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Abstract:
Recent works empirically demonstrated that incorporating target derivatives, in addition to the
conventional usage of target values, during the training process improves the accuracy of the
predictor and data efficiency. Despite the successful application of gradient data in the learning
process, very little is understood theoretically about their performance guarantee. In this paper,
our goal is to highlight (i) the limitations of gradient data on their performance guarantees,
especially in low-data regimes, and (ii) the extent to which the gradients affect the learning rate.
Our result implies that in a low-data regime, if the Lipschitz of the target function is below
a threshold, gradient data for Sobolev training outperforms the classical training in terms of
sample efficiency. For a target function with a large Lipschitz constant, there is a threshold for
training data size beyond which the gradient data perform better than conventional training.
The convergence behavior of gradient data for Sobolev training is studied, and the learning rate
of order O(n− 1

2+ϵ) is derived. Experiments are conducted to determine the effect of gradient
data in the learning process.
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1. INTRODUCTION

In recent years, there has been a surge of interest in
utilizing gradient data across various fields, including
but not limited to end-to-end control systems, system
identification, optimal power flow, and solving differential
equations Parag et al. (2022); Novara et al. (2022); Tsay
(2021); Singh et al. (2020); Cocola and Hand (2020); Raissi
et al. (2019). Sobolev training introduced by Czarnecki
et al. (2017) adds an additional term to the loss definition
that penalizes deviation of the estimated function gradient
from the gradient of the target function. Figure 1 illustrates
how Sobolev differs from classical training in the context
of supervised learning. The main idea is that the distance
between the estimated and target functions is quantified
by the difference in both their output values and gradients
with respect to its inputs. Several works have demonstrated
the successes of Sobolev training Son et al. (2021); Buchholz
(2022). For instance, tasks such as distillation compresses
a target model into a smaller one so that the two models
exhibit similar behavior Louati et al. (2022); Srinivas and
Fleuret (2018). In the prediction of a synthetic gradient
for training complex models, especially in the low-data
regime, Sobolev training yields higher-accuracy models
compared to classical training Jaderberg et al. (2017).
Additionally, utilizing information about gradients and
the Hessian matrix for Bayesian optimization can improve
the predictive ability of Gaussian processes Wu et al. (2017).
Sobolev training has also been used in actor-critic-based
reinforcement learning methods, where the action-value
function is estimated using gradient information Parag
et al. (2022); D’Oro and Jaśkowski (2020). The idea of
gradient data has been successfully employed in various

Fig. 1. Illustration of conventional and Sobolev training.
ℓ1(·) and ℓ2(·) represents the loss function.

other domains Jalali et al. (2022); Vlassis et al. (2020); Son
et al. (2021); Bouhlel et al. (2020).

Despite the success and wide applicability of gradient data,
there is little theoretical understanding and guarantees of
when and by how much functional estimation accuracy im-
proves using Sobolev training. In this paper, we analyze the
effect of incorporating gradient data in supervised learning.
Our focus is on the ridge regression problem formulated in
the reproducing kernel Hilbert space (RKHS). The ability
to approximate functions by nonparametric functional
representation is provided by RKHS, thus rendering RKHS
an important tool in many areas, especially kernel methods
Schölkopf and Smola (2002). Kernel methods are among
the most popular and frequently used tools in modeling
complex relations, having substantial influence on several
fields of control theory, machine learning and statistics
Thorpe et al. (2022); van Waarde and Sepulchre (2022);
Anjanapura Venkatesh et al. (2021); Sun et al. (2018). Ker-
nel methods are computationally feasible and optimization
over RKHS is tractable due to a fundamental property: the
optimal solution can be parameterized by a finite number



of coefficients. Because of this characteristic, RKHS is a
desirable option for control problems Dubey et al. (2020);
Huang et al. (2018). Recently, kernel-based algorithms
involving kernel derivatives have been used to address
numerous learning tasks Szabó and Sriperumbudur (2019);
Wang et al. (2022). An approach based on random Fourier
features to approximate kernel derivative is proposed in
Fang et al. (2022); Sriperumbudur and Szabó (2015). The
convergence analysis of gradient data for the learning
algorithm in RKHS has been explored Shi et al. (2010),
that uses a sampling operator for sample error and an
integral operator in Sobolev space for the approximation
error. An approach from convex analysis in the framework
of multitask vector learning was employed for error analysis
of Sobolev training in RKHS Sheng et al. (2018). However,
the previous analyses are unable to explain the advantages
of gradient data in terms of sample efficiency. The goal of
this work is to understand whether incorporating gradient
data into the learning process always improves prediction
accuracy and the extent to which it affects learning rates.

The following is a summary of our contributions:

(1) We analytically express how including the gradient
reduces learning error and derive the learning rate of
order O(n− 1

2+ϵ).
(2) The generalization error bound exhibits a precise

relation between Sobolev and classical training, hence
enabling one to identify the condition when the
gradient data can be resourceful or harmful.

(3) We observe that there exists a threshold for Lipschitz
constant of the target function below which the
gradient data improves the performance guarantee,
especially in the low-data regime. For the target
function with a larger Lipschitz constant there is
a threshold of training data size beyond which the
gradient data for Sobolev training performs better
than the classical training.

The paper is organized in the following manner. The
problem setup is detailed in Section 2. The main results
on learning rates for Sobolev training are presented in
Section 3, which also briefly outlines the proof’s central
concepts. In Section 4, we conduct numerical experiments
to assess the impact of gradient data on the learning process.
Lastly, Section 5 concludes the study, highlighting potential
future directions.

2. PROBLEM SETTING AND PRELIMINARIES

Let X ⊂ Rd be a compact convex set and Y ⊂ Rd+1.
Instead of the standard supervised learning setup where
one is given a training dataset consisting of input-output
pairs, we consider the case where the training dataset
is augmented by gradient data as {xi, yi}ni=1. Here yi =
[y0i , ỹi] (i.e. y

0
i ≈ f(xi) and ỹi ≈ ∇f(xi) is sample value

for the gradient of target function at xi). To exploit this
additional information, we propose a regularized regression
framework that aims to estimate the target function as:

fz = arg min
f∈HK

{ 1
n
(

n∑
i=1

(y0i − f(xi))
2

+ β

n∑
i=1

∥ỹi −∇f(xi)∥22) + λ∥f∥2HK
}.

(1)

The regularization parameter λ > 0 is widely used in
statistical learning theory to prevent overfitting. Its value
is typically dependent on the size of the dataset, with
popular choices being λ = λ(n) with limn→∞ λ(n) = 0.
The parameter β represents the inclusion of gradient data;
if β = 0, the problem (1) reduces to the conventional
learning algorithm. The RKHS (HK) is associated with
the kernel K : X ×X → R, characterized by the following
two properties:

(1) The operator Kx = K(x, ·) ∈ HK , ∀x ∈ X.
(2) For α = 0, 1, . . . , d, the reproducing property

⟨(DαK)x, f⟩HK
= Dαf(x), ∀x ∈ X.

The optimization problem (1) defined over HK is compu-
tationally tractable due to the geometry of RKHS and
explicit form of the estimator is given by the Representer
theorem. The Representer theorem for problem (1) was
provided in Zhou (2008); Shi et al. (2010), demonstrated
that minimization over HK can be achieved in a finite-
dimensional subspace produced by {Kxi(·)}, and their
partial derivatives. To account for noise, we assume the
training set {

(
xi, y

0
i , ỹi

)
}ni=1 ∈ Zn is drawn independently

from a nondegenerate Borel probability measure ρ onX×Y .
The generalization error for a function f : X → Y is defined
as:

ε(f) =

∫
X×Y

(y0 − f(x))2 + β∥ỹ −∇f(x)∥22dρ (2)

The ρ regression function minimizes generalization error
and the regression function is defined as:

Fρ(x) = (fρ(x), f̃ρ(x)) =

∫
Y

ydρ(y|x), x ∈ X. (3)

where

fρ(x) =

∫
[−M,M ]

y0dρ(y|x)

and

f̃ρ(x) =

(∫
[−B,B]

y1dρ(y|x), . . . ,
∫
[−B,B]

yddρ(y|x)

)
.

Here ρ(·|x) is the conditional distribution of ρ. Note that f̃ρ
is a vector of functions with d components. The efficiency
of algorithm (1) is measured by the difference between fz
and the regression function fρ. To measure the efficiency
of the algorithm, we reformulate problem (1), let us define:

H̄K =
{
f̄ = (f, f1, . . . , fd)

⊤ : f ∈ HK , fα ∈ Hα
K

}
,

where Hα
K =

{
fα(x) =

∂f(x)
∂xα : f(x) ∈ HK

}
, and α =

1, 2, . . . , d. Then, we can rewrite the algorithm (1) as:

f̄z = arg min
f̄∈H̄K

εz(f̄) + λ∥f∥2HK
, (4)

where,

εz(f̄) =
1

n

n∑
i=1

{
(y0i − fz(xi))

2 + β∥ỹi −∇fz(xi)∥22
}
.

is the empirical error. Let L2(ρ) be the set of all square-
integrable functions with respect to the measure ρ with

norm defined as ∥f∥ρ = ∥f∥L2(ρ) =
(∫

X
|f(x)|2dρx

)1/2
<

∞. One can see that

∥f̄z − Fρ∥2ρ,β = ε(f̄z)− ε(Fρ). (5)



where

ε(f̄) =

∫
Z

(y0i − f(xi))
2 + β∥ỹi −∇f(xi)∥22dρ,

and

∥f̄z − Fρ∥2ρ,β = ∥fz − fρ∥2ρ + β∥∇fz −∇fρ∥2ρ.
We would anticipate that f̄z is a good approximation to
the minimizer Fρ of the error ε(f̄). The approximation
of Fρ by f̄z involves the capacity of the functional space
H̄K because the minimization (4) is taken for the discrete
quantity εz. We measure the capacity of functional space
by covering number.
Definition 1. Sheng et al. (2018) The covering number
N (S, η) is defined as the smallest positive integer l such that
there are l disks in metric space S with radius η covering
S. We call compact subset E of a metric space has a
logarithmic complexity exponent s ≥ 0, if there is a constant
cs > 0 such that the closed ball of radius R centered at
origin i.e. BR =

{
f ∈ HK : ∥f∥2HK

≤ R
}
satisfies

logN (BR, η) ≤ cs

(
R

η

)s

, ∀η > 0. (6)

Remark 1. Note that inequality (6) is standard to measure
the capacity of HK Shi (2022); Cucker and Zhou (2007).
When X is a bounded domain and K ∈ Cr(X × X),
condition (6) is valid with s = 2n

r . Specifically, if K ∈
C∞(X × X), inequality (6) holds true for an arbitrary
small s > 0.

3. MAIN RESULTS

In this section, we state our main results under some basic
assumptions and sketch the main ideas of our proof.
Assumption 1. Let M,B > 0, be given positive real
numbers, ρ(y0|x) and ρ(ỹ|x) is almost everywhere supported
on [−M,M ] and [−B,B]d respectively, that is |y0| ≤ M
and |yi| ≤ B. It follows from the definition (3) of Fρ that

|fρ| ≤ M and |f̃ρ| ≤ B.
Assumption 2. Let K ∈ C2(X×X), and K be the Mercer
kernel—continuous symmetric function K such that the
matrix (K(xi, xj))

d
i,j is positive semidefinite for any finite

set of points {x1, . . . , xd} ⊂ X. Then HK can be embedded
into both C1(X) and C2(X), and the following relations
hold:∣∣∣∣∂f(x)∂xα

∣∣∣∣ ≤ κ∥f∥HK
, ∀x ∈ X, ∀α = 0, 1, . . . , d, (7)

where,

κ = sup
x,y∈X,0≤α,β≤d

√∣∣∣∣∂2K(x, y)

∂xα∂xβ

∣∣∣∣.
3.1 Learning rates for Sobolev training

In this subsection, we present the result for learning rates
to measure the efficiency of Sobolev training, when ρ is
perfect. Let H1

ρx
be the Sobolev space consisting of the

functions f ∈ L2
ρx with all partial derivatives belonging to

L2
ρx, whose norm ∥f∥H1

ρx
is induced by the inner product

⟨f, g⟩H1
ρx

=

∫
X

f(x)g(x) + β∇xf(x) · ∇xg(x)dρx,

where, ρx is the marginal distribution of ρ on X. Define an
integral operator L = Lk,ρx : H1

ρx → H1
ρx associated with

kernel K, x ∈ X, f ∈ H1
ρx

and Borel measure ρx by

Lf(x) =

∫
X

Kx(y)f(y) + β∇(Kx)(y) · ∇f(y)dρx(y).

When ρ is perfect i.e., f̃ρ(x) = ∇xfρ(x), then

∥fz − fρ∥ρ = ∥fz − fρ∥H1
ρx
. (8)

Theorem 3.1. Let X ⊂ Rn, is compact convex set with
diameter τ , the kernel K satisfies Eq. (6) and D(λ) ≤ λγ

for some 0 < γ ≤ 1. Thus, for 0 < δ < 1, there is a set
VR ⊂ Zn, with ρ(VR) ≤ δ, such that for all z ∈ W(R)\VR,
and fz ∈ BR we have

∥fz − fρ∥2ρ ≤
(

τ2

τ2 + π2β

)
{4M

2

λ

(
(κ+ 3)2(1 + dβ)

)
v∗(n, δ/2) +

22κ2(1 + dβ)D(λ) log 2
δ

3nλ

+ 2D(λ) +
66(M2 + dβB2) log 2

δ

n
},

(9)

where

v∗(n, δ/2) ≤ max

{
55

n
log

(
2

δ

)
,

(
55csκ

s

n

) 1
1+s

}
.

Proof. Due to space limitations, we moved the detailed
proof to online document ul Abdeen et al. (2022).

The error bound (9) is our main result obtained by the
combination of Lemma 2 and Lemma 3 presented in
the subsection (3.2) along with the use of the Poincare
inequality [see, Lemma 4.1; Constantine (2015)].
Remark 2. The Poincare inequality characterizes the re-
lation about the variance of a function and its derivative in
the spirit of the Sobolev inequality. It is a standard technical
assumption for investigating the empirical convergence of
the error analysis. In our analysis, Poincare inequality
helps us to understand that the additional data for function
gradients lead to improvements in the learning performance
of the algorithm.
Remark 3. Looking at the expression on the right side

of (9), we observe that if β ̸= 0 the factor
(

τ2

τ2+π2β

)
< 1,

thus the gradient data helps to improve sample efficiency
comparative to classical training problem.

Remark 4. If λ = n
−1

(1+2r)(1+s) , then the convergence

rate is of order O
(
n− 2r

(1+2r)(1+s)

)
. For C∞ kernels, s can

be arbitrary small. Then the convergence rate would be
O(n−1/2+ϵ) for any ϵ > 0, achieved with r = 1/2.
Remark 5. For sample error estimate, we require the
confidence N (η) exp{nη

55 } to be atmost δ for 0 < δ < 1. To
realize this confidence, v∗(n, δ) is defined, obtained by the
unique solution of the equation logN (η)− nη

55 = log δ.

From Theorem (3.1), a convergence property of gradient
data for Sobolev training follows.
Corollary 1. Let 0 < δ < 1 be arbitrary. Choose
λ = λ(n) satisfies λ(n) → 0, limn→∞ nλ(n) ≥ 1, and
v∗(n, δ/2)/λ(n) → 0. If D(λ) → 0, then for any ϵ > 0,
there is some nδ,ϵ such that with confidence 1 − δ, the
following results holds.

∥fz − fρ∥2ρ ≤ ϵ, ∀n ≥ nδ,ϵ (10)



3.2 Proof framework

In this subsection, we sketch the framework of proof for
Theorem 3.1. The idea of error decomposition has been
used in the analysis of regularization scheme. In order to
estimate the error ∥fz − fρ∥, we need the intermediate
function. Let f̄λ be a data free limit of (1) defined by

f̄λ = arg min
f̄∈H̄K

{
∥f̄ − Fρ∥2ρ,β + λ∥f∥2HK

}
. (11)

Then, the error decomposition follows from the relation
ε(f̄z) − ε(Fρ) ≤ ε(f̄λ) − ε(Fρ) + λ∥fλ∥2HK

, which can be
bounded by

{ε(f̄λ)− ε(Fρ) + λ∥fλ∥2HK
}

+
{
ε(f̄z)− εz(f̄z) + εz(f̄λ)− ε(f̄λ)

} (12)

The first term in the (12) is called the regularization
error and the second term is called sample error. The
regularization error for regularizing function f̄λ is defined
as

D(λ) = ε(f̄λ)− ε(Fρ) + λ∥fλ∥2HK
. (13)

The decay rate of D(λ) is critical for bounding the
sample error. The decay of λ(n) as n → ∞ determines
the size of hypothesis space and hence the sample error
estimate. Therefore, we need to understand the choice of
the parameter λ from the bound for D(λ). The sample
error in (12) can be written as

ε(f̄z)− εz(f̄z) + εz(f̄λ)− ε(f̄λ) ={
E(ξ1)−

1

n

n∑
i=1

ξ1(zi)

}
+

{
1

n

n∑
i=1

ξ2(zi)− E(ξ2)

}
,
(14)

where

ξ1 =(fz(x)− y0)2 + β∥∇fz(x)− ỹ∥22
−
(
(fρ(x)− y0)2 + β∥∇fρ(x)− ỹ∥22

)
.

ξ2 =(fλ(x)− y0)2 + β∥∇fλ(x)− ỹ∥22
−
(
(fρ(x)− y0)2 + β∥∇fρ(x)− ỹ∥22

)
.

The first term on the right hand side of (14) is depending on
ξ1, which is not a fixed random variable since the function
f̄z is changing with the sample z, we shall bound this using
covering number of the ball BR. While the second term
on the right-hand side of (14) depends on fixed random
variable ξ2 on (Z, ρ), we shall use the Bernstein inequality
to bound this term. To do this however we need the bounds
for ∥fλ∥HK

.
Lemma 1. For λ > 0,

∥fλ∥HK
≤
√

D(λ)

λ

Proof. Since f̄λ is the minimizer of (11), thus by definition
of D(λ), we have

λ∥fλ∥2HK
≤ ε(f̄λ)− ε(Fρ) + λ∥fλ∥2HK

= D(λ)

Thus the inequality holds.

Lemma 2. Let ξ2 be a fixed random variable on a
probability space Z and satisfying condition of Lemma 1.
Then, |ξ2(z)− E(ξ2)| ≤ 2c1 for almost all z ∈ Z, and for
every 0 < δ < 1, with confidence atleast 1− δ, there holds

1

n

n∑
i=1

ξ2(zi)− E(ξ2) ≤
11κ2(1 + dβ)D(λ) log 1

δ

3nλ
+D(λ)

+
33(M2 + dβB2) log 1

δ

n
,

(15)

where c1 is given by

c1 =

(
κ

√
D(λ)

λ
+ 3M

)2

+ β

(
κ

√
dD(λ)

λ
+ 3

√
dB

)2

.

Proof. We moved the detailed proof to ul Abdeen et al.
(2022).

Now, we present the error analysis deal with error term
ε(f̄z) − εz(f̄z) on the right-hand side of (14), which is
more difficult to deal with because ξ1 is not really a single
variable, since the function fz depends on the the sample
z itself. We will use the idea of ERM to bound this term
by mean of covering number.

For R > 0, denote W(R) := {z ∈ Zn : ∥fz∥HK
≤ R}, and

define FR to be the set of functions from Z to R.
FR := {(fz(x)− y0)2 + β∥∇fz(x)− ỹ∥22

−
(
(fρ(x)− y0)2 + β∥∇fρ(x)− ỹ∥22

)
: f ∈ BR}.

Lemma 3. Consider the set FR. Each function g ∈ FR

has the form g(z) = (fz(x) − y0)2 + β∥∇fz(x) − ỹ∥2Rd −(
(fρ(x)− y0)2 + β∥∇fρ(x)− ỹ∥22

)
, such that there is a set

V ′
R of measure δ/2 and fz ∈ BR. Then for ϵ > 0 and

R ≥ M ,

E(ξ1)−
1

n

n∑
i=1

ξ1(zi) = ε(f̄z)− ε(Fρ)−
(
εz(f̄z)− εz(Fρ)

)
≤ 1

2

(
ε(f̄z)− ε(Fρ)

)
+ 2R2(κ+ 3)2(1 + dβ)v∗(n, δ/2).

(16)

Proof. We moved the detailed proof to ul Abdeen et al.
(2022).

4. NUMERICAL EXPERIMENTS

In this section, experiments are conducted to investigate
the performance of gradient data for Sobolev training
in comparison to classical training.We consider the task
of regression on a set of well-known low-dimensional
functions used for bench marking optimization methods,
where information about the derivatives is available during
learning. Since the task is standard regression, we choose
all losses to be L2 errors. In our experiments, we use the
Gaussian kernel k(x, y) = exp(−∥x− y∥2/2γ2) with γ = 1.
Note that related error curves and standard deviations are
obtained by running the experiments 100 times.

1. Effect of the Lipschitz constant on RMSE: For
the first experiment, we considered the Styblinski-Tang
function as a target function defined over the interval [−1, 1].
We compared the root-mean-square error (RMSE) at the
test data (say n = 20) received by Sobolev training and
the classical learning algorithm, with different Lipschitz
constants of the target function for a fixed number of
training data size (say n = 30) sampled randomly. Looking



at the plots in Fig. 2, we make the following important
observations. First, there exists a threshold such that if the
Lipschitz constant of the target function is less than the
threshold value, the Sobolev training algorithm outperforms
the classical learning algorithm. Second, the variation in
the error with Sobolev training is more profound than the
classical algorithm, as the Lipschitz constant of the target
function increases.

Fig. 2. Empirical comparison of root mean square error
with different Lipschitz constant between classical and
Sobolev training algorithms.

2. Effect of training data amount on RMSE and
Lipschitz constant: Fig. 3 shows the performance of
gradient data for Sobolev training and the classical training
algorithm from the perspective of the test error in relation
to the number of training samples and the Lipschitz
constant. In both plots, the amount of training data is
plotted on the x-axis, the Lipschitz bound is plotted on
the y-axis, and the color-bar elucidates the test error
in ascending order. The trend along horizontal direction
depicts as the number of samples increases, the error
decreases, whereas the trend along the vertical direction
displays as the Lipschitz constant of the target function
increases the test error increases. In general it is observed
that the error with gradient data is less than that of the
classical algorithm. The improvement with gradient data
is more substantial compared to the classical algorithm as
we increase the size of the training samples. Previously, in
Fig. 2, we have shown that there is a threshold value for
the Lipschitz constant of the target function, beyond which
the classical algorithm outperforms the Sobolev training
algorithm. Fig. 3a and Fig. 3b shows the fascinating trade-
off between the Lipschitz bound and training data size
and indicates that there exists a threshold in the context
of training data. If the training data size is greater than
the threshold, Sobolev training always outperforms the
classical learning algorithm, and vice versa.

5. CONCLUSION AND FUTURE WORK

In this paper, we have studied the generalization properties
of gradient data for Sobolev training in RKHS. The
excess error converges at a faster rate of O(n− 1

2+ϵ). The
experimental results delineate the limitations of gradient
data for Sobolev training. If the Lipschitz constant of

(a) Heatmap for Sobolev learning algorithm

(b) Heatmap for classical learning algrithm

Fig. 3. Test error is plotted against different number of
training size and Lipschitz bound. The deep red color
depicts the minimum error value and the bright yellow
color represents the maximum error.

the target function is below a threshold, Sobolev training
outperforms classical training in terms of sample efficiency.
For a target function with a large Lipschitz constant,
there is a threshold for training data size beyond which
Sobolev training performs better than conventional training.
Building on the present work, one direction that we are
currently pursuing is developing a nonparametric actor-
critic reinforcement learning (RL) algorithm based on the
kernel method.
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