
turned from ON to OFF at time t. The logic connecting the
three variables is enforced by

rg,t − eg,t = ng,t − ng,t−1, g ∈ G, t ∈ T , (2)

where ng,0 denotes a predetermined initial state. Minimum
up/down-time requirements are enforced as

ng,t ≥
t∑

τ=max{0,t−qg+1}

rg,τ , g ∈ G, t ∈ T . (3a)

1− ng,t ≥
t∑

τ=max{0,t−q
g
+1}

eg,τ , g ∈ G, t ∈ T , (3b)

so that generator g stays ON (OFF) for at least qg (q
g
) times

once turned ON (OFF). The continuous variable pg,t denotes
the active power production of generator g at time t. Ramp-up
and ramp-down constraints are imposed as

pg,t−1 − rg ≤ pg,t ≤ pg,t−1 + rg, g ∈ G, t ∈ T . (4)

To capture piece-wise linear generation costs, the variable pg,t
can be decomposed into multiple segments {pg,l,t}l∈Lg

, each
one upper bounded by Pg,l, as in

pg,t =
∑
l∈Lg

pg,l,t, g ∈ G, t ∈ T (5a)

0 ≤ pg,l,t ≤ ng,tPg,l, g ∈ G, l ∈ Lg, t ∈ T . (5b)

The total cost for generator g is expressed as the sum of the
start-up cost wsu

g , fixed costs wfx
g , and a piece-wise linear

generation cost as

cDAg,t = rg,tw
su
g + ng,tw

fx
g +

∑
l∈Lg

pg,l,thg,lfg g ∈ G, t ∈ T

(6)

where hg,l [Btu/MWh] is the incremental heat rate for level
l (increasing for higher segments), and fg [$/Btu] is the
generator’s fuel price.
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A. Day-Ahead Dispatch

The system operator (SO) is responsible for managing the
generators so as to meet the system’s electricity demand in an
economically efficient way. The generators’ binary variables
and ramp constraints necessitate a day-ahead process where
generators are committed to an operational state for each
time slot of the day, and they are dispatched to a scheduled
output. To ease the exposition, power flow constraints imposed
by transmission lines have been ignored here, even though
they can be readily included in the problem formulation and
solution methodology. The supply-demand balance constraint
for the day-ahead (DA) dispatch process is:∑

g∈G
pg,t = Dt, t ∈ T : (λt) (7)

where λt is the associated optimal dual variable, which in-
stantiates the energy price at time t, and Dt is the expected
net demand, i.e., a forecast of the system’s electricity load
minus renewable generation. Under these considerations, the
DA unit-commitment and economic-dispatch problem reads

min
∑
t∈T

∑
g∈G

cDAg,t (DA)

over VDA :=
{
(ng,t, rg,t, eg,t, pg,t, {pg,l,t}l∈Lg )

}
g∈G,t∈T

s.t. (1) − (7)

Notice that the expected demand Dt is treated by the
operator as a parameter of the DA optimization. Nonetheless,
it is this quantity that we will be seeking to optimally learn
in the DFL problem; the problem this work is after. The dual
variables {λt}t∈T of the balance constraints (7) instantiate the
system’s energy prices, based on which the PRD will adapt
its consumption. This is modeled in the next subsection. Note
that, technically, the dual variables are obtained by first solving
the MILP problem (DA), and then re-solving it as a linear
program with the binary variables fixed.

B. Load Response to Price

This subsection presents a model of how PRD modifies
consumption {dt}t∈T in response to the electricity prices
{λt}t∈T resulting from the (DA) problem. Note that the
model presented in this subsection is only to demonstrate the
proposed methodology (to follow). The proposed method does
not directly use the PRD model, but only the data resulting
from it, and can work with any type of PRD. For simplicity,
consumers are assumed to be subjected to the wholesale DA
market prices directly. The consumers’ response is modeled
as the solution to the convex program:

min
∑
t∈T

(
λtdt + βs2t

)
(8a)

over {dt, st}t∈T (8b)

s.t. dt ≤ dt ≤ dt t ∈ T (8c)∑
t∈T

dt ≥
∑
t∈T

d0t , (8d)

st = st−1 + dt − d0t t ∈ T (8e)

where s0 = 0 and β > 0 is a given penalty factor. Parameter d0t
denotes the spontaneous demand, that is the load’s tentative
demand at time t had there not been a pricing signal. The
“state-of-energy” variable st models the load’s capability to
shift demand across time, e.g., by using batteries or the thermal
storage capability of a building. Adjustments are confined
within given per-instance limits {(dt,dt)}t∈T , which depend
on consumers’ flexibility. Adjustments are also constrained
as a sum across time through constraint (8d). Constraint (8e)
describes how demand can be time-shifted across the horizon,
yet such shifting incurs an inconvenience to the owner of
flexible loads modeled by the quadratic penalty βs2t added to
the objective function. Due to this quadratic penalty, it is easy
to see that problem (8) is strictly convex over {dt}t∈T , and
hence, its minimizer is unique. The first term of the objective
function penalizes the load variable dt with the price acquired
by the day-ahead commitment decisions. This will result in a
load shift when λt is high. The second term of the objective
function includes the flexibility constant β, which penalizes the
load shift between timeslots. The demand sequence {dt}t∈T
minimizing (8) will be denoted as {dt(λ)}t∈T where vector λ
carries prices {λt}t∈T . This notation emphasizes that adjusted
demands depend on prices across all times due to the capability
of shifting flexible demand across time.

It is worth stressing that the response of demand to prices
captured by (8) is actually unknown to the operator. This is
because the flexible loads considered here do not communicate
their flexibility via an aggregator or otherwise. Therefore, the
SO does not take the demand-response model in (8) into
account when solving the dispatch problem (DA).

C. Real-Time Redispatch
To meet the actual real-time demand which typically de-

viates from the DA forecast, the dispatch decided by (DA)
undergoes a real-time adjustment decided by the so-termed
real-time (RT) (re-)dispatch problem. To distinguish between
the DA and the adjusted RT dispatch, we will henceforth
denote RT decision variables with the superscript (·)RT, while
the values of DA variables are denoted with superscript (·)DA.
It is important to note that all DA variables are fixed and
treated as parameters at the time the RT redispatch occurs.

The RT redispatch pRTg,t embodies the balancing action that
comes on top of the generator’s DA dispatch previously
scheduled by the DA problem. Hence, the effective output
xRTg,t of generator g at time t after solving the RT problem is

xRTg,t = pRTg,t + pDAg,t. (9)

As with DA, variable xRTg,t is decomposed into segments as

xRTg,t =
∑
l∈Lg

xRTg,l,t (10a)

0 ≤ xRTg,l,t ≤ nDAg,t · Pg,l, l ∈ Lg, g ∈ G, t ∈ T . (10b)

and a generator’s final (effective) cost cRTg,t reads as

cRTg,t = rDAg,tw
su
g + nDAg,tw

fx
g +

∑
l∈Lg

xRTg,l,thg,lfg, g ∈ G, t ∈ T

(11)
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The balancing energy pRTg,t for generator g is upper bounded
by its spare capacity Pg − pDAg,t, provided it is committed:

pRTg,t ≤ nDAg,t · (Pg − pDAg,t), g ∈ G, t ∈ T . (12)

Also, the balancing energy is lower bounded based on the
scheduled dispatch and the generator’s technical minimum as

pRTg,t ≥ −nDAg,t · (pDAg,t − Pg), g ∈ G, t ∈ T . (13)

Finally, the ramp constraints read as

xRTg,t−1 − rg ≤ xRTg,t ≤ xRTg,t−1 + rg, g ∈ G, t ∈ T . (14)

Given that flexible loads may have been adjusted in response
to DA prices λ, the power balance equation for the system
during the RT redispatch becomes

dt(λ)−
∑
g∈G

xRTg,t = ℓLt − ℓRt , t ∈ T (15a)

ℓLt ≥ 0 and ℓRt ≥ 0, t ∈ T (15b)

where the introduced decision variables {(ℓLt , ℓRt )}t∈T denote
the lost load and renewable energy sources (RES), respectively.
Recall that demand dt(λ) is the minimizer of (8), and is treated
as a parameter when the operator solves the RT redispatch.

At time t, the RT problem aims at minimizing the system’s
final effective cost, plus the cost cRTg,t of lost load (weighted
by the value of lost load VL) and lost RES (weighted by the
value of lost RES VR):

Wt = min
∑
g∈G

cRTg,t +VL · ℓLt +VR · ℓRt (RTt)

over VRT
t :=

{{
(pRTg,t, x

RT
g,t, {xRTg,l,t}l∈Lg

)
}
g∈G , ℓLt , ℓ

R
t

}
s.t. (9) − (15).

This problem is over the set VRT
t of RT decision variables for

time t. Since the SO is only informed about the actual demand
dt(λ) in near real-time, the RT redispatch for t is solved in
near real-time, i.e., independently per time slot t, with the
dispatch (xRTg,t−1)g∈G taken as fixed (by the previously realized
generators’ output).

III. DECISION-FOCUSED LEARNING (DFL)

The effective system’s cost
∑

t∈T Wt refers to the sum of
the objective values of problems (RTt) for all t. This is the cost
of the dispatch actually realized. However, this cost depends
on the DA process in two ways:

1) Through the generators’ DA commitment decisions nDAg,t
that constraint the RT dispatch and also directly affect
the system’s effective cost through (11); and

2) Through prices λ decided by the DA. This dependence
is more subtle as prices affect the final flexible demand
dt(λ) decided by (8), which then appears in constraint
(15) of the RT problem.

In turn, the result of the DA problem depends on the forecasted
demand Dt. Thus, parameter Dt affects the effective system
cost through the chain of dependencies described. Moreover,

the relation between Dt and the system’s effective cost features
an interesting intuition:

• During times t where Dt is relatively high compared to
spontaneous demand, the DA problem will yield high
prices, i.e., prices that will prompt (8) to shift loads
away from those times. This will result in a reduction
of demand; thereby counteracting the forecast.

• During times with a lower Dt, prices will be lower,
prompting (8) to shift loads into those times, resulting
in a demand increase; again counteracting the forecast.

This counteraction of the forecasted demand leads to sys-
tematic imbalances, left to be balanced by the RT prob-
lem. However, since the RT problem is constrained by DA
decisions, a systematically ill-informed DA process causes
severe inefficiencies. Namely, when the DA demand forecast
is lower than the RT demand, the operator commits fewer
generators than necessary, only to re-dispatch them later during
the RT problem at increasingly costly higher output levels.
Furthermore, if the DA-RT demand difference is so high that
the committed generators cannot meet the demand, the system
will be forced to resort to costly load curtailments. Likewise,
when the DA demand forecast is higher than the RT demand,
the system commits more generators than necessary, resulting
in unnecessary fixed (e.g., start-up) costs. Additionally, if the
DA-RT demand difference is too high, RES curtailments might
also be necessary for RT to maintain the committed generators’
dispatch above their technical minimum.

Given these insights about the effect of Dt, the cardinal
question is: how to select Dt in (7), such that the system’s
effective cost resulting through the chain of three optimization
problems (DA), (8), and (RTt) is minimized. This question is
formalized as the Decision-Focused Learning (DFL) problem:

min f(x) :=
∑
t∈T

Wt

(
VRT
t ;VDA, dt(λ)

)
(DFL)

over x := {Dt}t∈T

s.t. − δ ≤
∑
t∈T

Dt − D̄ ≤ δ

Wt

(
VRT
t ;VDA, dt(λ)

)
: optimal cost of (RTt), t ∈ T

(RTt) is parameterized by VDA and dt(λ), t ∈ T
(dt(λ))t∈T is the minimizer of (8),
(8) is parameterized by λ,

(VDA,λ) are the minimizers of (DA),
(DA) is parameterized by {Dt}t∈T .

The first constraint confines the sum
∑

t∈T Dt within distance
δ from a given value D̄. The latter can be selected as the
forecast for the sum of demands during DA dispatch, while
distance δ can depend on the decision maker’s confidence
in the prediction. The dependencies between the different
processes are illustrated in the upper three boxes of Fig. 1.

Problem (DFL) is a multi-level, non-convex program over
the vector x of demand forecasts across t ∈ T . Simpler
(namely, convex) versions of multi-level programs are often-
times handled by substituting the inner problems by their
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Fig. 1: Illustration of the DFL problem (circled in blue) and the proposed solution methodology.

Karush-Kuhn-Tucker (KKT) optimality conditions and intro-
ducing binary variables to model complementary slackness
using the so-termed big-M trick. However, this approach is
not applicable here, as the (DFL) problem is inherently more
complex: the “lower-level” problem (8) depends, not on the
primal, but on the dual variables of problem (DA) to which, in
turn, the decision variable (i.e. the predicted demand) is only
an input. To address this predicament, we resort to a zero-order
optimization methodology described next.

IV. SOLUTION METHODOLOGY

Although solving (DFL) is non-trivial, evaluating the objec-
tive value f(x) at a feasible x can be accomplished at modest
complexity. Bayesian optimization (BO) leverages function
evaluations to build a surrogate model f̂(x) for f(x), which is
subsequently used for minimization. We next delineate how a
surrogate model for (DFL)’s cost can be built and minimized.

The surrogate function f̂(x) is typically modeled as a
zero-mean Gaussian process (GP) with covariance function
k(x,x′) := E [f(x)f(x′)]. A GP is a random process where
any finite collection of its samples is a Gaussian random
vector [18, Ch.1]. The DFL objective f(x) can be interpreted
as a random process over vector x. If f has been evaluated
already at some x0, then f(x0) is known without uncertainty.
For other x’s, the values f(x) could be unknown. The GP
assumes that the prediction for f(x) is correlated with f(x0)
depending on the distance between x and x0.

GP inference postulates a parameterized model for the
covariance k(x,x′) and learns the parameters of this model
using the sampled function values. Suppose N samples of
{xn, f(xn)}Nn=1 are available. Let vector f := [f1 · · · fN ]⊤

collect these samples of f . If f(x) is modeled as a GP, then
f is a Gaussian random vector. Without loss of generality, its
mean value can be set to zero, while its covariance matrix Σ
has entries Σnm = k(xn,xm) for all n,m ∈ {1, . . . , N}, and

k(xn,xm) is a covariance function expressed in a parametric
form such as the widely used Matérn kernel

k(xn,xm) = α

(
1 +

√
5r

β
+

5r2

3β2

)
e−

√
5r/β + γδnm (16)

where r := ∥xn − xm∥2 and δnm is the Kronecker delta
function. The positive parameters {α, β, γ} are found using
maximum likelihood estimation based on f . Having a GP
model on f enables us to make predictions on cost values
for x’s that have not been evaluated yet: Consider such an x
and define the Gaussian vector[

f
f(x)

]
∼ N

([
0
0

]
,

[
Σ k(x)

k⊤(x) k(x,x)

])
. (17)

Here the n-th entry of k(x) is k(xn,x) for all n. Since f and
f(x) are jointly Gaussian, the conditional probability density
function (PDF) of f(x) given f is also Gaussian with

f̂(x) = µ(x) = k⊤(x)Σ−1f (18a)

σ2(x) = k(x,x)− k⊤(x)Σ−1k(x). (18b)

The mean can be used as an estimate of f(x), while its
variance captures the uncertainty of this estimate. Note that
(17)–(18) hold for any x. Therefore, function f̂(x) can be
used as a surrogate of f(x). Minimizing f̂(x) instead of f(x)
is easier as the former has an analytical form.

The surrogate model can be iteratively refined by evaluating
f at more points. The additional points can be selected to
reduce uncertainty σ(x), but also focus on areas with smaller
values of µ(x) as we are looking for the minimizer of f(x).
Let f∗

N denote the smallest cost value amongst these N evalua-
tions, and x∗

N be the corresponding demands. We can improve
upon f∗

N by sampling f(x) at a new x featuring a potentially
smaller cost. A meaningful criterion is the improvement in
optimal cost captured thus far

I(x) := [f∗
N − f(x)]+ (19)

where [z]+ := max{z, 0}. Ideally, we are looking for demands
that maximize I(x). However, maximizing I(x) is as expensive
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as minimizing f(x). Fortunately, thanks to the GP model, the
DFL cost f(x) in (19) can be replaced by f̂(x) and we thus
maximize the expected value of the improvement

EI(x) := E
[
[f∗

N − f̂(x)]+

]
(20)

where the expectation is with respect to the PDF in (18).
Hence, the next point to sample is found as

xN+1 = argmax
x∈X

EI(x). (21)

Interestingly, function EI(x) enjoys an analytical expression,
which can be maximized using standard tools from continuous
optimization Rather than the expected improvement (EI), other
so-termed acquisition functions can be used to determine the
demand vector to be evaluated next [19]. For the problem at
hand, x is constrained to lie within a polytope, which allows
for Bayesian optimization tools such as GPyOpt [20] to apply.

Having identified xN+1 from (21), we can evaluate
f(xN+1) and either terminate the process or use the additional
sample to update the surrogate model for f . A BO algorithm
proceeds in three steps: i) A new xN+1 is identified by (21);
ii) The cost is evaluated for xN+1, yielding f(xN+1), and the
new sample is added to the training data; iii) The surrogate
model is updated using the new datum per (18) with k(x)
and f expanded by one entry. At each iteration, covariance
parameters are updated using maximum likelihood estimation.
The iterations terminate when a function evaluation budget
is met. Upon completion, we select the sample xn attaining
the smallest cost f(xn). Per Fig. 1, to sample a particular x,
problem (DA) is solved for demand vector x to compute DA
prices, the load’s reaction is then obtained via (8), and the
corrective actions are taken by solving (RTt) across all times.

V. NUMERICAL TESTS

A. Evaluation Setup

The proposed BO approach for solving (DFL) was numer-
ically evaluated using the RTS-79 benchmark system along
with generation and load parameters provided by [21]. This
dataset includes a default day-ahead demand forecast x̂ against
which we benchmarked the proposed method. The proposed
method was coded in Python using the libraries GPyOpt and
sklearn [20], [22]. All optimization problems were solved
using Gurobi. All tests were performed on an Intel i7 @
2.2Ghz with 8GB RAM.

Unless stated otherwise, the flexibility parameter in (8a)
was set to β = 0.01, the horizon length to T = 6 time
slots, expected improvement was used as the acquisition
function, results were averaged over 15 problem instances by
simulating different days, the GP model was initially trained
using N = 100 points randomly drawn from the feasible
space, and it was subsequently refined by iteratively appending
M = 20 additional function evaluations by optimizing the
acquisition function online. The covariance function for the
GP was selected as the Matérn-52 kernel [23], the parameters
in (8c) were set as dt = 0.8d0t and dt = 1.2d0t , and parameters
VL and VR in (RTt) were both set to 10000.

TABLE I: (DFL) (T = 6, M = 20) effective systems
costs comparison between Proposed method, Oracle and
Default benchmarks

Benchmark Objective Value of Problem (DFL)
Default 790896.28
Oracle 601123.57
Proposed 658301.64

B. Performance, Benchmarks, and Comparison

The proposed model was compared against two alternatives:
1) Default: Using the default forecast x̂ in (DA);
2) Oracle: Integrating price-responsive loads into (DA).

The second benchmark is only of theoretical interest as it
is practically impossible to implement, since price-responsive
loads respond in a spontaneous manner. The Oracle bench-
mark was simulated by solving

min
∑
t∈T

∑
g∈G

cg,t + βs2t (Oracle)

over V :=
{
{ng,t, rg,t, eg,t, pg,t, {pg,l,t}l∈Lg

}g∈G , dt, st

}
t∈T

s.t. (1) − (7), (8c) − (8e)

Table I compares the three methods in terms of their
effective system costs (i.e., the objective value of (DFL)). The
reported costs empirically validate that the proposed method
significantly outperforms the default forecast, while achieving
a system cost of just 9.5% additional overhead compared
to the theoretically optimal one. Interestingly, this suggests
that instead of going through the enormous efforts required
to integrate flexible demand into the DA process (cf. [2]–[5]
and references therein), the proposed approach could achieve
almost the same efficiency, by simply engineering a PRD-
aware demand forecast.

C. Performance Analysis

This subsection presents a more thorough analysis of the
benefits of the proposed approach by presenting the cost
savings achieved (expressed as a percentage of the Default
benchmark’s costs) for different configurations of relevant
parameters. We first tested the cost improvement for different
horizon lengths T and different numbers M of function
evaluations (samples). The results of Fig. 2 indicate im-
portant savings even under conditions of 24-time slot day-
ahead scheduling and limited function evaluations. The savings
exhibit a diminishing trend with increasing T . This does not
necessarily reflect an intrinsic property of the (DFL) problem
per se. It can rather be attributed to the expanding search space
for Bayesian optimization that could hamper the method’s
efficacy. On the other hand, further training of the surrogate
model (higher M ) yields higher system savings.

We also tested the effect of using different acquisition
functions for the BO. The selection of points to sample the cost
function of interest is guided by different acquisition functions,
which aim at balancing exploration and exploitation depending
on the uncertainty of the GP model. For example Lower
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Fig. 2: Relative improvement in cost savings achieved by
the Decision-Focused Learning in (DFL) over the Default
benchmark. Problem (DFL) was solved using Bayesian op-
timization for varying horizon lengths T and cost function
evaluations M .

TABLE II: Cost improvement and running time of BO for
(DFL) (T = 6, M = 20) with different acquisition functions

Acquisition function Cost improvement (%) Comp. Time (s)
EI 41.9 210.3
MPI 22.8 203.1
LCB 25.6 215.6
EI MCMC 55.1 216.2
LCB MCMC 25.4 220.7
MPI MCMC 52.3 218.9

Confidence Bound (LCB) tries to strike a balance between
the mean and model uncertainty; the Maximum Probability of
Improvement (MPI) maximizes the chances of improvement
over the present best; and the Expected Improvement (EI)
seeks to maximise the expected improvement over the current
best point. All three acquisition functions can be paired with
Markov Chain Monte Carlo (MCMC) sampling to enable more
effective and reliable exploration in high-dimensional spaces.
Therefore, we have tested EI, MPI, LCB, and their MCMC
variants. The results of the average improvement are shown in
Table II together with the corresponding computational time.
It is worth noting, that the computational time shown includes
both the online evaluations M = 20 and the initial N = 100
evaluations. EI MCMC achieved the best performance.

D. Sensitivity Analysis: System’s flexibility

This subsection presents a sensitivity analysis of the cost
savings as a function of the system’s flexibility levels. The
latter is controlled via parameter β of the PRD model in (8a)
with lower values of β modeling more flexible demand. The
box plots illustrated in Fig. 3 show the relative cost improve-
ment for varying β, where the boxes indicate the 25-75% range
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Fig. 3: Cost improvement for varying levels of price-
responsiveness of loads controlled by parameter β of (8).
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Fig. 4: Comparison between the proposed approach and the
Default benchmark.

(for different operational days), the bars indicate the max/min
values excluding outliers, and the circles indicate the outliers.
As expected, the savings achieved by the Decision-Focused
Learning increase as demand flexibility increases.

E. Interpretation of System’s Behavior

To interpret why and how (DFL) solved via BO outper-
forms the Default benchmark, we contrasted their respective
results in Fig. 4. In particular, Fig. 4a shows the predicted
demand x found by (DFL) alongside the default forecast x̂,
and Fig. 4b shows the resulting prices upon solving (DA) using
those demands. Figure 4c depicts the actual resulting demand
dt(λ) for both cases and Fig. 4d the generators’ commitment
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decisions. Finally, Fig. 4e presents the cumulative system cost
across time.

We can observe that, for the default case, when the load
spiked in time slot 2, the resulting price spiked too, resulting
in a reduction of the PRD in time slot 2. On the other hand, in
time slot 3, where the prediction declined sharply, the prices
had a corresponding reduction. Therefore the real-time demand
rose sharply. These observations offer an empirical validation
of our intuition of how the presence of PRD causes the forecast
to systematically counteract itself.

Interestingly, by Fig. 4d, the (DFL) method achieved its cost
savings by committing more generators than the Default,
and not less. The explanation is that the proposed method
opted for committing more, but smaller units (with lower
minimum capacity but higher costs) to handle the deviations
caused by PRD, immunizing the system against variabilities.
On the contrary, the Default benchmark committed fewer
generators and ended up in increased effective costs in real-
time. This is especially manifested at timeslot 4, where the
difference between the forecast and actual load resulted in a
severe effective cost, caused by unavoidable RES curtailments
due to the reduced ability of the few available generators to
ramp down quickly enough.

VI. CONCLUSIONS

Price-responsive demand (PRD) causes a systematic ineffi-
ciency as it reacts to prices without notice and, thus, its flexible
behavior is invisible during the day-ahead unit commitment
stage. Spurred by this inefficiency, this work has put forth the
so-called Decision-Focused Learning (DFL) problem under
decision-dependent uncertainty, which refers to prescribing a
day-ahead demand forecast, that results in ex-post efficient
dispatch decisions and prices, also anticipating the PRD
response to the resulting prices. The proposed data-driven
BO-based solution was compared favorably to the standard
method of using the default forecast, demonstrating significant
savings in the system’s effective costs. The proposed approach
is compatible with and can be directly incorporated into
existing operations as it only changes the operator’s demand
forecast without altering the dispatch mechanism or the market
procedure. Importantly, the results indicate that, despite the
Operator being agnostic to the demand’s response to price, a
near-optimal dispatch can be obtained by simply biasing the
demand forecast, all while completely bypassing the much-
discussed “market-integration” of flexible demand.
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