
GENERALIZED ITERATIVE THRESHOLDING FOR SPARSITY-AWARE

ONLINE VOLTERRA SYSTEM IDENTIFICATION

Konstantinos Slavakis1 Yannis Kopsinis2 Sergios Theodoridis2

Georgios B. Giannakis1 Vassilis Kekatos1

1University of Minnesota

Digital Technology Center

Minneapolis, USA

Emails: slavakis@dtc.umn.edu

georgios@umn.edu, kekatos@umn.edu

2University of Athens

Dept. Informatics & Telecomms.

Athens, Greece

Emails: kopsinis@ieee.org

stheodor@di.uoa.gr

ABSTRACT

The present paper explores the link between thresholding,

one of the key enablers in sparsity-promoting algorithms, and

Volterra system identification in the context of time-adaptive

or online learning. A connection is established between the

recently developed generalized thresholding operator and op-

timization theory via the concept of proximal mappings which

are associated with non-convex penalizing functions. Based

on such a variational analytic ground, two iterative thresh-

olding algorithms are provided for the sparsity-cognizant

Volterra system identification task: (i) a set theoretic esti-

mation one by using projections onto hyperslabs, and (ii) a

Landweber-type one. Numerical experimentation is provided

to validate the proposed algorithms with respect to state-of-

the-art, sparsity-aware online learning techniques.

Index Terms— Volterra, thresholding, proximal map-

ping, sparsity, adaptive filtering.

1. INTRODUCTION

Memory-enabled nonlinear systems are frequently encoun-

tered in various areas of engineering such as biological pro-

cesses [1], and digital communications [2–4]. Truncated

Volterra or polynomial series are well-established approx-

imating models for fitting smooth nonlinear systems [3, 5].

Nevertheless, the major difficulty in such models is the “curse

of dimensionality”, since the number of series coefficients

grows exponentially with the polynomial system’s memory

[3]. Kernel-inspired approaches are a popular strategy to

overcome this obstacle by using elegant reproducing proper-

ties of polynomial kernels [6]. It is often the case that a parsi-

monious underlying physical system, or an overparametrized

This research has been co-financed by the European Union (European

Social Fund - ESF) and Greek national funds through the Operational Pro-

gram “Education and Lifelong Learning” of the National Strategic Reference

Framework (NSRF) - Research Funding Program: Thalis - UoA - Secure

Wireless Nonlinear Communications at the Physical Layer.

assumed model render the Volterra series expansion sparse,

in the sense that most of its coefficients are of zero or neg-

ligible size [1]. Unfortunately, the computationally efficient

polynomial-kernel-based strategies [6] face difficulties in in-

corporating sparsity-related information. Motivated by the

previous arguments, [7] introduced an ℓ1-driven, sparsity-

aware, RLS-based approach to Volterra or polynomial system

identification in the context of time-adaptive or online learn-

ing, i.e., the scenario where training data arrive sequentially,

they are utilized for only a limited number of times, and the

unknown system may be time-variant.

Thresholding, the operation of nullifying small compo-

nents of an L × 1 vector a while shrinking or leaving intact

the others, is one of the key enablers of sparsity-promoting

algorithms [8, 9]. It is by now well-established that the dis-

continuous hard thresholding (HT) often results into high-

variance estimates [10–12]. On the other hand, the contin-

uous soft thresholding (ST) operator, associated with convex

ℓ1-penalty terms, has the tendency to increase bias [10–12].

To overcome these drawbacks, alternative thresholding rules

have been proposed [11–15]. These advances in thresholding

operators are strongly connected to optimization tasks; they

are obtained by regularizing squared error losses by usually

non-convex penalties. Based on HT, the generalized thresh-

olding (GT) operator was introduced in [16] to encompass

the majority of thresholding rules [11–15]. GT was combined

with a set theoretic estimation algorithm in [16] to identify a

sparse system in the context of online learning.

The contribution of this paper to sparsity-cognizant on-

line Volterra system identification is twofold. First, it es-

tablishes a novel link between GT and optimization theory

by the concept of proximal mappings, associated with non-

convex penalties. To justify the potential of such a viewpoint,

a novel iterative thresholding Landweber-type algorithm is in-

troduced, whose complexity scales linearly with the Volterra

filter length. Second, both GT-inspired algorithms of [16]

and of the Landweber-type are applied to the sparsity-aware

Volterra system identification task. Numerical experimenta-

tion is provided to validate these GT-empowered techniques

over state-of-the-art RLS-based methodologies [7].

2. PROBLEM STATEMENT

Given the m × 1 input signal x = [x1, x2, . . . , xm]⊤ ([·]⊤

denotes transposition), the noisy output y ∈ R of a discrete

Volterra model is given by the following equation [3, 5]

y =

D
∑

d=0

∑

|β|=d

hβ
∗ x

β1

1 xβ2

2 · · ·xβm

m + η, (1)

where η denotes noise, β := (β1, β2, . . . , βm) ∈ N
m is a

multi-index with total degree |β| :=
∑m

i=1 βi, and {hβ
∗ :

|β| ≤ D} are the real-valued coefficients which character-

ize the unknown Volterra system. Model (1) obtains a dot-

product form as follows; for each d ∈ {0, 1, . . . , D}, define
the map x 7→ φd(x), where φd(x) contains all lexicographi-
cally ordered monomials of total degree d:

φd(x) := [xd
1, x

d−1
1 x2, . . . , x

d
2, . . . , x

d
m]⊤ ∈ R

(m+d−1
d).

If ad
∗ := [hβ1

∗ , hβ2
∗ , . . . , h

βLd

∗]⊤ ∈ R
Ld , Ld :=

(

m+d−1
d

)

,

is the vector which contains the coefficients {hβi

∗ }Ld

i=1, with

{βi}
Ld

i=1 ordered according to the previous lexicographic or-

dering, and if

a∗ := [a0
∗
⊤,a1

∗
⊤, . . . ,aD

∗
⊤]⊤ ∈ R

L

φ(x) := [φ⊤
0 (x), φ

⊤
1 (x), . . . , φ

⊤
D(x)]⊤ ∈ R

L,

where L :=
∑D

d=0 Ld, then (1) can be recast as y =
a⊤
∗ φ(x) + η = a⊤

∗ u + η, where the definition u := φ(x)
was introduced for simplicity.

This paper focuses on identifying {hβ
∗ : |β| ≤ D} or

equivalently a∗ given a sequence of training data (yn,xn) ⊂
R × R

m, or better, (yn,un) ⊂ R × R
L. The a∗ is assumed

to be sparse, i.e., most of its components are of zero or negli-

gible size. Moreover, to abide by the time-adaptive or online

learning premises, the joint pdf of (yn,un), as well as the

Volterra system a∗ itself, are assumed to be unknown and in

general time-varying.

3. FRAGMENTS OF OPTIMIZATION THEORY:

THE PROXIMAL MAPPING

Definition 1 (Proximal mapping). Given a positive definite

Γ ∈ R
L×L, and a function f : RL → (−∞,+∞], the prox-

imal mapping ProxΓ,f is defined as the set valued operator

which maps to every a ∈ R
L, the following set:

ProxΓ,f (a) := arg min
z∈RL

f(z) +
1

2
(a− z)⊤Γ(a− z).

To avoid ambiguities, the previous set of minimizers is as-

sumed nonempty. Whenever Γ = 1
λIN , for some λ > 0, then

the notation Proxλf is used instead of ProxΓ,f .

If f is (lower semicontinuous) convex, then Proxλf be-

comes single-valued, with eminent applicability to signal pro-

cessing tasks [17, 18]. Moreover, in the special case of f =
ιC , where ιC denotes the indicator function of C, i.e., ιC at-

tains the value of 0 on the closed convex set C, and +∞ else-

where, then ∀λ > 0, ProxλιC is nothing but the classical

(metric) projection mapping PC onto the closed convex C.

Motivated by the soft-thresholding-based approach of

[19] for modeling inaccuracies and unknown noise statistics,

a hyperslab is defined around each datum (yn,un), for some

user-defined ǫn ≥ 0:

Sn[ǫn] :=
{

a ∈ R
L :

∣

∣u⊤
na− yn

∣

∣ ≤ ǫn
}

, ∀n. (2)

It can be verified that Sn[ǫn] in (2) is a closed convex set, with
projection mapping given as:

PSn[ǫn](a) = a+















yn−ǫn−u⊤
n
a

‖un‖2 un, if yn − ǫn > u⊤
na,

0, if |u⊤
na− yn| ≤ ǫn,

yn+ǫn−u⊤
n
a

‖un‖2 un, if yn + ǫn < u⊤
na.

4. PENALIZED LEAST-SQUARES

The mainstream of batch sparsity-promoting algorithms uti-

lize a number of N training data, (y,U) ∈ R
N × R

L×N ,

to find an exact or approximate solution, in most cases itera-

tively, to the following penalized least-squares minimization

task; find

arg min
a∈RL

1

2
‖y −U⊤a‖2 + λ

L
∑

i=1

p(ai), (3)

where p : R → [0,∞) stands for a sparsity-promoting,

non-decreasing, even, and generally non-convex penalty,

λ ∈ (0,∞) is the regularization parameter, and ai stands for
the i-th coordinate of the vector a.

Choices for p are numerous; for example, if p(a) =
χR\{0}(|a|), ∀a ∈ R, where χA stands for the characteris-

tic function with respect to A ⊂ R, then the regularization

term
∑L

i=1 p(ai) becomes the ℓ0-norm of a. In the case

where p(a) = |a|, ∀a ∈ R, then the regularization term is

the ℓ1-norm ‖a‖1 :=
∑L

i=1 |ai|, and (3) is the LASSO [20].

It has been observed that if some of the LASSO’s regular-

ity conditions are violated, then LASSO is sub-optimal for

model selection [12, 15, 21]. Such a behavior has motivated

the search for non-convex penalty functions p, which bridge

the gap between the ℓ0- and ℓ1-norm; for example, the ℓγ-
penalty, for γ ∈ (0, 1), [10], the log- [10,12], the SCAD [10],

the MC+ [12], and the transformed ℓ1-penalties [10].

Recently, separable counterparts of (3) are recently at-

tracting interest due to their simplicity and scalability to high-

dimensional tasks [12]. A justification for this interest is the

case where U is orthogonal. By ã := Uy, (3) is equivalent

to the following separable-in-components task [10]; find

M(ã) := arg min
a∈RL

(L
∑

i=1

1

2λ
(ãi − ai)

2
+ p(ai)

)

. (4)

The connection of (4) with the proximal mapping of

Def. 1 is evident: M(ã) = ×L
i=1 Proxλp(ãi), where× stands

for the Cartesian product. Under certain regularity condi-

tions on p, M(ã) becomes a singleton [10]. The mapping

which takes any ã to a solution of (4) will be called penalized

least-squares thresholding operator (PLSTO).

Figs. 1(b-d), depict PLSTOs associated with some of the

most commonly employed penalty functions. Due to sep-

arability in (4), only one dimension is depicted in Fig. 1.

For example, if p(a) =
[

ν2 − (|a| − ν)2χ[0,ν)(|a|)
]

/ν,
∀a ∈ R, and for some ν > 0, then the PLSTO is the cel-

ebrated HT [10], which is depicted in Fig. 1a together with

ST, which results in the case where p(a) = |a|. The rest of

the thresholding rules in Fig. 1b correspond to MC+ [12, 15]

and SCAD [10], respectively. HT is far from being the only

discontinuous PLSTO. An example is shown in Fig. 1c, by

bridge thresholding (BT) [13], which relates to the ℓγ-penalty,
γ < 1. Continuous thresholding functions, with nonlinear

parts, are shown in Fig. 1(d). More specifically, the non-

negative garrote [14] and representatives of the n-degree
garrote thresholding are illustrated.

5. GENERALIZED THRESHOLDING MAPPING

Definition 2 (The function iK). For some user-defined posi-

tive integer K < L, let the set-valued mapping IK : RL
⇉

TK , where ∀a ∈ R
L, IK(a) gathers all the K-tuples in

TK which identify the K largest in magnitude values of a.

Among these, iK(a) is defined to be the one with the smallest

indices. For example, if a = [1, 1
2 ,

1
4 ,−1,− 1

2]
⊤, and K = 3,

then IK = {(1, 2, 4), (1, 4, 5)}, and iK(x) = (1, 2, 4).

Definition 3 (Generalized thresholding mapping). Given a

penalty function p, an integer K < L, and a λ > 0, the i-th

entry of the generalized thresholding mapping T
(K)
GT

: RL
⇉

R
L is defined as follows; ∀a ∈ R

L:

T
(K)
GT (a)|i :=

{

ai, if i ∈ iK(a),

zi ∈ Proxλp(ai), otherwise.
(5)

Notice that in general Proxλp(ai) is a set, and zi is any ele-

ment within Proxλp(ai). Moreover, notice that T
(K)
GT leaves

theK-largest in absolute value components intact, as opposed

to the PLSTO in (4), where penalization by p is applied to all

the components of the input vector. In addition, Proxλp(ai)

is not confined to be a singleton as is the case usually in (4)

[10].

Proposition 1. (a) Given p : R → [0,∞), define the loss

πK(a) :=
∑

i/∈iK(a)

p(ai), ∀a ∈ R
L.

Then, for any λ > 0, T
(K)
GT (a) = ProxλπK

(a).
(b) Define the function

f(a) =
1

2
‖y −U⊤a‖2 + πK(a), ∀a ∈ R

L.

Choose any λ such that 0 < λ < 1/λmax(UU⊤), where
λmax(·) stands for the largest eigenvalue of a matrix. Then,

∀a ∈ R
L,

T
(K)
GT

(

a− λU
(

U⊤a− y
)

)

= Prox 1
λ
IL−UU⊤,f (a).

Proof. Omitted due to space limitations.

Remark 1. The generalized thresholding mapping T
(K)
GT was

introduced in [16] under the following form:

T
(K)
GT (a)|i =

{

ai, if i ∈ iK(a),

Shr(ai), otherwise,
(6)

where Shr is a function such that (i) τ Shr(τ) ≥ 0, and (ii)

| Shr(τ)| ≤ |τ |. An example of Shr is given in Fig. 1(a). A

condition under which the definitions of (5) and (6) become

equivalent is given in [10, Prop. 3.2]. More specifically, if

apart from (i) and (ii), Shr is also monotonically increasing,

and Shr(a) → ∞ as a → ∞, then there exists a continuous,

monotonically increasing p such that Shr(ai) = Proxp(ai)
in (6) for every ai at which Shr is continuous [10, Prop. 3.2].
A detailed study on other conditions under which the equiv-

alence of (5) and (6) holds true, or even more interestingly,

a study on the flexibility that (6) offers to thresholding tech-

niques compared to the PLSTO of (4) is deferred to a future

work.

6. ALGORITHMS

In this section, two algorithms for the sparsity-cognizant

Volterra system identification task are given. The first one is

based on the set theoretic estimation approach of [16], while

the second one is motivated by Prop. 1.b.

Algorithm 1 (Adaptive projection-based generalized thresh-

olding (APGT) algorithm). For an arbitrary initial point,

a0 ∈ R
L, iterate the following procedure ∀n ∈ N:

(s1) For a user-defined integer q, define the sliding window

Wn := max{0, n− q + 1}, n on the time axis, of size at most

q, where j1, j2 for two integers j1 ≤ j2 stands for {j1, j1 +
1, . . . , j2}. The set Wn defines all the indices corresponding

Fig. 1. Illustration of solutions to (4) for various choices of the penalty p, and some examples of GT.

to the hyperslabs to be processed at time instant n. Among

these, identify the “active” hyperslabs An :=
{

i ∈ Wn :

PSi[ǫi](an) 6= an

}

, where PSi[ǫi] stands for the projection

onto Si[ǫi] (cf. Section 3). By Def. 1, PSi[ǫi] = ProxιSi[ǫi]
=:

Proxi, where ιSi[ǫi] stands for the indicator function of Si[ǫi].

Moreover, for every i ∈ An, define the weight ω
(n)
i > 0, with

∑

i∈An
ω
(n)
i = 1, to weigh the importance of the information

carried by each hyperslab Si[ǫi].
(s2) Choose any ε′ ∈ (0, 1], and any µn ∈ [ε′Mn, (2 −
ε′)Mn], where

Mn :=















∑
i∈An

ω
(n)
i

‖Proxi(an)−an‖
2

‖
∑

i∈An
ω

(n)
i

Proxi(an)−an‖2
,

if
∑

i∈An
ω
(n)
i Proxi(an) 6= an,

1, otherwise.

Notice that due to convexity of ‖·‖2,Mn ≥ 1. In general, the
larger the µn, the larger the convergence speed of APGT.

(s3) Finally, the next estimate is given by

an+1 =



















T
(K)
GT

(

(1− µn)an + µn

∑

i∈An

ω
(n)
i Proxi(an)

)

,

if An 6= ∅,

T
(K)
GT (an), if An = ∅.

Algorithm 2 (Adaptive generalized thresholding Landwe-

ber (AGTL) algorithm). Given the sequence of training data

(yn,un)n∈N, and the user-defined q ∈ N∗, define the input

signal matrix Un = [un,un−1, . . . ,un−q+1] ∈ R
L×q and

the output signal vector yn = [yn, yn−1, . . . , yn−q+1]
⊤ ∈

R
q . For an arbitrary initial point a0, generate the following

sequence of estimates

an+1 = T
(K)
GT

(

an − λnUn(U
⊤
n an − yn)

)

,

where λn is any user-defined parameter such that 0 < λn <
1/λmax

(

UnU
⊤
n

)

, and λmax(·) denotes the largest eigenvalue
of a matrix.

It can be verified that the computational complexities of

both Algs. 1 and 2 are of order O(qL). This does not include

the computational complexity associated with T
(K)
GT . In Sec-

tion 7, all of the employed penalizing functions pwere chosen

such that T
(K)
GT is given in closed form. The theoretical anal-

ysis of Alg. 1 can be found in [22], while the analysis and

variants of Alg. 2 are deferred to a future work.

7. NUMERICAL EXAMPLES

The APGT and AGTL algorithms of Section 6 are validated

over the ℓ1-penalized, RLS-driven SCCD and SCCDWmeth-

ods of [7], whose complexities are of O(L2). Moreover, the

recently developed “APWL1” [19] is also employed, where

projections onto weighted ℓ1-balls are realized with an overall
complexity ofO

(

(q+1)L
)

. In all of the following examples,

noise η is drawn from the class N (0, 0.1). In Fig. 2, verti-

cal axes depict errorn := 10 log10
∑R

r=1‖a
(r)
n − a

(r)
∗ ‖2/R,

where R = 10 is the total number of realizations. In what

follows, ǫn of APGT takes the value ǫn = 1.3σ2
η , ∀n.

7.1. Time-invariant case: a∗ stays fixed with time

In Fig. 2a, (m,D,L) = (13, 4, 2380). For each realization,

100 randomly selected components of a∗ take values from

N (0, 1), while the rest are set to zero. The “APGT Log”

utilizes the log-penalty of [12] (γ = 10 and λ = 0.008),
whereas “APSM AT SCAD” uses the SCAD penalty, but with

an adaptive thresholding (AT) strategy which renders the as-

sociated λ parameter time-adaptive (α = 12; cf. [22]). The

same AT strategy for λ is followed also in “APGT AT SCAD”

and “AGTL AT SCAD”. For both APGT and AGTL, q = 103

and K = 100. “APGT AT SCAD” shows the best perfor-

mance among all employed APGT and AGTL methods, and

similar convergence speed to the SCCDW of [7]. Both SCCD

and SCCDW outperform all other methods in terms of steady-

state error performance.

7.2. Time-varying case: a∗ changes with time

Two cases are considered here; Fig. 2b corresponds to

(m,D,L) = (20, 2, 231), whereas Fig. 2c to the longer

Volterra filter case of (m,D,L) = (13, 4, 2380). For both

0 1000 2000 3000 4000 5000
−30

−20

−10

0

10

20

30

Iterations

e
rr

o
r

APGT Log, q=1000
APGT AT SCAD , q=1000
APGT AT Log, q=1000
APWL1, q=1000
AGTL AT SCAD, q=1000
RLS
SCCD
SCCDW

(a)

0 500 1000 1500 2000 2500 3000
−25

−20

−15

−10

−5

0

5

10

15

Iterations

e
rr

o
r

APGT AT SCAD , q=50
APGT AT Log , q=50
APGT AT WL1 , q=50
AGTL AT SCAD, q=50
AGTL Log, q=50
SCCD, β=0.998
SCCDW, forget=0.991

(b)

0 1000 2000 3000 4000 5000 6000
−20

−15

−10

−5

0

5

10

15

20

25

30

Iterations

e
rr

o
r

APGT AT SCAD , q=500
APGT AT SCAD , q=1000
SCCD, β=0.999
SCCDW, β=0.998
SCCDW, β=0.996

(c)

Fig. 2. (a) The unknown system a∗ stays fixed with time for (m,D,L) = (13, 4, 2380). (b) Time-varying a∗ for (m,D,L) =
(20, 2, 231). (c) Time-varying a∗ for (m,D,L) = (13, 4, 2380).

cases, there is a time instance where a∗ abruptly changes.

In Fig. 2b, and for the first 1500 time instances, 10 com-

ponents of a∗ are drawn from N (0, 1), while the rest are

set to zero. At the time instance 1501, 5 randomly chosen

nonzero components of a∗ are set to zero, while 2 randomly

chosen, previously zero-valued components, take values from

N (0, 1). For APGT and AGTL, K = 10 throughout the

experiment. In Fig. 2c, and for the first 3000 time instances,

a∗ is the same as in the time-invariant case of Fig. 2a. At

time 3001, 5 randomly chosen nonzero components of a∗

are set to zero, while 2 randomly chosen, previously zero-

valued components, take values from N (0, 1). For APGT

and AGTL,K = 100 throughout the experiment.

To track the Volterra filter’s changes, an RLS-inspired for-

getting factor is necessary for both SCCD and SCCDW to

disregard past observed values. Extensive experimentation on

the values of the forgetting factor produced several indicative

curves in Figs. 2b and 2c. Notice that the longer the Volterra

filter is, the more distinct becomes the superior tracking abil-

ity of APGT compared to the rest of the methods. Variants

of AGTL which achieve faster convergence speed and lower

steady-state errors are deferred to a future work.

8. REFERENCES

[1] D. Song, H. Wang, and T. W. Berger, “Estimating sparse Volterra mod-

els using group ℓ1-regularization,” in Proc. IEEE Intl. Conf. Engnr. in

Medicine and Biology Society (EMBC), Buenos Aires, Argentina, Sep.

2010, pp. 4128–4131.

[2] S. Benedetto and E. Biglieri, “Nonlinear equalization of digital satellite

channels,” IEEE J. Sel. Areas Commun., vol. SAC-1, no. 1, pp. 57–62,

Jan. 1983.

[3] V. Mathews and G. Sicuranza, Polynomial Signal Processing, Wiley,

New York, 2000.

[4] G. B. Giannakis and E. Serpedin, “A bibliography on nonlinear system

identification,” Signal Process., vol. 81, no. 3, pp. 533–580, Mar. 2001.

[5] G. Palm and T. Poggio, “The Volterra representation and the Wiener

expansion: Validity and pitfalls,” SIAM J. Appl. Math., vol. 33, no. 2,

pp. 195–216, 1977.

[6] M. O. Franz and B. Schölkopf, “A unifying view ofWiener and Volterra

theory and polynomial kernel regression,” Neural Comput., vol. 18, no.

12, pp. 3097–3118, 2006.

[7] V. Kekatos and G. B. Giannakis, “Sparse Volterra and polynomial re-

gression models: Recoverability and estimation,” IEEE Trans. Signal

Process., vol. 59, no. 12, pp. 5907–5920, Dec. 2011.

[8] T. Blumensath and M. E. Davies, “Iterative hard thresholding for com-

pressed sensing,” Applied Comput. Harmonic Anal., vol. 27, no. 3, pp.

265–274, 2009.

[9] S. Foucart, “Hard thresholding pursuit: An algorithm for compressive

sensing,” SIAM J. Numer. Anal., vol. 49, no. 6, pp. 2543–2563, 2011.

[10] A. Antoniadis, “Wavelet methods in statistics: Some recent develop-

ments and their applications,” Statist. Surveys, vol. 1, pp. 16–55, 2007.

[11] Y. She, “Thresholding-based iterative selection procedures for model

selection and shrinkage,” Electr. J. Statist., vol. 3, pp. 384–415, 2009.

[12] R. Mazumder, J. H. Friedman, and T. Hastie, “SPARSENET: Coordi-

nate descent with nonconvex penalties,” J. Amer. Statist. Assoc., vol.

106, no. 495, pp. 1125–1138, Sept. 2011.

[13] I. E. Frank and J. H. Friedman, “A statistical view of some chemo-

metrics regression tools,” Technometrics, vol. 35, no. 2, pp. 109–135,

1993.

[14] H.-Y. Gao, “Wavelet shrinkage denoising using the non-negative gar-

rote,” J. Comput. Graph. Statist., vol. 7, no. 4, pp. 469–488, Dec. 1998.

[15] C.-H. Zhang, “Nearly unbiased variable selection under minimax con-

cave penalty,” Annals Statist., vol. 38, no. 6, pp. 894–942, 2010.

[16] Y. Kopsinis, K. Slavakis, S. Theodoridis, and S. McLaughlin, “Gener-

alized thresholding sparsity-aware algorithm for low complexity online

learning,” in Proc. ICASSP, Kyoto: Japan, 2012, pp. 3277–3280.

[17] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in sig-

nal processing,” in Fixed-Point Algorithms for Inverse Problems in

Science and Engineering. Springer-Verlag, 2011.

[18] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone

Operator Theory in Hilbert Spaces, Springer, New York, 2011.

[19] Y. Kopsinis, K. Slavakis, and S. Theodoridis, “Online sparse system

identification and signal reconstruction using projections onto weighted

ℓ1-balls,” IEEE Trans. Signal Process., vol. 59, no. 3, pp. 936–952,

Mar. 2011.

[20] R. Tibshirani, “Regression shrinkage and selection via the LASSO,” J.

Royal. Statist. Soc. B., vol. 58, no. 1, pp. 267–288, 1996.

[21] H. Zou, “The adaptive LASSO and its oracle properties,” J. Amer.

Statist. Assoc., vol. 101, pp. 1418–1429, Dec. 2006.

[22] K. Slavakis, Y. Kopsinis, S. Theodoridis, and S. McLaughlin, “Gen-

eralized thresholding and online sparsity-aware learning in a union of

subspaces,” arXiv: http://arxiv.org/abs/1112.0665.

http://arxiv.org/abs/1112.0665

	 Introduction
	 Problem statement
	 Fragments of Optimization Theory: The Proximal Mapping
	 Penalized Least-Squares
	 Generalized thresholding mapping
	 Algorithms
	 Numerical Examples
	 Time-invariant case: a stays fixed with time
	 Time-varying case: a changes with time

	 References

