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Abstract—The penetration of renewables and demand-
response programs will inevitably lead to frequent flow re-
versals and substation reconfigurations, while high-throughput
synchrophasor measurement units are being installed throughout
the grid. Hence, jointly verifying circuit breaker statuses and
estimating the state of power networks of increasing dimension-
ality becomes even more challenging. Building on generalized
state estimation, revisited in the light of modern measurement
capabilities, the aforementioned task is relaxed to a convex opti-
mization problem. Exploiting compressive sampling advances, the
prior information on unmonitored and suspected switches takes
the form of ℓ2-norm penalties promoting sparsity in a properly
defined block manner. An efficient algorithm is developed to
ensure compatibility with solvers found currently at control
centers. Numerical tests on the IEEE 14-bus model corroborate
the effectiveness of the novel scheme.

Index Terms—Alternating direction method of multipliers;
generalized state estimator; intelligent electronic devices; phasor
measurement units.

I. I NTRODUCTION

Topology processing and state estimation are two basic
modules in power system monitoring [16]. When run sep-
arately, it is easily understood that even though topology
errors can be detected through unacceptable state estimation
outcomes, they are not easily identifiable by the state estimator
[1, Ch. 8]. Merging the two modules under the so called
generalized state estimation (GSE) task has been a well-
appreciated solution [16].

By employing the bus section/switch instead of the
bus/branch network model, GSE essentially estimates the
system state augmented by circuit breaker flows. Open (closed)
switching devices correspond then to zero flows (voltage
drops). To ensure observability of the expanded model, break-
ers of known status are imposed as structural constraints
[16]. But practically, not all circuit breakers are monitored;
and even for the monitored ones, the reported status may
be erroneous due to switch malfunctioning, communication
failures, or manipulation by maintenance teams [1].

Detection of substation configuration errors has been con-
sidered in [11], [21], and [7]. The even challenging problemof
identifying circuit breaker statuses is usually treated under the
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GSE framework. Least-absolute value (LAV) state estimators
have been proposed in [17], [2]. The largest normalized
residual test is borrowed from bad data detection and applied
in [6] on the Lagrange multipliers corresponding to circuit
breaker constraints. The robust Huber’s M-estimator has been
also considered in [15], while a probabilistic breaker sta-
tus modeling is suggested in [13]. To handle the increased
dimensionality of the network model involved in GSE, an
equivalent reduced-size model has been developed in [8].
Jointly estimating the state and the faults in DC electric
circuits viaℓ1-norm regularization has been proposed in [10],
and standard quadratic program solvers have been employed.
Finally, [5] poses a mixed integer nonlinear program whose
complexity is not deterministically polynomial.

Changes taking place in today’s grids pose new challenges
for GSE. The introduction of renewables and demand-response
programs will eventually lead to frequent substation reconfig-
urations. The situational awareness vision calls for more accu-
rate models, while the deregulated energy markets lead to even
larger reliability footprints. On the other hand, technological
advances in instrumentation should be leveraged [9]: phasor
measurement units (PMU) able to record high-throughput
voltage and current phasors invade the grids. Automation
has reached even at the substation level, where intelligent
electronic devices (IED) can provide important data to the
control center too.

In this work, GSE is revisited under this new paradigm.
Given phasor measurements, GSE for exact AC power system
models can be posed as a linearly-constrained least-squares
(LS) problem (Section II). Since only a limited number of cir-
cuit breakers can be reliably monitored, the bus section/switch
model is likely to be unobservable. Prior information on the
status of unmonitored breakers can potentially restore system
identifiability. By leveraging compressive sampling advances,
the GSE cost is regularized byℓ2-norms of selected vectors,
which promote block sparsity on real/imaginary pairs (Section
III). A computationally efficient solver is subsequently derived
in Section IV. It operates on a reduced-size vector and is
compatible with existing estimators installed at control centers.
Numerical tests on an expanded version of the IEEE 14-
bus power network show that the novel method can correct
multiple breaker errors at the expense of a tolerable increase
in complexity (Section V). The paper is concluded in Sec. VI.
Regarding notation, lower- (upper-) case boldface lettersde-



note column vectors (matrices); calligraphic letters stand for
sets; and(·)T denotes transposition.

II. SYSTEM MODELING & PROBLEM STATEMENT

Consider the typical power system model at the bus sec-
tion/switching device network level [1, Ch. 8], [16], consisting
of Nb bus sections, henceforth called simply buses,Nl trans-
mission lines, andNs circuit breakers (switches). Let vectors
ṽ ∈ C

Nb and ĩl ∈ C
2Nl contain the bus voltages and the

electric currents injected at both sides of every transmission
line, respectively. IfỸl is the associated line-bus admittance
matrix, Kirchoff’s and Ohm’s laws imply

ĩl = Ỹlṽ. (1)

To model the effect of switching devices, consider the circuit
breaker current vector̃s ∈ C

Ns where current directionality is
conventionally assumed from lower- to higher-indexed buses.
Define also theNs×Nb switch-bus incidence matrixA whose
i-th rowa

T
i corresponding to the(m,n) switch between buses

m and n with m < n has itsm-th (n-th) entry equal to
+1(−1), and zero elsewhere. When the(m,n) switch is open,
no current flows on it̃si = 0. When it is closed, the voltage
difference between its ends is zero, i.e.,a

T
i ṽ = ṽm−ṽn = 0.

The bus current injection vector can be expressed as

ĩ = Ỹṽ +A
T
s̃ (2)

whereỸ ∈ C
Nb×Nb is the bus admittance matrix.

Power systems are currently being instrumented with con-
temporary metering devices, such as phasor measurement units
(PMU) and intelligent electronic devices (IED); see e.g., [9].
Once a PMU is installed on a bus, it can potentially measure its
voltage and injection current together with the current phasors
from all the lines incident to that bus. IEDs can record the
current flowing on a subset of circuit breakers and report the
status of others. Assuming that PMU and IED measurements
are available at the control center, the problem consideredhere
is that of jointly estimating the underlying system state and
determining the status of unmonitored circuit breakers.

To concretely formulate the problem, it is useful to review
the notion of generalized state estimation (GSE), and explicitly
model the cost function as well as the structural and opera-
tional constraints involved; see e.g., [1, Ch. 8], [16]. In GSE,
the power system state is augmented from the vectorṽ to
include the breaker current vectors̃ too. Specifically, the vector
of system states in rectangular coordinates is expressed as
x
T :=

[

v
T
s
T
]

and is of dimensionN := 2(Nb+Ns), where
v
T :=

[

Re{ṽT } Im{ṽT }
]

andsT :=
[

Re{s̃T } Im{s̃T }
]

.
To model the analog readings collected at the control center,

four types of measurements should be identified first: (M1)
nodal voltages; (M2) current injections; (M3) line current
flows; and (M4) circuit breaker flows. If allM measurements
are expressed in rectangular coordinates too, the following
linear model is obtained

z = Hvv +Hss+ e = Hx+ e (3)

whereHv and Hs will be defined soon,H := [Hv Hs] ∈
R

M×N , and the vectore captures instrumentation errors and
modeling inaccuracies. The latter is modeled as a random
vector of zero mean and known covariance matrix. Since
measurements can be easily pre-whitened, the noise covariance
matrix can be modeled as the identity matrix without loss of
generality. The rows ofHv and Hs corresponding to (M1)
measurements are simply the appropriate rows of the identity
matrix and the zero vectors, respectively. The converse holds
for (M4) measurements. For (M2) and (M3) measurements,
the related rows can be obtained after expressing (2) and (1)
in rectangular coordinates, respectively.

The linear model of (3) supposes availability of syn-
chrophasor measurement units. Note however, that conven-
tional SCADA measurements, i.e., (re)active nodal power
injections and line power flows together with bus voltage
magnitudes, do not adhere to a linear model. Actually, per-
forming state estimation using those types of measurements
entails solving non-convex optimization problems. Typically,
such models are iteratively linearized using the Gauss-Newton
method. Then, (3) corresponds to the postulated model per
Gauss-Newton iteration. The same holds even when SCADA
and PMU measurements are jointly considered.

Using the bus section/switch network model increases the
number of states, and thus, the risk of loosing system ob-
servability. Any prior information and breaker statuses should
be taken into account as well in the form of constraints
as described next. Three types of constraints are typically
encountered in GSE: (C1) zero-injection buses; (C2) open
circuit breakers; and (C3) closed circuit breaker constraints.
All the three constraints are modeled next.

Let N denote the set of null-injection buses. Based on (2),
the (C1) constraints can be expressed as

YNv +A
T
N s = 0 (4)

where

Y :=

[

Re {Ỹ} − Im {Ỹ}

Im {Ỹ} Re {Ỹ}

]

(5)

whileYN andAT
N are the submatrices obtained after retaining

only the rows ofY andAT , respectively, corresponding to the
null injection buses. Conformably, ifO andC are the sets of
circuit breakers whose status is reliably reported to the control
center, constraints (C2) and (C3) can be written as

sO = 0 (6)

ACv = 0. (7)

Based on the previous modeling, the least-squares estimate
(LSE) of the augmented system state can be obtained as

x̂LSE := argmin
x

1

2
‖z−Hx‖22 (8a)

s.t. Cx = 0 (8b)

where the single constraint in (8b) expresses collectivelythe
constraints (C1)-(C3), and matrixC has sizeC × N , where



C := 2 · (|N |+ |O|+ |C|). The linearly-constrained convex
quadratic program of (8) can be solved in closed form.

The solution of (8) is unique, provided the measurement
and constraint sets are sufficiently large and dense so that
the augmented state is observable. However, even if the
system is observable, the state estimates inx̂LSE related to
uninstrumented breakers will be generally erroneous in thefol-
lowing sense: neither currents flowing on open uninstrumented
breakers will be zero, nor the voltage drops across closed
uninstrumented breakers will be. To alleviate these issues,
this work suggests exploiting any further breaker information
available at the control center in the manner described next.

III. PROPOSEDMETHOD

One should recall that the control center has historical
data on typical substation configuration patterns that could be
used as prior information for unknown-status circuit breakers.
Additionally, there exist circuit breakers that even though
their status is recorded, that information has been deemed
unreliable, e.g., by preliminary (local) topological results,
possible manipulation by maintenance team working nearby,
or large residuals. Due to these two reasons, the status of such
breakers, henceforth collected in setS, is mostly speculative
and unreliable. It cannot be used as a hard constraint (C2)-(C3)
in (8), but rather it has to be verified.

More concretely, consider the2 × 1 vector comprising the
real and imaginary currents flowing on the supposedly open
m-th circuit breaker, i.e.,[Re{s̃m} Im{s̃m}]T which can be
written asSmx for an appropriately defined2 ×N selection
matrix. Similarly, consider the vector of real and imaginary
voltage drops across the assumingly closedn-th breaker, that
is [aTm Re {ṽ} a

T
m Im {ṽ}]T , which can also be expressed as

Snx.
Since all the suspected breakers would satisfy their expected

status, all theSmx vectors form ∈ S will be most likely
zero. Hence, to jointly estimate the system state and identify
the breaker statuses inS, one could solve a variation of the
LSE in (8) where the cost function is penalized by the number
of breakers inS not satisfying their expected outcomes. This
can be formulated as

min
x

1

2
‖z−Hx‖22 + λ0

∑

m∈S

I (‖Smx‖2) (9)

s.t. Cx = 0

whereI (|x|) is equal to one when|x| > 0, and zero otherwise.
The penalty parameterλ0 indicates the confidence to the prior
information: whenλ0 = 0, the problem in (9) reduces to the
original problem of (8), which means that prior information
on unmonitored breakers is ignored and detecting the statuses
relies solely on state estimation. On the other hand, forλ0 →
∞, all breakers inS are set to their expected status, and prior
information becomes indisputable.

Solving (9) is combinatorially complex. Nevertheless,
spurred by advances in the compressive sampling literature
[4], it can be relaxed to a convex optimization problem. Under
certain conditions on the involved problem parameters(H,

C, {Sm}), the relaxed problem solution coincides or is close
in the ℓ1- or ℓ2-norm sense to the hard problem solution.
The indicator functionI (|x|) in (9) can be relaxed to|x|,
which is the closest convex approximation of the former when
|x| ≤ 1. Hence, theI (‖Smx‖2) summands in the cost of (9)
are replaced by‖Smx‖2.

Upon this surrogation, the convex relaxation of (9) is then

min
x

1

2
‖z−Hx‖22 + λ

∑

m∈S

‖Smx‖2 (10)

s.t. Cx = 0

which can be essentially solved as a second-order cone
program (SOCP). Interestingly, compressive sampling offers
assurance that due to theℓ2-norm penalties in the cost, the
minimizers of (10) will have most of their{Smx}m∈S terms
set to zero as a whole; see e.g., [22], [18], [12]. Two points
should be stressed. First, having many of the{Smx}m∈S

vectors with both entries equal to zero is the desiderata here. In
other words, problem (10) promotesblock sparsity as opposed
to single-entry sparsity pursued by [10]. Second, it is exactly
the non-squaredℓ2-norm penalties that promote this form of
sparsity.

IV. A N EFFICIENT ALGORITHM

Problem (10) can be solved by standard interior point-
based solvers. However, such second-order solvers may not be
adequate for handling a real-world power system consistingof
some thousands of buses, each modeled by 1-10 bus sections
and connected to 2-3 transmission lines. More importantly,
such solvers are incompatible with the currently available
power system state estimation software.

To tackle these issues, an efficient algorithm for solving
(10) is developed here. It is based on the alternating direction
method of multipliers (ADMM), a method that has been
successfully applied for several optimization tasks; see [3] for
a review.

Firstly, aiming to convert (10) to an equivalent uncon-
strained problem, observe that the equality constraint in (10)
implies that there exists a vectoru such that the minimizer
x satisfiesx = Bu, where the columns of matrixB ∈
R

N×(N−C) span the null space ofC. Then, solving (10) is
equivalent to solving

min
u

1

2
‖z− H̄u‖22 + λ

∑

m∈S

‖S̄mu‖2 (11)

with H̄ := HB and S̄m := SmB for m = 1, . . . , S.
Next, let us introduce the auxiliary optimization variable

w ∈ R
2S , and rewrite (11) as

min
u,w

1

2
‖z− H̄u‖22 + λ

∑

m∈S

‖wm‖2 (12a)

s.t. S̄u = w (12b)

whereS̄ contains matrices{S̄m} stacked vertically as̄ST :=
[S̄T

1 S̄
T
2 · · · S̄T

S ], andw has been conformably split towm’s.



Adding this extra variable may seem redundant, but it facili-
tates the efficient solution of (12) as detailed next.

In general, ADMM exploits the method of multipliers (a.k.a.
quadratic penalty method) concatenated with an iteration of the
Gauss-Seidel algorithm. Specifically, for the problem in (12),
let µ be the Lagrange multiplier vector corresponding to the
constraint (12b). The augmented Lagrangian function is

L(u,w;µ) :=
1

2
‖z− H̄u‖22 + λ

∑

m∈S

‖wm‖2 (13)

+ µ
T
(

S̄u−w
)

+
c

2
‖S̄u−w‖22

wherec is a positive constant. Lettingr denote the iteration
index, ADMM cycles through three steps:

u
r+1 := argmin

u

L (u,wr;µr) (14a)

w
r+1 := argmin

w

L
(

u
r+1,w;µr

)

(14b)

µ
r+1 = µ

r + c
(

S̄u
r+1 −w

r+1
)

. (14c)

At step (14a),u is updated by minimizing the augmented
Lagrangian function while keeping the other (primal and dual)
variables fixed to their previous iteration values. Likewise,
w is updated in (14b). Finally, (14c) is a gradient ascent of
L
(

u
r+1,wr+1;µ

)

with step sizec.
The focus next is on implementing these three steps effi-

ciently. Step (14c) entails a simple matrix-vector multiplica-
tion, while a minimizer of (14a) can be obtained as

u
r+1 =

(

c · S̄T
S̄+ H̄

T
H̄
)† (

H̄
T
z+ S̄

T (cwr − µ
r)
)

(15)

where(·)† denotes matrix pseudoinverse. It is shown next how
step (14b) involving the minimization

min
w

λ
∑

m∈S

‖wm‖2 − (µr)
T
w +

c

2
‖S̄ur+1 −w‖22 (16)

can be easily solved. Interestingly, the cost in (16) decouples
nicely over thewm’s as

min
wm

λ‖wm‖2 − (µr
m)

T
wm +

c

2
‖S̄mu

r+1 −wm‖22 (17)

whereµr has been split intoµr
m’s conformably to the partition

of w. Using the subdifferential of the cost in (17), it can be
shown that the minimizer is provided by the simple formula
(see e.g., [12, Sec. V.B])

w
r+1
m =

1

c
· dr

m

[

1−
λ

‖dr
m‖2

]

+

(18)

where [x]+ := max{x, 0} andd
r
m := µ

r
m + c · S̄mu

r+1. In
a nutshell, the update rule of (18) first calculates vectord

r
m.

If its ℓ2-norm is larger thanλ, thenw
r+1
m is updated todr

m

scaled by(1− λ/‖dr
m‖2)/c; otherwise,wr+1

m is set to zero.
The proposed scheme is tabulated as Algorithm 1. It is

worth mentioning that the algorithm does not require any
special optimization solver, but it can be implemented by
power system state estimation software already installed at
the control centers.

Algorithm 1 Novel Algorithm
Require: MatricesH, S, C; and positive parametersc, λ.

1: Find matrixB whose columns span the null space ofC.
2: CalculateH̄ := HB and S̄ := HS.
3: Initialize u

0, w0, µ0 to zero.
4: for r = 1, 2, . . . do
5: Updateur+1 via (15).
6: Updatewr+1

m using (18) form = 1, . . . , S.
7: Updateµr+1 via (14c).
8: end for
9: Outputx = Bu for the finalu.

Fig. 1. The IEEE 14-bus power system modeled at the substationlevel
[8]. Solid (hollow) squares indicate circuit breakers whose actual status is
closed (open). The original 14 buses preserve their numbering. Thick lines
correspond to finite-impedance transmission lines, and thinner ones to zero-
impedance circuit breaker connections.

V. SIMULATED TESTS

In this section, the novel joint state estimation and breaker
status identification approach is numerically tested usingthe
IEEE 14-bus power network [20]. The admittance matrix
of the network and the underlying power system state are
obtained using the MATPOWER software [23]. The IEEE
14-bus benchmark has been modeled at the substation level
following the expansion of [8] as shown in Fig. 1. The buses of
the original bus/branch model have been expanded to groups of
bus sections following typical substation configurations (single
bus, double bus/double breaker, main and transfer bus, breaker
and a half, ring bus).

The state vector contains the real and imaginary parts of all
bus voltages and circuit breaker currents. The measurements
include PMU and IED recordings on voltage and current pha-
sors expressed in rectangular coordinates too. Measurement



noise is simulated as independent zero Gaussian with standard
deviation per real componentσV = 0.01 andσI = 0.02, for
voltages and currents, respectively [23]. The different mea-
surement types are detailed next. Among all the 65 buses, bus
voltages measurements are collected at the 30 buses indicated
by either boxed numbers, the bus-bar symbol, or the injection
symbol; e.g., buses 1, 17, and 15, respectively. Electric currents
are recorded at the 15 injection buses. Current phasor meters
are assumed on both sides of all the 20 transmission lines.
Finally, IEDs are assumed to record the current flow on all 73
logical circuit breakers. Hence, the measurement set comprises
316 real-valued recordings.

All the 50 bus sections not marked with the injection symbol
are assumed to be null-injection buses, hence yielding a total
of 100 structural constraints. Concerning the status of circuit
breakers, they are divided into two main sets: breakers which
are assumed either open or closed and are contained in setS,
and the remaining breakers with known status belonging to
subsetsO andC providing additional operational constraints.

A. Effectiveness

The new approach’s capability to jointly estimate the power
system state and identify the status of circuit breakers is
justified through the following simulation setup. Subsets of
breakersS with unreported status are sampled uniformly at
random from{1, . . . , 73}. In 80% of the breakers inS, the
assumed status coincides with the actual one, and is reversed
for the rest 20%. The cardinality ofS varies from 10 to 70
breakers.

The block sparsity-aware approach of Section II is com-
pared to an ordinary generalized state estimator. The latter
corresponds to simply solving (10) forλ = 0. For both
methods, after the system state has been estimated, the statuses
of the breakers inS are determined via the corresponding
circuit current states. Two performance metrics are considered:
the mean-square error (MSE) of the state estimates and the
number of breaker status identification errors. Justified by
numerical tests, the penalty parameterλ is equal to1, 000
for all experiments.

The number of breaker status errors obtained by the two
methods for setsS of increasing cardinality is plotted in Fig. 2.
The conventional GSE cannot identify the unreported circuit
breaker statuses. On the contrary, the proposed approach can
partially correct the status of breakers inS while simultane-
ously estimating the augmented state. Figures 3 and 4 show the
MSEs on the original 14 bus voltages and the full augmented
state, respectively. The MSE curves indicate that misidentified
breaker statuses deteriorate state estimation accuracy too, even
at the higher bus/branch network model.

B. Computational Aspects

Having checked the effectiveness of the method, its com-
putational aspects are numerically evaluated next. Numerical
simulations using the previously described simulation setup
has been run on an Intel Duo Core @ 2.2 GHz (4GB
RAM) computer using MATLAB. The novel approach entails
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Fig. 2. Circuit breaker identification errors for setsS of increasing cardinality.
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Fig. 3. MSE of substation voltages (original 14 buses) for setsS of increasing
cardinality.

solving the unconstrained problem in (11) to obtainu and
subsequently finding the system state asx = Bu. Regarding
the first computationally demanding step, the problem in (11)
is solved either as an SOCP using interior point-based standard
solvers (SDPT3 [19] and [14]), or by using the steps of Alg. 1.
For a fair comparison to GSE, the first step of the GSE is
implemented by calculating the closed-form solution of (11)
for λ = 0, i.e., xGSE= H̄z.

For a meaningful computational comparison, the Lagrangian
penalty parameterc should be tuned first. Numerical tests
performed under various simulation setups showed that the
convergence time of Alg. 1 remains basically invariant for a
value ofc = 104, which was fixed for all the succeeding tests.
Then, the iterations needed from Alg. 1 to converge increase
from 100 to 750 with increasing|S|.

The computational time for the ordinary GSE and the
proposed method solved using the standard solver and the
derived algorithm is plotted in Fig. 5. The time needed by
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Fig. 4. MSE of the full (augmented) system state for setsS of increasing
cardinality.
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the ordinary GSE is slightly decreasing with increasing|S|.
The computational time of the derived algorithm is only 3-
4 times higher than that of the GSE, even though it jointly
estimates the states and reveals breaker status errors. Finally,
the time complexity for the interior point-based solver scales
unfavorably with the number ofℓ2-norm penalties in the cost.

VI. CONCLUSIONS

A novel joint state estimation and circuit breaker identifica-
tion method was introduced in this paper. The ordinary GSE
was first reviewed to accommodate the linear measurement
models and constraints offered by modern measurement units.
Leveraging compressive sampling premises, the GSE cost was
regularized byℓ2-norms of selected vectors to account for
prior information on breakers of unknown status. Incorporating
branch status errors and bad data measurements is the next
interesting extension. To efficiently solve the optimization

problem thus obtained, an ADMM-based algorithm was de-
veloped by operating on a transformed reduced-length vector
state and consisting of simple updates. Numerical tests on
the IEEE 14-bus model verified the effectiveness of the novel
approach and the algorithm’s efficiency. Studying the proposed
scheme for practical power network dimensions is currently
under investigation.
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