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ABSTRACT

The recent upsurge of research toward compressive sangtidg
parsimonious signal representations hinges on signatg tsgarse,
either naturally, or, after projecting them on a proper fasThe
present paper introduces a neat link between sparsity anch-a f
damental aspect of statistical inference, namely that blisthess
against outliers, even when the signals involved are natsspalt
is argued that controlling sparsity of model residuals $etista-
tistical learning algorithms that are computationallyoaffable and
universally robust to outlier models. Analysis, compansand cor-
roborating simulations focus on robustifying linear rexgien, but
succinct overview of other areas is provided to highlighversality
of the novel framework.

Index Terms—Robustness, outlier rejection, sparsity, Lasso

1. INTRODUCTION

The information explosion propelled by the advent of coremitthe
Internet, and the global-scale communications has reddsagisti-

cal learningfrom data increasingly important for analysis and pro- taminated with outliers, and supposixg:= [xi, ...

cessing. Along with data that adhere to postulated modeligi),
present in large volumes of data are also those that do nibiefs).
Resilience to outliers is of paramount importance in a jlethof
tasks such as model selection, prediction, classificaéistimation
and tracking, to name a few. Due to its universal applicgbithe
method of least-squares (LS) is the workhorse of statidgeaning.
Unfortunately, LS is known to be very sensitive to outli€ds14].
Robust alternatives to LS include the M-estimators, whieh a

maximum-likelihood (ML) optimal for a class of outlier mdd49].
Other options are least-trimmed squares (LTS) estimatehich

limited to sparse settings (few outliers), since one can examine the
gamut of sparsity levels along the robustification path. fuspace
limitations, USPACOR is detailed only for linear regressi®ut its
universality is highlighted through diverse generaliaas pertain-

ing to: i) the information used for selecting ; ii) the inlier model;

and iii) the criterion adopted to fit the chosen model. Siraddests
demonstrate that USPACOR outperforms RANSAC in a linear re-
gression setup, especially when the percentage of oui&igh.

2. SPARSITY CONTROL FOR ROBUSTNESS

2.1. Robustifying linear regression

Consider the classical regression setup, where a reatdaoalar
responsey is to be predicted using known variables (inputs) col-
lected in the vectok := [z1,...,z,]) € R? (' stands for trans-
position). A linear approximation of the mean-square e(MBE)
optimal regression functioft[y|x] is f(x) = x'@, wheref :=
[61,...,0,]) € RP comprises the regression coefficients.

Given a set7 := {y;,x;}~, of training data possibly con-
,xn]" has full
column rank for simplicity, the goal is to develop a robudirmna-
tor of 8 that is universal with respect to the outlier model. The LTS
estimator is universal in this sense, and is given by [14]

] - ] 2
Or1s := arg maan*rM(O) Q)

=1
Wherer@](e) is thei-th order statistic among the squared residuals
r3(0),...,r%(0), andr;(0) := y; — x}6. The so-termedoverage
s determines the breakdown point of LTS [14], sii€e- s residuals

remove outliers from the LS fit [14]. LTS estimators have highare not present in (1). Even though (1) is nonconvex, existen a

breakdown point, but prohibitive complexity except for $ihsam-

minimizer@.rs can be established as follows: i) for each subset of

ple sizes [13]. Random sample consensus (RANSAC) provides @ with cardinality s (there are(];’) such subsets), solve the corre-

computationally tractable, near-LTS alternative, esgcpopular
in computer vision for coping with a large number of outlipts7].

A universal sparsity-controlling outlier rejection (USERR)
framework is introduced in this paper for robust learningSRA-
COR is rooted at the crossroads of outlier-resilient edtonathe
least-absolute shrinkage and selection operator (Lagsepérse re-
gression, and convex optimization. It is shown that a spatshing
parametel(A;) in Lasso controls thelegree of sparsityn the esti-
mator, and th@umber of outliersejected by USPACOR.

sponding LS problem to obtain a candidate estimator peresuasd
ii) pick @75 as the one among allY) candidates with the least
cost. This solution procedure is combinatorially compleng thus
intractable except for small sample siz&s Algorithms to obtain
approximate LTS solutions are available; see e.g., [13].

Instead of discarding large residuals, the alternativercaah
here explicitly accounts for outliers in the regression eiodTo
this end, consider the scalar variabfes}.\, one per training data
point, which take the value; = 0 whenever datumis an inlier, and

Related approaches for robust linear regression can belfour; £ 0 otherwise. This leads to the linear regression model

in [6, 10, 11]. The major difference is that in these works is
tied to a preselected outlier model, whereas here it istdidthy the
data. This promotes universality and a systematic appriexehag-
ing solvers for alfobustifaction pathef Lasso; that is, for all values
of A1 [2, 5, 17]. In this sense, USPACOR capitalizes onibutot
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yi:x§0+oi—|—ei, i=1,...,N 2)

where{e;}}L, are zero-mean i.i.d. random variables capturing in-
lier errors, whileo; can be deterministic or random with unspecified
distribution. In the under-determined linear system ofaiquns (2),
,on]" are unknown.
The percentage of outliers dictates the degrespairsity (number



of zero entries) ino. Sparsity control will prove instrumental in
efficiently estimatingo, rejecting outliers as a byproduct, and con-
sequently arriving at eobustestimator off. A natural criterion for
controlling outlier sparsity is to seek an estimator whiotves
N
min » (¥ —xi0 — 0)” + Xollollo
=1

(©)

where||o||o denotes the nonconve-(pseudo)norm that is equal to
the number of nonzero entries of Sparsity in6 can be directly
controlled by tuning the parametgs > 0.

As with compressive sampling and sparse modeling schemes

that rely on the/p-norm [16], problem (3) is also NP-hard. In ad-
dition, the sparsity-controlling estimator (3) is intiragt related to
LTS, as asserted next (proofs are omitted due to space fiom&.

Proposition 1: If {,6} minimizes(3) with A\, chosen such that
[6]lo = N — s, thend also solveg1).

The importance of Proposition 1 is threefold. First, it fadip
justifies model (2) and its estimator (3) for robust linearession,
in light of the well documented merits of LTS [14]. Seconduither
solidifies the connection between sparse linear regressidmobust
estimation. Third, problem (3) lends itself naturally téi@ént (ap-
proximate) solvers based on convex relaxation. For instarecall
that the¢; norm |lof|: := }%_, |os| is the closest convex approx-
imation of ||ol|o. This property also utilized by compressive sam-
pling [16], provides the motivation to relax (3) to

N
min > (yi —x;0 — 0:)* + Aol
° =

4)

Being a (nondifferentiable) convex optimization problg#),can be
efficiently solved by, e.g., resorting to an alternating imization
algorithm. The resulting iterations comprise a sequent&dits for
6, and coordinatewise soft-thresholded updatesfdkiternatively,
one can show that the solutim{lé, 6} of (4) are respectively given
by 6 := X (y — 6Lasso) ando := Opasse WhereX ' := (X'X) !X/
andoyassoiS given by

OLasso 1= arg moin |(In — XXT)(y - o)|\§ + At]lo]|z. (5)

It is worth stressing at this point that selectihg is challeng-
ing because existing techniques such as cross-valida@ghdo not
apply when outliers are present. USPACOR includes a genarhl
systematic approach to selectikgby leveraging recent convex op-
timization solvers that yield the entire path of Lasso dohg, i.e.,
for all values of\; in (5) [2, 5]. Based on thegebustification paths
and prior knowledge possibly available on the model (2), cae
effectively select\; — the subject dealt with in the next section.

outliers, K-fold CV methods can be applied to determine the “best”
Al. Note thatN, is also assumed known by RANSAC, in order to
determine the number of random draws needed to attain arjiredc
probability of success [4, 7].
Variance of theinlier noiseis known. If the variances? of the in-
lier noisee; in (2) is known, one can proceed as follows. Consider
the estimateég obtained using (4) and (5) after sampling the robus-
tification path for each poin{)\g}gG:1 on a prescribed grid of size
G. Based on{@g}g’;1 and the data/, find the sample variances
{625, after neglecting those training dafg;, x;} identified as
outliers. The winnent := Ay« corresponds to the grid point
g = argmgin |62 —o2]. (6)
This is an absolute variance deviation (AVD) criterion fetexting
;. Knowledge ofo? is also required by RANSAC; see also Sec. 5.
Variance of theinlier noiseis unknown. If 2 is unknown, one can
still compute a robust estimate of the variarice and repeat the
previous procedure after replaciag with 62 in (6). One simple
option is based on the median absolute deviation (MAD) extm
whereg. := 1.48 x median (|7#; — median (|7;|) |). The residuals
7; are formed based on a nonrobust estimat@, &.g., obtained via
an LS fit using a small subset of the training ddta The factor
1.48 provides an approximately unbiased estimate gfwhen the
inlier noise is Gaussian. In general, MAD requires knowkedd
€:'s symmetric pdf to determine the leading factosin[14].
Contamination model. One may know a priori that the disturbances
{0: +€:} in (2) adhere to Huber’s contamination model [9]. Here
can be thought of as nominal noise, andas the contamination. If
in this case\; equals the threshold value in Huber’s function, then
6 enjoys asymptotic optimality in a well defined minimax sef&je
Bayesian framework. Adopting a Bayesian perspective, one could
model@ as having i.i.d. entries obeying a non-informative (i.@i; u
form) prior, independent a$, which is assumed to have i.i.d. entries
adhering to a common Laplacian distribution with parameex;.
Using A1 = A7 in (4), USPACOR yields estimatés(andé) which
are optimal in the maximum a posteriori sense; see also [10].
Building on (4), itis possible to envision a number of inttheg
generalizations beyond linear regression, which furthsetify the
universalityof the proposed USPACOR framework. These pertain
to the: i) models adopted for the inliers; ii) loss functiamosen to
penalize the fitting errors; and iii) regularization termos @ ando.

3. UNIVERSALITY WITH RESPECT TO MODELS

This section shows how the USPACOR approach generalizes to
models other than linear time-invariant regression in (2).

Remark 1. The estimator obtained from (4) can be robust in theErrors-in-variables (EIV) and total least-squares (TLS). TLS ex-

Huber sense [6]. However, this only holds for a specific ahoic\; .
The last point appears mundane, but is at the heart of the O8RA
novelty, since tuning\; is tantamount to controlling the number of
outliers rejected.

2.2. Selecting outlier sparsity

The ensuing methods for choosing depend on prior information
available about the inliers or the outliers (number or stia).
Number of outliersis known. By direct inspection of the robusti-
fication paths one can determine the range of valued fpso that
the degree of sparsity ié equals the number of outliefS,. Spe-
cializing to the interval of interest, and after discardihg identified

tends ordinary LS to fully-perturbed linear models, suclhasEIV
one; see e.g., [12]. WitB denoting the sample covariance of the
data vectors{[x} y:]'}.,, the TLS estimator corresponds to the
eigenvector associated with the smallest eigenvalug. oAs such,
TLS performs “orthogonal regression,” which minimizes suen of
squaredbrthogonaldistances fronix; y;]’ to the fitting hyperplane,
as opposed to theertical distance minimized by LS [12]. To ro-
bustify TLS against outliers, USPACOR can be applied todytak
desired robust estimatéras solution of

= (v~ x10 — 1)

2
+ Allof]1 . (7)
T 1012 Il

6,0 <
i=1



Alternating minimization between variabl@sando can converge to
a stationary point of this nonconvex criterion. Each sutbfgm per
iteration reduces to either TLS or a scalar Lasso, and in tasgles
the solutions admit analytical forms.

Dynamical models for recursive (R)LS and Kalman smoothing.
RLS schemes are of paramount importance for reducing cotityle
and memory requirements in estimating stationary sigreigal as
for tracking slowly varying processes, when no model islate for
the variations and quadratic convergence is desired. &ifalLS,
the quadratic cost minimized online by RLS is not robust agfaut-
liers. With data (2) becoming available sequentially, USPXR can
estimate outliers online and apply RLS to the outlier-congaged
datay; — 0. Specifically, at timg = N it solves

N
S (g~ x10 — 00)° + Mioi]

i=1

min
6.0

f € 'H from finite data is inherently ill-posed, the problem is typ-
ically solved by minimizing appropriately regularizedteria; see
e.g. [8, p. 167]. USPACOR can be extended to this nonparametr
context, to yield the desired robust estimgtas solution of

N

(yi — f(xi) — 0:)” + pllflIF + Mol (10)

fEH, 0 =

wherep > 0 is chosen to tradeoff fidelity (to the outlier compen-
sated) data for the degree of “smoothness” measurgffhg,. In-
terestingly, it can be shown that wh&hhas the structure of a repro-
ducing kernel Hilbert space, it suffices to solve a patrticirlatance
of Lasso as in (5), in order to obtajhin (10).

4. UNIVERSALITY WITH RESPECT TO CRITERIA

wherer € (0, 1] denotes the forgetting factor. Since the cost here isthis section shows how flexible USPACOR is to encompass a num-

convey, it can be solved using, e.g., coordinate descent [&]D

ber of criteria suitable for various statistical inferemasks.

The USPACOR approach can be tailored also for Kalman filter-

ing and smoothing, when the time-varying parameters soalggy a
model. The major novelty here is USPACOR's ability to cop¢hwi
outliers present not only in the measurements but also irstdie
equation (the latter capture unmodeled dynamics of e.gupalar-
get maneuvering). To outline this doubly-robust approacér @
smoothing horizon = 1,..., N, consider the state space model
60; = F;0,_1 + 0p,; + w;, whereF; denotes the known state tran-
sition matrix, w; ~ AN(0,Q;) the Gaussian process noigk, ~

N (my, ) the Gaussian initial state, and ; (o,,;) the state (mea-
surement) outliers. Extending (2) to the vector case yitldsnea-
surement equatiog; = X;0; + oy,; + €;, wheree; ~ N (0, R;).

The doubly-robust smooth estimate= [0}, . .., %]’ is given by
N
min > [Hyi = Xi0i = 0y.illf 1 + [10: — Fibio1 — 003
N
+ 1160 — mo||3,1 + Z; [A6lloa,ill1 + A1ylloy.il1] . (8)

where||x||a := x’Ax for a positive definite matriXA. Again, (8)
can be solved via alternating minimization, akgdy, A1,, can be
chosen along the lines outlined in Sec. 2.2.

Generalized linear models (GLM). The MSE-optimal regression
function E[y|x] is modeled here by the so-termed activation func-
tion f(x'#). A special case popular for (say binary) classification
leads to logistic regression, wheféu) := (1+¢ )", andy;
equals 1 wherx; belongs to the first class, and 0 otherwise [8, p.
119]. To robustify logistic regression USPACOR estimdtdsy

N
min — Zl yilog 2 + (1 —y:) log(1 — z:) + Ao (9)

wherez; := f(x;0 + o;). Problem (9) is convex and can be effi-
ciently solved by reweighted LS iterations [8, p. 120]. Thksuit
can be extended readily to: i) multiclass classificatiomnt @rprobit

regression, wherg(u) is replaced by the standard Gaussian cumu-Lasso solvers are now available.

lative distribution function.

Nonparametric (kernel) regression. Nonparametric regression is
widely applicable to statistical learning problems, siitcenly as-
sumes that the regression functigrbelongs to a (possibly infinite
dimensional) space of e.g., “smooth” functioks As estimating

4.1. Loss functions

Problem (4) relies on a square loss functiéfu) = u? of the fitting
errors{y; — x;0 — o;}I_,. If the inlier noise distribution is non-
Gaussian and known, ML or MAP loss functions can replace ®e L
cost. AdoptingV (u) = |u| for instance, gives rise t6, regression
that is robust and enjoys ML optimality for Laplacian dibtried
(inlier) noise. In addition, USPACOR can be endowed withrarer
layer of robustness by choosingas Huber’s function [9]. Alterna-
tively, use of are-insensitive loss functioly’ (u) := max (0, |u| — €)
links USPACOR with robust support vector machine formolasi.
Upon departing from a square loss, Lasso can no longer beogetpl
in the alternating minimization process.

Nonconvex loss functions could be of interest as well, sich a
the 8-dependent weighted loss arising with USPACOR-based TLS
formulations [cf. (7)].

4.2. Regularization terms

Concave functions such as the SCAD penalty [3], or the suhogs
regularizer in [1, 11], can approximate betfgs||o in (3) but lead
to nonconvex cost functions with multiple local minima. Hawer,
when initialized properly, e.g., with the USPACOR solutioin(4),
they typically provide considerable improvements afteew ftera-
tions. Noting that\: ||o||: biaseso towards zero, the performance
gains due to nonconvex regularizers can be leveraged todias-
tion [3]. An appealingconvexalternative is the weighte@i norm of
o, which also corrects for bias errors in estimatifg, p. 92].
USPACOR is also flexible to include group-Lasso countegpart
of the¢;-norm ofo. These are useful when one knows a priori that
outliers are clustered, and collections of them can be @svn)as a
group; or, with high-dimensional data, e.g., images, whereto oc-
clusion one may wish to discard the entire image insteaddiviif
ual pixels. Group regularization terms does not sacrifice/exity
and thus USPACOR’s computational efficiency, since effinigoup
In particular, the grougRBA
algorithm in [17] returns the entire robustification path. défer-
ent notion of grouping can be effected by superimpogingorms
of differento terms appearing e.g., with USPACOR-based Kalman
smoothing formulations [cf. (8)]. While in this case sparss not
enforced at group level, each group has its own tuning paeme



Regarding vecto#, ¢;-norm regularization is prudent if there is
prior information that the unknown vector is sparse, thusisbify-
ing the Lasso. Ridge penalties of the fobm||6]|3 are also useful
when the regression matriX is ill-conditioned. A convex combi-
nation of¢; and/> norms is known as the elastic net, which encour-
ages sparsity while effectively dealing with strong caatiein among
variables [8, p. 662]. Note that being flexible to includestheegu-
larization terms, USPACOR can reject outliers even whelitiear
regression problem is under-determined. Group-Lassotequarts
can be incorporated as standalone regularizers, or joiitly the
£1-norm of @ to encourage hierarchical sparsity across and withir
groups [15]. If there is structure in the data such as smesthior
piecewise constancy, fused Lasso regularization can bptedi@s
well [8, p. 666]. The resulting convex cost may be challeggio
optimize however, since coupling of variables renders Cbese
ineffective.
Remark 2. The limited space allows only for a closing comment on
areas not covered here, which can also benefit from the USRACO
based approach. Those that will be reported in the neareftitur
clude robust nonlinear (e.g., Volterra) kernel regresspmncipal
component analysis, and clustering.

2
5. NUMERICAL COMPARISON: USPACOR VS. RANSAC g

A numerical experiment is carried out in this section, to pane 3]
the performance of USPACOR against RANSAC in a linear regres
sion setting. ForV. = 100, inliers adhere to the linear Gaussian [
modely; = x}0y + ¢;, where the “true” parameter vect@p ~

N (10 x 110,T10), and1io denotes thd0 x 1 vector of all ones.

4]

The iid. data arec; ~ A(010,Lp) ande; ~ AY(0,1). Out-
liers are Laplacian distributed with zero-mean and stahdawvia-
tion /2 x 103, i.e.,y; ~ £(0,10%) and i.i.d.. Contamination levels 5
ranging from0% to 80% are examined. The inlier noise variance (6]
02 = 1is assumed known.

For USPACOR, the optimum tuning paramesdr is obtained Y
using an AVD criterion in (6). Ten samples of the robustificat
path are employed, equispaced on a logarithmiscale. To further (8]
enhance the performance of USPACOR, a single iterationrigeda
out to minimize a concave sum-of-logs surrogate of (3). Eime- [l
ment step is initialized with the solution to (4), faF = A7. The  [10]

number of RANSAC iterations is fixed to either 1,000 or 10,00
the threshold used to decide whether a data point is an pistet to
3 x o.. RANSAC is enhanced with a follow-up Huber M-estimation [11]
step using the RANSAC-generated inlier set. The Huber fanct
parameter is set t0.345 x o. as suggested in [6].

Fig. 1 compares RANSAC with USPACOR in terms of root [12]
mean square error (RMSE), defined as RMSE E[[|§ — 6o]|2],
and approximated by sample averaging oM& Monte Carlo runs.
It is apparent that both methods generate very accuratésdeu
small percentages of contamination. However, as the fraaf
outliers increases, RANSAC breaks down resulting in largé R
SEs with high variability. USPACOR provides accurate ressup  [15]
to 40% contamination, and degrades gracefully beyond this level.

In terms of complexity, USPACOR falls in between RANSAC 1)00 [16]
and RANSAC 10,000. These results corroborate that USPAG@R i
competitive alternative for robust linear regression, angberforms
state of the art RANSAC methods.

(13]

(14]

(17]
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