
Strategic Investment in Energy Markets using
Bayesian Optimization
Mana Jalali1, Sina Taheri2, and Vassilis Kekatos3

1Invenia Labs, Cambridge, CB21AW, UK; mana.jalali@invenialabs.co.uk
2Ibotta, Denver, CO 80202, USA; sina.taheri@ibotta.com

3Bradley Dept. of ECE, Virginia Tech, Blacksburg, VA 24061, USA; kekatos@vt.edu

Abstract—As electricity markets become more involved, strate-
gic investment defined as the task of sizing and siting new
generation units on a power system becomes increasingly com-
putationally taxing. Adding new units in a market influences
generation schedules and prices in a manner that may not be
profitable for the investor overall. Strategic investment can be
formulated as a mixed-integer linear program, which may not
scale gracefully in larger networks and/or an increased number
of stochastic scenarios. We tackle strategic investment using
Bayesian optimization (BO), a machine-learning approach for
minimizing hard-to-evaluate functions. BO builds a surrogate
Gaussian process (GP) model for the investment cost function
using function evaluations at judiciously selected points. Mini-
mizing the surrogate cost is faster than minimizing the actual
cost. By leveraging the multiparametric programming structure
of strategic investment, we further expedite the standard BO
approach on two fronts. First, the investment cost and its gradient
with respect to the investment decision variable are evaluated
more efficiently. Second, incorporating gradient information into
the GP surrogate model improves its accuracy. Extensive tests
on the IEEE 118-bus system corroborate the computational
advantages of the BO approach over competing alternatives.

Index Terms—Bayesian optimization; Gaussian processes; lo-
cational marginal prices; multiparametric programming.

I. INTRODUCTION

Grid modernization and the integration of renewables ne-
cessitate carefully expanding power systems and investing in
new generation units. Transmission and generation planning
are computationally complex problems due to uncertainties
associated with load and renewable generation. Due to the cou-
pling of investment choices and market outcomes, investment
in energy markets is a non-trivial task. Further, any surplus
generation modifies prices possibly in an unprofitable fashion.
Thus, an investor who already owns some units in the market
may end up losing money overall. To alleviate this, the investor
should optimally choose the size, bids, and location of new
units by maximizing its financial gain while considering the
way markets are cleared by the ISO. The mentioned task is
referred to as strategic investment (SI).

Power systems are affected by long- and short-term un-
certainties due to generation capacities, load demands, and
prices. Stochastic optimization techniques have been adopted
to consider these uncertainties for transmission and generation
planning and investments [1], [2]. Most stochastic solutions
give rise to sample approximations using several scenarios to

capture diverse conditions. The SI task is posed as a bi-level
optimization problem where the outer problem determines
investment options upon which the lower problem clears the
market [3], [4]. A typical solution is to replace the inner prob-
lem with constraints obtained from its Karush-Kuhn-Tucker
(KKT). This reformulation yields a mixed-integer program
(MIP), which scales unfavorably with the network size.

Multi-cut Bender’s decomposition has been used to expedite
the MIP-based formulation of SI in [5]. Nonetheless, the
approach adds new cuts at each iteration that can increase the
computational burden. Another group of SI solutions simplifies
the MIP using approaches such as the consensus version of
the alternating direction method of multipliers (ADMM) [6];
or progressive hedging [7], [8]. These methods, however, lack
optimality guarantees. The inner problem of bi-level SI models
the clearing process. A simplified formulation of this process
is the DC-optimal power flow (DC-OPF). In fact, the DC-
OPF must be solved for many combinations of investments
and uncertain scenarios, which is computationally challenging.
Reference [9] mitigated this problem by utilizing multipara-
metric programming (MPP). MPP uses the KKT conditions of
parametric linear or quadratic programs to find closed-form ex-
pressions for optimal primal/dual variables [10], [11], [9]. Lev-
ering MPP, reference [9] puts forth two MPP-based schemes:
a grid search and a stochastic gradient descent. The former
becomes impractical as the number of new investment units
increases; the latter can be sensitive to initialization.

This work develops a novel approach for dealing with
SI using BO [12]. The approach relies on modeling the
investment cost as a Gaussian process over the decision
variables, and searches the optimum by iterative function
evaluations [13]. Inspired by [9], function evaluations at each
iteration of the BO are further accelerated using MPP. We
further improve the speed and optimal investment cost by
devising a derivative-aided extension of BO upon recognizing
two key observations: i) The gradient of the investment cost
with respect to the decision variables can be readily computed
via MPP; and ii) Incorporating gradient information along with
function values can enhance the accuracy of the GP surrogate
model. Within the power system domain, BO has been used
before to deal with hosting capacity analysis of distribution
grids [14], [15]. Nevertheless, the advantages of using the
MPP problem structure to further enhance BO are unique to



this work. Numerical tests compare the proposed BO-based
framework against the SGP-MPP in [9], and corroborate that
it is indeed more scalable compared to existing alternatives
especially when the number of investment units increases.

The contributions of this work are twofold: c1) Adopting
a surrogate probabilistic model for the SI cost, we propose a
framework that exploits BO for solving SI. c2) We tailor the
BO-based framework to a derivative-aided setup to improve
upon data efficiency, which in turn yields improvements in
the minimum cost and computational time.

II. PROBLEM STATEMENT

An investor participating in an electricity market intends to
build new generation sites. They would like to find the location
and size of the new units optimally so that their overall net
profit from units they already own as well as the new units,
is maximized. To educate its strategic investment decision,
the investor surrogates the market with a simplified model of
networked-constrained economic dispatch or DC-OPF. Given
load demands `, the ISO decides generation schedules and
locational marginal prices (LMPs) upon solving

min
pr,pi

fr(pr) + fi(pi) (1a)

s.to 1>(pr + pi − `) = 0 : λ0 (1b)

− f ≤ S(pr + pi − `) ≤ f : µ,µ (1c)

0 ≤ pr ≤ p̄r : γ
r
,γr (1d)

0 ≤ pi ≤ x : γ
i
,γi (1e)

where pi and pr are the generation schedules for the units
owned by the investor and its rivals, respectively. Functions
fr(pr) and fi(pi) are convex quadratic functions modeling
the generation bidding costs submitted to the ISO. Power is
balanced by constraint (1b). Constraint (1c) enforces line limits
f by mapping power injections to line flows through the power
transfer distribution factor matrix S (PTDF). Constraints (1d)–
(1e) confine schedules within available capacities p̄r and x for
rival and investor’s units. The entries of x corresponding to
existing units are known, whereas the entries corresponding to
new units are to be found by the SI task.

Given the optimal dual variables shown on the right of the
constraints in (1), the LMPs are calculated as

π = −λ01 + S>(µ− µ) (2)

and the investor would be compensated by π>pi from the
ISO for generating pi. If gi(pi) is the true cost for generating
pi, the net revenue of the investor is π>pi − gi(pi).

The cost of building new units can be modeled as k>x for
a given vector k consisting of the annualized cost per MW for
each candidate location of the power network. All in all, the
total investment cost for the investor can be cast as

f(x) := k>x− 1

T

T∑
t=1

π>t pi,t − gi(pi,t). (3)

The summation stems from approximating the expected value
of the revenue and is over T scenarios. The term scenario

here refers to different loading and bidding conditions for (1).
The terms (pi,t;πt) denote the related optimal primal/dual
solutions of (1) across scenarios indexed by t = 1, . . . , T .

The SI task can now be formulated as

min
x∈X

f(x) (4a)

s.to {πt,pi,t}Tt=1 being solutions of (1). (4b)

Set X is a simple set such as X := {x : 0 ≤ x ≤ x̄, 1>x ≤
δ}, where x̄ are possibe capacity limits per bus and δ is the
total capacity budget. As in [4], we adopt three assumptions:
a1) the network topology is known and remains constant; a2)
the investor knows fr(pr) and p̄r for rival units; and a3)
problem (1) is feasible for all x ∈ X . Assumptions a1)–a2)
could can be inferred from historical data [16], while a3) holds
if the DC-OPF is feasible without the new units.

Solving (4) is challenging due to three reasons: i) Con-
straint (4b) is an optimization problem itself [cf. (1)], referred
to as the inner problem. The SI task of (4) is referred to
as the outer problem; ii) The products between primal/dual
variables of the inner problem inside (3) render the cost to
be non-convex; ii) Evaluating the cost in (3) requires solving
the inner problem for T scenarios, and the actual investment
benefit is approximated more accurately for larger values of T .
It becomes apparent that minimizing or even evaluating f(x)
is computationally taxing. Considering f(x) as a black-box,
our key idea is to build a surrogate Gaussian process (GP)
model for f(x), and utilize this model to solve (4).

III. GAUSSIAN PROCESSES AS SURROGATE MODELS

A GP is a random process where any finite collection of
its samples forms a Gaussian random vector [17, Ch.1]. Our
knowledge of f(x) can be thought of as a random process
over x. If we have already evaluated f at some x0, then f(x0)
is known without uncertainty. For other x’s, the values f(x)
could be unknown; yet one could argue by sake of continuity
that our prediction for f(x) should be correlated to f(x0)
depending on the distance of x to x0.

A GP model postulated on f(x) can be trained using
function evaluations. Suppose N samples of {xn, f(xn)}Nn=1

are available. Let us collect these samples of f as entries of
vector f ∈ RN . If f(x) is modeled as a GP, then f is a
Gaussian random vector. Lacking any prior information and
without loss of generality, its mean value can be set to zero,
while its covariance Σ has entries Σnm = k(xn,xm) for all
n,m ∈ {1, . . . , N}, and k(xn,xm) is a covariance function
expressed in parametric form such as the Matern kernel

k(xn,xm) = α

(
1 +

√
5r

β
+

5r2

3β2

)
e−
√
5r/β + γδnm (5)

where r = ‖xn − xm‖2; δnm is the Kronecker delta; and
{α, β, γ} > 0 are parameters. Granted f ∼ N (0,Σ), parame-
ters can be estimated using maximum likelihood from f .

Postulating a GP model on f allows to make predictions
on function values for x’s that have not been evaluated yet:
Consider some x that has not been evaluated yet, and augment



f by appending the function value f(x). Function f being a
GP, the augmented vector is also Gaussian as[

f
f(x)

]
∼ N

([
0
0

]
,

[
Σ k(x)

k>(x) k(x,x)

])
(6)

where the n-th entry of k(x) is k(xn,x) for all n. Since f
and f(x) are jointly Gaussian, the conditional PDF of f(x)
given f is also Gaussian with mean and variance

f̂(x) = µ(x) = k>(x)Σ−1f (7a)

σ2(x) = k(x,x)− k>(x)Σ−1k(x). (7b)

The conditional mean µ(x) is the minimum mean squared
error estimate of f(x) given f , while σ(x) quantifies the
uncertainty of this estimate. It is worth stressing that (6)–
(7) hold for any x. Therefore, function f̂(x) can be used as
a surrogate in lieu of the hard-to-evaluate f(x). Minimizing
f̂(x) rather than f(x) is considerably easier as the former
enjoys an analytical form and does not require solving T DC-
OPFs. However, if f̂(x) is an inaccurate estimate, its minimum
will not provide (near) optimum investment. The GP model
for f(x) can be iteratively refined by evaluating f at more
points. Sampling should be accomplished in a way to reduce
uncertainty σ(x), but also focus on areas with smaller values
of µ(x) as we are looking for the minimizer of f(x). BO
discussed next proposes an approach to balance this trade-off.

IV. INVESTMENT VIA BAYESIAN OPTIMIZATION

The investor has already evaluated f at N points as
{xn, f(xn)}Nn=1. Let f∗N denote the smallest value amongst
these N evaluations, and x∗N be the corresponding capacity.
The investor can improve upon f∗N by evaluating f(x) at a new
x featuring a potentially smaller cost. Due to the high cost of
evaluating f(x), the investor has to meticulously select the
next sampling point. A useful criterion is the improvement of
the optimal cost calculated so far

I(x) := [f∗N − f(x)]+ (8)

where [z]+ := max{z, 0}. Ideally, the investor is looking for
generation capacities that maximize I(x). Nonetheless, maxi-
mizing I(x) is as expensive as minimizing f(x). Fortunately,
thanks to the surrogate GP model, the investor can replace
f(x) in (8) by f̂(x). Because f̂(x) is random, the investor
should maximize the expected value of the improvement

EI(x) := E
[
[f∗N − f̂(x)]+

]
(9)

where the expectation is with respect to the PDF in (7).
Therefore, the next point to sample can be found as

xn = arg max
x∈X

EI(x). (10)

Maximizing EI(x) is much easier than minimizing f(x) as
after some mundane algebraic manipulations, the former can
be shown to enjoy the closed-form expression [13]

EI(x) = ∆(x) · Φ
(

∆(x)

σ(x)

)
+ σ(x) · φ

(
∆(x)

σ(x)

)
(11)

where ∆(x) := f∗N − µ(x), while φ(·) and Φ(·) are the PDF
and CDF for the standard normal distribution N (0, 1).

Having identified xn from (10), the investor can evaluate
f(xn) and either stop or use the additional sample to update
the surrogate model for f . An algorithm can be formed
by iterating across three steps: s1) A new xn is identified
by (10); s2) The cost is evaluated for xn, yielding f(xn),
and the new sample is added to the training data; and s3)
The surrogate model is updated using the new datum per (7)
with k(x) and f augmented by one entry. At each iteration, the
hyper-parameters of the covariance function are updated using
maximum likelihood estimation. The iterations terminate when
the function evaluation budget is met. Upon completion, the
investor selects the sample xn attaining the smallest f(xn).

The initial points {xn}Nn=1 are typically sampled uniformly.
This helps to avoid local minima, which is as an advantage
of Bayesian optimization. Assuming a total budget of N +M
function evaluations, the investor must solve T (N +M) DC-
OPFs, which remains a computationally daunting task. The
issue can be alleviated by:i) speeding up the evaluations
of function f(x); and ii) improving data efficiency so the
surrogate model f̂ learns f using fewer samples. Interestingly,
both goals can be achieved using neat properties of MPP as
discussed next.

V. MULTIPARAMETRIC PROGRAMMING (MPP) FOR
BAYESIAN OPTIMIZATION (BO)

If bidding costs for the investor and rivals are convex
quadratic functions

fi(pi) = 1
2p>i Hipi+c>i pi and fr(pr) = 1

2p>r Hrpr+c>r pr

the DC-OPF of (1) becomes a quadratic program (QP). During
SI and for each evaluation of f(x), this QP has to be solved T
times for different bids, demands, and generation capacities.
Problem (1) can be seen as a multiparametric QP (MPQP)

min
y

1
2y>Hy + (Cθ + d)

>
y (12a)

s.to Diny ≤ Einθ + bin : λ (12b)
Deqy = Eeqθ + beq : µ (12c)

over parameters θ := [c>r c>i `> p̄>r x>]> if the quadratic
components (Hi,Hr) of the bidding costs are assumed con-
stant. Here y is the vector of primal variables, while (λ,µ)
are the dual variables related to linear (in)equality constraints.

As θ varies, the solution set of (12) features a particularly
appealing structure [18]: The set of θ’s for which (12) is
feasible can be partitioned into distinct so-termed critical
regions, which are polytopes in θ. Within each region, the
same inequality constraints in (12b) are satisfied with equal-
ity (binding), while optimal primal/dual variables are affine
functions of θ. For example, region k can be defined as
Ck := {θ : Aθ

kθ + bθk ≤ 0}, and the solution to (12)
can be expressed as y = Ay

kθ + byk, λ = Aλ
kθ + bλk , and

µ = Aµ
kθ+bµk . The affine parameters (A,b) vary per region

and depend on the binding constraints.



The key benefit of the aforesaid structure is that when the
investor solves (12) for a particular θ, it can readily chart
an entire critical region Ck and compute the related affine
parameters (Ak,bk). For any other θ falling in Ck, the investor
does not need to solve (12) since the optimal primal/dual
solutions are known analytically. When the function is to be
evaluated at a new x, the investor needs to solve T instances
of (12), yet they all have the same x as part of θ. On the
contrary, when f is evaluated over the initial N points, the
investor needs to solve NT instances of (12), over which the
x part of θ will be varying. Either task can be expedited by
the MPQP structure as the investor needs to actually solve the
DC-OPF of (12) fewer than T or NT times.

Nonetheless, using MPP to speed up function evaluations
is not the key novelty of this work; we have proposed this
idea before in [9]. Where the MPP structure really shines
is towards improving data efficiency while training the GP
surrogate f̂ . Can we train f̂ to learn f using fewer function
evaluations? The answer can be on the affirmative if any
known property of f is properly fused in f̂ . Our novel idea is
to train the GP surrogate model to mimic not only f(x), but
also its gradient ∇xf(x). To do so, two technical questions
are in order: q1) Can we compute ∇xf(x)? and q2) How to
incorporate function gradient data while training f̂?

Question q1) can be handled efficiently thanks to MPP.
Recall from (3) that f(x) involves products p>t,iπt,i between
generation schedules and prices. From (2), prices are linear
functions of the optimal dual variables (λt,µt) of the DC-
OPF. Per MPP structure, the optimal primal/dual solutions of
(1) and (12) are affine functions of θ, and thus, affine functions
of x. Therefore, the p>t,iπt,i terms in f(x) are quadratic
functions of x. Their gradients are affine, and can be computed
at almost no additional cost. If the generation costs gi(pt,i)
are quadratic or affine, then ∇xf(x) is affine in x.

Regarding q2), GPs exhibit the interesting property that the
derivative of a GP is a GP itself [17]. Therefore, if f(x) is
modeled as a GP, its gradient ḟ(x) := ∇xf(x) is also a GP.
Moreover, its cross-covariance with f can be computed as

E[ḟ(x)f(x′)] = ∇xE[f(x)f(x′)] = ∇xk(x,x′).

Its autocovariance can be similarly computed as

E[ḟ(x)ḟ(x′)>] = ∇2
xx′E[f(x)f(x′)] = ∇2

xx′k(x,x′).

Thereby, if k(x,x′) is known, the covariances of ḟ(x) are
readily available with no additional hyperparameter tuning.
In a nutshell, we can easily augment the dataset from
{xn, f(xn)}Nn=1 to {xn, f(xn), ḟ(xn)}Nn=1. The same holds
during the subsequent M function evaluations. Samples
{f(xn), ḟ(xn)}Nn=1 are jointly Gaussian with known covari-
ances, and so, the model for f̂(x) in (7) can be augmented
accordingly to incorporate gradient data. Gradient data can
reveal the behavior of f(x) in a neighborhood around x.

VI. NUMERICAL TESTS

The SI approach was tested on the IEEE 118-bus bench-
mark. All tests were performed on an AMD Core i7 @ 2.9

TABLE I
RUNTIME AND SI COST BY MPP-SGD FOR 5 INITIALIZATIONS

# of units: 2 Initialization
1 2 3 4 5

f∗ [$/H] −5, 274 −5, 278 −5, 240 −5, 263 −5, 264

Runtime [s] 2, 789 3, 004 496 2, 120 2, 858

TABLE II
SI COST USING BO AND DA-BO FOR DIFFERENT N AND N +M = 50.

# of units: 2 N = 6 N = 10 N = 17 N = 34

f∗ with BO [$/H] −5, 281 −5, 284 −5, 276 −5, 273

f∗ with DA-BO [$/H] −5, 282 −5, 282 −5, 283 −5, 294

GHz (16 GB RAM) computer, using Python on Jupyter Note-
book. The DC-OPFs were solved using the ECOS solver [19]
on the CVXPY library. GP parameters were tuned using
the gpr function from the sklearn library. The expected
improvement was maximized using the slsqp optimizer of
the Scipy library. The covariance of the surrogate model was
selected as a Matérn-5/2 kernel [17, Ch. 4].

We used hourly bidding and load data from the day-ahead
PJM market for 2018, yielding T = 8, 760 different loading
and bidding conditions. The available 21 load profiles were
randomly assigned to buses. Each load profile was perturbed
by adding a uniformly distributed deviation of ±5% inde-
pendently over time and buses. Load profiles were scaled,
so their annual peak matched the benchmark values. For
new generation units, we assumed a purchase and installation
cost of 3 · 106 $/MW, plus 1 · 106 $/MW for operation and
maintenance over 25 years. Converting that cost to dollars per
hour per unit of active power for a base of 100 MVA yielded
k = 1, 826.5 in (3).

The investor already owned a generator at bus 1 and
aimed at investing in two new units on buses {29, 95}. The
BO method was compared against the SGD-MPP of [9].
Since SGD-MPP solution is affected by the initial point, the
algorithm was run for 5 random initializations. For SGD-
MPP, the step size and convergence tolerance were set to
10−4 and 10−6. Table I reports the runtimes and costs.
Different runtimes and costs confirm that SGD-MPP may
find local optima. Further, the times reported in Table I do
not reflect the preprocessing time needed for choosing step
size and error tolerance. To compare the cost achieved by
SGD-MPP and the BO-based method, SI was solved using
a total budget of N + M = 50 function evaluations. We
tested four combinations of N and M . The initial N points
were uniformly chosen by sampling every {3, 6, 10, 16} points
across the two-dimensional grid formed by the two new units.
Table II confirms the advantage of DA-BO over SGD-MPP.

The runtime for BO (including generating training data) was
4 hours when N = 6 and M = 44. The total time for other N
was less since the surrogate model had to be retrained fewer
times. Evidently, SGD-MPP is faster than BO as reported in
Table I. However, a fair runtime comparison would be the



TABLE III
RUNTIME FOR ATTAINING OPTIMAL COST WITH 1% ADDITIVE ERROR

USING BO AND DA-BO FOR DIFFERENT N WITH N +M = 50

# of units: 2 N = 6 N = 10 N = 17 N = 34

cost with BO [$/H] −5, 264 −5, 284 −5, 274 −5, 265

time with BO [s] 4, 001 5, 190 6, 993 11, 766

cost with DA-BO [$/H] −5, 263 −5, 262 −5, 282 −5, 267

time with DA-BO [s] 3, 972 5, 214 6, 984 11, 764

TABLE IV
SI COST AND RUNTIME FOR T = 50 SCENARIOS USING BO FOR

DIFFERENT N WITH N +M = 50

# of units: 2 N = 6 N = 10 N = 17 N = 34

cost with BO [$/H] −2, 704 −5, 293 −4, 170 −4, 151

time with BO [s] 78 75 74 65

time BO attained the same cost as SGD-MPP. Table III reports
the times at which the proposed schemes reached 99% of the
minimum cost along with the sub-optimal costs. The results
in Table III show that if a budget lower than 50 function
evaluations is considered, the runtime of BO is comparable
to SGD-MPP while attaining lower cost.

Finally, we compared BO with multiparametric program-
ming with equilibrium constraints (MPEC) from [9]. The
investment cost was evaluated using T = 50, since im-
plementing MPEC for more scenarios is time-consuming.
Using such a small T has the implication that the cost is
not properly approximated and hence the found capacities
can be suboptimal. To make a fair comparison, the same
T = 50 scenarios were used for function evaluations of the BO
algorithm. The BO was run with N = 34 and M = 16. Here
we report the average cost and runtime of the 100 Monte Carlo
tests using MPEC. Each test randomly selected T scenarios
for evaluating f(x). The average time for solving the SI with
MPEC for 100 Monte Carlo tests was reported as 500 seconds,
while the average optimal cost was over −4, 350 [$/H]. Given
the optimum x, the cost was calculated using T = 8, 760 out-
of-sample scenarios. The costs and total runtimes for BO are
reported in Table IV. We can see that except for N = 6,
the BO yields better or similar results as MPEC in much less
time. Evaluating f(x) with a larger number of scenarios can
improve the cost. The MPEC becomes impractical for larger
T . For instance, solving the SI for the IEEE 118-bus using
T = 100 scenarios takes nearly four days, while BO takes
only 160 seconds.

VII. CONCLUSIONS

This work put forth a novel approach for solving SI by
leveraging a surrogate GP model for the hard-to-evaluate cost
function. The Bayesian optimization toolbox has been tailored
to the investment problem. Employing MPP accelerated solv-
ing the inner problem of SI. Leveraging a unique property
of GPs allowed using the derivatives to further improve data
efficiency for the BO-based approach, while derivatives were

readily found through MPP. Comparing the proposed method
with existing approaches on the IEEE 118-bus system proved
its superiority for obtaining a lower cost. This work sets
the foundation for several exciting and practically relevant
research directions. Exploiting the BO approach for efficiently
solving contingency analysis, using active learning for SI, and
finding the market equilibrium in presence of multiple strategic
investors are interesting and pertinent future work.
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