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Abstract—Distributed energy resources (DERs) should be
scheduled in a coordinated manner to postpone or avoid costly
capacity upgrades. Nonetheless, the pervasive lack of data at
the distribution grid edge impacts the effectiveness of real-time
scheduling of DERs using the optimal power flow (OPF). Before
meters are widely deployed, distribution system operators (DSOs)
may have to coordinate DERs using limited data. The goals of this
work are to identify which data are most important for the OPF,
and solve the OPF using only this subset of selected data. The
two goals can be accomplished simultaneously upon formulating
a feature selection task that incorporates the OPF module, and
gives rise to a nonconvex optimization problem. Stationary points
of this problem can be reached using an accelerated proximal
gradient algorithm. The proposed methodology is applicable
to a broad range of OPF formulations. Nonetheless, linearized
OPF variants posed as linear or quadratic programs feature
expedited gradient calculations thanks to the neat structure of
multiparametric programming. Numerical tests on a benchmark
distribution feeder demonstrate that the degradation in the
system’s performance when running the OPF using less than
half of the data is insignificant.

Index Terms—Multiparametric programming, proximal gra-
dient, optimal meter placement, smart meter data compression,
group lasso, compressed sensing.

I. INTRODUCTION

Unlike power transmission systems, distribution grids are
currently challenged by limited observability. Meter deploy-
ment has been relatively limited, and smart meter readings
collected at the grid edge are communicated back to the DSO
with time delays or during nighttime to reduce the communica-
tion burden. Customer privacy considerations could confine the
granularity of smart meter data, and concerns about cyber data
attacks call for enhancing the security of customer-to-DSO
communication links. At the same time, there is a pressing
need for grid scheduling at finer temporal scales to reduce
the magnitude and frequency of peak power injections. The
predicament of real-time data scarcity can thereby hinder
the effective integration of DERs. In this context, this work
explores options for optimally scheduling DERs using partial
grid data.

Reference [1] studies the observability of a distribution
grid using smart meter data. Under limited observability, one
may forego estimating the grid state and aim at scheduling
DERs directly from partial data. Suppose DERs are scheduled
centrally by the DSO by solving the OPF every few minutes.
The OPF can be seen as a mapping between OPF input data
(such as load demands) x and OPF solutions (DER schedules)
y(x). The mapping has been studied in [2], [3], and its
sensitivities (partial derivatives) have been computed in [4,

Ch. 6]. When x is uncertain, a DSO can resort to stochastic,
robust, and chance-constrained renditions of the OPF to de-
risk the grid’s safe operation at the expense of increased
operational costs [5]. Ways to secure customers’ private load
demand information and their effect on OPF solutions are
discussed in [6], [7].

Previous works have tried to compress the OPF model to
expedite grid planning and strategic investment operations [8],
[9], [10], [11]. Rather than reducing the OPF model, the goal
here is to reduce the OPF input data and leave the OPF
solver intact. This ensures that the OPF solver is backward-
compatible and independent of data throughout specifications.
Recent works propose learning OPF solutions directly from
primitive data [12], [13]. For example, rather than feeding solar
power data at all buses to the OPF, the DSO can feed solar
irradiance data for a neighborhood to directly predict DER
setpoints. Although such approaches are reasonable for solar
data, they may be ineffective when controlling electric vehi-
cles. Moreover, our proposed methodology can be conflated
with the previous ideas.

Selecting which data are important for the OPF is related to
feature selection in machine learning [14], wherein one tries
to infer a target variable using only a subset of features. Here,
the target variable is the OPF solution, and the OPF as an
optimization problem comes as an integral part of the overall
learning model. Data selection has appeared before in power
system operations, such as in optimal meter placement for state
estimation [1], or feedback controller design [15].

This work takes a fresh look at data selection having the
OPF performance in mind. The technical contributions are on
three fronts: i) Put forth a general framework for data selection
and reconstruction for solving the OPF using partial data
(Section II); ii) Devise a proximal gradient descent algorithm
for solving the associated optimization problem (Section III);
and iii) Expedite gradient computations using advances from
multiparametric programming when the OPF is posed as a
linear or quadratic program (Section IV). Numerical tests on
the IEEE 37-bus distribution feeder corroborate the efficacy of
the proposed data selection scheme. Section VI summarizes
our findings and sketches open research directions.

Notation: Column vectors (matrices) are denoted by lower-
(upper-) case letters. Symbol (·)⊤ stands for transposition; IN
is the N ×N identity matrix; ∥x∥2 is the ℓ2-norm of vector
x; and ∥X∥F is the Frobenius matrix norm.
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II. PROBLEM STATEMENT AND FORMULATION

To optimally schedule distributed energy resources (DERs),
a distribution system operator (DSO) would need to solve
some rendition of the optimal power flow (OPF) every few
minutes. To solve the OPF, the DSO must know the feeder
topology as well as reasonable predictions of load demand and
DER flexibility across all buses. Although the feeder topology
can be considered known and relatively time-invariant, load
demand and DER flexibility may vary significantly throughout
the day and within short periods. Therefore, the OPF can
be interpreted as a parametric optimization model as shown
in Figure 1. Load demands and DER forecasts constitute
the problem parameters, which will be termed OPF features
and abstractly denoted by a L-long vector x. DER schedules
constitute the OPF minimizers or OPF solutions and will be
denoted by the N -long vector y. The OPF solution associated
with OPF features x is denoted by y(x). The parametric OPF
can be abstractly expressed as:

y(x) := argmin
y∈Y

f0(y;x) (1)

subject to (s.to) fm(y;x) ≤ 0, m = 1 : M

where function f0 models the OPF objective and functions
{fm}Mm=1 the M OPF constraints. For simplicity, the feasible
set of DER schedules Y is assumed to be independent of x.

To find y(x), the DSO should ideally receive smart meter
readings from all buses to acquire OPF features x in real
time. This may be technically impractical due to networking
and data processing limitations, and/or cyber-attack and data
privacy concerns. Alternatively, the DSO may collect measure-
ments from different grid sensors and find the power system
state (typically defined as the vector of complex voltages
across all buses) using state estimation. Knowing the grid
state, the DSO can readily compute x through the power flow
equations. Unfortunately, unlike power transmission systems,
distribution grids are largely unobservable given the currently
limited level of meter deployment.

As a practically relevant compromise, the DSO could com-
municate in real time with only a few buses to acquire a partial
view of OPF features. Suppose that the DSO affords to collect
only K out of the L OPF features. It is reasonable that this
feature selection process is completed in advance: The DSO
must have selected OPF features before real-time operation
and established a secure communication link with them. For
example, the DSO may select OPF features every few days or
until a major change occurs on the distribution feeder. Under
this setting, two key technical questions arise:
q1) How to select K out of L OPF parameters or features?
q2) How can the OPF be solved using only partial data?

The answers to these questions depend on the statistical
properties of OPF features, the feeder topology, and the
general structure of the OPF. Suppose that the DSO has a
dataset X = {xs}Ss=1 of S OPF scenarios. Such scenarios
can be sampled from historical records of OPF features using
archived smart meter data. To account for future operating
conditions, the DSO can synthetically generate OPF features
based on anticipated levels of DER penetration and load
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Fig. 1. a) According to the conventional workflow, the OPF is fed with OPF
input parameters or features stored in vector x ∈ RL and returns the OPF
solution y(x) ∈ RN . b) According to the proposed workflow, the OPF is fed
with reconstructed data x̂ = Wx ∈ RL. Because matrix W has K nonzero
columns, the reconstructed data depend linearly on only K out of the L OPF
features. This effects joint data selection and linear reconstruction. The idea
carries over to nonlinear reconstruction by using a neural network whose first
(input) layer has a weight matrix that is also K column-sparse.

growth. Questions related to generating X in a manner truthful
to anticipated grid loading conditions are not discussed here.

How can we use the K selected features to feed into the
OPF, given that the OPF solver accepts L rather than K
features? One idea would be to use a machine learning (ML)
model taking the K selected features as its input and returning
an L-long vector as its output to be fed into the OPF. To keep
the exposition uncluttered, we restrict our study to a linear
model, according to which the K selected features are linearly
combined to construct the L-long vector. More specifically,
given the OPF feature vector x ∈ RL, the vector to be fed
into the OPF can be expressed as:

x̂ = Wx =

L∑
ℓ=1

wℓxℓ (2a)

where W := [w1 w2 . . . wL] (2b)

where W is an L × L matrix partitioned column-wise as
shown in (2b) and xℓ is the ℓ-th OPF feature. To enable
OPF feature selection, matrix W should be column-sparse.
If wℓ = 0L, feature xℓ does not contribute to x̂. In particular,
we would like W to have only K nonzero columns, so
that the constructed OPF feature vectors x̂ depend only on
K of the original OPF features. Under this requirement,
matrix W serves the joint purpose of OPF feature selection
and reconstruction. Therefore, addressing questions q1)–q2) is
tantamount to designing W.

Given matrix W, the OPF is provided with feature vector
x̂ = Wx instead of x. The associated OPF solution is now
y(Wx) instead of y(x). Of course, the OPF feature vector
Wx is only a proxy of the actual grid loading conditions.
The OPF solution y(Wx) would be applied to the grid while
the grid experiences x. Matrix W can be designed based
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on different metrics. To showcase the main idea, the metric
considered here is fidelity in terms of the OPF solution.

Given dataset X , matrix W can be optimally designed as
the solution to the optimization problem:

min
W∈RL×L

f(W) + λg(W) (3)

where f(W) :=
1

2S

S∑
s=1

∥y(xs)− y(Wxs)∥22

and g(W) :=

L∑
ℓ=1

∥wℓ∥2

and λ > 0 is a tuning parameter. The objective function
involves two terms. Function f(W) measures the fidelity in
the Euclidean sense between the OPF solutions associated with
the actual feature vector xs and those associated with the
reconstructed feature vector Wxs. Function g(W) has been
used as a penalty in statistical learning problems to promote
solutions that are column-sparse; see for example the group-
Lasso approach [14]. It is easy to show that solving (3) for
larger λ would yield solutions with smaller value of g(W).

Despite being neatly expressed, solving (3) is non-trivial.
For example, evaluating f(W) entails solving 2S instances
of the OPF: To compute {y(xs)}Ss=1, we need to solve the
OPF for {xs}Ss=1; these OPFs can be solved once as they
do not depend on W. To compute {y(Wxs)}Ss=1 however,
we need to solve the OPF for {Wxs}Ss=1 each time W
changes. Heed that the term g(W) is used as a surrogate to
enforce column-sparse solutions. Otherwise, finding a W with
exactly K nonzero columns would entail solving a mixed-
integer program, which scales unfavorably with N and S. To
avoid the computational burden, we propose handling (3) using
a first-order iterative optimization algorithm.

III. SOLUTION METHODOLOGY

We suggest solving (3) using a proximal gradient descent
(PGD) algorithm. The proximal gradient method is a general-
ization of the gradient descent method for solving optimization
problems involving non-differentiable terms in their objective.
Let PGD iterations be indexed by t. At iteration t, the PGD
method updates Wt to Wt+1 in two steps. It first performs a
standard gradient descent step using the derivative of f(W)
at Wt to compute an intermediate variable:

Zt := Wt − µ∇Wf(Wt). (4)

The sought gradient can be computed as:

∇Wf(W) =
1

S

S∑
s=1

∇⊤
Wxs

y(Wxs) (y(Wxs)− y(xs))x
⊤
s .

This follows from the chain rule as the gradient of y with
respect to W can be expressed as the Jacobian matrix of
y with respect to Wxs, times the Jacobian of Wxs with
respect to W. Note that computing ∇Wf(Wt) requires not
only solving the OPF to find y(Wxs), but also finding its
Jacobian matrix of partial derivatives with respect to its input
feature vector Wxs. We will return to this later in Section IV.

Having computed Zt, the PGD method proceeds by updat-
ing Wt+1 as the minimizer of the convex problem:

Wt+1 := argmin
W

1

2µ
∥W − Zt∥2F + λg(W) (5)

where ∥ · ∥F denotes the matrix Frobenius norm. Because the
objective in (5) is separable across the columns of W, the
problem decouples across wℓ as:

wt+1
ℓ := argmin

wℓ

1

2µ
∥wℓ−ztℓ∥22+λ∥wℓ∥2, ℓ = 1 : L (6)

where ztℓ is the ℓ-th column of Zt. It can be shown that (6)
enjoys the closed-form solution:

wt+1
ℓ :=

[
1− λµ

∥ztℓ∥2

]
+

· ztℓ, ℓ = 1 : L (7)

where the operator [x]+ returns x if x ≥ 0; and zero, other-
wise. To improve the convergence rate of the method, one can
try implementing accelerated variants of PGD. In particular,
the accelerated PGD variant proposed in [16] bypasses stalling
issues of PGD in non-convex problems. Although this method
is guaranteed to converge to a stationary point of (3), it entails
solving 4S rather than S OPF instances per PGD iteration.

Our proposed methodology is applicable regardless of the
particular form of the OPF as long as (1) involves cost and
constraint functions that are jointly differentiable in (y,x).
Following standard industry practice, to avoid scenarios where
(1) becomes infeasible, network constraints can be handled as
a soft constraints. In addition to solving the OPF, we should
also be able to perform its sensitivity analysis and compute the
Jacobian matrix of the OPF solution with respect to the OPF
features. Fortunately, that is indeed the case for several OPF
formulations. For example, one may adopt an approximate
linearized grid model and formulate the OPF as a linear or
quadratic program (LP/QP), whose sensitivity analysis can
be found in [17], [18]. One may adopt the exact AC power
flow model for a radial single-phase feeder and arrive at the
second-order cone program (SOCP) formulation of the OPF,
whose sensitivity is analyzed in [3]. For multi-phase feeders
and meshed power transmission systems, one may pose the
OPF as a semidefinite program (SDP); see [19] for the related
sensitivity analysis. It is worth emphasizing that regardless of
the particular formulation, computing the sensitivities of the
OPF is computationally as complex as solving a system of
linear equations. To put it differently, if the optimal primal
and dual OPF solutions have already been computed, finding
∇xy comes at minimal extra computational cost.

It should be clear by now that even though the proposed
methodology is widely applicable, it can be computationally
formidable as it entails solving multiple instances of the OPF
per PGD iteration. To alleviate this burden, two options can
be pursued:
o1) Leverage the fact that these multiple OPF instances are

not solved independently, but in batch.
o2) Replace PGD by a stochastic (minibatch) PGD wherein

each iteration involves only one or a few scenarios.
The two options are not mutually exclusive. We next showcase
how o1) can be beneficial when the OPF is instantiated as a
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multiparametric LP/QP. This is of practical interest considering
that the OPF is oftentimes approximated by an LP/QP. Even
if the DSO solves an AC-OPF during real-time operation, it is
reasonable that the OPF feature selection and reconstruction
process relies on an approximate OPF model during planning
given the uncertainties involved.

IV. ACCELERATED GRADIENT COMPUTATIONS

This section leverages results from multiparametric pro-
gramming (MPP) to expedite the gradient step in (4). Suppose
that the OPF in (1) can be expressed as a multiparametric
linear or quadratic program:

y(x) = argmin
y

y⊤Hy + (Ax+ b)⊤y (8a)

s.to Ciy ≤ Dix+ ei (8b)
Cey = Dex+ ee (8c)

where matrices (H,A,Ci,Di,Ce,De) and vectors (b, ei, ee)
are known and of conformable dimensions. MPP studies how
the OPF solutions y(x) depend on x. The space of feature
vectors x can be partitioned into critical regions, defined
as follows. When solving (8) for all x falling in a critical
region Ck, the same subset of inequality constraints in (8b)
becomes active or binding, that is, are satisfied with equality.
Interestingly, under mild technical conditions, critical regions
satisfy the ensuing properties:
p1) Each critical region is a polytope defined as

Ck := {x : Fkx ≤ gk} .

p2) The OPF solutions for all OPF features belonging to the
same critical region are affine functions of the features,
i.e., there exist (Hk,kk) such that

y(x) = Hkx+ kk, ∀x ∈ Ck

and obviously ∇xy = Hk for all x ∈ Ck.
Matrices (Fk,Hk) and vectors (gk,kk) can be readily com-
puted if the binding constraints are known.

Thanks to MPP results, computing the gradient ∇Wf(Wt)
can be expedited through the following steps:
s0) Initialize Gt = 0N×L and k = 0.
s1) Given Wt, compute OPF feature vectors {Wtxs}Ss=1.
s2) Solve (8) for a randomly selected scenario and increase

k := k + 1.
s3) Define a new critical region Ck by computing

(Fk,Hk,gk,kk) based on the binding constraints.
s4) All scenarios satisfying FkW

txs ≤ gk belong to region
Ck. The corresponding OPF solutions and Jacobian ma-
trices can be computed from p2). Therefore, the sought
gradient can be updated as

Gt := Gt +
∑
s∈Ck

H⊤
k (HkW

txs − y(xs))x
⊤
s

:= Gt +H⊤
k HkW

t
∑
s∈Ck

xs −H⊤
k

∑
s∈Ck

y(xs)x
⊤
s .

s5) Remove the scenarios with s ∈ Ck from the dataset.
Unless the dataset is now empty, return to step s2.

s6) Output the final gradient evaluation as

∇Wf(Wt) =
1

S
Gt.

The advantage of the previous algorithm is that instead of
solving S instances of the OPF, we can solve as many OPFs as
the critical regions. The computational advantage apparently
depends on the number of critical regions, which depends
indirectly on the number of nonzero columns of Wt.

V. NUMERICAL TESTS

The proposed method was evaluated using the IEEE 37-
bus distribution feeder, converted to single-phase. The goal of
the OPF was to optimally select the reactive power setpoints
of rooftop photovoltaics (PVs). We adopted an approximate
linearized power flow model, and formulated the OPF as a
QP, solved in MATLAB using YALMIP and Sedumi. Reactive
power setpoints were decided so they minimize the ohmic
losses on lines while maintaining voltage magnitudes within
the range of ±3% per unit.

The feeder hosted 10 PVs, installed on buses
{2, 4, 7, 9, 11, 14, 17, 20, 22, 25}. Solar profiles were extracted
using solar data from the Pecan Street database, and scaled
to match twice the peak loads. Loads were also extracted
from the Pecan Street database as minute-based kW readings
collected between 8 AM and 5 PM during year 2019. Lacking
kVAR load demands, we simulated power factors as uniformly
randomly sampled between 0.9 lagging and 1. Each load bus
also hosted three electric vehicles, assumed to be charging
in an uncoordinated manner based on synthetically generated
EV data from [20].

We first explored how the fidelity in terms of OPF fea-
tures

∑S
s=1 ∥xs − Wxs∥22 and in terms of OPF solutions∑S

s=1 ∥y(xs)−y(Wxs)∥22 varies with K. The OPF depends
on L = 50 features. By solving (3) for decreasing values
of λ, we were able to obtain increasing values of K. The
proposed method was contrasted with principal component
analysis (PCA), a standard dimensionality reduction technique.
PCA can design a rank-K matrix W to minimize the feature
fidelity error

∑S
s=1 ∥xs−Wxs∥22. Nevertheless, PCA returns a

generally dense matrix W, so that reconstructed features Wx
depend on all entries of x. Although PCA cannot effect data
selection, it is used here to serve as a clairvoyant benchmark.

Figure 2 shows the fidelity in terms of OPF features (top)
and OPF solutions (bottom) attained by the proposed method
and PCA for increasing K. As expected, the reconstructed
error decreases for increasing K. Using PCA and half of the
OPF features (K = 25) attains less than 20% reconstruction
error in OPF features. Our proposed method does not achieve
any drastic improvement in terms of feature reconstruction
error. This is reasonable as our method has been designed
to reconstruct OPF solutions, not OPF features. Indeed, as
verified in the bottom panel of Figure 2, the reconstruction
error in terms of OPF solutions decreases dramatically thanks
to the proposed method. With only K = 14 OPF features,
the proposed method achieves reconstruction error in OPF
solutions of less than 15%.
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Fig. 2. Normalized reconstruction errors attained by the proposed method
and PCA for increasing number of selected OPF features. Top: Reconstruction
error in terms of OPF features. Bottom: Reconstruction error in terms of OPF
solutions.

How does the error in reconstructing OPF solutions translate
to safe grid operation? Recall that although DER reactive
power setpoints y(Wxs) were designed to regulate voltages
within ±3% pu under loading conditions Wxs, the actual
loading conditions are xs. What are the grid bus voltages
when setpoints y(Wxs) are applied along with the actual
loading conditions xs? Figure 3 shows the box plots of
voltage magnitudes across buses and scenarios attained by
the original OPF, as well as the proposed method and PCA
for K ∈ {5, 14, 23} OPF features. Voltages violate the ±3%
limits occasionally even when using the original OPF, because
they are enforced as soft constraints. For K = 5 features, the
proposed method yields a slightly expanded box plot, whereas
PCA results in unsafe grid operation. The box plots improve
for K = 14 features. For K = 23 features, the proposed
method yields box plots that are almost identical to those of
the original OPF. In plain words, although the OPF is now
provided with less than half of the original OPF features, it
finds DER setpoints that are as good as the original OPF in

Fig. 3. Box plots of voltage magnitudes across all buses and scenarios for
the OPF fed by complete data, and the OPF fed by K features decided by
the proposed method.
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Fig. 4. Cost convergence across PGD iterations for different values of λ, and
in turn, K.

terms of voltage regulation.
Finally, Figure 4 shows the convergence of PGD iterations

in terms of the reconstruction error of OPF solutions. For
larger K, the proposed method converges to lower reconstruc-
tion errors, as expected. Interestingly, the method seems to be
converging to a stationary point within 30 iterations or less.
The computational time varies depending on K, and ranges
from 30 min to 4 hours on a laptop computer. This variation
is reasonable because the time complexity of the proposed
method depends on the number of critical regions, which in
turn, depends on the value of K. Larger values of K tend to
yield an increased number of critical regions, which prolongs
the computational time of each PGD iteration.

VI. CONCLUSIONS

To deal with privacy, cyber-security, and low observability
challenges in power distribution grids, we have proposed
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a novel method to select OPF features to facilitate DER
scheduling from partial data. The joint task of data selection
and reconstruction has been formulated as a non-convex prob-
lem over the induced OPF mapping. To avoid mixed-integer
formulations, we have developed a first-order optimization
method, which is guaranteed to converge to a stationary
point of the nonconvex problem. Although the method is
applicable to a wide range of OPF formulations, when the
OPF takes the form of a parametric LP/QP, results from
multiparametric programming can expedite the calculation of
the related gradients.

The proposed methodology sets the foundations for ex-
ploring several exciting research directions, including the
following: i) The OPF feature reconstruction scheme can be
extended from linear to nonlinear using a neural network
with column-sparse weights on its first (input) layer; ii) The
ML module performing data selection and reconstruction has
been designed here using a supervised approach requiring
OPF labels {y(xs)}Ss=1. Alternatively, the ML module can be
designed using an unsupervised approach similar to the one
in [12]; and iii) To account for approximation errors and un-
certainties, one may consider robust or stochastic formulations
for the data selection and reconstruction process, or the OPF
problem itself.
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