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Abstract—Uncertainty is an inevitable side-effect of the in-
creasing penetration of intermittent energy sources like solar and
wind into the power grid. Since energy storage systems (ESS) can
be employed to mitigate the effect of uncertainties, their energy
and power ratings along with their charging control strategies
become of vital importance for renewable energy producers. This
work deals with the task of sizing under a model predictive
control (MPC) operation for a single ESS used to smoothen
out a random energy signal. To account for correlations in the
energy signal and enable charging adjustments in response to
real-time fluctuations, we adopt a linear charging policy. The
policy is designed by minimizing the initial ESS investment plus
the average operational cost. Since charging decisions become
random, the energy and power limits are posed as chance
constraints. Relying on first- and second-order moments for
the energy signal, the chance constraints are enforced in a
distributionally robust fashion. To better approximate the joint
probability of acquiring feasible charging schedules, the double-
sided ESS limits are handled jointly as second-order cone con-
straints. The proposed scheme is contrasted to a charging policy
under Gaussian uncertainties and a deterministic formulation.

Index Terms—Affine control policies; double-sided chance
constraints; distributionally robust programs; second-order cone
programs.

I. INTRODUCTION

The uncertainty associated with renewable generation chal-
lenges optimal power system planning and dispatching. From
the wind or solar energy producer’s viewpoint, committing to
a contract solely based on historical data and forecasts may
not be optimal: The violation of such contract due to uncer-
tainty may result in unsought and possibly extreme financial
penalties. To cater for this problem, ESS can be utilized to
alleviate contract deviations. Employing ESS for such purpose
calls for optimal sizing and operation strategies, which are
hard to solve due to two main reasons: As an investment
problem, the entire lifetime of the ESS should be considered
resulting in a horizon that is significantly longer than the ESS
dispatch timescale. Moreover, possible uncertainties should be
considered, rendering an infinite-horizon stochastic problem.

For a producer that rents ESS on a daily basis, the dynamic
sizing of such ESS has been studied in [1], where wind
forecasts are drawn from a normal probability distribution
function (pdf). When daily ESS renting is not a viable option,
a greedy heuristic for optimal ESS sizing and placement has
been put forth under a linearized power flow model and perfect
forecasts [2]. Considering a power system where conventional
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generators and energy storage are jointly dispatched, the sizing
task has been tackled under Gaussian forecast errors in [3].

Chance-constrained optimization has been used for tackling
different power system tasks. Assuming Gaussian uncertainty
and for the purpose of optimal power flow (OPF), chance con-
straints have been proposed in [4], [5]. Conservative convex
approximations of chance constraints for the AC OPF task has
been studied in [6]. Non-Gaussian uncertainty has been tackled
in [7] by estimating the cumulative distribution function (CDF)
of correlated non-Gaussian random variables.

Model predictive control (MPC) schemes surrogate infinite-
or long-horizon problems that are often computationally in-
tractable, by a sequence of finite- or shorter-horizon problems.
In an MPC setup, after solving the first finite-horizon problem,
only the first optimal decision is implemented and the horizon
is shifted forward by one time step and the process is repeated.
Under a deterministic setup, the performance degradation of
finite-horizon MPCs has been quantified in [8]. Although such
quantifications do not exist for stochastic MPCs, the approach
is known to work well in practice and it has been used
for dispatching storage systems [9]. A two-stage stochastic
MPC has been recently developed in [10] for ESS sizing
under Gaussian wind uncertainties. Using a linearized power
flow and battery degradation models, an ESS sizing approach
presuming no uncertainties has been proposed in [11]. Most
existing approaches either ignore uncertainty [2], [11]; or
resort to sampling [1], [12].

Energy storage sizing is formulated here through a distri-
butionally robust (DR) MPC framework. By exploiting the
convex reformulation of double-sided chance constraints [6],
[13], it is ensured that the worst-case probability of violat-
ing double-sided ESS limits is small for a broad family of
distributions. Given the first- and second-order moments of
the underlying pdf’s, the ESS sizing task can be reformulated
as a second-order conic program (SOCP). As a base case, a
deterministic MPC formulation is also proposed, which avoids
chance constraints by placing all uncertainties in the cost. The
ESS sizing task is also formulated under Gaussian uncertainty
and the three methods are contrasted.

II. ENERGY STORAGE MODELING AND OPERATION

The energy storage system (ESS) is operated at control
periods of fixed duration of say 15 minutes. The MPC horizon
starting at control period h is indexed by h. Each MPC horizon
consists of T control periods with a relative index (offset) of



t = 0, . . . , T − 1, e.g., the t-th period within horizon h is
control period h+ t.

The charging amount during period t is denoted by bht ,
which is positive when the battery is charging. Assuming a
charging cycle of unit efficiency, the state of charge (SoC)
at the end of period t within horizon h is sht = bht + sht−1

for t = 0, . . . T − 1. If we collect the charging amounts
and the SoCs during horizon h respectively in vectors bh :=
[bh0 · · · bhT−1]> and sh := [sh0 · · · shT−1]>, the ESS dynamics
can be compactly expressed as

sh = Fbh + 1sh−1, ∀h (1)

where F is a lower triangular matrix having ones in all its
non-zero entries; 1 is a T -length vector of all ones; and sh−1

is the SoC at the beginning of horizon h with s1
−1 = 0.

If p̄ and s̄ are the power and energy ratings for the ESSs,
the charging and SoC vectors are constrained as

−1p̄ ≤ bh ≤ 1p̄ (2a)

0 ≤ sh ≤ 1s̄. (2b)

for all h with the inequalities applied entrywise.
Based on the MPC rationale, at every horizon h, the operator

solves an ESS dispatch problem for the next T control periods
to find bh. But rather than implementing the entire bh, only
the first charging decision bh0 is actually taken to bring the
SoC from sh−1 to sh0 . The process is repeated by initiating the
MPC scheme for horizon h+1 with sh+1

−1 = sh0 . The coupling
across horizons can be captured by rewriting (1) as

sh = Fbh + 1e>1 sh−1, ∀h (3)

where et is the t-th canonical vector of length T .
The purpose of the ESS is to smoothen out an energy signal

pht , which could be the output of a wind farm; an aggregation
of solar panels; the negative of a load aggregation; the net
commitment to a generation contract; or combinations thereof.
The cost of deviating from this energy signal over horizon h
is captured through a given function f as

fh(bh) :=

T−1∑
t=0

f(pht − bht ). (4)

The key point though is that the energy signal pht is not
known a priori. Rather, before running the MPC scheme for
horizon h, we are given a forecast (µh,Σh) for the energy
signal ph := [ph0 · · · phT−1]> to be experienced over the next
T periods, so that

ph = µh + δh (5)

where µh := E[ph] and δh is a zero-mean random vector
with covariance Σh. Given that δh is random, the cost in
(4) becomes random, and the ESS operator is interested in
minimizing the expected cost f̄h(bh) := E[fh(bh)].

Having described the operational cost per MPC horizon, let
us now formulate the objective of the ESS sizing problem. The
ultimate goal is to decide the ESS power and energy capacities
(p̄, s̄), so that the overall (operational and investment) cost

is minimized. The operational cost is found as the average
over H MPC horizons. If (πp, πs) are the amortized prices
for battery sizing, our objective is to minimize

g(x) :=
1

HT
E

[
H∑
h=1

T−1∑
t=0

f(pht − bht )

]
+ πpp̄+ πes̄ (6)

over the charging decisions b := {bh}Hh=1 and the sizing
variables, all collectively denoted by x := {b, p̄, s̄}.

If the contract deviation cost is of the form f(x) = ax2+cx,
the average operational cost for horizon h can be shown to be

f̄h(bh) = aTr(Σh) + a
∥∥µh − bh

∥∥2

2
+ c1>(µh − bh). (7)

The coefficients (a, c) are kept constant assuming that the
contract remains invariant across time. Alternatively, if the
operational cost changes over time as fh(x) = ahx

2 + chx
and the prices (ah, ch) are random but independent of µh,
then (7) holds for a = E[ah] and c = E[ch].

III. ENERGY STORAGE SIZING

A. Deterministic Charging Decisions

If the charging decisions b are treated as deterministic, ESS
sizing can be posed as minimizing (6) subject to (2)–(3)

min
b,p̄,s̄

1

HT

H∑
h=1

f̄h(bh) + πpp̄+ πes̄ (8a)

s.to − p̄1 ≤ bh ≤ p̄1, h = 1, . . . ,H (8b)

0 ≤ Fbh ≤ s̄1, h = 1 (8c)

0 ≤ Fbh +

h−1∑
i=1

bi1 ≤ s̄1, h = 2, . . . ,H (8d)

which can be solved as a linearly-constraint quadratic program.
As evident from (7), problem (8) ignores the intra-horizon

correlations of δh, and thus it not yield a sufficiently large
energy storage system. To cater for this shortcoming, a new
charging policy is adopted next.

B. Charging Policies

To take into account the correlation across δ, one can
postulate a control policy where bh depends linearly on the
random energy signal ph as

bh = dg(αh)ph = dg(αh)(µh + δh) (9)

where αh := [αh0 · · · αhT−1]>, and dg(αh) is a diagonal
matrix having vector αh on its main diagonal. Rather than
optimizing over deterministic bh as in (8), the charging policy
of (9) finds the optimal {αh}. In this way, charging decisions
adapt to the energy signal even when the latter varies within
a control period. Such real-time adjustments could allow for
longer control periods, i.e., smaller values of T , within each
MPC horizon, thus reducing the computational burden for
both the sizing and operational tasks. Similar control policies
have been adopted for designing the droop parameters of
synchronous generators in response to wind uncertainty at



the power system level [4], [13]. Reference [10] assumes that
αh = 1, thus resulting to large ESS ratings.

To optimally design α along with sizing, let us collect all
{αh} in the HT -length vector α. Plugging the charging policy
of (9) into (1) yields

sh = F dg(αh)(µh + δh) + 1

h−1∑
i=1

αi1(µi1 + δi1)

so the t-th entry of sh depends on previous forecasts as

sht = e>t sh = e>t F dg(αh)(µh+δh)+

h−1∑
i=1

αi1(µi1+δi1). (10)

Since δh is random, bh and sh are random as well and
the constraints in (2) cannot be enforced deterministically.
One may want to select x so that (8b)–(8d) are satisfied with
a prescribed probability of 1 − ε. Nonetheless, guaranteeing
all 4HT constraints are satisfied with a given probability
is computationally intractable. Therefore, one may consider
enforcing the instantaneous charging and SoC constraints for
all h and t as [4], [3], [10]

Pr(bht ≤ p̄) ≥ 1− ε′ and Pr(−bht ≤ p̄) ≥ 1− ε′ (11a)

Pr(sht ≤ s̄) ≥ 1− ε′ and Pr(−sht ≤ 0) ≥ 1− ε′. (11b)

A better approximation of the original overall chance prob-
ability is to enforce the two single-sided constraints of (11a)
into one chance constraint, and the two single-sided constraints
of (11b) into another one as

Pr(−p̄ ≤ bht ≤ p̄) ≥ 1− ε (12a)

Pr(0 ≤ sht ≤ s̄) ≥ 1− ε. (12b)

If the violation probability in (11) is set so that ε′ = ε, then
(11) is a relaxation of (12). If ε′ = ε

2 , it is a restriction of
(12); see [13].

To enforce the single- or double-sided constraints in (11) or
(12), we next explain how the first- and second-order statistics
of bht and sht can be expressed as affine functions of the
statistics of {δh}. First collect all {δh}Hh=1 in the HT -length
vector δ, whose mean is zero and its covariance is Σ. Matrix
Σ which can be block-diagonal if forecasts are uncorrelated
across MPC horizons. Block diagonal or not, the diagonal
blocks of Σ are denoted by Σh for h = 1, . . . ,H . Moreover,
the diagonal entries of Σh is stored in vector σh. From (9), the
charging amount bht has mean αht µ

h
t and variance

(
αht
)2
σht .

Similarly, for sht we get from (10)

µ(sht ) = e>t F dg(αh)µh +

h−1∑
i=1

αi1µ
i
1 = α>aht (13)

σ(sht ) = ‖Σ1/2Shtα‖22 (14)

where Σ1/2 is the matrix square root of Σ; while vector aht and
the HT ×HT selection matrix Sht can be obtained from (10).

Under the charging policy of (9), the expected operational
cost can be found to be

f̃h(αh) := E[fh(αh)]

= a · (αh)>
[
dg2(µh) + dg(σh)

]
αh

+
[
cµh − 2aµh � µh

]>
αh

+ a‖µh‖22 + aTr(Σh) + c1>µh. (15)

If δ is Gaussian in particular, the constraints in (11a) can be
reformulated as linear inequality constraints using the related
inverse CDF [10]. Having the mean and standard deviation of
bht , these linear constraints for time t of horizon h become

− p̄+ αht (µht + β1σ
h
t ) ≤ 0 (16a)

− p̄− αht (µht − β2σ
h
t ) ≤ 0 (16b)

where β1 := Φ−1(1−ε′); β2 := Φ−1(ε′); and Φ is the CDF of
a standard normal random variable. The constraints in (11b)
can be expressed as second-order cone (SOC) constraints [10].
From the mean and standard deviation of sht from (13) and
(14), these SOC constraints become for all t and h

β1‖Σ1/2Shtα‖2 ≤ s̄−α>aht (17a)

β1‖Σ1/2Shtα‖2 ≤ α>aht . (17b)

The number of SOC constraints can be reduced by half by
introducing an auxiliary variable cht at the expense of adding
two linear constraints [4]

cht ≤ s̄−α>aht (18a)

cht ≤ α>aht (18b)

β1‖Σ1/2Shtα‖2 ≤ cht . (18c)

Therefore, the task of ESS sizing under the policy of (9) for
Gaussian uncertainty δ can be expressed as

min
α,p̄,s̄

1

HT

H∑
h=1

f̃h(αh) + πpp̄+ πes̄ (19)

s.to (16), (18) ∀t, h

which can be reformulated to a SOC program (SOCP).
If the pdf of δ is unknown, one could follow a distribution-

ally robust (DR) approach. Based on the latter, the unknown
pdf belongs to a family of pdfs and the constraints in (11) are
guaranteed for all members of that family. This implies that
each constraint is satisfied with probability larger than 1− ε′
for the worst-case pdf, where the worst case is interpreted on
a per-constraint basis.

A common DR setup is to consider the family of pdf’s with
fixed first- and second-order moments. Given the aforesaid
moments, the pdf of δ is allowed to lie within the family P
of zero-mean HT -length random vectors with covariance Σ.
Then, the first constraint in (11a) can be expressed as

inf
Pr∈P

Pr(bht ≤ p̄) ≥ 1− ε′

and can be reformulated as an SOC; see [13]. However,
handling each constraint in (11) separately is suboptimal.
Leveraging the results of [13], we consider the worst-case pdf
for the double-sided constraints of (12). Interestingly, these
constraints can still be expressed as SOCPs as reviewed next.



Consider the general feasible set incurred by a double-sided
chance constraint

Z :=

{
x : inf

δ∼Pr∈P
Pr
(
|δ>w(x) + u(x)| ≤ v

)
≥ 1− ε

}
where the vector w(x) and the scalar u(x) are affine functions
of the optimization variable x, while v > 0 is a given scalar.
The constraints in (12a) and (12b) can both be expressed in
form of the feasible set Z . As established in [13], the double-
sided chance constraint captured by set Z can be written as

Z =
{
x : y2 + w>(x)Σw(x) ≤ ε(v − z)2,

|u(x)| ≤ y + z, 0 ≤ z ≤ v, y ≥ 0} (20)

where y and z are auxiliary optimization variables. Observe
that the first constraint in (20) can be written as an SOC.
Hence, the set Z in (20) has been expressed as the intersection
of one SOC and five linear inequality constraints.

Applying this reformulation to ESS sizing, the pairs of
doubly-sided constraints in (12) are expressed as∣∣αht µht ∣∣ ≤ yht + zht (21a)

0 ≤ zht ≤ p̄ (21b)

yht ≥ 0 (21c)∥∥∥∥[σht αhtyht

]∥∥∥∥
2

≤
√
ε
(
p̄− zht

)
(21d)∣∣s̄/2− [aht ]>α

∣∣ ≤ ŷht + ẑht (21e)

0 ≤ ẑht ≤ s̄/2 (21f)

ŷht ≥ 0 (21g)∥∥∥∥[Σ1/2Shtα
ŷht

]∥∥∥∥
2

≤
√
ε
(
s̄/2− ẑht

)
(21h)

where yht , zht , ŷht , and ẑht are slack variables. Con-
straints (21a)–(21d) correspond to (12a), and (21e)–(21h)
correspond to (12b). The DR formulation has twice as many
SOC constraints as its Gaussian counterpart in (19). The DR
MPC can be compactly formulated as

min
α,p̄,s̄

1

HT

H∑
h=1

f̃h(αh) + πpp̄+ πes̄ (22)

s.to (21) ∀t, h.

This formulation caters for the worst-case double-sided chance
constraints and therefore is a more conservative than (19).

IV. NUMERICAL TESTS

The three ESS sizing methods of (8), (19), and (22) were
compared through numerical tests. The mean value for the
random energy signal p was selected to be the actual wind
generation of [14]. The covariance matrix of δ was simulated
as block-diagonal with Σh = SCS, where S is a diagonal
matrix with linearly increasing diagonal entries to model the
increasing uncertainty as time moves forward, and the entries
of C were taken to be [C]ij := 0.9|i−j|. The amortized
prices πp and πe were chosen to be 400/L ($/10min) and
600/L ($/10min) based on the lithium-ion technology taken
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Fig. 1. Energy (left) and power (right) ratings obtained by the Gaussian
formulation of (19).
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Fig. 2. Energy (left) and power (right) ratings obtained by the distributionally
robust formulation of (22).

from [15], and L is the number of 10-minute time slots in
the lifespan of the battery. The battery lifetime was taken
to be 10 years. All tests were conducted for H = 144 and
T = 6 corresponding corresponding to one day of operation
of 1-hr horizons. The coefficient a in fh(bh) is termed as the
penalization rate and c is set to be zero.

Figures 1 and 2 show the effect of a and the violation
probability ε respectively for the Gaussian and DR formu-
lations. By increasing a, having an ESS and utilizing it more
is deemed more favorable than being penalized. By increasing
ε, the constraints need to be satisfied with lower probability,
meaning that smaller ESS ratings suffice.

Figure 3 depicts a comparison between the three formula-
tions for varying a’s. The DR distribution yields ESS ratings
significantly larger that the other two methods, which is ex-
pected since (22) satisfies the worst-case distribution. Figure 4
depicts the effect of having a longer MPC horizons in the DR
formulation. With longer horizons, the uncertainty close to the
end of the horizon grows larger, and thus larger ESS will be
needed to make up for it. One solution to the latter problem
would be to increase the violation probability along the time
periods t = 1, . . . , T within each MPC horizon. To this end,
ε was selected as a linear function of t, and the results are
contrasted to the fixed ε are shown in Figure 5.

V. CONCLUSIONS

Assuming an MPC control strategy, we have considered
three ESS sizing formulations: a deterministic approach; a
charging policy under Gaussian uncertainty; and a distribu-
tionally robust charging policy. The three formulations have
been contrasted through numerical tests, which demonstrate
that the DR formulation yields a higher ESS size since it
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Fig. 4. Optimal ratings for increasing number of periods T per MPC horizon.

considers the worst-case pdf. The tests further demonstrate
that by increasing the horizon length, the ESS size grows ex-
ponentially. To counterbalance this effect, we tried relaxing the

constraint violation probability. The number of second-order
cone constraints increases for increasing H , thus rendering
the computational complexity prohibitive. Introducing terminal
costs for MPC, numerical surrogates of chance constraints, and
possible relaxations of the coupling present in ESS operation
are left for future research.
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