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Abstract—Weather and life cycles, fuel markets, reliability services for identifying the so termed “national congestio
rules, scheduled and random outages, renewables and demandcorridors.”
response programs, all constitute pieces of the electricity marke Forecasting schemes reported so far include statistioatti

puzzle. In such a complex environment, forecasting electricity series analysis approaches based on auto-regressive (inte
prices is a very challenging task; nonetheless, it is of paramount Y Pp g

importance for market participants and system operators. Day- 9rated) moving average models and their generglizatim; S
ahead price forecasting is performed in the present paper e.g.,[4], [6], [3]. However, these models are confined tedin
using a kernel-based method. This machine learning approach predictors, whereas markets involve generally nonlinear d
offers unique advantages over existing alternatives, especially handencies. To account for nonlinearities, artificialligence

in systematically exploiting the spatio-temporal nature of lo- h h fuzzv svstems and neural networks. hav
cational marginal prices (LMPs), while nonlinear cause-effect approaches, such as y Systems a al networks, have

relationships can be captured by carefully selected similarities. been also investigated [18], [8], [11], [17]. A nearest mheig
Beyond conventional time-series data, non-vectorial attribute borhood approach has been suggested in [12]. In [19], market

(e.g., hour of the day, day of the week, balancing authority) are clearance is assumed to be solved as a quadratic program
transparently utilized. The novel approach is tested on real data and forecasts are extracted based on the most probablesoutag

from the Midwest ISO (MISO) day-ahead electricity market over - . . . .
the summer of 2012, during which MISO’s load peak record was combinations. Reviews on electricity price forecasting ba

observed. The resultant day-ahead LMP forecasts outperform found in [1] and [14].
price repetition and ordinary linear regression, thus offering a In this work, a kernel-based forecasting approach is censid

promising inference tool for the electricity market. ered. Contrary to existing methods, the entire day-ahead ma
Index Terms—Locational marginal prices, kriging filtering, et involving all commercial nodes and all hours, is ledme
machine learning, wholesale electricity market. by a single predictor. Using a similarity graph approach,
spatio-temporal pricing correlations are systematiaatiilyzed.
Based on the problem specifications, appropriate kernels ar
The smart grid vision entails advanced information technatarefully designed and estimated. Furthermore, time addino
ogy and data analytics to enhance the efficiency, sustdityabi information is transparently incorporated in the form ofino
and economics of the power grid infrastructure [16]. In thigectorial attributes. The forecasting performance of tle¢hod
context, statistical learning tools are employed in thiskwois corroborated by preliminary numerical tests on real data
to forecast the day-ahead electricity market. To appredta collected from the MISO market over the summer of 2012.
value of such predictions, consider a typical day-aheadetar MISO is one of the largest electricity markets with relaljve
An independent system operator (ISO) collects hourly supghigh wind penetration. During this specific period, a hiistalr
and demand bids submitted by generator owners and utilitiead record was observed in the geographical area where
for the 24 hours of the following day. Compliant with networkMISO operates [13].
and reliability constraints, the grid is then dispatchedha The paper is outlined as follows. Electricity market fore-
most economical way. Together with power schedules, the 1$@sting is formulated in Section I, where the novel methed i
announces hourly prices for the electricity produced and/also presented. The design of kernels is detailed in Selition
consumed at specific nodes of the grid. Due to congestion aattl an efficient algorithm for implementing kernel-basew-fo
losses incurred by the transmission system, these loedtiocasting is developed in Section V. Forecasting resultshen t
marginal prices (LMPs) are different across the grid. MISO market are presented in Section V, and the paper is
Apparently, forecasting tomorrow’s LMPs constitutes aoncluded in Section VI.
major decision making task for asset owners and marketRegarding notation, lower- (upper-) case boldface letters
participants to plan their hedging and bidding strategids [ denote column vectors (matrices); calligraphic letteendt
Interestingly, some ISOs recently announce pricing fastcafor sets; and(-)” denotes transposition. The symbok
too in an attempt to relieve congestion [5]. These forecasttands for variable definition. Symbofs and @ denote the
serve as signals for reliability-ensuring bidding andtegc matrix entry-wise multiplication and the matrix Kronecker
planning in short- and long-term horizons, respectively. Aoroduct, respectively. The operation yag transforms a
a wider scale, price analytics are important to governmemiatrix to a vector by stacking its columns. The following

I. INTRODUCTION

Innovative Smart Grid Technologies Conf.,, IEEE PES,24-27 Feb. 2013, Washington, DC


Vassilis
Typewritten Text
Innovative Smart Grid Technologies Conf., IEEE PES,24-27 Feb. 2013, Washington, DC


Kronecker product properties will be needed throughou?&gl. Under these assumptionY§ is the minimum mean-

(P21): (A®B)’1 =A'®B! square error (MMSE) prediction of the day-ahead prices.
(P2): (A®B)" = AT @ BT Notice though that both the LS and ridge predictions are de-
(P3) veqd AXB) = (BT ® A) veX) and coupled across nodes, and are restricted to be linear dunscti

(P4): (A®B)(C®D) =(AC)® (BD). of the data. To model more complex dependencies, kernel

prediction methods are pursued next.

Il. FORECASTINGMETHODS B. Kernel Prediction

To formulate the electricity price forecasting problem, a Vectorial feature data stored ifiX;}7_, affect price fore-
simple model is described first, based on which subsequé&asts via blocks of the so-called Gramian makix = XX,
generalizations are built on. As in typical inference peohs, Where X” := [X{ X7]. Note that the(t,,t,)-th entry of
data are partitioned into features and targets (a.k.aessgrs Ko is the inner product between feature vectors of two time
or predictors and responses or predictions). Data over a prstances; i.e.[K,l;,, = x{ x,. In order to allow for
vious time period are provided as training feature/targmtsp general nonlinear feature/target rE|ati0nShipS, the ideto
Given these data, a predictor aims at finding the target salu¢se [Kult, ¢, = k(x¢,,x¢,), wherek(., ) is a choserkernel

for future target variables based on the known correspgndifiinction capturing the similarity between features.
features. The day-ahead electricity market forecast can be thought

Consider the power grid as a network 8f commercial of as a function whose arguments are the available vectorial
pricing nodes (CPNSs). The training and test periods Comprigaatures along with timestamp and nodal information. Tetfinf
T, and T time intervals, respectively. In the day-ahead mark&tch a function, pairs of arguments and pri¢es v };-, are
setup considered here, the interval is naturally an houe TRrovided as historical data. The function argument is tipéetr
training period may potentially include all available biseal ¢ := (X1, ti,71) C X x T x N, whereX C R”, T is the space
price values, and’ = 24 refers to the following day. of time instants, andV is the finite set of CPNs. The desired

Hourly nodal prices are stored row-wise in matriégs of ~Prediction function is a mapping : X x 7 x A" — R. Hence,
dimensionT; x N for i = 1,2 corresponding to the training different from the typical approach, where per node prexct
and the testing phase, respectively. Predictor (featangdbles are trained, a single model capturing the whole pricing oeftw
are collected inP x 1 vectors stored in matricesX; }2_,, with IS pursued here. . N .
dimensions compatible witly;’s. A naive forecasting method Based on this formalism, electricity market forecasting ca

would adopt the model be posed as the regularization problem
L
. . min (0~ G + @
=1

whereW is the P x N matrix of prediction coefficients. Note

that then-th columns ofY;’s andW, y; ,, andw,,, correspond where L := NT; is the number of training daté is the

to the n-th CPN and its prediction coefficients, respectivelyspace in whichf lies, and| f||« is the induced norm in
Further, each node’s forecast is a linear function of theesarhat space [2]. The sum in the cost of (4) is an LS data
P-dimensional feature vector. fitting component, while the induced norm offersegularizer

) . effectively constrainingf to lie in the selected space, while at
A. Linear Prediction the same time enabling generalization over unseen dataeThe

An ordinary least-squares (LS) predictor yields the fosecatwo components are balanced via > 0, which is typically
YLS .= X,X Y, where denotes matrix pseudo-inverse. set via cross-validation [9].

To avoid overfitting, a regularized LS alternative (a.k.a. The pertinent questions in the present context of elettrici
ridge regression predictor) relies on price forecasting are{(Q1) how can the function space be
selected; andQ2) how the functional optimization in (4) can
be practically solved. Statistical learning suggests ctielg
first a kernel functionk((;, ¢,,) capturing the similarity be-
tween the application-specific featuresk(f, -) is a symmetric
be found in closed form a$X1TX1 N )\RIP)i X7y, OF and positive definite .fEnction, mganing. Fhat ﬂkﬂgr!el matrix

) T . 1 constructed agK|; ., := k(¢;, G ) is positive definite for any
equivalently, X' (X, X{ + Aglz,) ~ y1,, for all n. Hence, featre collection, then it uniquely defines a reproducieik!
the day-ahead ridge forecast is given by Hilbert space (RKHS) of functions. The latter is the family o

YR = X,XT (X, X7 + )\RITl)il Y, 3) functions expressible a&¢) = > .o, k(¢, Q) The celebrated
Representer’s Theorem asserts that wiheis an RKHS, the
A Bayesian interpretation of ridge regression assumes: minimizer of (4) takes the form [9]
(A1) Columns of theN;’s in (1) are standard Gaussian, I
independent across nodes and training/testing phases; and f(C) — Z k(C, ). (5)
(A2) All w,'s are zero-mean white Gaussian with variance =

Wy = argmin y1, - Xawa[l3 + A-lwall;  (2)

wheren = 1,..., N, and A\g > 0 denotes the regularization
parameter. The prediction coefficienfsvR}~_, in (2) can

n—



In other words, the wanted prediction function can be e
pressed as a finite linear combination of kernel functior
evaluated only at the training points.

By exploiting (5), it can be shown that the functiona
optimization in (4) can be equivalently solved by estimgtin
the vector of coefficients in (5) via the quadratic program

o= arg moitn ||y1 - KllaHg + )\KaTKlla (6)

where K;; is the L x L kernel matrix evaluated over the
training points. The vectokx uniquely minimizing (6) is
readily found in closed form as

é = (K + MIng) 'y @)

SUN MON TUE WED THU FRI SAT

Having acquiredx, the fitted function can be evaluated at any

other point. S.pecmcallyz ) d|Cta.t?S that at any new poif{y 1. A similarity matrix across the days of the wel. Its entries

Cnews the predicted function value i§(Cnew) = klo,&, Where have been empirically estimated as the correlation coefficieatween daily

Knew is anL x 1 vector with entries:(Cnew Cl)- By stacking all MISO pricing signals from the summer of 2011. Observe the tation over
. . , ’ . successive days.

function evaluations for tomorrow’s market, the price fast

can be compactly expressed as

K A ®) B. Kernels for Timestamps

Careful kernel design for time data or timestamps can
potentially capture the cyclostationarity inherent toctieity
demand and consequently price. One should first recognize

that the datum; carries two pieces of information: the day
[1l. KERNELS FOR(NON)-VECTORIAL DATA of the weekd;, and the hour of the day,. Moreover, the
similarity between two timestamps should be decreasing wit

This section deals with Constructing kernels tailored f%spect to their t|me |ag Prices Corresponding to daysapac
electricity market forecasting. Recall that the kernelclion  3part should be less correlated than prices between the same

k(G Gm) is @ measure of similarity. Sino§ comprises vec- or consecutive days. These considerations motivate
torial featuresx;, time instances;, and nodal information

ny, kernels for each of the three components are individually
defined first. With the component-wise kernels respectitely
noted byk, (x;, x), ki(ti, tm), @andks(ng, n., ), the collective

which addresses (Q2). Responding to (Q1) requires spegifyi
the kernels, which is the topic considered next.

kt (th tm) = kd(dh dm)kh(hla hm)ﬂ‘dlidm‘ (10)

kernel is constructed as their product whose factors are described next.
The k4(-,-) factor models pairwise similarities across days
k(G Gn) i= ko (X1, X ) ke (E1, b ) s (1, Ty ). (9) of the week. Since this factor has discrete support, it is

simply defined by & x 7 matrix K~. It can be shown that

If the three factors are valid kernels, i.e., symmetric anfd;(-,-) is a valid kernel function, provided- is positive
positive definite functions, then their product in (9) istagrly definite [9]. The entries ofK; can be selected according
a valid kernel too [2]. to the designer’s prior knowledge. Alternatively, they dam
estimated as the correlation coefficients of historical katar
prices over the seven days of the week; see e.g., Fig. 1.
Likewise, theky, (h;, h,,) factor captures pairwise similarities

Regardingk, (x;, X, ), a simple choice is the linear kernelacross hours of the day. This function can be defined by a
x{'x,,,. More complex nonlinear relationships can be capturéd x 24 matrix K4, as the one empirically estimated in Fig. 2.
by other vectorial kernels, such as the polynomial, the sigin ~ The last factor in (10) models an exponentially decaying
the Gaussian, or spline kernels [2], [9]. In this work, theimilarity between two time instances, and intends to ipoer

A. Kernels for Vectorial Data

Gaussian kernel rate the nonstationary characteristics of the electricigrket.
Parameters > 0 is a decaying parameter that should be
ko (%1, %Xm) = exp (—v|x; — xp[3) selected close to 1 yielding an effective memoryl ¢f1 — 3)

days. Finally, as with (9), the product of kernels is also ledva
will be adopted with bandwidth parameter> 0. kernel.



Hour—to—Hour Correlation is strictly positive definite [15].

IV. EFFICIENT IMPLEMENTATION

Even though coupling price forecasts across time and nodes
is beneficial from an inference perspective, the derived pre
dictions yX in (8) are computationally challenging. Indeed,
the ridge predictor in (3) requires inverting? x 71 ma-
trix, whereas the kernel one in (6)-(8) involves invertitg t
NT; x NTy matrix K1 + AcInyr,. Assuming a market of
1,000 CPNs and a training period of three weeks (around 500
hours) leads to &-10° x 5-10° K;; matrix. Such a big matrix
is not only hard to invert, but also non-trivial to store.

To efficiently implement (6)-(7) and facilitate cross-
validation, the particular problem structure should be ex-

afternoon

midnight

noon  afternoon  night ploited. Note first that findingx does not necessarily require
inverting K11 + AxInt,, but rather solving the linear system
Fig. 2. A similarity matrix across hours of the dix4. Its entries have been (Ks Q Kl% + M\Inr ) &=y (12)
U 1 :

empirically estimated as the correlation coefficients betwkeurly MISO

ricing signals from the summer of 2011. Day and night pattexas be . . LA R N
gasnygdisgnguished' Y gt p Define first the7} x N matrix A so thata = veqA).

Using (P3) from Section |, the linear equations in (12) are
equivalently expressed d!! AK, + \cA = Y, or,
C. Kernels for Nodal Information K}J%A n )\KAKs_l — YK (13)
Pricing signals exhibit spatial correlations. Selectiegrels
to account for not only temporal but also spatial patteriBterestingly, (13) is an instance of ti8glvester equation that
requires understanding the spatial structure of the marke@s been widely studied in the control literature, and can be
Spatial correlations could be mainly attributed to thesrais- efficiently solved using the Bartels and Stewart algorittf [
sion infrastructure together with line and generation gesa already implemented in MATLAB'S yap function.
But since the electrical topology is unavailable, othertigha  Having acquiredA, the price forecast is provided kj =
similarity measures should be considered. In this paper, tK21a, or more efficiently as
information of the local balancing authority (LBA) that éac VK - KUAK (14)
CPN belongs to is exploited as a topology surrogate. The 2T Tt s
presumption here is that nodes belonging to the same LBA; ForecAsTING THEMIDWESTISO (MISO) MARKET
should experience similar prices. In addition, nodes ciletl

by neighboring authorities are expected to have pricesseorr 1€ forecasting performance of the novel kernel-based
lated more than nodes controlled by non-adjacent ones. predictors is evaluated in this section. To this end, resh da

To rigorously model spatial dependence and incorporatefrl?m t?e d;ly-arr]]ead MISO eIec_tri(;:it;; rzngi {;ﬂ ar:e used. Thz:/l(:lgg
in the prediction scheme, a graph-based inference appro related to the summer period o » WHEre a new

is adopted; see also [10]. CPNs are considered as vertice ngj dem_and -p.eak record was observed [13]. The related
a similarity graph, connected with edges having non-m;e(gjaticommerc'al pricing mode consists &f = 1,732 n_odes. Day-
weights. Edge weights are chosen proportional to the siityila ahead hourly LMPs are collected for the period June 1 to
between incident nodal prices. Edges in the same LBA frygust 31_' 2012, a total of 2,208 hours. ) )
assigned unit weights; edges across nodes from differeasLB_ Redarding the feature data used, vectorial data at time
receive weight.5; and all other edges are zero. All weighfnstantt; were coliected in the vecta; = x;,, and included:
values are stored in aiV x N symmetric adjacency matrix ¢ The day-ahead LMPs across MISO for the same hour
A. Even though edge weights are selected in a rather ad hoc during the previous operating day.

manner, cross-validation could yield more meaningful galu « The aggregate over the MISO region wind energy pro-

Having constructed the similarity graph, itsormalized duction forecast. Apart from the same hour, the previous
Laplacian matrix is defined ad, := Iy — (D'/2)fA(D'/2)t, and the next hour were also included to model volatility
whereD is a diagonal matrix having the row sumsAfacross in wind production. Moreover, wind can be considered a

its main diagonal; see e.g., [10]. A kernel matrix capturing rough surrogate for weather conditions too.

the similarity across the pricing network is the reguladize « The hourly regional (East, West, and Central) load fore-
Laplacian cast. Again, the loads predicted for one hour before and

K, = (L+ sIN)_l (11) after the hour of interest were also included. To capture
s . . .

the time coupling across hours due to ramp constraints
wheresly for s > 0 has been added to ensure that the kernel considered in unit commitment.
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Fig. 3. The RMSE performance for the three forecasting mettexted. The
evaluation period ranges from thig™ (July 17, 2012) to th&)2"d (August

31, 2012) day of the summer period. 4
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Mainly due to scheduled and random outages in trangs]
mission lines and generators, the electricity market is-non
stationary; hence, to capture time variability, each dpgéslic-  [g]
tor is trained independently using the feature/price dedenf
the last three weeks. Important model parameters, nanhely, t[7
Gaussian kernel bandwidth the Laplacian matrix regularizer
s, regularization parametersg and \¢, and the forgetting [8l
factor 8 need to be tuned. To tune these parameters, market
data are divided in two parts. The first 46 days were usegd)
only for parameter tuning. For the remaining 46 days, the
aforementioned parameters were fixed, and predictors WEIS
again trained based on their previous three weeks.

Three forecasting methods were tested: (i) a naive repetitill]
forecast that simply repeats yesterday’s prices; (ii) idge
regression forecast of (3); and (iii) the novel spatio-temap [12]
kernel-based predictor of (8). The evaluation metric used w
the residual mean-square error (RMSB): — y2l/2/(24N).
Using the initial 46-day period, the parameters were set (3]
AR =1,000, )k =1, v=1-10"%, 3 =0.999, ands = 1.

Fixing parameters to the aforementioned values, the fore-
casting results obtained for the second half of the summes
period in the MISO market are depicted in Fig. 3. The
initial fluctuations experienced by all methods can be a[t1—5
tributed to high temperatures. Interestingly, the naivedast
outperforms the linear ridge regression-based predidtoe
novel spatio-temporal kernel-based forecast howeveinatta[16]
consistently the lowest RMSE.

17
VI. CONCLUSIONS i

Undoubtedly electricity market forecasting is a challengi [18]
yet instrumental task for the smart grid operation. A novel
machine learning-based approach was developed. Viewing
the market as a properly defined graph, spatial correlationsj
were indirectly modeled using information from balancing
authorities. Time and calendar information can capturédoeyc
stationarity as well as holiday effects on the market. Gaunss
kernels on a multitude of numerical attributes model n@din

1 G. H. Golub and C. F. van Loariatrix Computations.

dependencies, and avoid the curse of dimensionality. Thelno
price prediction algorithm operates on data publicly alzl#,
even though additional data can be readily incorporated. An
efficient implementation was proposed that facilitatedliagp
1 tion of the method to the MISO 1,732-CPN network. Including
additional data sources, deriving more efficient algorghand
1 inferring other useful market quantities are some of thartut
research directions of this work.
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