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Abstract: Distribution grids are currently challenged by the rampant in-

tegration of distributed energy resources (DERs). Scheduling DERs via an

optimal power flow (OPF) problem in real-time and at scale under uncer-

tainty is a formidable task. Prompted by the success of deep neural networks

(DNNs) in other fields, this chapter presents two learning-based paradigms

for near-optimal DER operation. The first paradigm engages a DNN to pre-

dict the solutions of an OPF given the anticipated demands and renewable

generation. Different from the generic learning setup, the training dataset

here (namely past OPF solutions) features a rich yet largely unexploited

structure. To leverage prior information, we train a DNN to match not

only the OPF solutions but also their partial derivatives with respect to

the input parameters of the OPF. Sensitivity analyses for different OPF
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formulations show how such derivatives can be readily computed from the

OPF solutions. The proposed sensitivity-informed training of DNNs fea-

tures sample efficiency improvements at a modest computational increase.

Nonetheless, this two-stage OPF-then-learn approach may not be suitable

for DER operation when the OPF problem parameters are uncertain. To

deal with stochastic OPF setups, we put forth an alternative OPF-and-learn

scheme. Here the DNN is not trained to mimic labeled OPF data but is

rather organically integrated into a stochastic OPF formulation. The DNN

now captures a DER control policy that minimizes average costs subject

to average or chance network constraints. A key advantage of this second

DNN is that it can be driven by partial OPF inputs or proxies derived

from available real-time measurements. Both paradigms apply to power

distribution and transmission systems alike, in their exact AC or linearized

variants.

Keywords: Optimal power flow (OPF), deep neural networks (DNN), dis-

tributed energy resources (DERs), sensitivity analysis, chance-constrained

optimization, conic programming, optimality conditions, linear indepen-

dence constraint qualification (LICQ)

1.1. Introduction

To enable higher integration of renewables and combat climate change, there

is an urgent need to advance the efficiency and scalability of the optimal power

flow (OPF) problem. Despite advances in numerical optimization, OPF solvers

oftentimes fail to respond frequently enough to provide up-to-date solutions

in rapidly changing or uncertain environments. Spurred by the field-changing

performance of deep learning in various application domains, this chapter puts

forth novel physics-aware and application-cognizant learning approaches for

the OPF. Operators must routinely solve some rendition of the OPF to opti-
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mally dispatch generators in transmission systems or to compute the optimal

setpoints of distributed energy resources (DER) in power distribution grids.

Assuming the grid topology to remain fixed, each instance of the OPF corre-

sponds to a different set of grid loading conditions, such as solar/wind gen-

eration and or load demands. The OPF essentially constitutes a parametric

optimization problem with the grid conditions being the problem parameters.

In turn, the OPF solutions can be seen as a complex mapping from the problem

parameters to the space of optimal setpoints. A key promise for deep learning

is its ability to capture intricate input-output mappings.

In spite of the commendable advancements in optimization algorithms, cap-

turing the OPF mapping through machine learning models (ML) has been an

active research area over the last few years. The primary advantage of such

approaches lies in the speed-up during the inference phase by moving most of

the computational burden from real-time to offline. For instance, compared to

conventional solvers, deep learning-based approaches have offered speed-ups by

factors as high as 200 for the so-termed direct current OPF (DC-OPF), and 35

for the AC-OPF [53, 38]. There are two main challenges central to learning for

OPF. First, traditional deep learning approaches are not amenable to enforcing

constraints even for the training set. Predictions for OPF minimizers may have

limited standalone value if the related constraints are violated. Second, power

systems undergo frequent topological and operational changes, while problem

parameters such as loads and renewable generation are oftentimes uncertain

and modeled as random processes.

To cope with the first challenge, a deep neural network (DNN) may be

engaged to better initialize existing numerical solvers [49]; or to predict active

constraints and hence, result in an OPF model with fewer constraints [20, 14,
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16]. Another group of approaches targets feasibility of the DNN predictions by

penalizing constraint violations and the related Karush–Kuhn–Tucker (KKT)

conditions [39, 38], or explicitly resorting to a Lagrangian dual scheme for

DNN training [19, 25, 48]. The third alternative involves post-processing DNN

predictions by projecting them using a power flow solver [39, 49]. Although

the projected point satisfies the power flow equations, it may still violate en-

gineering limits. Regarding the second challenge, sample efficiency could be

improved by judiciously selecting the DNN architecture upon leveraging prior

information. For example, by seeking an input-convex DNN when the underly-

ing input-output mapping is convex [51], or using DNNs that unroll an iterative

optimization algorithm [50], or adopting graph-based priors [37]. Finally, refer-

ences [52] and [46] have adopted penalty functions from reinforcement learning

to account for uncertainties while satisfying constraints.

This chapter reviews two learning-to-OPF methodologies that address the

aforementioned challenges in distinct and creative ways. The first methodology

falls under the OPF-then-Learn category and speeds up training by improving

data efficiency for deterministic OPF problems. The second methodology falls

under the OPF-and-Learn category and waives the need for generating labeled

OPF data for stochastic OPF problems. The two categories and our novel

methodologies are outlined next.

OPF-then-learn trains a DNN or other ML model to predict the OPF so-

lutions once presented with the OPF parameters at its input (Section 1.2).

OPF-then-learn typically involves two steps: s1) Generating a training dataset

by solving a large number of OPF instances, and s2) Training the DNN. Step

s2) iteratively updates the DNN weights to minimize the distance between the

DNN output and the OPF minimizer over all training examples. While s2)
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is standard in the general ML setup, step s1) of generating training data is

quite unique to the learning-to-optimize paradigm. Nonetheless, step s1) can

be time-consuming, especially when the DNN has to be trained afresh due to

changes in grid topology or loading statistics. To expedite s1), we have pro-

posed modifying s2) so that the DNN can learn the OPF mapping with fewer

training examples [41]. Along with the OPF minimizer, we exploit the fact

when an OPF instance is solved, one can also compute the sensitivity (that is

the partial derivatives) of the minimizer with respect to the problem param-

eters. Then, the DNN can be trained to match not only the OPF minimizer

but also its sensitivities to the problem parameters. This sensitivity-informed

approach can improve data efficiency by up to an order of magnitude, and

thus, reduce the computational cost of s1) at a modest increase in the time

needed for s2). This allows the DNN to be retrained faster under topological,

operational, or distributional shifts. As a byproduct of independent interest,

the chapter further explains how OPF sensitivities can be computed by simply

solving a set of linear equations. Our findings simplify prior technical condi-

tions on the existence of OPF sensitivities.

Our Learn-then-OPF approach has been applied to different OPF setups:

a) Dispatching DERs to minimize losses while respecting voltage constraints

under the linearized distribution flow (LDF) model in distribution grids [40].

b) Dispatching DERs to minimize losses while respecting voltage constraints

using an AC-OPF for radial grids posed as a second-order cone program

(SOCP) [27].

c) Dispatching generators to minimize the cost of generation while enforc-

ing network and generator limits under the exact AC power flow model
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in transmission systems [41]. OPF sensitivities were computed for dif-

ferent formulations of the AC-OPF, namely: i) a non-convex quadrati-

cally constrained quadratic program (QCQP); ii) semidefinite program-

ming (SDP) convex relaxation; and iii) the default formulation of MAT-

POWER.

Sensitivity-informed learning for OPF can be applied to other learning

models. To showcase this generality, we trained Gaussian Process (GP)-based

models to learn the OPF mapping under setup b). Interestingly, sensitivity

information can be neatly incorporated into GP-based learning [27]. Although

GPs may have less representation capabilities relative to DNNs, GP training is

simpler and GP predictions come with uncertainty quantification in the form

of confidence intervals. To elucidate the technical details of sensitivity com-

putation and its inclusion in DNN training, a quadratic programming (QP)

formulation for setup a) and a QCQP formulation for setup c) will be consid-

ered under Sections 1.2.1 and 1.2.2, respectively.

OPF-and-Learn. The second part of this chapter utilizes DNNs to tackle

OPF problems where grid conditions are only stochastically known (Section 1.3).

In such setups, the operator would like to find an optimal dispatch policy in-

stead of a single minimizer. A policy determines the setpoint for a generator

or DER once presented with the actual grid conditions experienced in real-

time. A policy can be encoded by a DNN to capture the mapping between grid

conditions and dispatch decisions as in the deterministic OPF setup discussed

earlier. Nonetheless, as grid conditions are not known a priori, the policy must

be optimal in a stochastic sense across all anticipated conditions. A policy can

be found by solving one OPF involving multiple loading scenarios. The cost

function is averaged over all scenarios, while constraints are enforced either
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on the average value or with high probability across all scenarios. We sug-

gest solving this scenario-based OPF using our OPF-and-Learn approach. The

DNN-based policy is learned not in two steps as in Learn-then-OPF, but in

a single step without the need of training OPF labels. The training process

updates the DNN weights not to fit training examples, but to minimize a La-

grangian function including the original OPF cost and constraint functions.

Primal and dual variables are updated on a per-scenario basis using stochastic

primal-dual updates. The OPF-and-Learn approach has been adopted under

various setups including a linearized and an AC-OPF for dispatching DERs in

distribution grids [25, 22], and an AC-OPF for dispatching generators in trans-

mission systems [21]. Interestingly, if the DNN is designed to have a particular

structure, the OPF-and-Learn can be adapted to optimally design Volt/VAR

control rules as pursued in [24, 23, 47]. Section 1.3 outlines the general princi-

ples of the OPF-and-Learn approach under the AC-OPF setup for dispatching

DERs in distribution grids.

1.2. Sensitivity-Informed Learning for OPF

Power system operators have to solve some rendition of the OPF to optimally

dispatch generators in transmission systems, or distributed energy resources

(DERs) in distribution grids. The OPF is an optimization problem that aims at

minimizing a cost function constrained by the engineering limitations imposed

by generation units and the power network and subject to power-flow physics.

The OPF has to be solved repeatedly every time the inputs or parameters to

the problem change. The use of the term parameter for inputs is motivated by

the parametric optimization literature which particularly focuses on settings
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where a given optimization problem needs to be solved for changing problem

inputs. The term parameter in this chapter shall not be confused with known

and fixed system quantities, such as generation limits or line impedances.

Such parameters of the OPF could be the load demand for active and

reactive power, or the available solar generation at every bus of the power

system. The OPF can be thus be interpreted as a parametric optimization

problem, and be abstracted as follows: Given a vector θ ∈ RP of problem

parameters, find an optimal dispatch x(θ) ∈ RN as the minimizer

x(θ) ∈ argmin
x

f(x;θ) (Pθ)

s.to h(x;θ) = 0 : λθ

g(x;θ) ≤ 0 : µθ

where functions f(x;θ), h(x;θ), and g(x;θ) are continuously differentiable

with respect to x and θ; and vectors (λθ,µθ) collect the optimal dual vari-

ables or Lagrange multipliers corresponding to the equality and inequality

constraints, respectively. The power system network topology is assumed to be

known and remains unchanged over time.

To save on running time and computational resources, rather than solving

(Pθ) for each θ, one can adopt a learning-to-optimize approach, according to

which a DNN (or other machine learning model) can be trained to predict

approximate solutions of (Pθ); see e.g., [42]. The DNN can be trained to output

a predictor x̂(θ;w) of x(θ) when presented with parameter vector θ at its

input. The DNN is parameterized by weights w, which can be selected upon

minimizing a suitable distance metric or loss function between xθ and x̂(θ;w)

over a training dataset.
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Given a DNN architecture, the typical approach for learning-to-optimize

entails two steps:

s1) Generate a labeled training dataset {θs,xs}Ss=1 by solving (Pθ) for S

representative scenarios parameterized by θs. Here we use the shorthand

notation xs := x(θs); and

s2) Learn DNN weights w by minimizing a data fitting loss over the training

dataset such as

min
w

S∑
s=1

∥xs − x̂s(w)∥22 . (1.1)

We use again the shorthand notation x̂s(w) := x̂(θs;w) for the DNN

output when the DNN is fed with input θs and parameterized by weights

w.

We refer to a DNN trained by solving (1.1) as a plain DNN or P-DNN for short.

The conventional P-DNN approach focuses merely on dataset {θs,xs}Ss=1, and

ignores any additional properties the mapping θ → x(θ) induced by problem

(Pθ) may have. Nonetheless, contrary to the typical ML setting, when learning

from OPF data, there is plenty of side information at the learner’s disposal,

e.g., functions (f,h,g) are known, solvers usually return optimal dual variables

along with the minimizer, and optimal primal/dual variables are known to

satisfy optimality conditions.

One way to leverage such rich structure when learning from OPF data is to

train the DNN to match not only the OPF minimizer x(θ), but also its sensi-

tivities (partial derivatives) with respect to θ. Sensitivity analysis of the OPF

can readily compute the Jacobian matrix ∇θx, i.e., the N ×P matrix carrying

the partial derivatives of x(θ) with respect to θ, assuming such sensitivities

exist. To introduce some notation, suppose we solve (Pθ) for parameters θs,
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and let (xs,λs,µs) denote the corresponding optimal primal/dual variables.

We also introduce the shorthand notation Js for the Jacobian matrix ∇θsxs;

the discussion on how to compute Js can be computed given (xs,λs,µs;θs) is

postponed for later. To incorporate sensitivity information, the key idea here

is to extend each training data pair (θs,xs) to (θs,xs,Js), and train the DNN

using a loss function augmented by an additional fitting term as

min
w

S∑
s=1

∥xs − x̂s(w)∥22 + ρ∥Js − Ĵs(w)∥2F (1.2)

where ρ > 0 is a scalar weight and ∥ · ∥F denotes the matrix Frobenius norm.

Matrix Ĵs(w) is the Jacobian of the DNN output x̂s with respect to its input

θs. We name the DNN trained as above a sensitivity-informed DNN (SI-DNN).

When dealing with DNNs, one typically deals with the Jacobian ∇wx̂ of

the DNN output with respect to DNN weights w, not with respect to its input

θ. Such Jacobian can be computed efficiently thanks to automatic differen-

tiation; a process known as gradient back-propagation in deep learning. The

Jacobian ∇wx̂ is used extensively while training the DNN, during which the

weights are updated via stochastic gradient descent-type of algorithms and the

sensitivities in ∇wx̂ are naturally needed. Interestingly enough, contemporary

deep learning libraries can compute ∇θx̂ equally efficiently. Therefore, as long

as {(xs,Js)}Ss=1 are provided in the dataset, deep learning packages can readily

handle (1.2); see Appendix A of [41] for implementation details.

Could sensitivity-informed learning have an edge over plain learning? To

provide some intuition, recall that the mapping x(θ) can be approximated by

its first-order Taylor’s series expansion around θ as

x(θ) ≃ x(θ0) +∇θ0x · (θ − θ0)
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granted again that ∇θ0x exists. This approximation becomes more accurate

for θ’s close to the linearization point θ0. The same reasoning holds for the

mapping x̂(θ) modeled by the DNN. Therefore, if the DNN is trained so that

it approximates both x(θ) and ∇θx for each θs, it learns the OPF map-

ping not only at that particular θs, but also in a neighborhood around it;

see also [41] for a stochastic interpretation. Obviously, if the learner has a

large number of points S in the training dataset, sensitivity information may

not be as useful since it involves inaccuracies due to linearization. Phrased

differently, sensitivity-informed learning is advantageous when training a DNN

using a relatively small dataset. Reference [1] provides an analytic study on how

and when sensitivity information can improve learning. Figure 1.1 extracted

from [41] provides a visual intuition on how sensitivity-informed learning can

outperform plain learning.

Returning to the discussion on solving (1.2), the process is similar to train-

ing a standard DNN with the difference that now the learner needs to precom-

pute the Jacobian matrices Js that enrich the training dataset. As promised,

these matrices can be found using sensitivity analysis of the OPF. We delineate

this using two representative instances of the OPF: i) A linearized or so-termed

DC OPF for a distribution grid yielding a quadratic program (Section 1.2.1);

and ii) An AC-OPF for a power transmission system yielding a non-convex

quadratically-constrained quadratic program (Section 1.2.2).

1.2.1. Learn-to-Optimize for DC-OPF

Several optimization tasks pertaining to power-system operations typically fea-

ture linearized versions of the power-flow equations in the constraints to contain
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computational complexity. Since the engineering limits are oftentimes linear or

can be reasonably linearized, the ensuing OPF formulations have a purely

linear set of constraints. The commonly encountered objective functions are

convex quadratics, if not linear. Such examples include net power loss, normed

voltage deviations, or generator cost curves. Thus, quadratic programs (QP)

can arguably be considered as the workhorse of OPF in practice.

1.2.1.1. QP-based OPF under a Linearized Grid Model

Suppose a system operator has to regularly solve the ensuing convex QP over

the resource vector x:

xθ := argmin
x

1
2x

⊤Ax− x⊤Bθ (1.3a)

s.to Cx ≤ Dθ + e : λθ. (1.3b)

While (A ≻ 0,B,C,D, e) are kept fixed for some time, parameter vector θ may

be varying frequently. Let (xθ,λθ) denote a pair of primal/dual solutions for a

particular θ. Problem (1.3) is a multiparametric QP (MPQP), whose solution

space features neat properties long exploited by the control community [44, 11,

8]. Among other domains, the properties of MPQPs have been utilized in vari-

ous power system applications, such as predicting prices [54, 29], and strategic

investment [28] in wholesale electricity markets; security-constrained economic

dispatch [33]; and hosting capacity analysis of distribution feeders [43].

The OPF application of interest here is dispatching inverters through an

approximate OPF that minimizes power losses subject to voltage constraints.

The approximation stems from using a linearized in lieu of the exact AC power

flow model to capture ohmic losses and voltages [40]. Vector x comprises the
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inverter setpoints for reactive power injection, while θ carries the loading con-

ditions (active and reactive loads, and active solar generation) across all buses.

Problem (1.3) can become infeasible for some values of θ. For example, it may

be impossible for the operator to maintain voltages within allowable limits un-

der high solar penetration. To handle infeasible instances, it is customary to

convert constraints from hard to soft. This is accomplished by adding a non-

negative slack variable on the right-hand side of inequality constraints, and

penalizing that variable heavily in the objective; see [43] for proper penalty

functions.

Since θ may change rapidly, an operator may not be able to solve (1.3)

exactly in real-time for multiple feeders hosting hundreds or thousands of buses

or inverters each. This motivates the need for a DNN to surrogate (1.3). As

it is advantageous to include sensitivity information into the training of this

DNN, we next delineate how to compute ∇θx for the QP-based OPF in (1.3).

1.2.1.2. Sensitivity Analysis of QP-OPF

Consider solving (1.3) for a particular θ. The corresponding optimal primal-

dual pair (xθ,λθ) should satisfy the Karush-Kuhn-Tucker (KKT) optimal-

ity conditions [9]. Among the inequality constraints of (1.3), those satisfied

with equality at the optimum are termed active or binding constraints. Let

(C̃, D̃, ẽ, λ̃θ) be the row partitions of (C,D, e,λθ) associated with active con-

straints. Likewise, let (C̄, D̄, ē, λ̄θ) denote the row partition related to inactive

or non-binding constraints. Leveraging complementarity slackness, the KKT

conditions can be expressed as [9]

Axθ + C̃⊤λ̃θ = Bθ (1.4a)
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C̃xθ = D̃θ + ẽ (1.4b)

C̄xθ < D̄θ + ē (1.4c)

λ̃θ > 0 (1.4d)

λ̄θ = 0. (1.4e)

For (1.4d) in particular, it is assumed that binding constraints relate to strictly

positive dual variables λ̃θ > 0. The reverse, that is having both the constraint

and the Lagrange multiplier, gives rise to degeneracy. Degenerate instances of

the OPF are unlikely to occur in practice when θ is drawn at random. If they

do occur, the OPF sensitivity for this specific θ can be ignored and the DNN

is trained only to match the OPF minimizer xθ.

If there are A active constraints, the equalities of (1.4a)–(1.4b) constitute

a system of (N + A) linear equations over the (N + A) unknowns (xθ, λ̃θ).

Since A ≻ 0, the Lagrangian optimality condition of (1.4a) yields

xθ = A−1(Bθ − C̃⊤λ̃θ). (1.5)

Substituting (1.5) into (1.4b) provides

Gλ̃θ = (C̃A−1B− D̃)θ − ẽ (1.6)

where G := C̃A−1C̃⊤. If matrix C̃ has linearly independent rows, then G ≻ 0,

and hence, (1.6) has a unique solution. Otherwise, there are infinitely many

λ̃θ’s satisfying (1.6) within a shift invariance on the nullspace null(C̃⊤) =

null(G).

For a general QP, the rows of C̃ are typically linearly independent, thus sat-

isfying the so-termed linear independence constraint qualification (LICQ) [9].
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Nevertheless, that is not the case for the inverter dispatch problem of (Pθ)

where instances of linearly dependent active constraints occur frequently; see [40,

41] for examples with LICQ failing for various renditions of the OPF.

Regardless of whether C̃ is full row-rank or not, the solution to (1.6) lies

in the polyhedron

Λ̃θ := {λ̃θ = G†(C̃A−1B− D̃)θ −G†ẽ+ u, C̃⊤u = 0} (1.7)

where G† denotes the pseudo-inverse of G = C̃A−1C̃⊤. Substituting λ̃θ back

in (1.5) and exploiting C̃⊤u = 0, we get

xθ = Jθθ +A−1C̃⊤G†ẽ. (1.8)

where the involved matrix is computed as

Jθ := A−1B−A−1C̃⊤G†(C̃A−1B− D̃). (1.9)

Although there may be infinitely many λ̃θ’s satisfying the KKT conditions, the

optimal primal solution of (1.3) is unique if it exists. This is not surprising since

(1.3) has a strictly convex objective. Moreover, the solution can be expressed

as an affine function of θ. Note that the parameters of this affine function

depend on the set of active constraints, and this is indicated by the subscript

θ on Jθ.

Given (1.7), because the triplet (θ,xθ, λ̃θ) should also satisfy conditions

(1.4d) and (1.4c), there exists a u ∈ null(C̃⊤) so that θ satisfies

G†(C̃A−1B−D)θ > G†ẽ− u (1.10a)
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(C̄Jθ − D̄)θ < ē− C̄A−1C̃⊤G†ẽ. (1.10b)

So far, we have characterized the solution to (1.3) for a particular θ. Since

we are interested in ∇θx, we ask the natural question whether (1.8) holds for

all θ′ within a vicinity of this specific θ. The answer to this question is in the

affirmative. To see this, fix u and perturb θ to get θ′ so it still satisfies (1.10).

Using θ′ in lieu of θ, construct xθ′ from (1.8), and λ̃θ′ from (1.6). In doing

so, we row-partition matrices assuming the same constraints are active as for

θ. This means we still use matrix Jθ. We also set λ̄θ′ = 0. The constructed

primal-dual pair (xθ′ ,λθ′) satisfies the KKT conditions of (1.3) for θ′, and

hence constitutes an optimal solution for this θ′. The aforesaid process can be

repeated for any θ′ in the vicinity of the original θ because (1.10) are strict

inequalities. In other words, formula (1.8) is valid for all θ′ around θ with

matrix Jθ remaining unaltered. Therefore, matrix Jθ is indeed the sensitivity

matrix ∇θx evaluated at this particular θ.

The latter reveals that the OPF mapping x(θ) is differentiable around

θ. In addition, its Jacobian matrix is provided in closed form using (1.9).

Calculating Jθ entails: i) Knowing the set of active constraints; ii) inverting

matrix A once; and iii) inverting matrix G. Although step iii) is executed once

per θ, the computation is lightweight since the number of active constraints

A should be smaller than N . In a nutshell, computing Jθ once problem (1.3)

has been solved for a particular θ, is much simpler than solving (1.3) per se.

Hence, computing sensitivities add insignificant complexity in the process of

constructing the labeled dataset (θ,xθ,Jθ).

Even though MPQP theory has been reviewed here for the sake of comput-

ing ∇θx, it is worth pointing out some additional features of MPQPs that may
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Figure 1.2: A modified IEEE 37-bus feeder showing additional solar generators.

not have been fully appreciated. To simplify the exposition, suppose C̃ has full

row-rank. The previous analysis reveals that the space of θ for which (1.3) is

feasible can be partitioned in polytopes defined by (1.10), which are termed

critical regions. A critical region C is defined by (1.10) (with u = 0 if C̃ is full

row-rank), and corresponds to a unique subset of linear inequality constraints

being active at optimality. Critically, for all θ ∈ C, the optimal primal/dual

solutions of (1.3) can be provided in closed form, and are in fact, affine func-

tions of θ as shown in (1.8) and (1.7) for u = 0, respectively. This property has

been exploited to provide computational speedups, algorithmic developments,

and probabilistic characterizations of MPQP solutions [54, 29, 33].

1.2.1.3. Numerical Tests on QP-OPF

Learning the solutions of the QP-based OPF was numerically evaluated using

a P-DNN and an SI-DNN. The numerical tests were on a modified version of

the IEEE 37-bus feeder hosting 5 DERs as shown in Fig. 1.2, using minute-

based solar generation and load data from the Pecan Street dataset; see [40]

for details. The optimal DER setpoints were obtained by solving (Pθ) using

YALMIP and Sedumi. In solving the 1,440 OPF instances, no constraints were
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Figure 1.3: Training and testing errors achieved by P-DNN and SI-DNN over

epochs in terms of MSE for hours 12 and 20.

active for 914 instances. Out of the remaining 526 instances, the LICQ was not

satisfied for 175 instances; thus necessitating the approach pursued here.

We compared the P-DNN and SI-DNN, both trained to predict the mini-

mizer of (Pθ). For the first set of tests, the DNNs were assumed to be trained on

an hourly basis. To evaluate the potential benefit of integrating sensitivity in-

formation, the architecture, optimizer, and training epochs were kept identical

for the two DNNs. The architecture was designed to optimize the performance

of the P-DNN. It consisted of three layers with 210, 210, and 350 neurons, re-

spectively, all with the rectified linear unit (ReLU) activation. The DNNs were

implemented using the TensorFlow library on Google Colab. For each hour, 4

OPF instances were used for training and 56 for testing using the mean square

error (MSE) ∥xs − x̂s∥22 on the predicted setpoints as a metric. To compare

P-DNN and SI-DNN under varying conditions, their training and testing errors

were evaluated over different hours of the day. Figure 1.3 some representative

results obtained during hours 12 and 20. The tests show that even when P-

DNN yields smaller training errors, SI-DNN offers an improvement in testing

error by one or two orders of magnitude.

We next compared P-DNN and SI-DNN in terms of learning OPF solutions
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Table 1.1: Average Test MSE [in 10−6 pu] and
training Time [in sec]
after 1,000 Epochs for 10–12 am (840 Min-based
Scenarios)

Training P-DNN SI-DNN

Scenarios MSE Time MSE Time

5% 1407.8 108.9 119.9 118.7

10% 520.2 77.1 72.9 79.7

20% 219.2 100.8 55.1 113.4

for a longer period of time and in terms of the time spent on their training.

Specifically, the two DNNs were trained to learn the OPF for an entire day.

The training dataset was constructed by sampling 5%, 10%, and 20% of the

one-minute data. To explicitly focus on periods of high variability, we excluded

the hours from midnight to 10 am from sampling. Table 1.1 summarizes the

MSEs obtained after 1,000 epochs and averaged over 100 Monte Carlo draws

of the training dataset. The table also reports the average training time for

1,000 epochs for the two methodologies. The runtimes on Google Colab often

vary with each session. Thus, these times can only be compared separately for

each training scenario; and not across scenarios. Evidently, SI-DNN training

time is increased only by 10% or less compared to the training time of P-DNN.

For example, the SI-DNN achieves an MSE of 119.9 · 10−6 pu using 5% of

the data, whereas the P-DNN achieves an MSE of 219.2 · 10−6 pu although

it has been trained by using 4 times more data (20%). The results establish

that the SI-DNN consistently outperforms the P-DNN without incurring any

significant increase in training time and has the ability to generalize using few

OPF instances.
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1.2.2. Learn-to-Optimize for AC-QCQP-OPF

The previous section demonstrated the advantages of sensitivity-informed train-

ing for learn-to-optimize tasks aimed at QPs motivated by the frequent en-

counter of QPs in power system optimization. However, we must acknowledge

that the AC power-flow equations are quadratic equalities which render the

originating AC-OPF formulations to be non-convex QCQPs. While the com-

putational complexity of solving the QCQPs restricts their usage in real-time

applications, they continue to be the first-principle benchmark of OPFs and

there has been a concerted effort in accelerating them [35, 34]. This section il-

lustrates how the sensitivity-informed approach could benefit learn-to-optimize

for AC-QCQP-OPF tasks.

1.2.2.1. AC-OPF QCQP formulation

Consider the following non-convex QCQP which is an abstract representation

of the classical AC-OPF for generator dispatch minimizing the cost of genera-

tion in transmission systems (see [41] for a detailed problem instance):

xθ := argmin
v,xg

a⊤0 xg (1.11a)

s.to v⊤Lℓv = a⊤ℓ xg + b⊤
ℓ θ, ℓ = 1 : L (1.11b)

v⊤Mmv ≤ d⊤
mθ + fm, m = 1 : M (1.11c)

where the real and imaginary components of bus voltages are stacked in v, the

generator (re)active power injections are stacked in xg, and so, the minimizer

xθ has the optimal values of v and xg stacked together. Further, cost coeffi-

cients are collected in a0, vectors (aℓ,bℓ,dm) are suitable indicator (canonical)

vectors that map generation, demands, and limits to the related buses, and
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constants fm relate to generation, voltage, and line limits. Thus, the first L

constraints in (1.11b) correspond to the AC power flow equations alongside

setting the angle reference, while constraints (1.11c) correspond to the M

inequality constraints representing limits on generator power injections, bus

voltages, and line power or current flows. Matrices (Lℓ,Mm) can be derived

from the AC power-flow equations as delineated in [41].

Aiming at computing the sensitivity of a minimizer xθ of (1.11) with re-

spect to θ, we explored the related literature. There has indeed been signif-

icant interest in computing the sensitivities of OPF minimizers with respect

to load [6, 3, 5]. However, the primary motivation for these works was to

efficiently compute minimizers and look into binding constraints for a given

trajectory of load variations. Hence the related OPF was parameterized using

a scalar, conveniently varied over a range of interest. Seeking to compute the

minimizer sensitivities with respect to vector θ in a relatively general setting,

we explored beyond the power systems literature. Fortunately, there exists a

rich corpus of work on perturbation analysis of continuous optimization prob-

lems with applications in operation research, economics, mechanics, and opti-

mal control [10]. The first approach applied the implicit function theorem to

the related first-order optimality conditions [18]. Thereon, many developments

have been made towards relaxing the assumptions of initial works and expand-

ing the scope to conic programs [15, 12, 10, 2]. For several recent applications,

however, the early approaches of [18] are well suited due to their simplicity; see

for example [7]. Building upon [18], we next compute the sensitivities required

for SI-DNN in Section 1.2.2.2; and relax some of the needed assumptions in

Section 1.2.2.3.
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1.2.2.2. Perturbing Optimal Primal/Dual Solutions

Sensitivity analysis for the QCQP of (1.11) builds on analyzing perturbations

in the related optimal primal/dual solutions. Let us denote the optimal dual

variables corresponding to (1.11b) and (1.11c) by λθ and µθ, respectively.

To keep the notation uncluttered, we will use (x,λ,µ) interchangeably with

(xθ,λθ,µθ), where the dependence on θ is implicit. Under mild technical as-

sumptions, a local primal/dual point for (1.11) satisfies the first-order opti-

mality conditions [15]. The goal of sensitivity analysis is to find infinitesimal

changes (dx, dλ, dµ), so that the perturbed point (x + dx,λ + dλ,µ + dµ)

still satisfies the first-order optimality conditions when the input parameters

change from θ to (θ+dθ) per [18]. To this end, we next review the optimality

conditions and then perturb them to compute the sought sensitivities.

The Lagrangian function of (1.11) is defined as

L(x,λ,µ;θ) := a⊤0 xg +
L∑

ℓ=1

λℓ

(
v⊤Lℓv − a⊤ℓ xg − b⊤

ℓ θ
)

+

M∑
m=1

µm

(
v⊤Mmv − d⊤

mθ − fm

)
.

With x := {v,xg}, Lagrangian optimality ∇xL = 0 gives

(
L∑

ℓ=1

λℓLℓ +
M∑

m=1

µmMm

)
︸ ︷︷ ︸

:=Z

v = 0. (1.12a)

a0 =

L∑
ℓ=1

λℓaℓ (1.12b)

In addition to Lagrangian optimality, first-order optimality conditions include

primal feasibility [cf. (1.11b)–(1.11c)], as well as complementary slackness and
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dual feasibility for all m:

µm

(
v⊤Mmv − d⊤

mθ − fm

)
︸ ︷︷ ︸

:=gm

= 0 (1.13a)

µm ≥ 0. (1.13b)

From the aforementioned optimality conditions, let us focus on those that take

the form of equalities, namely (1.12a)–(1.12b), (1.11b), and (1.13a). For these

conditions, we will compute their total differentials. From the first three, we

obtain

Zdv + Lλ dλ+Mµ dµ = 0 (1.14a)

A⊤ dλ = 0 (1.14b)

2L⊤
λ dv −A dxg −Bdθ = 0 (1.14c)

where Lλ :=
∑L

ℓ=1 Lℓve
⊤
ℓ and Mµ :=

∑M
m=1Mmve⊤m; note eℓ and em are the

ℓ-th and m-th canonical vectors of length L and M , respectively. Matrices A

and B stack the vectors {aℓ}Lℓ=1 and {bℓ}Lℓ=1 as rows.

For (1.13a), the total differential is

gm dµm + µm dgm = 0 (1.15)

where dgm := (∇vgm)⊤ dv + (∇θgm)⊤ dθ for all m. We identify three cases:

c1) If µm = 0 and gm < 0, then (1.15) implies dµm = 0. It follows that: i)

µm+dµm = 0; ii) (µm+dµm)(gm+dgm) = 0; and iii) gm+dgm < 0 for

an infinitesimally small magnitude dgm in any direction. In conclusion,

condition (1.15) ensures that the perturbed point satisfies conditions for
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optimality, including the inequalities from primal/dual feasibility.

c2) If µm > 0 and gm = 0, then (1.15) gives dgm = 0. It also follows that: i)

gm + dgm = 0; ii) (µm + dµm)(gm + dgm) = 0; and iii) µm + dµm > 0

for any small dµm. As in case c1), condition (1.15) ensures that the

perturbed point satisfies all conditions for optimality.

c3) If µm = gm = 0, then (1.15) is inconclusive on dgm and dµm. In this

degenerate case, for the perturbed point to remain optimal, we need to

explicitly impose: i) dgm ≤ 0; ii) dµm ≥ 0; and iii) dgm dµm = 0. Even

though the three latter constraints can be handled by the sensitivity anal-

ysis of [15, 12], they considerably complicate the treatment. Moreover,

such degeneracy is seldom encountered numerically. We henceforth rely

on the so called strict complementarity assumption, which ignores case

c3) [18].

Assumption 1: Given a tuple of optimal primal/dual variables (x,λ,µ),

constraint gm(x;θ) = 0 if and only if µm > 0.

Two observations are in order. First, the analysis under c1)–c2) reveals

that although we perturbed only the equality conditions for optimality, the ob-

tained perturbed point satisfies the inequality conditions for optimality as well.

Therefore, under Assumption 1, the point (x+ dx,λ+ dλ,µ+ dµ) satisfying

the perturbed optimality conditions is (locally) optimal for (1.11), when solved

for θ + dθ. Second, despite Assumption 1, if a degenerate instance of (1.11)

does occur for some θs in the training dataset, the particular pair (θs,xθs)

can still be used to train the SI-DNN, yet without the additional sensitivity

information. In other words, degenerate instances can contribute only to the
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first fitting term of (1.2).

Applying (1.15) for all m, the total derivatives for (1.13a) can be compactly

expressed as

D(g) dµ+ 2D(µ)M⊤
µ dv −D⊤ dθ = 0, (1.16)

where g := {gm}Mm=1 stacks the inequality constraint values, and matrix D :=∑M
m=1 µmdme⊤m. Operator D(x) returns a diagonal matrix with vector x on its

main diagonal. Conditions (1.14) and (1.16) can be collected in matrix-vector

form as



Z 0 Lλ Mµ

0 0 A⊤ 0

2L⊤
λ −A 0 0

2D(µ)M⊤
µ 0 0 D(g)


︸ ︷︷ ︸

:=S



dv

dxg

dλ

dµ


=



0

0

B

D⊤


︸ ︷︷ ︸

:=U

dθ (1.17)

To compute the sensitivities of primal and dual variables with respect to

the p-th entry θp of θ, we need to solve the system of linear equations (1.17)

for dθ = ep. The size of the system can be reduced by dropping the numerous

inactive inequality constraints of (1.11) for which µm = 0 and gm < 0, and

thus, dµm = 0, as discussed earlier under case c1). Notably, if matrix S is

invertible, the aforementioned sensitivities can all be found at once using the

respective blocks of S−1Uep. We next address two relevant questions: q1) When

is S invertible? ; and q2) What are the implications of a singular S?

1.2.2.3. Existence of Primal Sensitivities

To address q1) for an arbitrary optimization problem, say (Pθ), the existing

literature identifies some assumptions on (x,λ,µ;θ). We first review these as-
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sumptions and then assess if they are reasonable for the AC-OPF task at

hand. Given an optimal primal x for some θ, let A(x) denote the subset

of inequality constraints of g(x;θ) ≤ 0 that are active or binding, that is

A(x) := {m : gm(x;θ) = 0}. A primal solution x is termed regular if the next

assumption holds.

Assumption 2: The vectors {∇xhℓ}∀ℓ and {∇xgm}m∈A(x) are linearly inde-

pendent.

For the OPF in (1.11), the functions hℓ and gm correspond to the (in)equality

constraints (1.11b)–(1.11c) written in the standard form as in (Pθ). Let us in-

terpret Assumption 2 in the context of the DC-OPF instance (1.3). Since there

are no equality constraints in (1.3), Assumption 2 would imply linearly inde-

pendent rows of C̃, which encapsulates the active constraints. We introduced

the aforementioned requirement as linear independence constraint qualifica-

tion in Section 1.2.1. Thus, Assumption 2 is the formal general statement for

LICQ. If a (locally) optimal x satisfies the LICQ, the corresponding optimal

dual variables (λ,µ) are known to be unique [9]. In addition to satisfying first-

order optimality conditions, a sufficient condition for (x,λ,µ;θ) to be (locally)

optimal is often provided by the following second-order optimality condition.

Assumption 3: For a subspace orthogonal to the subspace spanned by the

gradients of active constraints

Z :=
{
z : z⊤∇xhℓ = 0 ∀ ℓ, z⊤∇xgm = 0 ∀ m ∈ A(x)

}

it holds that z⊤∇2
xxLz > 0 for all z ∈ Z \ {0}.
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Under the strict complementarity, regularity, and second-order optimal-

ity conditions, matrix S is guaranteed to be invertible; see Theorem 2.1 and

Corollary 2.1 of [18].

Lemma 1.1([18]): If Assumptions 1–3 hold, matrix S−1 exists.

Lemma 1.1 implies that under the stated assumptions, the optimal primal

and dual variables of (Pθ) vary smoothly with changes in parameter θ, and

the associated sensitivities can be found via (1.17). Prior works that compute

sensitivities of optimal primal and dual variables for scalar-parameterized OPF

instances rely on the non-singularity of S; see e.g., [6, 3].

While Assumptions 1–3 seem to be standard in the optimization literature,

we discussed in Section 1.2.1 that LICQ (Assumption 2) is violated frequently

for various renditions of the OPF [40]. Instances violating LICQ can be con-

ceived for the AC-OPF in (1.11) too [4, 26]. To bring up one such example,

consider a power system where a load bus m is connected to the rest of the

system through another bus n via a single transmission line (m,n). As bus

m is a load bus, it contributes two equality constraints in (1.11b), one each

for the active and reactive power balance at bus m. It can be shown that if

any of the three following scenarios occurs, LICQ fails: i) the limits on volt-

age magnitude, included in (1.11c) become binding (above or below) for both

buses m and n; ii) line (m,n) becomes congested, activating a branch current

flow limit in (1.11b) and a voltage limit at bus m becomes binding; or iii)

line (m,n) becomes congested and a voltage limit at bus n becomes binding.

Further detailed examples for AC-OPF instances violating LICQ can be found

in [4, 26]. Attempting to circumvent LICQ violation via problem reformula-

tions may be futile as their occurrences depend on θ, and are thus, hard to

28



analyze. However, before tackling the singularity of S due to LICQ violation,

we must answer question q2).

The implications of a singular S have previously been investigated in [15]

and [12]: When LICQ is violated despite strict complementarity, the sensitivi-

ties of some primal/dual variables may still exist with respect to a θp. In detail,

consider the set Γ := {γ : Sγ = Uep}, which is the solution set of (1.17). If the

n-th entry of γ remains constant for all γ ∈ Γ, the sensitivity of the n-th entry

of [x⊤ λ⊤ µ⊤]⊤ with respect to θp does exist; see [15] and [12] for physical in-

terpretation and illustrative examples. While a subset of optimal primal/dual

variables may be differentiable under LICQ violation, explicitly identifying the

differentiable quantities requires instance-based numerical evaluation in [15]

and [12]. Since for training an SI-DNN, we are interested only in the sensitiv-

ities ∇θx, we need to ensure that all solutions γ ∈ Γ share the same first N

entries (recall x ∈ RN ). This is equivalent to saying that the first N entries

of n are zero for all n ∈ null(S). The equivalence stems from the fact that

if Sγ̄ = u for a γ̄, any other solution to Sγ = u takes the form γ = γ̄ + n

for some n ∈ null(S). The next claim (see [41] for proof) provides sufficient

conditions for the first N entries of n to be zero.

Theorem 1.1: If Assumptions 1 and 3 hold, then ni = 0 for i = 1, . . . , N

for all n ∈ null(S).

Thanks to Theorem 1.1, we can proceed with computing ∇θx by solv-

ing (1.17) even if S is singular. In other words, Theorem 1.1 allows us to com-

pute ∇θx even if the LICQ (Assumption 2) fails. If S† is the pseudo-inverse

of S, the Jacobian matrix Jθ = ∇θx can be computed as the top N rows of

−S†U. The previous analysis has tacitly presumed the system Sγ = u has at
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least one solution for all u ∈ range(U). Numerical tests for different renditions

of AC-OPF have demonstrated that the system Sγ = u features a solution

indeed [27, 41].

As discussed earlier, we focus on training an SI-DNN for predicting gener-

ator voltage magnitudes and active power setpoints. Having solved (1.17) and

found the sensitivity of x with respect to θ, the sensitivity of active power

generation can be obtained readily using the corresponding entries of xg. The

sensitivity of voltage magnitudes can be derived from the sensitivities of the

real and imaginary components of voltages with respect to θ. Precisely, the

voltage magnitude at bus n is given by vn =
√

(vrn)
2 + (vin)

2 and its sensitivity

with respect to θℓ can be found through the chain rule

∂vn
∂θℓ

=
1

vn

(
vrn

∂vrn
∂θℓ

+ vin
∂vin
∂θℓ

)
.

Evaluating the above completes the requirements of sensitivities for augment-

ing the SI-DNN training set.

1.2.2.4. Numerical Tests on AC-QCQP-OPF

This section illustrates the performance of SI-DNN approach in predicting AC-

QCQP-OPF solutions for the IEEE 39-bus system. Further, elaborate empirical

performance evaluations and insights are included in [41]. The DNN input θ

consists of the (re)active power demands at load buses. The DNN output is the

setpoints for active power and voltage magnitude at all generators excluding

the slack bus. We collect these output quantities in x̌θ, a subvector of xθ.

Both for P-DNN and SI-DNN, we chose a feed-forward fully connected

architecture. The output layer uses tanh as its activation function (to explic-
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itly enforce generator voltage and power limits via scaling), while all other

layers use ReLU. We built all DNNs using the TensorFlow 2.0 python plat-

form alongside Keras libraries. For all tests, optimizer Adam was used with

an exponential decay reducing the rate to 85% every 250 epochs. The initial

learning rate will be reported later. DNNs were compiled using Jupyter Note-

book on a 2.7 GHz Intel Core i5 computer with 8 GB RAM. We first trained

DNNs towards predicting MATPOWER AC-OPF minimizers. We contrasted

SI-DNN with P-DNN in terms of the MSE and the related training times. With

the primary goal of improving sample efficiency, the numerical tests emphasize

performance evaluation for relatively small training datasets; see [41] for tests

with large training datasets.

The network parameters and nominal loads for the IEEE 39-bus system

were fetched from MATPOWER casefile [55]. A dataset {(θs,Jθs , x̌θs)}1000s=1

was created by randomly sampling 1000 instances of θ by scaling the bench-

mark demands entry-wise by a scalar drawn independently and uniformly

within [0.8, 1.2]. For the aforementioned sampling, all 1000 OPF instances were

solved using MATPOWER and were found to be feasible. Since the generator

cost functions are identical in the benchmark system, a uniform active power

cost was used for all generators. The default OPF formulation of MATPOWER

deviates from the QCQP in (1.11). These differences introduce some nuances

in building the linear system of (1.17) for computing sensitivities; see [41] for

details. Based on preliminary tests, identical architectures were chosen for P-

DNN and SI-DNN with 4 hidden layers each featuring 256 neurons.

The evaluation of DNNs was performed as follows. First, for a training

size of 10, we created 20 different training sets by sampling 10 OPF instances

from the dataset without replacement. For each of these 20 times or runs,
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the OPF instances not sampled for training consisted of the testing sets. We

then separately trained P-DNN and SI-DNN on these 20 sets. For the train-

ing sizes of (50, 100, 250), we had (20, 10, 4) runs, respectively. For training

sizes (10, 50, 100), the entire training set was used for gradient computation at

each step, with the total epochs being 5000. When the training size was 250,

the batch size was fixed to 100, and total epochs to 2000. The training and

testing MSE loss for all training sizes and runs are shown in Fig. 1.4 (top).

For the tests with training size 10, the evolution of DNN errors is shown in

Fig. 1.4 (bottom). The average test MSE and training times for the two DNNs

are shown in Table 1.2. From Fig. 1.4 (top), we observe as anticipated, that

for both DNNs, the gap between training and testing loss decreases for larger

training size. Further, the errors for different runs are well clustered, indicating

a numerically stable DNN implementation. From Table 1.2, it is fascinating to

note that the test loss attained by SI-DNN is much lower than P-DNN, espe-

cially at smaller training sets. For instance, the P-DNN requires 100 samples

to roughly attain the average test MSE which the SI-DNN attains with 10

samples. The lower MSE for P-DNN with training size 250 is a repercussion of

not updating ρ for varying training sizes, which was avoided for simplicity. It is

worth stressing that the improvement in sample efficiency comes at a modest

increase in training time.

1.2.3. Sensitivity Analysis with Convex Relax-

ation

Towards tractably solving AC-OPF without resorting to linearizations of the

power-flow constraints, there have been tremendous advancements in obtaining
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Figure 1.4: Average training and testing errors for different training sizes (top);

and errors across epochs for different runs with training size of 10 (bottom).

convex relaxations with exactness guarantees [34]. Among the prominent re-

laxations are semidefinite programming and second-order cone programs [32].

Sensitivity analysis for these conic programs, although possible, could be per-

plexing [2]. Interestingly, one can resort to SDP- or SOCP-based convex re-

laxations to solve (1.11) efficiently and then use the optimal primal and dual

variables of the relaxed problems to readily recover the corresponding optimal

primal/dual pair for the originating QCQP instance (1.11). As an implication,

the analysis approach of Section 1.2.2 can still be applied to obtain sensitivities

of relaxed problems; see [41] and [27] for further details on SDP and SOCP

relaxations, accordingly.
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Table 1.2: Average Test MSE [× 10−3]
and training Time [in sec] for predicting
MATPOWER solution on IEEE 39-bus
system

Training P-DNN SI-DNN

Size MSE Time MSE Time

10 8.6 738 3.3 746

50 4.3 739 2.1 756

100 3.2 747 2.0 776

250 1.9 302 2.0 332

1.3. Deep Learning for Stochastic OPF

The previous section presented what we term an OPF-then-Learn training

procedure, according to which the system operator has to solve S instances of

the OPF to generate a labeled dataset prior to training the DNN. Moreover,

the goal of that DNN was to learn the minimizer of a deterministic OPF.

Changing gears, this section puts forth an OPF-and-Learn training procedure,

wherein the DNN is trained by substituting the data-fitting cost of (1.1) or

(1.2) with the OPF cost and constraints, thus sparing the need for labeled OPF

data. The goal for this OPF-and-Learn training procedure is to train a DNN

to learn the optimal policy of a stochastic OPF, rather than the minimizer of

a deterministic OPF. Reference [17] addressed a similar task in the context of

wireless communications and trained a DNN to find near-optimal stochastic

policies in a wireless communication context. Here, we adopt that line of work

to the OPF context and extend it to chance-constrained formulations [22].

Let us consider a specific variant of the OPF in (Pθ). The task is for the

utility operator to coordinate DERs. As in (1.3), the operator would like to

find the reactive power setpoints for DERs by minimizing ohmic losses on

34



distribution lines while maintaining voltage magnitudes within allowable limits:

min
x∈Qθ

ℓ(x;θ) (1.18)

s.to v ≤ v(x;θ) ≤ v.

Vector v carries voltage magnitudes at all buses; we will henceforth refer to

voltage magnitudes as voltages unless stated otherwise. Functions ℓ(x;θ) and

v(x;θ) capture the dependence of losses and voltages on the reactive setpoints

of DERs x under grid conditions θ. DER setpoints are required to lie within fea-

sible set Qθ. Because it is oftentimes easy to project onto Qθ, those constraints

are left implicit. It is assumed that the feeder model and the participating in-

verters are known and remain fixed throughout the control period.

Solving (1.18) can be computationally and communication-wise taxing if

θ changes frequently. Moreover, parameters θ may not be precisely known

due to measurement noise and lack of state observability in distribution grids.

Moreover, by the time (Pθ) is solved and optimal setpoints are downloaded to

DERs, grid conditions θ may have changed rendering the computed setpoints

obsolete [30, 45]. To account for uncertainty in θ, the operator may resort to

a stochastic OPF formulation, such as

min
x∈Qθ

E[ℓ(x;θ)] (1.19)

s.to v ≤ E[v(x;θ)] ≤ v

where the expectation operator E applies over θ, treated as a random vector

here. We refer to (1.3) as the averaged formulation as it considers the average

losses and constraints. While the averaged formulation accounts for uncertain-

35



ties in θ, the obtained setpoints may violate voltage limits quite frequently.

This undesirable behavior results from the fact that constraining the average

value of a particular bus voltage E[vn(θ)] does not provide strong guarantees on

its per-instance values vn(θ). A more conservative approach is possible through

a probabilistic or chance-constrained formulation:

min
x∈Qθ

E[ℓ(x;θ)] (1.20a)

s.to Pr [vn ≤ vn(x;θ) ≤ vn] ≥ 1− α, ∀n (1.20b)

where constraint (1.20b) ensures each bus voltage remains within limits with

probability at least 1 − α. Here α ∈ (0, 1) is a small violation probability. In

contrast to (1.3), the formulation in (1.20) focuses on restricting the frequency

of voltage violations. Heed that both (1.3) and (1.20) yield one-size-fits-all

solution in the sense that they seek a single vector of DER setpoints x to

be applied under all grid conditions θ drawn from a probability distribution

function (PDF).

A more flexible approach would be to replace x in (1.19) or (1.20) with

a policy x(θ) that adapts to the θ experienced each time. How does a policy

differ from the OPF mapping learned under Section 1.2? The OPF mapping

stems from a deterministic OPF, whereas the policy is designed to solve a

stochastic OPF. Although they both take θ as input and output DER setpoints,

the setpoints computed by the policy aim at minimizing the average losses

and satisfying voltage constraints on the average or in probability. In other

words, a control policy accounts for uncertainties in θ and focuses on the

expected performance of the grid. This resonates well with industry standards

that typically constrain voltages and powers in terms of time-averaged rather
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than instantaneous values. The policy can be computed once, centrally by

the operator, and executed by DERs in a decentralized manner in real time.

Furthermore, the policy could be designed to be driven by purely local data.

For example, the setpoint xn for inverter n may depend solely on a subvector

of θ, collected locally at bus n.

Similar to reinforcement learning, the control policy x(θ) can be modeled

as a DNN. If the DNN is parameterized by a weight vector w, let us denote

the control policy as x(θ;w). The sought DNN weights can be found via a

stochastic OPF to be presented later in Section 1.3.2, after a quick detour to

discuss chance constraints in Section 1.3.1.

1.3.1. Chance Constraints

Before delving into the details of finding a stochastic OPF policy, let us refor-

mulate the chance constraint in (1.20b). The chance constraint for each bus

can be first converted from a double-sided to a single-sided constraint. For

example, enforcing vn ≤ vn ≤ vn for vn = 0.97 and vn = 1.03 per unit (pu),

can be expressed as (vn − 1)2 ≤ 0.032, or 0.032 − (vn − 1)2 ≥ 0. Therefore, the

violation probability can be upper bounded as:

Pr
[
(vn − 1)2 ≥ 0.032

]
≤ α, ∀n.

The probability appearing on the previous constraint can be expressed in a

different way using the expectation operator and the unit step function de-

noted by u(·). In general, if θ is any random vector and x is a variable, it is

easy to verify that Pr [fθ(x) ≥ 0] = E [u(fθ(x))]. Therefore, the voltage chance
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constraint per bus can be equivalently expressed as

E
[
u
(
(vn − 1)2 − 0.032

)]
≤ α.

Nonetheless, the step function u(x) is discontinuous at x = 0 and has zero

gradients elsewhere. Hence, it is not a convenient option for gradient-based

solvers. Standard literature on chance-constrained programs surrogates the

step function with a parameterized convex approximation [36]. If r(z) = [z]+ =

max{0, z} denotes the unit ramp function, we get that

u(z) ≤ r
(z
t
+ 1
)
, for all z and t > 0.

The inequality can be easily verified by examining the two cases of negative

and non-negative z. Therefore, enforcing

r
(z
t
+ 1
)
≤ α or r(z + t) ≤ αt for some t > 0

ensures u(x) ≤ α. Consequently, the chance constraint of (1.20) can be inner

approximated by constraint

E
[
r
(
(vn − 1)2 − 0.032 + t

)]
≤ αt (1.21)

for some t. If the argument of the ramp function in (1.21) is a convex function

with respect to optimization variable x, then (1.21) is a convex constraint

in both x and t. Moreover, it is an inner approximation or restriction of the

original non-convex chance constraint. Being an inner approximation means

that solving (1.20) with constraint (1.20b) replaced by (1.21) would find a safe

policy, i.e., a policy that definitely satisfies (1.20b).
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Nevertheless, when optimizing over DNN weights, convexity is lost and

the benefit of inner approximation may be overshadowed by yielding over-

conservative designs. To overcome such conservatism, the step function can be

approximated by the (mirrored) logistic function. The logistic function and its

derivative are [21]:

σ(x) :=
1

1 + e−x/γ
and

dσ

dx
=

1

γ
σ(x) · (1− σ(x))

with parameter γ > 0 controlling the approximation accuracy. Using the logis-

tic function, chance constraints can be approximated as [47]

E
[
σ
(
(vn − 1)2 − 0.032

)]
≤ α. (1.22)

1.3.2. DNN Training via a Stochastic OPF

Having presented different ways to deal with average and chance constraints,

we next proceed on how to train the DNN so it learns a near-optimal stochastic

OPF policy. This can be accomplished by solving the ensuing stochastic OPF

over DNN weights w:

min
w:x(θ;w)∈Qθ

E[ℓ(x(θ;w),θ)] (1.23)

s.to E[g(x(θ;w),θ)] ≤ 0.

Here the vector mapping g(x(θ;w),θ) abstracts the average or chance con-

straints, with the latter being approximated by the ramp or the sigmoid func-

tion. Note that cost and constraint functions depend on the policy x(θ;w)

as well as grid conditions θ. The policy itself depends on θ too, and also on
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weights w.

Solving (1.23) is challenging because of the expectation in the objective and

constraints. Computing the needed expectations requires knowing the PDF

of θ. Even if this PDF is known, computing the expectations is still non-

trivial granted the policies x(θ;w) are non-linear in θ. These complications

promulgate a stochastic approximation approach towards solving (1.23). In the

conventional ML setup, DNN weights are found by solving (1.1) via stochastic

gradient descent-type algorithms. To accommodate constraints that depend

on data such as those in (1.23), we adopt the stochastic primal/dual updates

of [17] as presented next.

Consider the Lagrangian function of the problem in (1.23)

L(w;λ) := E[ℓ(x(θ;w),θ)] + λ⊤E[g(x(θ;w),θ)] (1.24)

where λ is the vector of Lagrange multipliers corresponding to the constraints

in (1.23). A stationary point for the related dual problem

D∗ := max
λ≥0

min
w:x(θ;w)∈Qθ

L(w;λ) (1.25)

can be obtained iteratively using the primal/dual updates indexed by k:

wk+1 :=
[
wk − µw∇wL(w

k;λk)
]
Qθ

(1.26a)

λk+1 :=
[
λk + µλ∇λL(w

k;λk)
]
+

(1.26b)

where µw and µλ are positive step sizes. Here primal variables are updated

through projected gradient descent steps on the Lagrangian function. Dual

variables are updated through projected gradient ascent steps on the La-
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grangian function. The operator [x]+ = max{x, 0} is applied entry-wise and

ensures λ ≥ 0 at all times. Note that the gradient ∇λL(w;λ) in the dual

variable update (1.26b) can be substituted as

∇λL(w;λ) = E[g(x(θ;w),θ)].

The operator [·]Qθ
projects wk+1 such that x(θ;wk+1) ∈ Qθ for all θ. In

general, this is not hard to implement. The implementation varies with the

particular form of the feasible set Qθ. For example, if Qθ consists of box

constraints on individual entries of x, it can be readily enforced using the

hyperbolic tangent (tanh) as the output activation function.

Adopting a stochastic approximation approach, the expectation operators

in (1.24) are first replaced by sample averages computed over a set of S scenar-

ios {θs}Ss=1. Scenarios θs will be interchangeably termed training data or grid

condition scenarios. The average ohmic losses for example can be approximated

as

E[ℓ(x(θ;w),θ)] ≃ 1

S

S∑
s=1

ℓ(x(θs;w),θs).

Even with this sample approximation, computing the gradients needed in (1.26)

remains computationally expensive as one needs to compute gradients for each

one of the S training examples. Fortunately, stochastic approximation allevi-

ates this burden by approximating the gradients needed in (1.26) using a single

scenario s per iteration k. In other words, gradients are approximated as

E[∇wℓ(x(θ;w
k),θ)] ≃ ∇wℓ(x(θs;w

k),θs). (1.27)

Therefore, at iteration k, stochastic approximation selects a scenario s to com-
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Figure 1.5: Workflow for the training and testing (operation) phases of the

proposed DNN-based DER control strategy.

pute all gradients needed in (1.26). Scenarios can be selected at random or

sequentially. Either way, since each iteration k ends up using only a single

scenario s, we will henceforth use the symbol k to index both iterations and

scenarios. Mini-batch versions of stochastic approximation do exist that use B

with 1 < B < S scenarios per iteration.

Thanks to the single-scenario stochastic approximation, the gradients in

(1.26) can be surrogated as [22, 25]

wk+1 := wk − µw

(
∇wℓ

k +
(
∇wg

k
)⊤

λk
)

(1.28a)

λk+1 :=
[
λk + µλg(x(θ

k);wk),θk)
]
+

(1.28b)

where the shorthand notation ∇wℓ
k denotes the gradient of ℓ and ∇wg

k the

Jacobian matrix of g, both with respect to w and both evaluated at (wk,θk).

The notation θk denotes the scenario θs selected at iteration k.

What are the practical steps to implement (1.28)? First, feed grid condi-

tion scenario vector θk into the DNN parameterized with weights wk. The
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DNN outputs the DER setpoints x(θk). These could be the reactive power

injections by DERs. Given θk (remaining of power injections) and x(θk), com-

pute the complex voltages at all buses using a power flow (PF) solver. Know-

ing the complex bus voltages, compute bus voltage magnitudes and evalu-

ate the mapping g(x(θk);wk),θk) appearing in (1.28b). The n-th entry of g

could be vn − v̄n or vn − vn, if dealing with the average formulation of (1.3).

If dealing with the probabilistic formulation of (1.20), one could use either

the ramp or the sigmoid approximation. For the ramp approximation, use

gn =
[
(vn − 1)2 − 0.032 + t

]
+
− αt, where t is the auxiliary optimization vari-

able. For the sigmoid approximation, use gn = σ
(
(vn − 1)2 − 0.032

)
−α. When

using the ramp approximation, the stochastic OPF has variable t as an ad-

ditional auxiliary primal variable, which can be updated using a stochastic

gradient descent step similar to (1.28a). To complete the primal update step

of (1.28a), we also need to compute the gradients of losses ℓ and constraint

functions g with respect to the DNN weights. The constraints are functions

(linear, ramp, or sigmoid) of voltage magnitudes at all buses, and thus, to com-

pute ∇wg, it suffices to compute ∇wv. Figure 1.5 summarizes the workflow

for the training and testing (operational) phases for both formulations, while

the next section describes how to compute the needed gradients.

1.3.3. Gradient Computations

We next explain how to compute the gradient vector ∇wℓ and the Jacobian

matrix ∇wv needed in (1.28a). We commence with ∇wv. Recall that vector

v ∈ RN collects the voltage magnitudes at all N buses of a distribution grid

(excluding the substation bus), and that the DNN output x(θ;w) corresponds
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to a component of reactive power injections at a subset of buses. To keep the

notation uncluttered, we can substitute x = q. Let vector u ∈ R2N carry the

real and imaginary parts of complex voltages at all N buses, excluding again

the substation bus. Using the chain rule of differentiation, the sought Jacobian

matrix can be expressed as the product of Jacobian matrices:

∇wv = ∇qv · ∇wq. (1.29)

The second matrix ∇wq is the Jacobian of the DNN output with respect to its

weights, and can be readily computed using gradient back-propagation using

standard deep-learning libraries. Focusing on the first matrix ∇qv, we can

apply the chain rule yet one more time to get:

∇qv = ∇uv · ∇qu. (1.30)

Matrix∇uv can be easily computed and is block diagonal. The non-zero entries

are the partial derivatives of voltage magnitude vn with respect to the real and

imaginary parts of the complex voltage at bus n.

Matrix ∇qu cannot be computed directly because there is no analytic

expression of voltage magnitudes as functions of (reactive) power injections.

We bypass this predicament by leveraging the inverse function theorem. Let

s ∈ R2N carry the active and reactive power injections at all buses, modulo

the substation. Despite the opposite, power injections s can be expressed an-

alytically in terms of complex voltages u through the power flow equations.

Therefore, the Jacobian ∇us can be computed upon differentiating the power

flow equations with respect to u. Since u(s) is the inverse function of s(u), the
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inverse function theorem dictates that

∇su = (∇us)
−1 (1.31)

if the inverse exists. Matrix ∇qu is a submatrix of ∇su.

Evaluating ∇us requires knowing u, which means that we first need to

solve the power flow equations for a particular θk and reactive injections by

DERs x(θk;wk), to compute the corresponding complex voltages. Note that

the expression for ∇us involves also the substation voltage. Nonetheless, the

substation voltage is held at a constant and known value, and we do not dif-

ferentiate over it.

The gradient ∇wℓ of losses with respect to DNN weights can be computed

similarly as

(∇wℓ)
⊤ = (∇qℓ)

⊤ · ∇wq. (1.32)

Losses can be expressed as the summation of the active powers injected at all

buses, including the substation. Because active power injections are quadratic

functions of complex voltages (including the fixed voltage at the substation),

we can easily compute ∇uℓ. We can subsequently compute

(∇qℓ)
⊤ = (∇uℓ)

⊤ · ∇qu (1.33)

with the latter Jacobian computed as explained earlier.

1.3.4. Control Policies using Proxies

Ideally, the control policy is driven by the vector of grid conditions θ. Nev-

ertheless, during real-time operation, the operator controlling the DERs may
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not be able to observe the complete data θ. Instead, it may have to act upon

a proxy ϕ of the actual θ. The DER control policy driven by ϕ can then be

found by solving the constrained stochastic minimization

min
w:x(ϕ;w)∈Qθ

E[ℓ(x(ϕ;w),θ)] (1.34)

s.to E[g(x(ϕ;w),θ)] ≤ 0.

The DER control policies found through (1.34) are adaptive to the proxy vector

ϕ and the optimization is over the parameters w. The notation ℓ(x(ϕ;w),θ)

captures the fact that the control policy is fed by proxy ϕ to determine q, but

of course, ohmic losses depend on the actual grid conditions θ.

The proxy vector ϕ can be chosen to represent the operational setup for

which the control policies are being designed. In the absence of real-time mea-

surements from all buses, and/or to save on communication overhead, vector ϕ

can consist of active line flows from distribution lines [25]. Meteorological data

such as solar irradiance and ambient temperature, which serve as surrogates

for p, can also be included in ϕ. One can also explore convolutional neural

networks (CNNs)-based policies that accept sky images in place of solar irra-

diance measurements as inputs to be included in ϕ. Similarly, the proxy vector

ϕ can also represent partial, delayed, or noisy data on the grid conditions or

even aggregate versions of them. While training the DNN, the operator uses

both actual and proxy data. In other words, the training dataset consists of

the pairs {θs,ϕs}Ss=1: Proxy data are used as inputs to the DNN, while actual

data will be used to solve the power flow equations and evaluate the effect of

DNN-based policies on grid losses and voltages. During operation, the DNN is

fed by proxy data.
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Figure 1.6: The IEEE 37-bus feeder used for the numerical tests. Node numbering

follows the format node number {panel ID}. The inverters at nodes

{12, 20, 22, 24, 25} provide reactive power control, whereas the rest operate at unit

power factor.

1.3.5. Numerical Tests

The proposed DNN-based control strategy was evaluated using a single-phase

version of the IEEE 37-bus feeder. Real-world one-minute active load and solar

generation data were extracted for April 2, 2011 from the Smart* project [13],

and pre-processed as described in [22]. All tests were conducted on a 2.4 GHz

8-Core Intel Core i9 processor laptop computer with 64 GB RAM. Simulation

scripts were written in Python and TensorFlow libraries to implement and

train the DNNs. For the tests presented, four-layered fully connected DNNs

were employed. The grid conditions vector θ := [pg; pc; qc] were fed as inputs

to the DNNs. Therefore, the input layers were chosen to have 3N neurons.

The two subsequent hidden layers were fixed to having 3N and 2N neurons,

respectively. Finally, the output layers had 5 neurons corresponding to the 5
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inverters. All but the final layers of the DNNs employed the ReLU (rectified

linear unit) activation with the final layers using a scaled tanh activation to

ensure the inverter limits qg ∈ Qt. The weights for the DNN layers were

initialized from a Gaussian distribution with zero mean and a unit standard

deviation. The biases for the DNN layers, the dual variables, and the auxiliary

variables were all initialized at zero.

The DNN was fed with the complete θ obtained from measurements col-

lected at all buses. DNN weights were updated using the DNN optimization

algorithm Adam with a learning rate of 0.001. Dual variables were updated

using SGD with a learning rate of 10 that decayed with the square root of

the iteration index [31]. The model was then trained for 15 epochs over the

training scenarios.

To demonstrate the efficacy of the proposed approach, the results are com-

pared against a no-compensation scenario (DERs provide no reactive power

support), and a deterministic optimal approach that solves the problem in

(1.18) on per-minute minute. Fig. 1.7 compares the average losses and bus

voltages under the three scenarios over the training set and during the high

solar period of 12–4 pm. Without any reactive power compensation, buses

{18, 19, 20, 21, 22, 33, 34} experience over-voltages. The proposed DNN-based

approach behaves as expected by lowering the average voltages at these buses

down to the acceptable range. The deterministic optimal approach also achieves

the same objective but by bringing all instantaneous voltages to the desired

range whenever feasible. Note that both the DNN-based approach and the de-

terministic OPF incur higher losses when compared to the no-compensation

scenario. This is a result of the increase in the magnitude of line currents on ac-

count of reactive power withdrawals. Since the deterministic optimal approach
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Figure 1.7: Evaluation using training data. Top: Time-averaged losses during the

12–4 pm training interval attained by the deterministic optimal control strategy of

(Pθ); the proposed DNN-based inverter control; and no reactive power compensation

by inverters. Bottom: Box plots showing the first and third quantiles of the voltage

deviations experienced across buses under the three control strategies. Due to high

solar generation, the feeder experiences lower ohmic losses at the expense of severe

over-voltages if there is no reactive power control by inverters. The deterministic

optimal inverter control strategy regulates voltages by absorbing reactive power,

which increases line currents and consequently losses. The proposed strategy

achieves lower average losses over deterministic optimal inverter control as voltages

are not constrained within ±3% at all times.

focuses on instantaneous voltage values rather than their averages, it incurs

higher losses when compared to the DNN-based approach. The trained DNN

was then evaluated over unseen scenarios of the testing set. As can be seen

in Fig. 1.8, the proposed approach performed remarkably well in maintaining

voltages within limits and lowering average losses over the testing set.

The bottom panels of Figs. 1.7 and 1.8 demonstrate that although volt-

ages remain within limits on the average, instantaneous voltages can deviate

widely. To remedy this, we also tested the probabilistic formulation upon ap-
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Figure 1.8: Results for averaged formulation over testing data during the interval

12–4 pm: Average losses under the deterministic optimal strategy, the proposed

DNN-based approach; and no reactive power compensation are depicted on the top

panel. Voltage deviations across buses under the three strategies are shown at the

bottom panel.

proximating the step function appearing in the chance constraint using the

ramp function. The experiments were conducted for the same time period of

12–4 pm, and for three different values of α = {0.7, 0.5, 0.3}. The radar plots for

the resulting sample probabilities of voltage violations are shown in Fig. 1.9. As

desired, when compared to the averaged formulation, the occurrences of volt-

age violations under the probabilistic formulation were found to be drastically

less for lower values of α. Since the calculated sample probabilities came out

to be less than the selected α, the results in Fig. 1.9 confirm the conservative

nature, being an inner approximation of the actual chance constraints. Approx-

imating the step function of the chance constraint using a sigmoid function can

alleviate such conservatism [21].
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Figure 1.9: Results for probabilistic formulations for the 12–4 pm window. Voltage

profiles for different values of α = {0.7, 0.5, 0.3} are depicted. Angular markings

correspond to bus numbers whereas radial markings are sampled probabilities of

voltage limits violation.

1.4. Conclusions

To conclude, this chapter has presented two novel ways for deep learning to

expedite OPF tasks under deterministic and stochastic environments. Such so-

lutions align well with the need to offload some of the heavy computational load

from real-time to offline, and thus enhance scalability, safety, and efficiency of

power-system operation. The OPF-then-Learn methodology has exploited the

partial derivatives of OPF solutions to train a DNN using fewer data sam-

ples. Incorporating sensitivity information into a DNN inadvertently improves

feasibility and enables retraining a DNN to cater to topological, operational,

or distributional changes in the OPF. The OPF-and-Learn methodology has

demonstrated how a DNN can be trained to output optimal policies that solve

a stochastic OPF and satisfy network constraints on average or in probability.

The two methodologies are quite general as they cover linearized and exact

AC renditions of the OPF, for power transmission and distribution networks

alike. The methodologies can be creatively combined with other ideas, such as

graph neural networks or input-convex DNNs.
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