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Abstract—The smart grid vision entails advanced information
technology and data analytics to enhance the efficiency, sustain-
ability, and economics of the power grid infrastructure. Aligned
to this end, modern statistical learning tools are leveraged here
for electricity market inference. Day-ahead price forecasting is
cast as a low-rank kernel learning problem. Uniquely exploiting
the market clearing process, congestion patterns are modeled as
rank-one components in the matrix of spatio-temporally varying
prices. Through a novel nuclear norm-based regularization, ker-
nels across pricing nodes and hours can be systematically selected.
Even though market-wide forecasting is beneficial from a learning
perspective, it involves processing high-dimensional market data.
The latter becomes possible after devising a block-coordinate de-
scent algorithm for solving the non-convex optimization problem
involved. The algorithm utilizes results from block-sparse vector
recovery and is guaranteed to converge to a stationary point. Nu-
merical tests on real data from the Midwest ISO (MISO) market
corroborate the prediction accuracy, computational efficiency,
and the interpretative merits of the developed approach over
existing alternatives.

Index Terms—Block-coordinate descent, day-ahead energy
prices, graph Laplacian, kernel-based learning, learning, low-rank
matrix, multi-kernel learning, nuclear norm regularization.

I. INTRODUCTION

F ORECASTING electricity prices is an important decision
making tool for market participants [4]. Conventional

and particularly renewable asset owners plan their trading and
bidding strategies according to pricing predictions. Moreover,
independent system operators (ISOs) recently broadcast their
own market forecasts to proactively relieve congestion [12]. At
a larger geographical and time scale, electricity price analytics
based solely on publicly available data rather than physical
system modeling are pursued by government services to iden-
tify “national interest transmission congestion corridors” [39].
In a generic electricity market setup, an ISO collects bids

submitted by generator owners and utilities [15], [24]. Com-
pliant with network and reliability constraints, the grid is
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dispatched in the most economical way. Following power de-
mand patterns, electricity prices exhibit cyclo-stationary motifs
over time. More importantly and due to transmission limita-
tions, cheap electricity cannot be delivered everywhere across
the grid. Out-of-merit energy sources have to be dispatched to
balance the load. Hence, congestion together with heat losses
lead to spatially-varying energy prices, known as locational
marginal prices (LMPs) [24], [17].
Schemes for predicting electricity prices proposed so far in-

clude time-series analysis approaches based on auto-regressive
(integrated) moving average models and their generalizations
[10], [14]. However, these models are confined to linear
predictors, whereas markets involve generally nonlinear de-
pendencies. To account for nonlinearities, artificial intelligence
approaches, such as fuzzy systems and neural networks, have
been investigated [42], [27], [40]. Hidden Markov models have
been also advocated [19]. A nearest neighborhood method was
suggested in [28]. Market clearance was solved as a quadratic
program and forecasts were extracted based on the most prob-
able outage combinations in [43]. Reviews on electricity price
forecasting and the associated challenges can be found in [4]
and [34].
Different from existing approaches where predictors are

trained on a per-node basis, a framework for learning the entire
market is pursued in this work. Building on collaborative
filtering ideas, market forecasting is cast as a learning task
over all nodes and several hours [2], [5]. Leveraging market
clearing characteristics, prices are modeled as the superposi-
tion of several rank-one components, each capturing particular
spatio-temporal congestion motifs. Distinct from [23], low-rank
kernel-based learning models are developed here.
A systematic kernel selection methodology is the second con-

tribution of this paper. Due to the postulated decomposition,
different kernels must be defined over nodes and hours. Our
novel analytic results extend kernel learning tools to low-rank
multi-task models [30], [18], [3]. By viewing market extrapola-
tion as learning over a graph, the commercial pricing network is
surrogated here via balancing authority connections and mean-
ingful graph Laplacian-based kernels are provided.
An efficient algorithm for solving the computationally

demanding optimization involved is our third contribution.
Although the problem is jointly non-convex, per block opti-
mizations entail convex yet non-differentiable costs which are
tackled via a block-coordinate descent approach. Leveraging
results from (block) compressed sensing [32], the resultant
algorithm boils down to univariate minimizations, exploits the
Kronecker product structure, and is guaranteed to converge
to a stationary point of the resultant optimization problem.
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Forecasting results on the MISO market over the summer of
2012 corroborate the accuracy, interpretative merit, and the
computational efficiency of the novel learning model.
Notation: Lower- (upper-) case boldface letters denote

column vectors (matrices); calligraphic letters stand for sets.
Symbols and denote transposition and the Kronecker
product, respectively. The -norm of a vector is denoted by

, is the Frobenius matrix norm, and is the set of
positive definite matrices. The operation turns

matrix to a vector by stacking its columns, and denotes
its trace. The property (P):
will be needed throughout.
The paper outline is as follows. Electricity market fore-

casting is formulated in Section II, where the novel approach is
presented. A block-coordinate descent algorithm is detailed in
Section IV. Kernel design and forecasting results on the MISO
market are in Section V. The paper is concluded in Section VI.

II. PROBLEM STATEMENT AND FORMULATION

A. Preliminaries on Kernel-Based Learning

Given pairs of features belonging to amea-
surable space and target values , kernel-based learning
aims at finding a relationship with belonging to
the linear function space

(1)

defined by a preselected kernel (basis) and
corresponding coefficients . When is a symmetric
positive definite function, then becomes a reproducing
kernel Hilbert space (RKHS) whose members have a finite
norm [6].
Viewed either from a Bayesian estimation perspective, or as

a function approximation task, learning can be posed as the
regularization problem [20], [7]

(2)

The least-squares (LS) fitting component in (2) captures the de-
signer’s reliance on data, whereas the regularizer con-
straints and facilitates generalization over unseen data.
The two components are balanced through the parameter ,
which is typically tuned via cross-validation [20].
Finding requires solving the functional optimization in (2).

Fortunately, the celebrated Representer’s Theorem asserts that
admits the form [20]. Hence, the

sought can be characterized by the coefficient vector
. Upon defining the kernel matrix having

entries , the vector ,
and the norm ; solving (2) is equivalent to the
vector optimization

(3)

Building on kernel-based learning, novel models pertinent to
electricity market forecasting are pursued next.

B. Low-Rank Learning

Consider a wholesale electricity market over a set of
commercial pricing nodes (CPNs) indexed by . In a day-ahead
market, locational marginal prices (LMPs) correspond to the
cost of buying or selling electricity at each CPN and over one-
hour periods for the following day [31], [17].
Viewing market forecasting as an inference problem, day-

ahead LMPs are the target variables to be learned. Explanatory
variables (features or regressors) can be any data available at the
time of forecasting and believed to be relevant to the target vari-
ables. Due to the spatiotemporal nature of the problem, features
can be either related to a CPN (nodal features), or to a specific
market hour (time features).
Candidate nodal features could be the node type (generator,

load, interface to another market); the generator technology
(coal, natural gas, nuclear, or hydroelectric plant, wind farm);
the CPN’s geographical location; and the balancing authority
controlling the node. Vector collects the features related to
the -th CPN.
Vector comprises the features related to a market period .

Candidate features include:
• same-hour LMPs from past days;
• load estimates (issued per balancing authority, region,
and/or the market footprint);

• weather forecasts (e.g., temperature, humidity, wind speed,
and solar radiation at selected locations);

• outage capacity (capacity of generation units closed for
maintenance);

• timestamp features (hour of the day, day of the week,
month of the year, holiday) to capture peak-demand hours
on weekdays as well as heating and cooling patterns;

• scheduled power imports and exports to other markets.
Note that is shared across CPNs: Weather forecasts across
major cities or renewable energy sites affect several CPNs,
while capacity outages, regional load estimates, and times-
tamps relate to the whole market. Moreover, spatially local
features could not be easily related to specific CPNs, when
CPN locations are unknown.
A generic approach could be to predict every single-CPN

price given and the observed LMPs. Such an approach would
train separate prediction models with identical feature vari-
ables. However, locational prices are not independent: they are
determined over a transmission grid having capacity and relia-
bility limitations [15], [22]. Leveraging this network-imposed
dependence, market forecasting is uniquely interpreted here as
learning over a graph; see e.g., [25]. Energymarketsmay change
significantly due to lasting transmission and generation outages,
or shifts in oil or gas markets. That is why the market is con-
sidered to be stationary only over the most recent time pe-
riods, which together with the sought next 24 hours comprise
the set . The market could be then thought of as a function

to be inferred.
We postulate that the price at node and time denoted

by belongs to the RKHS defined by the tensor product
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kernel , where
and are judiciously selected ker-

nels over nodes and hours. The tensor product kernel is a valid
kernel and has been used in collaborative filtering andmulti-task
learning [1], [2], [30], [26]. All functions in this RKHS, denoted
by set , can be alternatively represented as [6], [2]

(4)

where and are the RKHSs defined respectively by
and , while the number of summands is possibly infinite.
Note that the decomposition in (4) is not unique [6]. Similar
to (2) and upon arranging observed prices in , the
market function could be inferred via

(5)

where has entries , is
the norm in [cf. Equation (1)], and is a regulariza-
tion parameter. Notice the notational convention that when
and are used as function arguments, the function depends on
and , respectively. In other words, ,

, and .
The key presumption here is that is practi-

cally the superposition of relatively few components
: At a specific , usually only a few

transmission lines are congested, i.e., have reached their rated
power capacity [17], [15].1 Each corresponds to the pricing
pattern observed whenever a specific congestion scenario
occurs. Yet spatial effects are modulated by time. For example,
congestion typically occurs during peak demand or high-wind
periods. Moreover, due to generator ramp constraints, demand
periodicities, and lasting transmission outages; pricing motifs
tend to iterate over time instances with similar characteristics,
e.g., the same hour of the next day or week. These specifications
not only justify using the tensor product kernel , but they
also hint at a relatively small in (4).
To facilitate parsimonious modeling of using a few

components, instead of regularizing by [cf.
Equation (5)], the trace norm could be used:

(6)

for some . For the definition of trace norm see [1]. In [1],
it is also shown that for every function , its can be
alternatively expressed as

(7)

Regularizing by is known to favor low-rank models [2],
[33]. Nevertheless, in this work we advocate regularizing by
the square root of to critically enable kernel selection (cf.

1This fact is exploited in [22] to reveal the topology of the underlying power
grid by using only publicly available real-time LMPs.

Section II-C) and to derive efficient algorithms (cf. Section IV).
Specifically, market inference is posed here as the regularization
problem:

(8)

for some . The connection between (6) and (8) can be
understood by the next proposition proved in Appendix A.
Proposition 1: If denotes a function minimizing (8) for

some , there exists , such that is also a mini-
mizer of (6) for .
Albeit Proposition 1 does not provide an analytic expression

for , it asserts that every minimizer of (8) is a minimizer for
(6) too for an appropriate . Thus, the functions minimizing (8)
are expected to be decomposable into a few . Numerical tests
indicate that (8) favors low-rank minimizers indeed.
Given that (8) admits low-rank minimizers anyway, its fea-

sible set could be possibly restricted to a defined by (4) but
for a finite and relatively small . If the minimizing (8) over
this restricted feasible set turns out to be of rank smaller than
, the restriction comes at no loss of optimality. Throughout

the rest of the paper, (8) will be solved for a finite . Similar
approaches have been developed for low-rank matrix comple-
tion [7], collaborative filtering [2], and multi-task learning [30],
[26].
To leverage the low-rank model in solving (8), the following

result, proved in Appendix B, is needed:
Lemma 1: For every , it holds , where

(9)

Due to Lemma 1, the problem in (8) is reformulated, and
can be learned via the regularization

(10a)

where

(10b)

C. Multi-Kernel Learning

Solving the inference problem in (10) assumes that and
the kernels and are known. The parameter is typically
tuned via cross-validation [20]. Choosing the appropriate ker-
nels though is more challenging, as testified by the extensive
research on multi-kernel learning; see the reviews [18], [3].
In this work, the multi-kernel learning approach of [30] is

generalized to the function regularization in (10). Specifically,
two sets of kernel function choices, and ,
are provided for nodes and time periods, respectively. Numbers
and are selected depending on the kernel choices and the
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computational resources available. Consider the kernel spaces
constructed as the convex hulls

(11a)

(11b)

Optimizing the outcome of the regularization problem in (10a)
over and provides a disciplined kernel design methodology.
Since all and are predefined, minimizing (10a) over
and , reduces to minimizing over the weights
and . The following theorem, which is proved in Appendix
C, shows how the kernel learning part can be accomplished
without even finding the optimal weights.
Theorem 1: Consider the function space , the kernel spaces
and , and the functional , defined in (4), (11), and

(10b), respectively. Solving the regularization problem

(12)

is equivalent to solving

(13)
over

, where

and are the function spaces defined by the kernels
and , accordingly.
Theorem 1 asserts that minimizing (10b) over and

boils down to the functional optimization in (13)
where and are now simply decomposed as and

, respectively. Interestingly enough, the theorem
also generalizes the multi-kernel learning results of [30] to
the low-rank decomposition model of (4). After drawing some
interesting connections in Section II-D, the functional inference
in (13) is transformed to a matrix minimization problem in
Section III.

D. Interesting Connections

Observe that when and are Euclidean spaces,
and where

is the Kronecker delta function, then in (4) is the space
of matrices having as their -th
entry. In this case, is simply the nuclear norm of
matrix , i.e., the sum of its singular values; ;
and (7) becomes [2], [7],

(14)

The alternative representation of in (14) has been exten-
sively used in nuclear norm minimization [37], [33], [29]. Inter-
estingly, the matrix counterpart of Lemma 1 reads:

Corollary 1: For with , it holds

(15)

Matrix completion aims at recovering a low-rank matrix
given noisy measurements for a few of its entries [13]. It can
be derived from (6) after replacing by [or (14)], and

by , where denotes element-
wise multiplication and is a binary matrix having zeros on
the missing entries. The premise is that could be recovered
due to its low-rank property. But recovery is impossible when
entire columns or rows are missing.
For generic yet fixed kernels and , low-rank

kernel-based models could be similarly derived as special cases
of (6); see e.g., [2], [7]. Using kernel functions other than the
Kronecker delta, enables not only recovering the missing en-
tries, but also extrapolating to unseen columns and rows. Dif-
ferent from matrix completion and low-rank kernel-based infer-
ence, our regularization in (13) targets to jointly learn a low-rank

, together with kernels and .

III. MATRIX OPTIMIZATION

The next goal is to map the functional optimization of (13)
to a vector minimization by resorting to the Representer’s The-
orem [20]. Observe that minimizing (13) over a specific is
actually a functional minimization regularized by

for some constant . Since the regularization is an
increasing function of , Representer’s Theorem applies
readily [20], [5].
Each one of the functions minimizing (13) can be

expressed as a linear combination of the associated kernel
evaluated over the training examples involved, that is

(16)

Upon concatenating the unknown expansion coefficients and
the function values into and

, respectively, it holds that

(17)

where is the node kernel matrix whose -th
entry is . Using (17) and accounting for the decompo-
sition dictated by (13), the vector collecting the
values is compactly written as

(18)

Likewise, each minimizing (13) admits the expansion

(19)
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for all . Similar to (17), the vector of function values
is expressed in terms of the time kernel

matrix as

(20)

where . Due to the decomposition
in (13), the vector containing is

provided by [cf. Equation (18)]

(21)

So far, the functions minimizing (13) have
been expressed in terms of ’s and ’s, thus enabling one
to transform (13) to a minimization problem over the unknown
coefficients.
Regarding the price matrix , the low-rank model

implies that

(22)

Plugging (18) and (21) into (22), yields

(23)

where and
for all and .

Consider now the regularization terms in (13). Due to (16)
and (19), the associated norms can be written as

and [cf. Equation (1)–(5)].
Using the properties of the trace operator, it can be shown that

(24a)

(24b)

The right-hand sides in (24) can be identified as the norms
and .

By using (23)–(24), the functional optimization in (13) can be
compactly expressed as the matrix optimization problem

(25)

Solving (25) faces two challenges. Even though optimizing
separately over or entails a convex cost, the joint
minimization is non-convex. Secondly, solving (25) involves
multiple high-dimensional matrices, which raises computa-
tional concerns. The algorithm developed in the next section

scales well with the problem dimensions, and converges to a
stationary point of (25).
Price Forecasting: Having found all and , the elec-

tricity prices over the training period can be reconstructed via
(22). Of course, the ultimate learning goal is inferring future
prices. Based on the modeling approach in Section II-B, the
price for an unseen pair can be predicted
simply as

(26)

where and
[cf. Equation (16), (19)]. In essence,

extrapolation to is viable conditioned on availability of
the kernel values involved.
If network-wide forecasts are needed over a future interval
and over the node set , the predicted values can be stored

in the matrix . According to (26), matrix is
compactly expressed as

(27)

where and are the kernel ma-
trices between the training and the forecast points, i.e., having
entries and . Impor-
tant remarks are now in order.
Remark 1: Price forecasts are not confined to future ’s (es-

sentially unseen feature vectors ); they can be issued even
for a new node . This is an important feature when
dealing with electricity markets having seasonal pricingmodels.
For example, MISO updates its commercial grid quarterly by
adding, removing, merging, and redefining CPNs, to accommo-
date transmission grid updates and market participants leaving
or entering the market.
Remark 2: In addition to extrapolation (prediction), the pro-

posed approach is general enough to encompass imputation of
missing entries. Similar to matrix completion [cf. Section II-D],
that would be possible upon substituting in (25) by

.
Remark 3: As justified in Section IV, (25) promotes

block-sparse solutions. In particular, some of the and
may be driven to zero. The latter indicates that the

corresponding or are not influential in price clearing.
Since experimentation with kernels defined over different fea-
ture subsets can be highly interpretative, the proposed approach
becomes a systematic prediction and kernel selection tool.

IV. BLOCK-COORDINATE DESCENT ALGORITHM

A block-coordinate descent (BCD) algorithm is developed
here for solving (25). According to the BCD methodology, the
initial optimization variable is partitioned into blocks. Per block
minimizations having the remaining variables fixed are then it-
erated cyclically over blocks.
Solving (25) in particular, variable blocks are selected in the

order . The per blockminimizations
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Algorithm 1 Minimizing the canonical form (30)

1:function SOLVECANONICAL

2: if then

3: else

4: EIGENDECOMPOSITION

5: EIGENDECOMPOSITION

6: Define

7: Initialize and

8: repeat

9: Evaluate via (33)

10: Update

11:

12: until

13: Set

14: Obtain by solving the Sylvester equation (31)

15: end if

16: end function

involved are detailed next. Consider minimizing (25) over a spe-
cific , while all other variables are maintained to their most
recent values and . Upon rearranging terms
in (25), block can be updated as

(28)

where is the contribution of all , and
.

Similarly, updating a particular entails finding

(29)

where is the contribution of all , and
.

Problems (28) and (29) are convex, yet not differentiable, and
exhibit the same canonical form. This form can be efficiently
solved according to the following lemma that is proved in Ap-
pendix D.
Lemma 2: Let , , , and
. The convex optimization problem

(30)

has a unique minimizer provided by the solution of

(31)

if ; or, , otherwise. The scalar
in (31) is the minimizer of the convex problem

(32)

Algorithm 2 BCD algorithm for solving (25)

Input: , , , ,

1: Randomly initialize and

2: Compute and

3: Store and

4: repeat

5: for do

6: Update

7: Define

8: SOLVECANONICAL

9: Update

10: end for

11: for do

12: Update

13: Define

14: SOLVECANONICAL

15: Update

16: end for

17: until is the cost in (25)

Output: ,

where ; are the eigenpairs of
; and the non-zero eigenpairs of .
Lemma 2 provides valuable insights for solving (30). It re-

veals that by simply calculating , the sought
may be directly set to zero. Hence, (30) admits block-zero min-
imizers depending on the value of . This property critically
implies that some of the and minimizing (25) will
be zero, thus, effecting kernel selection.
Back to Lemma 2, if , a non-zero solu-

tion emerges. The univariate optimization in (32) and the linear
matrix equations in (31) can be efficiently tackled as described
next. First, the constrained convex problem in (32) can be solved
by a projected gradient algorithm. If denotes the cost func-
tion in (32), its derivative is

(33)

The iterates are guaranteed
to converge to the global minimum for a sufficiently small
step size ; see [8] for details. Each iterate costs
operations. Secondly, concerning (31), it can be rewritten as
a Sylvester equation as advocated also in [23], [35]. Hence,
can be found in numerical operations using

the Bartels-Stewart algorithm [16, Alg. 7.6.2], instead of the
complexity of a generic linear system solver. The

steps for solving the canonical problem (30) are tabulated as
Alg. 1, whose overall worst-case complexity is .
Proceeding with the BCD steps (28) and (29), those can be

efficiently performed after carefully updating and . The
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Fig. 1. Graph of the LBAs involved in the MISO market.

final steps for solving (25) are listed as Alg. 2. Due to the sep-
arability of the non-differentiable cost over the chosen vari-
able blocks, the BCD algorithm is guaranteed to converge to
a stationary point of (25) [38]. The BCD iterates are terminated
when the relative cost value error becomes smaller than some
threshold e.g., . The eigendecomposition of all
kernel matrices can be computed once. Algorithm 2 has com-
plexity per iteration. In
the numerical experiments of Section V, and depending on the
value of , 5–15 BCD iterations were sufficient.

V. NUMERICAL TESTS

The derived low-rank multi-kernel learning approach was
tested using real data from the Midwest ISO (MISO) elec-
tricity market. Day-ahead hourly LMPs were collected across

1,732 nodes for the period June 1 to August 31, 2012,
yielding a total of 92 days or 2,208 hours.
A pool of nodal and time kernels was selected

as detailed next. Starting with the nodal ones, when learning
over a graph, the corresponding graph Laplacian matrix is often-
times used to design meaningful kernels [25]. CPNs are consid-
ered here as vertices of a similarity graph, connected with edges
having non-negative weights proportional to the similarity be-
tween incident CPNs. Nonetheless, lacking any other type of
geographical or electrical distance, the local balancing authority
(LBA) each CPN belongs to was adopted here as a topology sur-
rogate. The presumption is that nodes of the same LBA experi-
ence similar prices. Further, nodes controlled by neighboring
authorities are expected to have prices correlated more than
nodes under non-adjacent ones. The connectivity graph of 131

LBAs involved in MISO was constructed based on publicly
available data found on MISO’s website; cf. Fig. 1.
Kernel matrices were built based on this

LBA connectivity graph as follows. Edges between CPNs of the
same LBAwere assigned unit weights; edges across CPNs from
different LBAs received weight 0.5; and all other edges were
set to zero. If weight values are stored in the adjacency matrix

, the normalized Laplacian matrix of a graph is defined as
, where is a diagonal matrix

with diagonal entries the row sums of [25]. Then, was
selected as the regularized Laplacian , and

as the diffusion Laplacian [36].
Kernel utilized information that could be inferred from

CPN names. Specifically, the prefix of every CPN name
in MISO denotes its LBA, while some CPNs have sim-
ilar names. For example, nodes ALTE.COLUMBAL1 and
ALTE.COLUMBAL2 belong to the LBA named ALTE, and
they are assumed to be geographically colocated. Every CPN is
classified in the MISO market as generator, load, interface, or
hub. The LBA, the name similarity, and the CPN type, were all
used as binary coded categorical features. The vectors obtained
were then used as arguments of a Gaussian kernel. The kernel
bandwidth was fixed to the median of all pairwise squared
Euclidean vector distances.
To capture potential independence across nodes, kernel

was chosen to be the identity matrix. The last nodal kernel
was selected as the covariance matrix of market prices empiri-
cally estimated using the training data.
Regarding temporal kernels , the following pub-

licly available features were used:
1) Yesterday’s day-ahead LMPs for the same hour.
2) Load forecasts for the north, south, and central regions of
MISO footprint.

3) Generation capacity outage publicized by MISO.
4) MISO forecast for market-wide wind energy generation.
5) Hourly temperature and humidity in major cities across the
MISO footprint (Bismarck, Des Moines, Detroit, Kansas
City, Milwaukee, Minneapolis). Instead of predicted
values, the actual values recorded by the National Oceanic
and Atmospheric Administration (NOOA) were used.

6) Binary encoded categorical features for the hour of the day,
the day of the week, and a holiday indicator.

For all but the categorical features, their one-hour delayed and
one-hour advanced values were also considered. For example,
the market forecast for 3 pm depended on temperature forecasts
for 2 pm, 3 pm, and 4 pm. The reason was to model wind power
and weather volatility, as well as time coupling across hours
introduced by unit commitment as exemplified next. Having a
high temperature forecast for 4 pm increases the load demand at
4 pm and 5 pm. Additionally, industrial consumers aware of the
weather forecast may start their cooling systems at 3 pm or even
earlier to save money and achieve space cooling by 4 pm. Sec-
ondly, weather forecasts are characterized by delay uncertain-
ties: a 24-hour ahead weather model predicts quite accurately
that high winds or a cold wave will be coming say in the after-
noon, yet the exact hour is not precisely known. Third, many
generation units have physical constraints: e.g., once they are
started, they should remain on for at least a specific number of
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Fig. 2. Empirical distribution for the sorted singular values of price matrices:
(a) for actual price matrices ; and (b) for predicted price ma-
trices as obtained by (25) for . (a) Singular values for actual price
matrices . (b) Singular values for predicted price matrices .

hours; see e.g., [15]. Such constraints introduce time-coupling
across power generation ranges and hence prices.
Temporal kernels to were designed by plugging the

aforementioned features into Gaussian kernels of bandwidths 1,
430 (themedian of all pairwise Euclidean feature distances), and
, respectively. Kernel was the Gaussian kernel obtained

from all but the time-shifted features, and with its bandwidth
set to the median of all pairwise Euclidean feature distances.
Finally, was selected as the linear kernel. As a standard pre-
processing step, both nodal and temporal features were centered
and standardized, while all ’s and ’s were normalized to
unit diagonal elements.
Market data are cyclo-stationary: the market-wide price

mean fluctuates hourly, yet with a period of one day. To cope
with cyclo-stationarity, market prices in were centered upon
subtracting the per-hour sample mean. The developed predictor
will hence forecast the mean-compensated prices, and not the
actual ones. It is important to mention though that usually
the price differences across CPNs, rather than absolute nodal
prices, are of interest. This is because bilateral transactions
and power transfer contracts depend on exactly such nodal
differentials [11]. In such cases, our price forecasts can be

Fig. 3. Rank for predicted price matrices as obtained by (25) for .

readily used. Otherwise, a simple market-wide price mean pre-
dictor could be easily trained. Several factors not captured by
the publicly available features used here (e.g., transmission and
generation outages) can severely affect the market. Due to this
source of non-stationarity, the designed day-ahead predictors
depend on market data only from the previous week. Hence,
the dimension of and in (25) is 168 (hours).
Tuning the regularization parameter was based on market

data from the first 14 days. The causal nature of the market did
not allow shuffling data across time, as it is typically done in
cross-validation. Instead, days 1–7 were used to predict day 8,
days 2–8 for day 9, and the process was repeated up to day 14.
The value of attaining the lowest prediction root mean square
error (RMSE) over a grid of values was fixed when predicting
all the remaining 78 evaluation days.
Fig. 2(a) depicts the singular values of 78 price matrices

. The figure shows that singular values decay quickly,
and retaining the top 25 could possibly express most of the in-
formation in market data. Such an observation not only justifies
the trace norm regularization in (8), but also hints at fixing to
25 for a good complexity-performance tradeoff. Fig. 2(b) shows
the singular values of matrices as obtained by
solving (25). In addition, the rank of ’s is depicted in Fig. 3.
Interestingly, the rank is at most 20 in all 78 matrices, which
again justifies the prescribed choice of .
Fig. 4 shows the kernel selection capability of the novel multi-

kernel learning approach. Checking whether the
and obtained by Alg. 2 are zero or not, indi-
cates whether the corresponding kernels and have
been eliminated. A black (white) square in Fig. 4 indicates that
the respective kernel has been selected (eliminated) while fore-
casting that specific day. Regarding nodal kernels, note that the
identity kernel has been eliminated almost con-
sistently; hence, providing experimental evidence that coupling
price forecasting across CPNs is beneficial. On the other hand,
kernel computed as the sample nodal covariance seems to
capture rich information of CPN pair similarities and is always
selected. As far as time kernels are concerned, note that the
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Fig. 4. Kernel selection: a black (white) square indicates that the respective
kernel has been selected (eliminated) while forecasting that specific day.

Fig. 5. RMSE comparison of forecasting methods.

bandwidth for the Gaussian kernel turns out to be inappro-
priate, while the linear kernel is always activated.
Finally, the forecasting performance of the novel method is

provided in Figs. 5 and 6. Specifically, fourmethods were tested:
(i) the novel multi-kernel learning method; (ii) the ridge re-
gression forecast where each CPN predictor is independently
obtained by solving for the
Gaussian kernel ; (iii) the persistence method which simply
repeats yesterday’s prices; and (iv) the autoregressive integrated
moving average (ARIMA) approach. Regarding the last one,
an ARIMA model is first estimated to fit the prices from the
previous week, and it is then utilized to forecast the prices of
the next 24 hours. The functions and
in the R package “forecast” are used for model estimation and
price forecasting, respectively, while model selection was based
on the Akaike information criterion (AIC) [21], [9]. Two fore-
casting errors were evaluated and are listed in Table I: the root
mean-square error (RMSE) , and the mean-
absolute errors (MAEs) , both av-
eraged over the 78-day evaluation period. The derived low-rank
multi-kernel forecast attains the lowest RMSE and MAE.

Fig. 6. MAE comparison of forecasting methods.

TABLE I
FORECASTING ERRORS .

VI. CONCLUSIONS

A novel learning approach was developed here for electricity
market inference. The congestion mechanisms causing the
variations in wholesale electricity prices were specifically
accounted for. After viewing prices across CPNs and hours as
entries of a matrix, a pertinent low-rank model was postulated.
Its factors were selected from a set of candidate kernels by
solving a non-convex optimization problem. Stationary points
of this problem can be attained using a computationally at-
tractive block-coordinate descent algorithm. The block-sparse
properties of the per-coordinate minimizations facilitate kernel
selection. Meaningful nodal kernels were built upon utilizing
the related LBA connectivity graph. Applying the novel ap-
proach to MISO market data demonstrated its low-rank and
kernel selection features. Even though the devised market
predictor was based only on publicly available data which
may not fully characterize the market outcome, it outperforms
standard per-CPN predictors. The developed kernel selection
methodology is sufficiently generic. It can be utilized in any
low-rank collaborative filtering setup where kernels need to be
selected across two types of features. Extensions to low-rank
tensor scenarios where kernels are chosen over three or more
feature types is an interesting research direction too. Focusing
on applications for smart grids, kernel learning for low-rank
models could be further used to predict load demand, as well
as solar and wind energy, across nodes and time periods.

APPENDIX

A. Proof of Proposition 1

Proof of Proposition 1: The proof follows the Pareto effi-
cient argument of [43, App. A]. Let and be the sets of
functions minimizing (6) and (8) for all and , re-
spectively. Since (6) is a convex problem, the set coincides
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with the set of weakly efficient functions [41]: A function
belongs to if at least one of the following conditions hold:
1) ;
2) ;
3) is Pareto efficient, i.e., there is no such that

and with at least
one strict inequality.

Observe next that if minimizes (8) for some , then
it is also weakly efficient. Hence, , which proves
the claim.

B. Proof of Lemma 1

Proving Lemma 1, requires the following result.
Lemma 3: If are the minimizers of (9), it holds

that .
Proof of Lemma 3: Arguing by contradiction, sup-

pose there exist minimizing (9) with

. Without loss of generality,
assume for some .

The minimum value attained in (9) is .

Consider now the functions and

which are feasible for (9), yielding a

cost of . The fact that

for all contradicts the assumed

optimality of .
Proof of Lemma 1: Every admits a spectral factoriza-

tion , where is a non-nega-
tive sequence converging to zero, and and are
orthonormal functions in and , accordingly. The trace norm
of is then defined as [2].
To show that , consider the spectral decom-

position of . Choose and
for . Since are feasible for (9) and

attain a cost of , it follows that .
It is next shown that . Because the square root

is strictly increasing, it can be applied on (7) to yield

(34)

Let be minimizers of (9). By Lemma 3, they yield

a minimum of . These minimizers are

also feasible for (34), while attaining a cost of ;

hence, .

C. Proof of Theorem 1

Theorem 1 builds upon the key result of [6, p. 352–53]:
Theorem 2 (Aronszajn, 1950): If is the kernel of the func-

tion family having norm , then
for any and , is the reproducing kernel of the

function family with , having the norm

.
Proof of Theorem 1: Theorem 2 asserts that a conic combi-

nation of kernels defines a function family whose members can
be alternatively represented as a sum of functions defined by the
constituent kernels. Applying this result to the convex combina-
tions of (11), allows replacing (12) with

(35)

where has been defined in (13). Upon exchanging the order
of minimizations in (35), consider solving the inner one, that is

. The LS term is constant for a fixed ,
while the two regularization terms can be separately minimized
over and , respectively.

Focus now on solving . By The-

orem 2, for fixed , there exist such that

(36)

Summing (36) over and defining yields

(37)

Recall that minimizing over amounts to finding the optimum
. By applying the Cauchy-Schwarz inequality, it can be

shown that [30, Lemma 26]

(38)

Utilizing (38) to minimize the square root of (37), and repli-
cating the analysis for completes the proof.

D. Proof of Lemma 2

Lemma 2 generalizes [32, Corollary 2] to matrix variables.
Lemma 4 ([32]): The solution to the -penalized LS

problem

is when ;
and , otherwise. The scalar minimizes the convex
problem

(39)

Proof of Lemma 2: Since , the problem in (30) can be
equivalently expressed in terms of as

(40)
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Upon defining and using property (P), (40) can be
expressed in terms of as

(41)

By Lemma 4, the minimizer of (41) is the solution of

(42)

when ; or , otherwise. Using
property (P) and if , then satisfies

when ; other-
wise, . Transforming back to the sought ,
yields finally (31).
The scalar in (31) is the minimizer of the optimization

problem obtained upon replacing and in (39) by
and , respectively. Given the singular value decompositions

and , and after algebraic
manipulations, can be shown to be the minimizer of

(43)

where . Recognizing that the matrices in
(43) are diagonal and that the matrix version of is

, yields (32) thus completing the proof.
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