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Abstract—Decreasing gas prices and the pressing need for fast-
responding electric power generators are currently transforming
natural gas networks. The intermittent operation of gas-fired
power plants to balance wind energy generation introduces
spatiotemporal fluctuations of increasing volumes in gas demand.
At the heart of modeling, monitoring, and control of gas networks
is a set of nonlinear equations relating nodal gas injections
and pressures to flows over pipelines. Given gas demands at
all points of the network, the gas flow task aims at finding
the rest of the physical quantities involved. For a tree-like
network, the problem enjoys a closed-form solution; yet solving
the equations for practical meshed networks is non-trivial. This
problem is posed here as a feasibility problem involving quadratic
equalities and inequalities, and is further relaxed to a convex
semidefinite program (SDP) minimization. Drawing parallels to
the power flow problem, the relaxation is shown to be exact if
the cost function is judiciously designed using a set of frequently
occurring network states. Numerical tests on a Belgian network
corroborate the superiority of the novel method in recovering
the actual gas system state over a Newton-Raphson solver.

Index Terms—Gas flow equations, semidefinite programming

I. INTRODUCTION

Natural gas has currently emerged at the focus of the energy
industry since substantial supplies of natural gas are being
discovered [1]. Its role is likely to expand further in carbon-
constrained electric power systems with higher penetration
of renewables. Most gas distribution companies withdraw
gas with small intra-day variation, whereas gas-fired power
plants consume gas with high intra-day variability and usually
purchase it via short-term contracts [2], [3]. Natural gas is
transported from its source sites to consumers through a
complex continent-wide network of pipelines. Similar to water
networks, gas pressure decreases along a pipeline due to
friction, and compressors are used to boost it up to desirable
levels. Since congestion in the gas network can incur supply
interruptions in electric grids, the interdependency between the
two infrastructures has to be carefully considered [3].

This increasing variability in gas demand across time and
space calls for advanced control and monitoring of the under-
lying physical network. This work targets solving efficiently
the gas flow (GF) equations, a set of nonlinear equations
governing the distribution of gas flows and pressures across
a gas network. Given gas injections and withdrawals across
all nodes, the gas flow problem aims at finding flows across
pipelines together with the pressure at all nodes. Even under

steady-state and balanced conditions, solving the GF problem
is hard to solve for non-tree networks [4].

For a network without compressors, the flows and pressures
are the optimal primal-dual solutions of a convex minimization
problem [5]. For general meshed networks with compressors,
the GF problem is typically solved using the Newton-Raphson
scheme, but its convergence is conditioned on proper initial-
ization [6]. Under slow time-varying injections, the Newton-
Raphson scheme could be initialized at the previous state;
nevertheless, this may not be applicable for reliability studies.
Building on the theory of monotone operators, preprint [4]
shows that a GF solution can be found by solving a set of
variational inequalities. The latter are derived from the GF
equations after applying a carefully designed linear transfor-
mation. The approach is proved successful for tree networks.
Otherwise, a quasi-convex optimization problem should be
solved to design the linear transformation under the restricting
assumption that flow directions are known a priori.

The contribution of this work is twofold: After reviewing
a gas network model via a convenient matrix-vector form in
Section II, it is first recognized that the GF task can be tackled
using a semidefinite program (SDP) relaxation in Section III.
The relaxation is shown to be exact for a judiciously selected
cost of the related SDP problem. Secondly, a methodology for
designing this cost is devised in Section IV. Numerical tests
conducted on a Belgian gas network demonstrate the success
of the relaxation over a range of system conditions, and its
superiority over the Newton-Raphson scheme.

Regarding notation, lower- (upper-) case boldface letters
denote column vectors (matrices), and (·)> stands for trans-
position. Calligraphic symbols are reserved for sets, and |X |
is the cardinality of set X . Vectors 0, 1, and en, are the all-
zeros, all-ones, and the n-th canonical vectors, respectively.
Operator dg(x) defines a diagonal matrix having x on its
main diagonal. A symmetric positive (semi)definite matrix is
denoted by X � 0 (X � 0). Finally, symbols SN and SN+
(SN++) denote respectively the sets of N ×N symmetric and
symmetric positive (semi)definite matrices.

II. NATURAL GAS NETWORK MODELING

Consider a natural gas network modeled by a directed graph
G := (N0,L). The graph vertices N0 = {0, · · · , N} model
nodes where gas is injected or withdrawn from the network, or



simple junctions. The graph edges L = {1, . . . , L} correspond
to gas pipelines connecting two network nodes. Let pi > 0 be
the gas pressure at node i for all i ∈ N0. One of the nodes
(conventionally one hosting a large gas producer) is selected
as the reference node, it is indexed by 0, and its gas pressure
is fixed to a known value p0. The remaining nodes form the
set N := {1, . . . , N}. The gas injection qi at node i ∈ N0 is
positive for an injection node, negative for a withdrawal node,
and zero for network junctions. Without loss of generality,
edges are assigned an arbitrary direction denoted by ` : (i, j) ∈
L for i, j ∈ N0. The gas flow φ` on pipeline ` : (i, j) ∈ L is
positive when gas flows from node i to node j, and negative,
otherwise. Conservation of mass implies that

qi =
∑

`:(i,j)∈L

φ` −
∑

`:(j,i)∈L

φ` (1)

for every i ∈ N0. Moreover, summing injections over all nodes
should yield zero in steady state, that is q0 = −

∑
i∈N qi.

Therefore, given balanced {qi}i∈N0
, model (1) provides N

rather than N + 1 independent linear equations on {φ`}`∈L.
For high- and medium-pressure networks, the pressure drop

and energy loss over pipelines are captured by a partial
differential equation involving one spatial dimension along the
pipeline length and the time dimension [7], [8]. After ignoring
friction, any possible pipeline tilt, and assuming time-invariant
gas injections, the partial differential equation simplifies to the
Weymouth equation [9]:

p2i − p2j = a`φ`|φ`| (2)

characterizing the pressure difference across the endpoints of
pipeline ` : (i, j) ∈ L. The parameter a` > 0 in (2) depends
on the physical properties of the pipeline [7]. The Weymouth
equation asserts that gas pressure drops across a pipeline in the
direction of gas flow. To be precise, the difference of squared
pressures is proportional to the squared gas flow.

To avoid unacceptably low or high pressures, network
operators install compressors at selected pipelines, henceforth
referred to as active pipelines comprising the set La ⊆ L
with La = |La|. A compressor amplifies the squared pressure
between its input and output by a ratio α`. Suppose φ` > 0
and that the compressor along pipeline ` : (i, j) ∈ La is
located at normalized distances r` with r` ∈ [0, 1] from
node i and (1 − r`) from node j. From the definition of
the compression ratio, and upon applying (2) between node i
and the compressor input, as well as between the compressor
output and node j, it can be shown that [9]

α`p
2
i − p2j = c`φ`|φ`| (3)

where c` := a`[1 − (1 − α`)r`)] > 0. The pressure drop
described by (3) generalizes the Weymouth equation in (2),
since it applies to active and non-active pipelines alike: simply
set r` = 0 and α` = 1 for non-active pipelines ` /∈ La.

Given the reference pressure p0, balanced nodal injections
{qi}i∈N0 , and the pipeline parameters {α`, c`}`∈L, the gas
flow (GF) problem aims at finding nodal pressures {pi}i∈N
and pipeline flows {φ`}`∈L satisfying the GF equations (1),

(3), and {φ` ≥ 0}`∈La . It hence implies solving N + L
equations over N +L unknowns. Albeit (1) is linear, the gen-
eralized Weymouth equation in (3) is piecewise quadratic and
not everywhere differentiable; the requirement {φ` ≥ 0}`∈La

further complicates the task. The GF task is typically solved
using the Newton-Raphson’s scheme, which converges only if
initialized sufficiently close to the solution [6].

To handle the non-differentiability of the absolute value in
(3), introduce variable ψ` = |φ`| for all ` ∈ L; see also [4].
The latter equation can be equivalently written as ψ2

` = φ2`
and ψ` ≥ 0 for all `. To express the gas flow equations in a
matrix-vector form, collect all nodal quantities excluding the
reference bus in p := [p1 · · · pN ]> and q := [q1 · · · qN ]>.
Similarly, stack edge quantities in vectors φ, ψ, c, and α.

The connectivity of the gas network graph is captured by
the L× (N + 1) incidence matrix Ã with entries

Ã`,n =


+1, n = i

−1, n = j

0, otherwise
∀ ` : (i, j) ∈ L. (4)

Isolating the first column corresponding to the reference node,
matrix Ã can be partitioned as Ã = [a0 A]. Equation (1) is
equivalent to q0 = a>0 φ and q = A>φ. Because Ã1 = 0,
equation q0 = a>0 φ can be ignored assuming balanced steady-
state injections satisfying q0 = −1>q. The GF problem can
now be compactly expressed as [4]

A>φ = q (5a)

B(p� p) = c� φ�ψ − p20b0 (5b)
φ� φ = ψ �ψ (5c)
ψ ≥ 0, {φ` ≥ 0}`∈La

(5d)

where � is the entry-wise product, while B and b0 are [4]

B := dg(α)[A]+ − [−A]+ (6a)
b0 := dg(α)[a0]+ − [−a0]+ (6b)

where the operator [x]+ := max{0, x} is applied entry-wise.
If the gas network is a tree (L = N), matrices A and B

are square and invertible. In this case, the gas flows φ can
be readily found from (5a) and the nodal pressures β can
be subsequently calculated through (5b). In practice though,
natural gas networks exhibit a non-radial structure [9].

For a gas network without compressors, matrix dg(α)
becomes the identity matrix IL and thus B = A and b0 = a0.
Under this setup, flows can be found as the minimizers of the
convex optimization problem [5]

min
φ

L∑
`=1

a`
3
|φ`|3 (7a)

s.to A>φ = q. (7b)

Moreover, the related nodal pressures p can be recovered
through the (N + 1)-length vector ξ of the optimal Lagrange
multipliers corresponding to (7b). In detail, vector ξ can
be shifted by a constant without loss of optimality. If this



constant is selected such that the first entry of ξ is p20, the
remaining entries of ξ are equal to the squared nodal pressures.
This approach can be extended to meshed networks with
compressors only if there are no active pipelines in loops [9].

III. SEMIDEFINITE PROGRAM RELAXATION (SDR)

The GF problem entails finding the 2N + L unknowns
(φ,ψ,p) through the N linear equations of (5a) and the 2L
quadratic equations of (5b)–(5c) under the L + La linear in-
equalities of (5d). Since the system involves non-homogeneous
quadratic equations, it is hard to solve in general. Spurred by
its success in tackling computational tasks involving quadratic
constraints [10], we apply the powerful tool of semidefinite
programming relaxation (SDR) to solve the GF problem.

To convert all functions to homogeneous quadratic
ones [10], augment the unknown variables into the system state
vector x := [φ> ψ> p> 1]> of length K := 2L + N + 1.
Each equation in (5a)–(5c) is expressible as a homogeneous
quadratic equality constraint on x as

x>Mkx = sk (8)

where Mk ∈ SK and sk ∈ R for k = 1, . . . ,K− 1. Precisely,
if equality k in (8) corresponds to:
(a) the i-th linear equality in (5a), then sk := qi and

Mk :=
1

2


0 0 0 ai
0 0 0 0
0 0 0 0
a>i 0> 0> 0


where ai is the i-th column of A;
(b) the `-th entry of (5b), then sk := −p20b0,` and

Mk :=
1

2


0 −c` dg(e`) 0 0

−c` dg(e`) 0 0 0
0 0 2 dg(b`) 0
0> 0> 0> 0


where b` is the `-th row of B;
(c) the `-th entry of (5c), then sk := 0 and

Mk :=
1

2


dg(el) 0 0 0

0 −dg(el) 0 0
0 0 0 0
0> 0> 0> 0

 .
(d) To guarantee that the last entry of x is unity, introduce
the additional constraint x2K = 1. The latter can also be posed
as in (8) by selecting sK := 1 and MK := eKe>K . If xK
turns out to be −1, then vector −x is a GF solution in lieu
of x. Likewise, the linear inequalities in (5d) are written as
x>Nmx ≤ 0 for appropriately defined matrices Nm ∈ SK
for m = 1, . . . , L+ La.

Solving (5) can be now expressed as the feasibility problem:

find x (9)

s.to x>Mkx = sk, k = 1, . . . ,K

x>Nmx ≤ 0, m = 1, . . . , L+ La.

Nonetheless, solving (9) remains computationally hard since
it entails quadratic (in)equalities. To tackle the non-convexity,
we leverage the technique of semidefinite program relaxation
(SDR) [10]. To that end, introduce the matrix variable X ∈ SK
and upon enforcing X = xx>, rewrite (9) as

find
X=xx>

(X,x) (10)

s.to Tr(MkX) = sk, k = 1, . . . ,K

Tr(NmX) ≤ 0, m = 1, . . . , L+ La.

The constraint X = xx> can be equivalently expressed
as X � 0 and rank(X) = 1. By introducing these two
constraints in (10), the original variable x can be eliminated.
Also, the resultant feasibility problem can be transformed to a
minimization by assigning the cost Tr(MX) for some M � 0:

min
X�0,rank(X)=1

Tr(MX) (11)

s.to Tr(MkX) = sk, k = 1, . . . ,K

Tr(NmX) ≤ 0, m = 1, . . . L+ La.

Enforcing the rank constraint in (11) though is NP hard in
general [10]. The SDR technique suggests relaxing the feasible
set of (11) by dropping its rank constraint to get:

min
X�0

Tr(MX) (12a)

s.to Tr(MkX) = sk, k = 1, . . . ,K (12b)
Tr(NmX) ≤ 0, m = 1, . . . , L+ La (12c)

that is a convex SDP problem. Due to the relaxation, the
optimal value of (12) serves as a lower bound on the optimal
value of (11). Moreover, if the minimizer X̂ of (12) turns out
to be rank-1, then X̂ is feasible for the problem in (11) as well,
the optimal values in (11) and (12) coincide, and therefore X̂
is a minimizer of the non-convex SDP in (11). In this case,
the relaxation is deemed exact, and the sought solution x̂ to
(10) is obtained by simply decomposing X̂ as X̂ = x̂x̂>.

The existence of a rank-1 solution for (12) depends on the
network parameters along with the specification vector s :=
[s1 · · · sK ]>. On the other hand, the matrix M appearing in
the cost of (12) offers multiple degrees of freedom. Inspired
by the SDR in solving the power problem in [11], the next
section selects M to favor a rank-1 minimizer of (12).

IV. OBJECTIVE FUNCTION DESIGN

To design matrix M, consider the mapping s(x) : RK →
RK whose k-th entry is sk(x) := x>Mkx for k = 1, . . . ,K.
The associated Jacobian matrix evaluated at x is [11]

J(x) = 2[M1x . . . MKx]. (13)

Since the mapping s(x) is continuous, the inverse function
theorem asserts that s(x) is invertible close to x if J(x) is
invertible. By the definition of s(x), the Jacobian matrix J(x)
is sparse for all x. However, the invertibility of J(x) depends
on x, and it thus hard to characterize. For this reason, we resort
to studying the generic rank of J(x), which is the maximal
rank over all possible values for the non-zero entries of J(x).



Proposition 1. The Jacobian matrix J(x) associated with the
mapping s(x) is full-rank in general.

Proof of Prop. 1: The generic rank of J(x) is character-
ized leveraging a result from [12]: Given an N×N matrix C,
construct a graph with 2N nodes. Nodes {vi}Ni=1 correspond
to the rows of C and nodes {uj}Nj=1 to its columns. An edge is
drawn between nodes vi and uj only if Cij 6= 0. If each node
uj can be matched to a different node vi, then C is full-rank
in general. To apply this result to matrix J(x), let us capture
its sparsity pattern by the binary matrix

Jb =


|A| IL IL 0
0 IL IL 0
0 |A|> 0 0
0> 0> 0> 1


where |A| contains the absolute values of A. The last column
of Jb can be matched to its last row by the entry 1. Its third
block column can be matched to its second block row due to
IL. The remaining entries of Jb form the matrix

J̃b =

[
|A| IL
0 |A|>

]
.

Consider a spanning tree T on the graph G representing
the gas network. Without loss of generality, pipelines can be
renumbered so that A is partitioned as A = [A>T A>T ]

>,
where the N ×N submatrix AT corresponds to the pipelines
comprising T , and the (L − N) × N submatrix AT to the
remaining ones. Matrix J̃b can be then partitioned as

J̃b =

 |AT | IN 0
|AT | 0 IL−N
0 |AT |> |AT |>

 .
The third block column of J̃b can be matched to its second
block row due to IL−N . Each column of |AT | corresponds to
a node in N . Since every such node is the destination end of
a pipeline in T , every column of |AT | is guaranteed to have
an 1 entry at a different row. Hence, the first block column of
Ĵb is matched to its first block row. Likewise, the third block
row of Ĵb is matched to its second block column. Therefore, a
perfect matching between the rows and columns of J(x) has
been obtained.

Proposition 1, proved in the Appendix, guarantees only the
generic invertibility of J(x). Nevertheless, all the Jacobian
matrices evaluated during our numerical tests were invertible.

Let us next derive the dual problem of (12): let λ ∈ RK

and µ ∈ R2L be the Lagrange multipliers corresponding to
(12b) and (12c), respectively. The dual problem of (12) is

max
λ,µ≥0

− λ>s (14)

s.to Z(λ,µ) := M+

K∑
k=1

λkMk +

2L∑
m=1

µmNm � 0.

Let function h2(Z) be the sum of the two smallest eigenvalues
of Z, which is known to be concave over SK+ [13]. The next

result provides conditions for M to yield an exact relaxation
for a state vector x̂ [11]:

Proposition 2. Consider a gas network state x̂ with specifica-
tions ŝ := s(x̂) and invertible Jacobian matrix J(x̂). If there
exists a vector λ̂ such that:

(c1) Mx̂+ 1
2J(x̂)λ̂ = 0;

(c2) Ẑ := Z(λ̂,0) � 0; and
(c3) h2(Ẑ) ≥ ε for an ε > 0;

then X̂ := x̂x̂> is a minimizer of (11) for specifications ŝ.

Proof of Prop. 2: The cost in (12) is bounded below by
zero. Assuming there exists feasible X � 0, strong duality
holds between (12) and its dual problem in (14), and the
Karush-Kuhn-Tucker (KKT) conditions apply [14, Lemma 1].
Let ŝk be the k-th entry of ŝ. Since x̂ is a realizable state,
x̂>Mkx̂ = ŝk for k = 1, . . . ,K, and x̂>Nmx̂ ≤ 0
for m = 1, . . . , 2L. It follows that Tr(MkX̂) = ŝk and
Tr(NmX̂) ≤ 0 for all k and m, i.e., X̂ � 0 is primal feasible.

By (c2), matrix Ẑ is dual feasible. It further holds that:

Ẑx̂ = Mx̂+

K∑
k=1

λkMkx̂ = Mx̂+ J(x̂)λ̂ = 0

where the second equality follows from (13) and the third
one from (c1). Then, it holds that ẐX̂ = Ẑx̂x̂> = 0.
Because the {µ̂m}2Lm=1 related to λ̂ and Ẑ have been set
to zero, µ̂m Tr(NmX̂) = 0 for all m. Since (X̂, Ẑ) satisfy
complementary slackness and all KKT conditions, they are
primal-dual optimal, and x̂ is a minimizer of (12).

Because Ẑx̂ = 0 and Ẑ � 0, the smallest eigenvalue of Ẑ is
zero. From (c3), the second smallest eigenvalue of Ẑ is strictly
positive, and therefore rank(Ẑ) = K − 1. Complementary
slackness asserts that every minimizer X̃ of (12) satisfies
ẐX̃ = 0. The latter implies that rank(X̃) ≤ 1; see [14].
Since X̃ = 0 is not feasible, all minimizers of (12) have to
be rank-one, i.e., they are of the form X̃ = x̃x̃> for some x̃.
Because J(x̂) is invertible, (c1) defines a single λ̂; hence Ẑ is
unique and its nullspace is spanned solely by x̂ and therefore
X̂ is the unique rank-one minimizer of (11).

Proposition 2 asserts that if M satisfies (c1)–(c3), then the
relaxation in (12) is exact for a given system state x̂. This
fact may seem to be of limited interest, since it guarantees the
success of SDR only for this particular x̂. Nevertheless, the
continuity argument adopted in [11, Th. 2] on the exactness of
SDR for the power flow problem applies here too. Therefore,
it follows that the relaxation in (12) is exact for all realizable
states x with an invertible J(x) lying in a ball around x̂.

To design M such that the SDR is exact over a wider range
of system states, conditions (c1)–(c3) can be enforced for
multiple xi’s. These states could reflect representative gas flow
patterns selected upon historical data. Designing M satisfying
the conditions of Proposition 2 for {xi}Ri=1 can be posed as
the feasibility problem for some ε > 0 [11]

find (M, {λi}) (15a)
s.to M � 0 (15b)



Fig. 1. Modified Belgian gas network [15].
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Mxi +
1
2J(xi)λi = 0, ∀ i (15c)

Z(λi,0) � 0, ∀ i (15d)
h2(Z(λi,0)) ≥ ε, ∀ i. (15e)

Problem (15) can actually be solved as an SDP minimiza-
tion [13, pp. 67–68].

V. NUMERICAL TESTS

The developed SDR approach was tested on a modified
version of the Belgian natural gas network [15]. Since the
original network has been simplified to a tree in [15], we
added two pipelines between 15-16 and 7-19. Matrix M was
first designed by solving (15) for ε = 0.1. The R system
states {xi}Ri=1 were generated as follows: Upon selecting
nominal pressures, gas injections and flows were calculated
from (5a)–(5b). Nominal pressures were then perturbed by a
zero-mean Gaussian variable with standard deviation of 0.25%
the nominal pressure to generate (R − 1) additional pressure
and state vectors {pi}Ri=2. The efficacy of the SDR-based GF
solver was tested over randomly generated gas states. These
validation states were constructed via a process similar to the
previous one; yet now the perturbation was set to ζ0.25% the
nominal pressures with ζ ranging from 0 to 1 in increments
of 0.05. For each ζ, 200 system states were generated.

The same GF problems were solved using the Newton-
Raphson iterates initialized at the actual state perturbed by
ζ. The probability of the Newton-Raphson iterates converging

to the actual state and the probability of exact SDR are plotted
in Fig. 2. As evidenced, the developed SDR scheme operates
over a wider range of network conditions and its performance
improves for increasing R.

VI. CONCLUSIONS

Solving the GF equations governing routinely the operation
of natural gas networks has been posed as a set of quadratic
equalities and inequalities. The latter has been reformulated to
a feasibility problem that is also computationally intractable,
and it later relaxed to an SDP minimization upon dropping
the rank constraints. The objective function has been judi-
ciously designed so that the relaxation is successful around
prespecified states of possible interest. The advantages of
the method over the classic Newton-Rapshon approach were
demonstrated using a Belgian natural gas network. Spurred by
these promising results, our current work targets GF solvers
scalable to thousands of nodes and pipelines by exploiting the
sparse problem structure and distributed implementations.
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