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ABSTRACT

Analytical and practical evidence indicates the advantage
of quantum computing solutions over classical alternatives.
Quantum-based heuristics relying on the variational quantum
eigensolver (VQE) and the quantum approximate optimiza-
tion algorithm (QAOA) have been shown numerically to
generate high-quality solutions to hard combinatorial prob-
lems, yet incorporating constraints to such problems has
been elusive. To this end, this work puts forth a quantum
heuristic to cope with stochastic binary quadratically con-
strained quadratic programs (QCQP). Identifying the strength
of quantum circuits to efficiently generate samples from prob-
ability distributions that are otherwise hard to sample from,
the variational quantum circuit is trained to generate binary-
valued vectors to approximately solve the aforesaid stochastic
program. The method builds upon dual decomposition and
entails solving a sequence of judiciously modified standard
VQE tasks. Tests on several synthetic problem instances us-
ing a quantum simulator corroborate the near-optimality and
feasibility of the method, and its potential to generate feasible
solutions for the deterministic QCQP too.

Index Terms— QAOA, VQE, dual decomposition, quan-
tum unconstrained binary optimization (QUBO).

1. INTRODUCTION

Quantum computers exhibit an innate ability to handle ex-
ponentially large computations in a parallel fashion yet with
a strong probabilistic flavor. Quantum algorithms such as
Shor’s integer factorization, Grover’s search, and the lin-
ear system solver of Harrow-Hassidim-Lloyd (HHL) can
attain polynomial or even exponential speedups over the best-
known algorithms on classical computers [1]. Nonetheless,
some of these quantum algorithms presume a large number
of qubits on fault-tolerant quantum computers. In the near-
term intermediate scale (NISQ) era, quantum computers are
noisy and thus oftentimes limited in terms of the number of
gates and/or qubits. With such limitations in mind, varia-
tional quantum algorithms have been suggested as promising
tools to practically showcase quantum advantage in the NISQ
setup [2].
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Variational quantum computers involve a sequence of pa-
rameterized gates. Their parameters are updated externally
by a classical computer in a closed-loop fashion to steer the
quantum state toward a desirable direction. The variational
quantum eigensolver (VQE) used to provide high-quality
solutions to combinatorial problems is a representative ex-
ample. The Quantum Approximate Optimization Algorithm
(QAOA) [3] is a special instance of VQE. In QAOA, not
only the parameters but also the architecture of the quan-
tum circuit become problem-dependent. The quantum circuit
trained by QAOA operates as a sampler to efficiently gener-
ate near-optimal solutions of binary quadratic problems (e.g.,
MAXCUT); see [4] for a summary of claims on QAOA.

While most VQE/QAOA schemes target unconstrained
problems, dealing with constraints is crucial to several ap-
plications in machine learning, wireless communications,
and financial (stock trading) optimization. Adding con-
straints to QAOA or adiabatic quantum computing [5] (the
QAOA counterpart for non-gate-based quantum computers)
has been pursued in two ways. One approach has been to
convert the constrained problem into an unconstrained mini-
mization of a Lagrangian-like function [6, 7]. However, the
weights for constraint penalties can be safely selected only
if constraints are expressed as Boolean functions or linear
equalities. An alternative approach modifies the architec-
ture of the quantum circuit (via the mixer Hamiltonian of
QAOA) to confine quantum states on the subspace spanned
by constraints [8, 9, 4, 10, 11]. Nonetheless, constructing
such ‘driver’ mixer Hamiltonians is again highly problem-
dependent and often limited to equality constraints. Refer-
ence [12] develops a quantum adiabatic approach to tackle
binary linearly-constrained quadratic programs. It targets the
dual problem and interfaces the quantum computer with a
branch-and-bound scheme ran classically. Reference [13]
treats mixed-binary quadratic-plus-convex problems using
the alternating direction method of multipliers (ADMM)
to split binary and continuous variables into separate mini-
mizations, solved by QAOA and classical convex optimizers
respectively per ADMM iteration.

Relation to prior work. Addressing binary QCQPs by
quantum heuristics has been largely unexplored to the au-
thors’ knowledge. We put forth a quantum-based heuristic
to solve a stochastic binary QCQP. Harnessing the power of
quantum circuits to sample from probability mass functions



(PMF) that are hard to sample classically, we devise a dual
decomposition technique that solves a sequence of standard
VQE tasks to systematically adjust Lagrangian multipliers.
Numerical tests using quantum computer simulators pro-
vided by IBM evaluate this technique on randomly generated
stochastic and deterministic binary QCQPs.

2. QUANTUM COMPUTING PRELIMINARIES

A quantum system consisting of n quantum bits (qubits) is de-
scribed by an exponentially large state vector |x⟩ ∈ CN with
N = 2n assuming the system is in a pure state. The Dirac no-
tation |x⟩ named ket emphasizes that vector x is unit-norm or∑N−1

k=0 |xk|2 = 1. If ek is the k-th canonical vector of length
N , we can write |x⟩ =

∑N−1
k=0 xk |ek⟩. The vector ek is of-

tentimes alternatively expressed as |ek⟩ = |k⟩, where k is the
binary representation of index k. For example, a system with
n = 2 qubits has a state in C4, which is spanned by canonical
vectors {ek}3k=0 and e0 = [1 0 0 0]⊤ = |00⟩. Vector |x⟩
provides a statistical characterization for the quantum state:
If we measure the quantum system output, its qubits will be
in configuration |k⟩ with probability |xk|2 for all k. Symbol
⟨x| termed bra denotes the conjugate transpose of |x⟩, while
the braket ⟨x|y⟩ denotes the inner product between states.

The fundamental operations we can perform on a quan-
tum system are evolution and measurement. The former can
be described by the application of a unitary U on state |x⟩
to produce state |y⟩ = U |x⟩. Although U is exponentially
large, it is usually implemented efficiently using quantum
gates. Among various types of measurements, we focus on
projective measurements. A projective measurement is asso-
ciated with a Hermitian matrix (named observable) and its
eigenvalue decomposition H =

∑M
m=1 λmvmvH

m. If such
measurement is performed on |x⟩, outcome m is observed
with probability pm := | ⟨x|vm⟩ |2. Define a random variable
taking value λm when outcome m is observed. The expected
value of this variable is ⟨x|H|x⟩ =

∑M
m=1 pmλm. If H is di-

agonal, the measurement is on the computational basis. This
is practically important because now vm = em, outcome m
relates to |m⟩, and each qubit can be measured individually.

If quantum system i has been prepared in state |xi⟩ for
i = 1, 2, their joint state would be |x1⟩ ⊗ |x2⟩, where ⊗
is the Kronecker product. This is oftentimes represented as
|x1⟩ |x2⟩ or |x1,x2⟩. The Kronecker product rule generalizes
to the composition of n systems. For example, |1⟩ |1⟩ |0⟩ =
e1 ⊗ e1 ⊗ e0 = e6 = |110⟩, where the canonical vectors
shown in the middle are in R2 and those at the end are in R8.

3. VARIATIONAL QUANTUM EIGENSOLVER (VQE)

VQE is a heuristic approach to finding near-optimal solutions
for combinatorial problems of the general form

min
b∈{0,1}n

f(b). (1)

A particular example of interest is the quadratic unconstrained
binary optimization (QUBO) problem with

f(b) = b⊤Ab+ b⊤c+ d (2)

which is known to be NP-hard. For later developments, it is
convenient to reformulate QUBO in terms of the spin {±1}
variables through the transformation

si = 1− 2bi = (−1)bi for i = 0, . . . , n− 1. (3)

Collecting the spin variables in vector s = 1 − 2b, the
quadratic objective can be equivalently expressed as

f(b) = f̄(s) = s⊤Ās+ s⊤c̄+ d̄ (4)

where Ā := 1
4A; c̄ := − 1

2 (A1 + c); and d̄ := 1
41

⊤A1 +
1
21

⊤c + d. We next explain how VQE samples high-quality
solutions of (1) by solving an eigenvalue minimization task.

The VQE method falls under the family of variational
quantum algorithms. The term variational pertains to the fact
that the quantum circuit is not fixed but parameterized by rel-
atively few parameters collected in vector θ ∈ RP . These
parameters are iteratively adjusted by a classical computer in
a closed-loop fashion so that the quantum system eventually
reaches a desirable state. The process resembles the training
of a neural network whose weights are updated by an opti-
mization algorithm. Similarly to neural networks where the
learner has to select an architecture (e.g., network depth/width
and type of activations), the parameterized form (also termed
ansatz) of the variational quantum circuit is specified a pri-
ori. We will be using a 2-local ansatz where single-qubit RY

gates are applied to all qubits, followed by a full entanglement
circuit, all repeated for 3 layers (iterations) [2].

Given θ and driven by input |0⟩n, the quantum circuit pro-
duces at its output the quantum state |x(θ)⟩ = U(θ) |0⟩n for
a unitary N ×N matrix U(θ). To simplify notation, we will
oftentimes write |x⟩ in lieu of |x(θ)⟩. Albeit |x⟩ ∈ CN is
exponentially long, it can be easily generated by the quan-
tum circuit though it cannot be read out of the circuit as a
vector in a computationally efficient manner. Instead, it is rel-
atively easy to sample from it. Every time we run the quan-
tum circuit driven by |0⟩n, we will be observing one of the
binary outputs |k⟩ = |ek⟩ with probability pk := |xk|2 for
k = 0, . . . , N − 1. The quantum circuit thus serves as an ef-
ficient sampler from the exponentially large probability mass
function (PMF) {pk}N−1

k=0 .
To exploit this sampling property, we next relate the cost

f(b) with a so-termed Hamiltonian matrix H so that

H |ek⟩ = f(|k⟩) |ek⟩ for all k. (5)

Matrix H is apparently diagonal and carries all N function
evaluations f(ek) on its diagonal. Moreover, the canonical
vectors ek constitute the eigenvectors of H, each with cor-
responding eigenvalue f(|k⟩). Therefore, the minimization



in (1) can be reformulated as the problem of finding the eigen-
vector corresponding to the minimum eigenvalue of H

min
|x⟩

⟨x|H |x⟩ . (6)

As long as |x⟩ is allowed to take any of the values {ek}N−1
k=0 ,

the minimizer of (6) corresponds to the minimizer of (1). For
example, if a quantum system has n = 3 qubits, its state
would be |x⟩ ∈ C8. Here ek’s are the columns of the identity
matrix I8. If the minimizer of (6) is |e5⟩ = |b1b2b3⟩ = |101⟩,
then the minimizer of (1) is b = [1 0 1]⊤; and vice versa.

If |x⟩ in (6) is restricted to set E := {ek}N−1
k=0 , problem

(6) is as hard as (1). VQE relaxes (6) to the set of all quantum
states |x(θ)⟩ that can be parameterized by the chosen ansatz
and via θ. Problem (6) is then solved over θ rather than |x⟩

min
θ

F (θ) := ⟨x(θ)|H|x(θ)⟩ . (7)

From the eigenvalue property (5), it follows ⟨ek|H |ek⟩ =
f(|k⟩) for all k. How about ⟨x|H |x⟩ for a general state |x⟩?
Because |x⟩ =

∑N−1
k=0 xk |ek⟩, it is easy to show that

⟨x|H|x⟩ =
N−1∑
k=0

|xk|2f(|k⟩) =
N−1∑
k=0

pkf(|k⟩). (8)

In other words, function F (θ) is the average of f under the
PMF defined by |x⟩. For instance, the random outcome |k⟩ =
|101⟩ occurring with probability |x5|2 is assigned to the ran-
dom variable f taking the value f([1 0 1]⊤). Hence, func-
tion F (θ) is really an expectation (an observable in the quan-
tum computation parlance) of function f(b) when b is drawn
from the PMF {|xk(θ)|2}N−1

k=0 . Ideally, the global minimizer
θ of (7) defines a PMF via |x(θ)⟩ that samples with non-zero
probability only the canonical vectors |ek⟩ associated with the
smallest eigenvalue of H. If f0 is the N -dimensional vector
carrying the function evaluations {f(|k⟩)}N−1

k=0 , problem (7)
can be alternatively expressed as

min
θ

{
f⊤0 p(θ) : p(θ) ∈ P

}
(9)

where P is the probability simplex in RN . If the nonconvex
optimization over θ is successful, the optimal p(θ) would be
a canonical vector and (9) solves (1). If p was not parame-
terized via θ, one could try solving (9) directly over p. That
is impractical as it requires evaluating f(b) for all N = 2n

values of b, and vector p is exponentially large.
Problem (7) is solved in a hybrid fashion: The quantum

computer samples from |x(θ)⟩ and estimates F (θ) and pos-
sibly its gradient ∇θF . A classical computer uses the previ-
ous information and iteratively updates θ based on a zero- or
first-order optimization algorithms, such as gradient descent
or Bayesian optimization. As with training neural networks,
F (θ) is nonconvex due to the form of the ansatz. Moreover,
the ensemble statistic F (θ) cannot be computed exactly, but
estimated as the sample average F̂ (θ) :=

∑R
r=1 f(br)/R

over R runs, where br is the quantum output after run r.

4. CONSTRAINED VQE

VQE provides a successful heuristic for solving QUBO via
the variational formulation of (7) or (9). Can VQE be ex-
tended to handle a binary QCQP with constraints?

min
b∈{0,1}n

f0(b) (10)

s.to fm(b) ≤ 0, m = 1 : M.

Here fm(b) := b⊤Amb+ b⊤cm + dm for m = 0, . . . ,M .
Solving such problems is also known to be NP-hard. Provid-
ing a quantum heuristic to directly deal with (10) seems to
be challenging. To this end, we relax expectations and aim
at designing a quantum state |x⟩ from which we can draw
binary-valued b that solve the stochastic binary QCQP:

min
|x⟩

Ex[f0(b)] (11)

s.to Ex[fm(b)] ≤ 0, m = 1 : M.

As in the unconstrained setup, rather than minimizing
over |x⟩, we propose optimizing over a PMF parameterized
by θ and captured by quantum state |x(θ)⟩. Specifically, we
suggest solving the constrained minimization

min
θ

F0(θ) (12)

s.to Fm(θ) ≤ 0 : λm, m = 1 : M

where each observable Fm(θ) := ⟨x(θ)|Hm|x(θ)⟩ depends
on Hm for all m. Problem (12) can be formulated similarly
to (9): If vectors fm evaluate functions fm(b) for all values
of b and m = 0, . . . ,M , then (12) can be posed as

min
θ

f⊤0 p(θ) (13)

s.to f⊤mp(θ) ≤ 0, m = 1 : M

p(θ) ∈ P

If (13) is solved directly over p, it yields an LP. However, the
variable p for this LP has exponential size. Moreover, vectors
fm’s are hard to compute as in (9). Instead of this LP, we
will solve (13) over θ. The LP can be used to provide the
hindsight solution to (11)–(12). Reformulating (12) into (13)
demonstrates that even if (13) is solved directly over p via the
LP, the minimizing p may not be a canonical vector. This is
in contrast to the unconstrained setting in (9).

Contrary to (10), problem (12) is over the continuous vari-
able θ. Thus, we can associate a dual variable λm for each
constraint and define its Lagrangian function

L(θ;λ) := F0(θ) +

M∑
m=1

λmFm(θ) (14)

where λ ∈ RM collects all dual variables. Problem (12) could
be solved via dual decomposition, according to which λ is
updated iteratively via a subgradient ascent step on L as

λt+1
m := max

{
λt
m + µtFm(θt), 0

}
, m = 1 : M (15)



for a positive step size µt = µ0/(t + α) with α > 0, and θt

is a minimizer of the Lagrangian L(θ;λt) evaluated at λt:

θt ∈ argmin
θ

⟨x(θ)|H0 +

M∑
m=1

λt
mHm|x(θ)⟩ . (16)

Problem (16) takes the QUBO form of (7), and is therefore
amenable to standard VQE or even the celebrated QAOA ap-
proach. Under the latter, the ansatz takes a particular form that
depends on the problem Hamiltonian H0 +

∑M
m=1 λ

t
mHm.

Here, we used a problem-independent ansatz under the gen-
eral VQE framework and leave QAOA for future work.

5. NUMERICAL TESTS

The novel solver for (12) was implemented in Python using
the Qiskit library [14]. The VQE class in Qiskit was used to
solve the minimization for the primal update (16). In addi-
tion to providing the ansatz described in Section 3, the VQE
class was configured with the ‘SLSQP’ optimizer. The max-
imum number of iterations was set to 1, 000, and we used
the aer simulator statevector quantum simulation
as a backend. For the dual update in (15), constraint vio-
lations were measured over the observables Hm using the
minimum eigenstate returned by VQE. The stopping criteria
∥λt−λt−1∥2 ≤ 1 ·10−5 was utilized to ascertain the conver-
gence of the dual updates (15).

To illustrate the application of the proposed strategy to
solving the stochastic binary QCQP in (11), several n = 2-
bit problem instances were sampled randomly by drawing the
entries of {A0, c0,d0} and {A1, c1,d1} from the standard
normal distribution, while ensuring the resulting problem was
feasible. The VQE approach was compared against to the
minimizer of (13) when the latter is solved directly over p.
For the two approaches, the obtained PMFs along with the
associated dual variables are reported in Table 1 for 4 ran-
domly sampled problem instances. The results demonstrate
two things: i) The nonconvex optimizer has succeeded in
finding the minimizing PMF and the corresponding dual vari-
ables. These primal/dual variables solve the stochastic binary
QCQP of (11); and ii) The solution to the stochastic binary
QCQP may not be a canonical vector, so it may not be a solu-
tion to the deterministic binary QCQP.

To study the scalability of the approach and to verify the
compatibility of the solutions with the deterministic QCQP
in (10), we also sampled 30 feasible 5-bit problem instances
with three constraints each. The quadratic cost and constraint
functions were generated as in the previous test. To avoid
instances with non-binding constraints, the constants dm in
the constraint functions were manually adjusted so that at
least one of the constraints was active and yielded a non-zero
dual variable. From the sampled problems, it was found that
the dual decomposition involving VQE was able to produce
the optimal solutions for 28 out of the 30 problem instances

Table 1. Comparing the exact solution of (12) obtained via a
linear program and the proposed quantum-based approach.

# Found PMF Dual
Quantum LP Quantum LP

1 [0.44, 0, 0.56, 0] [0.44, 0, 0.56, 0] 0.854 0.851
2 [0.71, 0, 0.29, 0] [0.70, 0, 0.30, 0] 0.337 0.337
3 [0, 0.80, 0, 0.20] [0, 0.80, 0, 0.20] 0.459 0.459
4 [0, 0, 0.61, 0.39] [0, 0, 0.60, 0.40] 0.566 0.566

Fig. 1. Convergence of dual variables λ1, λ2, and λ3, under
updates (15) for a 5-bit stochastic binary QCQP with M = 3
constraints.

tested, whereas infeasible binary candidates were obtained for
the remaining 2 instances. Figure 1 illustrates the conver-
gence of the dual variables for one of the problem instances,
where all three constraints were found to be active.

6. CONCLUSIONS

A novel generalization of VQE to address the need for dealing
with stochastic binary QCQPs has been developed. Lever-
aging dual decomposition, the approach entails solving a
sequence of judiciously modified VQE tasks. Numerical tests
demonstrate that upon convergence of the constrained VQE
algorithm, the variational quantum circuit is able to sample
from a stochastic policy to generate binary-valued vectors
that minimize the binary QCQP and satisfy its constraints
in expectation. Some of these samples seem to be feasible
for the deterministic binary QCQP too. This novel heuristic
sets the foundation for further developments toward con-
strained discrete optimization. We are currently exploring
several exciting directions: i) Coupling this approach with
QAOA rather than VQE; ii) skipping the nested optimization
in (16) through a primal-dual decomposition alternative as
in [15, 16]; and iii) dealing with mixed-binary setups.
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