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Abstract—Recovering the distribution grid topology in real
time is essential to perform several distribution system operator
(DSO) functions. DSOs often do not have any direct monitoring
of switch statuses to track reconfiguration. At the same time,
installing real-time meters at a large number of buses is chal-
lenging due to the cost of endowing every metered bus with a
real-time communication channel. The goal of this paper is to
develop a meter placement strategy allowing DSOs to deploy
only few real-time meters. After casting the topology recovery
task as an optimization problem, a meter placement strategy
ensuring unique recovery of the true topology is devised. A
graph-theoretical approach is pursued to partition the grid into
connected portions called observable islands. The proposed strat-
egy then simply requires installing a meter in the path between
every pair of boundary nodes, i.e., ends of edges connecting two
different islands. Under some ideal assumptions, this placement
strategy ensures unique recovery of the topology. The approach
is also validated through numerical simulations under realistic
scenarios using a standard IEEE benchmark feeder.

Index Terms—Energy systems; identification; smart grid.

I. INTRODUCTION

D ISTRIBUTION grid topology identification has become
a timely research topic. On one hand, the massive de-

ployment of distributed resources challenges the operation of
distribution networks calling for the development of advanced
control, optimization, and monitoring solutions [1]. These
tasks cannot be performed without knowing the grid topology.
On the other hand, the knowledge of the network topology is
fundamental during grid restoration after a disruptive event [2].

Prior work on unveiling feeder topologies builds on second-
order statistics of grid data; see, e.g., [3]. Graphical models
have been used to fit a spanning tree relying on the mutual
information of voltage data [4]. Tree recovery methods oper-
ating in both a bottom-up and a top-down fashion have been
devised in [5], [6], [7]. In [8], topology recovery has been
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cast as a maximum likelihood problem. Although topology
identification has been considered for power transmission
systems [9], [10], exploiting the radial nature of distribution
grids can simplify topology detection schemes.

Smart meters transmit data to DSOs periodically on a 15-
or 60-min basis, a reporting mode that might be insufficient
to detect grid reconfigurations in a timely manner. There-
fore, real-time data are necessary to identify the actual grid
topology. Unfortunately, distribution grids have limited real-
time metering infrastructure, due to the high cost of endowing
every bus with real-time metering and of establishing a reliable
real-time communication link between metered buses and the
utility. Hence, it is crucial to devise allocation strategies of
real-time meters that enable the DSOs to recover the grid
topology exploiting the least number of sensors.

Typically, DSOs know the underlying physical structure,
i.e., lines connecting buses and their parameters [6], [8], [11].
However, beside fixed lines that are always energized, there
are switching lines, also termed switches, that, depending if
they are energized or not, set the actual grid topology. In this
letter, we consider the problem of identifying the energized
lines based on limited real-time information and some sta-
tistical properties of the grid. First, we cast the problem as
an optimization problem aiming at identifying the status of
switching lines and consequently at recovering the network
topology. Second, we propose a sensor placement strategy
that guarantees, under some commonly adopted assumptions,
that the status of switches can be uniquely recovered. The
developed strategy uses the second-order statistics built over
historical power data to extract all the information needed to
recover the grid topology. Finally, the meter placement strategy
is tested numerically on an IEEE benchmark feeder.

II. MODELING PRELIMINARIES

A. Electric Grid Modeling

A radial single-phase distribution grid having N + 1 buses
can be modeled by a graph G = (V+,L). Nodes in the set
V+ correspond to buses, and edges in L to distribution lines.
Index the substation by 0, and collect the remaining N buses
in set V , so that V+ = V ∪ {0}. Define vn and pn + jqn as
the voltage magnitude (henceforth voltage) and complex power
injected at bus n. Collect the voltages and the power injections
observed at V in vectors (v,p,q). From the L := |L| edges,
the subset S ⊆ L of cardinality S := |S| corresponds to
switches, i.e., lines that can be switched on/off. Let r` + jx`
be the impedance of line ` ∈ L, and stack all impedances in
r + jx. The line infrastructure of the grid can be captured by



the branch-bus incidence matrix Ã ∈ {0,±1}L×N . Matrix Ã
can be partitioned as Ã = [a0 A], with a0 being the column
associated with the substation. Distribution networks usually
operate in a radial fashion. The operational topology of the
grid is determined by the switches in S. Let ws be a binary
variable capturing the status of switch s, and collect all ws’s
in vector w. Denote as R the set of admissible configurations,
that is the values of w yielding radial and connected networks.

Voltage magnitudes are nonlinearly related to power injec-
tions. Yet, we adopt a grid model derived upon linearizing the
power flow equations (see [8], [3], or [12])

v = R(w)p + X(w)q + 1. (1)

where R(w) and X(w) ∈ RN×N are defined as

R−1(w) :=
∑
`∈S

w`
r`

a`a
>
` +

∑
`∈L\S

1

r`
a`a
>
` (2a)

X−1(w) :=
∑
`∈S

w`
x`

a`a
>
` +

∑
`∈L\S

1

x`
a`a
>
` (2b)

and a>` is the `-th row of A. The first (second) summations
in the RHS of (2) capture the contribution of switches (lines).
The inverses exist for all w ∈ R; see [13].

Let O ⊆ V with O := |O|, be the set of buses metered
in real time, or simply metered buses. For these buses, the
DSO collects voltage and power readings in real time. The
remaining buses comprise the set of non real-time metered
buses, or simply non-metered buses, N := V\O. Non-metered
buses periodically send packets of smart meter data hourly or
three times a day [14]. Because multiple topology changes
might occur within the same day, real-time data are necessary
to detect the current grid configuration in a timely fashion.
Without loss of generality, let us partition nodal variables by
grouping together metered and non-metered buses as

v> = [v>O v>N ]; p> = [p>O p>N ]; q> = [q>O q>N ]

where the subscripts O and N identify the subset of vector
entries corresponding to the two sets of buses. Matrix R(w)
(similarly X(w) too) can be partitioned conformably as

R(w) =

[
ROO(w) RON (w)
RNO(w) RNN (w)

]
=

[
RO(w)
RN (w)

]
(3)

Let SO ∈ {0, 1}O×N be the selection matrix obtained from
IN by keeping only the rows corresponding to O. Based on
this selection matrix, we can compactly express the subvector
vO = SOv, and the matrix blocks ROO(w) = SOR(w)S>O
and RO(w) = SOR(w). Likewise for XOO and XO.

B. Graphs and Distribution Grids

Let G(w) = (V, E(w)) be the undirected graph representing
the energized topology associated with the edge statuses w. A
path in a tree graph is the unique sequence of edges connecting
two nodes. The set of nodes adjacent to the edges forming the
path between nodes n and m is denoted by Pn,m(w). The
ancestors of node m are defined as the nodes belonging to
Am(w) := P0,m(w). A node m is a descendant of node n
if n ∈ Am(w). The descendants of node m are collected in

m0

N 3
m

N 2
m

N 1
m

α
2
m

α
1
m

n

α
3
m

N 4
m

= Dm

m0

M2
m

M1
m

Am

M3
m

s

Fig. 1. The left panel shows the ancestor Am and descendant Dm sets for
node m. It also shows its level sets N 1

m, N 2
m, N 3

m, and N 4
m. The right panel

shows the metered level sets for node m if metered buses are colored blue.

set Dm(w); see also Fig. 1. By convention, it holds that m ∈
Am(w) and m ∈ Dm(w). If n ∈ Am(w) and (m,n) ∈ E ,
node n is the parent of m. The depth dm(w) of node m is
defined as the number of its ancestors dm(w) := |Am(w)|.
If n ∈ Am(w) and dn = k, node n is the unique k-depth
ancestor of node m and will be denoted by αkm(w) for k =
0, . . . , dm. Due to the tree structure of G(w), the entries of
R(w) exhibit an interesting property [6]: To find the (m,n)-th
entry of R(w), one has to draw the paths from buses m and
n to the substation, identify the overlapping edges, and sum
up the resistances over these edges, that is

[R(w)]mn =
∑

(c,d)∈L
c,d∈Am(w)∩An(w)

rc,d. (4)

Define the k-th level set of node m as [13]

N k
m(w) :=

{
Dαk

m
(w) \ Dαk+1

m
(w) , k = 0, . . . , dm − 1

Dm(w) , k = dm.

Level set N k
m consists of bus αkm and the tree rooted at αkm

excluding the subtree containing node m; see Fig. 1. Finally,
the k-th metered level set of m ∈ O is defined as [7]

Mk
m(w) = N hk

m (w) ∩ O, (5)

where h0 = 0, and hk = min{j ∈ {hk−1, . . . , dm} : N j
m ∩

O 6= ∅}. In words, N hk
m (w) is the k-th level set having at least

one observed node, see Fig. 1. The next result, proved in the
Appendix, relates metered level sets and entries of ROO(w).

Proposition 1. Let m,n, s be metered nodes on a tree G(w):
1) Nodes n and s belong to the same metered level set
Mk

m(w) if and only if [ROO(w)]mn = [ROO(w)]ms
2) if [ROO(w)]mn < [ROO(w)]ms, then n and s belong

to different metered level sets, i.e., n ∈ Mk′

m, s ∈ Mk′′

m ,
with k′ < k′′.

A direct consequence of Proposition 1 is presented next.

Corollary 1. Consider two switch configurations w and w′ ∈
R. If there exists a node m and a level k ≤ dm such that
Mk

m(w) 6=Mk
m(w′), then ROO(w) 6= ROO(w′).

Prop. 1, Cor. 1, and (4) carry over to matrix XOO as well.

III. TOPOLOGY RECOVERY

Given voltage and power injection data at metered buses, the
goal is to identify the actual switch status vector denoted by
w0 ∈ R. Upon postulating a statistical model on the collected



data, this section poses this task as an optimization problem.
Rather than using voltage and power injections directly, our
method relies on differential voltage and power injections
ṽ(t) := v(t) − v(t − 1), p̃(t) := p(t) − p(t − 1), q̃(t) :=
q(t)− q(t− 1). From (1), differential data are related as

ṽ(t) = R(w)p̃(t) + X(w)q̃(t). (6)

Working with differential data eliminates vector 1 from the
RHS of (1) and justifies the ensuing statistical modeling.

Assumption 1. Differential power injections {p̃(t), q̃(t)}t are
p1) zero-mean random vectors E[p̃(t)] = E[q̃(t)] = 0;
p2) uncorrelated across time

E[p̃(t)p̃>(τ)] = δt,τΣpIN ,E[q̃(t)q̃>(τ)] = δt,τΣqIN (7a)

E[p̃(t)q̃>(τ)] = δt,τΣpqIN (7b)

where δt,τ is the Kronecker delta function;
p3) uncorrelated across buses, that is the covariance matrices

Σp, Σq , and Σpq are diagonal. We will further presume
Σp = σ2

pIN ; Σq = σ2
qIN ; and Σpq = σpqIN , although

our analysis holds for general diagonal matrices.

The former properties serve as good approximations of true
differential power injections, especially for sampling rates in
the order of seconds or minutes: Properties p1) and p2) are
extensively tested on real data in [8] and [15]. Assumption p3)
is commonly assumed in the literature [3], [5], [8], [12]. The
diagonal entries of Σp, Σq , and Σpq can be readily estimated
using historical data collected from both metered and non-
metered buses. Despite Assumption 1, heed that the numerical
tests are performed using real-world power injections.

Real-time differential voltage and power injection data are
gathered by the utility from the buses in O over times t =
1, . . . , T . The following set of measurements is available{

ṽO(t) + εv(t), p̃O(t) + εp(t), q̃O(t) + εq(t)
}T
t=1

(8)

where εv(t), εp(t), and εq(t) are errors capturing measurement
noise, modeling approximations, and unmodeled dynamics.
These noise vectors are modeled as iid Gaussian random
vectors, independent across time and buses with respective
variances γ2v , γ2p , and γ2q , common to all buses.

The topology detection task amounts to finding the actual
switch status w0 given the line infrastructure {a`, r`, x`}`∈E ;
the covariances Σp, Σq , Σpq; the set O; and the data in (8).

Based on the preceding modeling, collected data meet

ṽO(t) = RO(w0)p̃(t) + XO(w0)q̃(t) (9)

and their ensemble covariance matrices can be computed as

Σ̃v = E[ṽOṽ>O] = ROΣpR
>
O + ROΣpqX

>
O + XOΣ>pqR

>
O

+ XOΣqX
>
O + γ2vIO (10a)

Σ̃vp = E[ṽOp̃>O] = ROΣpS
>
O + XOΣ>pqS

>
O (10b)

Σ̃vq = E[ṽOq̃>O] = ROΣpqS
>
O + XOΣqS

>
O. (10c)

whose dependence on w0 through RO(w0) and XO(w0) has
been suppressed in (10) for notational simplicity. Let Σ̂v , Σ̂vp,
Σ̂vq be the sample counterparts of the covariance matrices in

(10), computed from the data collected in real time in (8). For
example, matrix Σ̂v is defined as Σ̂v := 1

T

∑T
t=1 ṽO(t)ṽ>O(t).

After defining fv(w) = ‖Σ̃v(w) − Σ̂v‖2F ; fp(w) :=
‖Σ̃vp(w) − Σ̂vp‖2F ; and fq(w) := ‖Σ̃vq(w) − Σ̂vq‖2F , we
state the topology recovery problem as

w∗ := arg min
w∈R

fv(w) + fp(w) + fq(w). (11)

The solution w∗ is the configuration that best matches the
sample covariance matrices with their ensemble versions. The
goal of problem (11) is to extract from the second order
data statistics the information about the current grid topology.
Leveraging this interpretation, problem (11) can be seen as
a generalization of topology recovery tasks proposed in the
literature, e.g., reference [8] aims at finding w∗ given the
voltage sample covariance. As in [12], if the term fv(w) is
dropped in (11), then one needs to compute only the diagonal
entries of Σp, Σq , and Σpq corresponding to metered buses.

Problem (11) is a nonconvex combinatorial optimization
task. Here, we assume that the space R is sufficiently small
so that (11) can be solved via exhaustive enumeration. As an
example, the set R associated with the 37-bus feeder reported
in Sec. V counts only eight elements. Rather than focusing
on efficient solutions to (11), we are interested in selecting
metered buses O to ensure that the actual w0 is identifiable.

IV. SENSOR PLACEMENT FOR TOPOLOGY RECOVERY

To study if the actual switch status vector w0 is the unique
minimizer of (11), it is assumed that the sample covariance
matrices have converged to their ensemble values, that is

Σ̂v = Σ̃v(w0), Σ̂vp = Σ̃vp(w0), Σ̂vq = Σ̂vq(w0). (12)

This is a standard assumption in identifiability analysis, and
is widely adopted in grid topology recovery [3], [5], [7],
[12], [13]. Before stating the meter placement strategy, let us
introduce some additional elements from graph theory.

Consider a graph G = (V,L). and partition V into connected
sets of nodes {Vi} such that V = ⊕iVi. Let Gi = (Vi,Li) be
the subgraph of G where Li = {(m,n) ∈ L;m,n ∈ Vi}. An
island graph H = (I,F) is a graph such that [11]:
• Every node i ∈ I is associated with a subgraph Gi and

is termed island. An island can be equivalently denoted
by Gi or i. The substation is contained in island G1.

• Edge f = (i, j) ∈ F if and only if there exists an arc in L
connecting a node in Gi with a node in Gj . With a slight
abuse of notation, we can say that F = L\(∪iLi). In a
sense, every f ∈ F is a bridge connecting two islands.

To state our placement strategy, we define an observable
island graph Ho = (Io,Fo) as an island graph such that
• Every switch s ∈ S is an edge in Fo. That is, with a

slight abuse of notation, S ⊆ Fo; and
• Two nodes i, j ∈ Io are linked by at most one edge.

Some illustrative examples of island graphs and observable
island graphs are shown in Fig. 2. The connectivity among
islands in Io is a function of the switch status: every w ∈ R
defines a set of energized edges Fo(w) ⊂ Fo and, conse-
quently, the island graph H(w) = (Io,Fo(w)); see Fig. 3.
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Fig. 3. Panel a) shows an observable island graph Ho built on G. The island
graph H(w) determined by the switch status w is depicted in panel b).

Observe that H(w) is always a subgraph of Ho. Furthermore,
H(w) is always a tree rooted at i1, the island containing
the substation. Given the special structure of the observable
island graph, namely, all the switches of the distribution
network G are edges in Fo, it turns out that if w 6= w′ then
H(w) 6= H(w′). Consider island Gi of an observable island
graphs, and let it be connected with other islands by the arcs
f1 = (m1, n1), . . . , fc = (mc, nc), f1, . . . , fc ∈ Fo. Nodes
m1, . . . ,mc ∈ Gi constitute the set of boundary nodes of Gi.
Include the substation among the boundary nodes of G1.

Definition 1. A set of metered nodes O is said to meet the
observable meter placement strategy (OMPS) if there is a
metered bus in the path between every pair of boundary nodes,
for every island Gi; see Fig. 4.

The next theorem provides the features of the OMPS.

Theorem 1. Let G = (V,L) be the graph representing
the physical infrastructure of a distribution grid. Let Ho =
(Io,Fo) be an observable island graph derived form G and
let O be a set of metered buses. If O meets the OMPS, then

1) given w and i, j ∈ Io, i ∈ Dj , all the nodes in Gi are
descendants of a bus m in island Gj , see Fig. 5, i.e.,

∃m ∈ Gi : n ∈ Dm(w), ∀n ∈ Gj , (13)

2) w0 is identifiable, i.e., it is the only solution of (11).

Given the physical underlying infrastructure, it is simple
to partition the electric grid into an observable island graph.
Thus, a sensor placement meeting the OMPS can be easily
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Fig. 4. Three placements of metered buses (blue nodes) are reported.
Configurations in a) and b) meet the OMPS, while c) do not. Note that the
number of metered nodes can be reduced by smartly placing them.
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Fig. 5. Panel a) reports metered nodes (blue nodes) placed meeting the
OMPS. Panel b) depicts the island graph H(w). Heed that all nodes of G3

are descendants of m1, while all nodes of G4 are descendants of m2.

obtained. Results on meter allocation have already appeared
in the literature, where it has been shown that retrieving
data from leaf (terminal) nodes suffices to detect the grid
topology, e.g., see [6]. On the other hand, Theorem 1 does
not provide neither the minimum number of meters that
guarantees the identifiability of w0, nor an automatic way to
deploy the sensors. However, if sensors are allocated smartly,
their number can be kept very small compared to the other
aforementioned strategy, as we will show in Section V.

V. NUMERICAL TESTS

The modified IEEE 37-bus feeder depicted in Fig. 6 was
used for our numerical tests; see [13] for the details. The
feeder can operate under eight distinct radial topologies, i.e.,
R have eight elements. In every simulation, the switch status
was randomly picked from R. An observable island graph was
found by dividing the testbed into six islands; see Fig. 6. Real-
world residential data were collected from the Pecan Street
project for January 1, 2013 [16]. These data were used as load
power profiles and to build the diagonal power covariances
in (10). Voltages were obtained through a full AC power flow
solver; see [8] for the details on data generation.

The topology recovery performance using the next meter
placements was tested. The set O6

obs = {12, 17, 23, 26, 30, 33}
is the placement satisfying the OMPS condition with the
smaller number of meters (one sensor per island). Placement
O12
obs = {2, 5, 11, 12, 14, 17, 20, 22, 23, 26, 30, 33} endows ev-

ery island with two meters. In O6
rand and O12

rand six and twelve
sensors, respectively, are deployed randomly. In Oall, all buses
are metered. Other placement policies would require installing
a meter on every possible leaf node [5], [7], i.e., 16 meters.

First, problem (11) was solved under the ideal setup (IS)
used for the identifiability analysis of Section IV: voltages
and power injections obeyed (6); Assumption 1 was met; and



TABLE I
TOPOLOGY AND SWITCH ERROR PROBABILITIES (TEP/SEP)

IS T = 24 48 72 96 120

O6
obs TEP [%] 0 11.2 5.7 4.5 4.2 3.4

SEP [%] 0 24.2 13.4 11.6 11.2 7.6
O12
obs TEP [%] 0 6.3 4.4 3.2 2.9 2.8

SEP [%] 0 13.4 9.0 7.6 8.2 6.6
Oall TEP [%] 0 3.3 3.2 3.0 3.0 2.7

SEP [%] 0 9.0 7.6 8.6 7.6 6.2
O6
rand TEP [%] 5.6 30.8 24.8 23.2 19.9 19.0

SEP [%] 8.8 72.4 53.0 51.6 43.4 42.2
O12
rand TEP [%] 1.9 15.1 11.1 10.6 10.4 10.2

SEP [%] 3.8 35.8 24.0 24.6 23.4 22.6
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Fig. 6. Panel a) reports the IEEE 37-bus distribution feeder with six switches.
Panel b) reports the observable island graph built over the testbed.

sample covariances were set to their ensemble counterparts.
The third column of Table I collects the topology error proba-
bility (TEP) and the switch error probability (SEP), computed
after 1, 000 Monte Carlo tests. According to Proposition 1,
placements O6

obs, O12
obs and Oall yielded no errors.

Second, a realistic setup was considered. Problem (11) was
solved for different numbers of collected data samples T ,
ranging from 24 to 120, and a sampling period of Ts = 5 min
in 1, 000 Monte Carlo runs. The results are reported in Table I,
columns 4-8. Not surprisingly, performance improves as the
number of available samples or deployed meters increases.
In fact, the better results provided by O12

obs over O6
obs can

be explained in terms of available information, since meter
readings are collected at twice the number of locations.
However, note that O6

obs outperforms both O6
rand and O12

rand,
although the latter used the double number of meters.

VI. CONCLUSIONS

We proposed a sensor placement strategy to identify the
energized grid topology exploiting real-time information col-
lected at only a few buses. Simulations on the standard IEEE-
37 bus testbed have shown the effectiveness of the proposed
strategy. Generalizations to multi-phase and meshed grids, as
well as the integration of distribution PMU data constitute
interesting research directions.

APPENDIX

Proof of Proposition 1: Assume that the linearized model
of (1) holds true. Based on (4), one can recognize that the

entry [R]mn equals the voltage drop from v0 incurred at bus
n when a unitary active power is absorbed at bus m, while the
remaining buses are unloaded. Kirchoff’s current law states
that power flows from the substation towards bus m only
through the ancestors of m. As a consequence, two buses n
and s belong to N k

m if and only if they are equipotential, since
no power is flowing between them, that is

vn = vs ⇐⇒ [R]mn = [R]ms. (14)

On the other hand, if the voltage drop from v0 of n is smaller
than the one of s, it means that n and s belong to different
level sets, i.e., n ∈ N h′

m , s ∈ N h′′

m , with h′ < h′′. Proposition 1
claims readily follows from the previous reasoning and from
the definition of metered level sets.

A. Proof of Theorem 1

Before proving Th. 1, some claims are needed. Assuming
sample statistics have converged to their ensemble counterparts
[cf. (12)], let Π be the optimal set for (11). Π is not empty,
since w0 ∈ Π. Indeed, vector w0 belongs toR, and also yields
a zero objective for (11). Then every w ∈ Π belongs also to

Π′ := {w : fv(w) = fp(w) = fq(w) = 0} (15)

or Π ⊆ Π′. The reverse containment may not hold since not
all w ∈ Π′ belong to R. Let us also define the set

Π′′ := {w : fp(w) = fq(w) = 0} (16)

for which Π ⊆ Π′ ⊆ Π′′, and so w0 belongs to all three sets
Π, Π′, and Π′′. If we were able to find a meter placement O
that renders w0 the single element of Π′′, then w0 would also
be the single element of Π. To avoid pathological situations,
we make the following assumption [5].

Assumption 2. For the covariances of differential power
injections in (7), it holds that σpσq 6= |σpq|.

The following claim should hold for a placement O to ensure
topology identifiability. After that, the main result is proved.

Lemma 1. Under Assumption 2, if the set of metered buses
O is such that w0 is the unique solution to

ROO(w) = ROO(w0), XOO(w) = XOO(w0) (17)

then w0 is the unique minimizer of (11).

Proof: From (10b)–(10c), any solution w to the equations
defining Π′′ in (16) should satisfy

σ2
pROO(w) + σpqXOO(w) = σ2

pROO(w0) + σpqXOO(w0)

σpqROO(w) + σ2
qXOO(w) = σpqROO(w0) + σ2

qXOO(w0).

After some manipulations, the previous equations yield

(σ2
pq − σ2

pσ
2
q )ROO(w) = (σ2

pq − σ2
pσ

2
q )ROO(w0)

(σ2
pq − σ2

pσ
2
q )XOO(w) = (σ2

pq − σ2
pσ

2
q )XOO(w0).

Under Assumption 2, the last equations become equivalent to
condition (17). Under the condition in (17), vector w0 is the
unique element of Π′′, and thus, the unique element of Π.



Proof of Theorem 1: Consider two islands i, j ∈ Io, and
let j be the parent of i in H(w). There exist two buses m1, n1
that are boundary nodes, respectively, in Gj and Gi, such that
e1 = (m1, n1) ∈ E(w). It holds that

n ∈ Gi ⇒ n ∈ Dm1
(w). (18)

Two cases can be identified: First, there exists an island
h such that h is the parent of j in H(w). In this case, let
m2, n2 denote the boundary nodes belonging to Gj and Gh,
respectively, such that e2 = (m2, n2) ∈ E(w). Second, it holds
j = 1. For this second case, set m2 = 0, that is m2 is the
substation. In both cases, let m be a metered node placed in
the path between m1 and m2. By construction, it holds

m1 ∈ Dm(w). (19)

Equation (13) follows by combining (18) and (19).
Consider a switch configuration w 6= w0, so

H(w) 6= H(w0). (20)

We next show that there exists a bus m and a level k ≤ dm
such that Mk

m(w) 6= Mk
m(w0). Thus, Corollary 1 ensures

that w does not satisfy (17). Proving by contradiction, suppose

Mk
m(w) =Mk

m(w0), ∀m ∈ O, k ≤ dm. (21)

Let U(w) and U(w0) denote the set of leaf nodes of H(w)
and H(w0), respectively. First, equation (21) implies U(w) =
U(w0). In fact, assume that i is a leaf of H(w) but not a leaf
of H(w0). For any m ∈ Gi ∩ O

(Dm(w) ∩ O) =Mdm
m (w) ⊆ Gi ∩ O,m ∈ Gi. (22)

In words, the metered descendants of m can only be metered
nodes of Gi. Since i is a leaf of H(w) but not a leaf of H(w0),
there exists a j such that island Gj is a descendant of island Gi
in H(w0). Equation (13) guarantees that there exists a metered
m ∈ Gi such that every node in Gj is its descendant, that is
∃m ∈ Gi : {n ∈ Gj ∩O} ∈ Mdm

m (w), which contradicts (22).
Second, condition (20) implies that there exists an island

i and a subtree of H(w) rooted at i, denoted by Ti(H(w)),
satisfying the properties: (i) It appears also in the original
graph H(w0), that is Ti(H(w)) = Ti(H(w0)); and (ii) The
line f = (i, j) ∈ Fo(w) does not occur in H(w0), i.e., f /∈
Fo(w0). Such Ti(H(w)) always exists, and it might be for any
leaf island i the singleton Ti(H(w)) = {i}. Thanks to (13),
if the OSPS is adopted, there exists a node n ∈ Gj ∩ O such
that the metered descendants of n are exactly n itself and the
metered nodes in Gi, see Fig. 7-a), i.e.,

Mdn
n (w) = {n} ∪

{
m ∈

∑
k∈Ti(H(w))

Gk ∩ O
}
. (23)

Now there are two scenarios. In the first scenario, we have
i /∈ Dj(w0) and then, none of the nodes in Gi is a descendant
of any nodes in Gj , see Fig. 7-b). This implies that

m /∈Mdn
n (w0),m ∈ G`, ` ∈ Ti(H(w)). (24)

In the second scenario, island i is still a descendant of j, but
there is at least another island k such that j is the parent of
k. At this point, there are two additional cases. In the first

Gj

Gi

Ti(H(w))

n

a)

Gi

Ti(H(w))

Gj

n

b)

Gj

n Gk

Gi

Ti(H(w))

Gj

n

Gk

Gi

Ti(H(w))

c) d)

Fig. 7. Pictorial explanation for the proof of Theorem 1.

subcase, the nodes in Gk are not descendants of n, see Fig. 7-
c). As a consequence, equation (24) still holds. In the second
subcase, the descendants of n consist of metered nodes in Gk
and in Ti(H(w)), see also Fig. 7-d), that is

{n} ∪ {m ∈ Gi ∩ O} ⊂Mdn
n (w0). (25)

Eq. (24) and (25) contradict (23), thusMdn
n (w) 6=Mdn

n (w0).
Lemma 1 implies that w0 is the unique minimizer of (11).
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