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ABSTRACT

The recent upsurge of research toward compressive samplingand
parsimonious signal representations hinges on signals being sparse,
either naturally, or, after projecting them on a proper basis. The
present paper introduces a neat link between sparsity and a fun-
damental aspect of statistical inference, namely that of robustness
against outliers, even when the signals involved are not sparse. It
is argued that controlling sparsity of model residuals leads to sta-
tistical learning algorithms that are computationally affordable and
universally robust to outlier models. Analysis, comparisons, and cor-
roborating simulations focus on robustifying linear regression, but
succinct overview of other areas is provided to highlight universality
of the novel framework.

Index Terms—Robustness, outlier rejection, sparsity, Lasso

1. INTRODUCTION

The information explosion propelled by the advent of computers, the
Internet, and the global-scale communications has rendered statisti-
cal learning from data increasingly important for analysis and pro-
cessing. Along with data that adhere to postulated models (inliers),
present in large volumes of data are also those that do not (outliers).
Resilience to outliers is of paramount importance in a plethora of
tasks such as model selection, prediction, classification,estimation
and tracking, to name a few. Due to its universal applicability, the
method of least-squares (LS) is the workhorse of statistical learning.
Unfortunately, LS is known to be very sensitive to outliers [9, 14].

Robust alternatives to LS include the M-estimators, which are
maximum-likelihood (ML) optimal for a class of outlier models [9].
Other options are least-trimmed squares (LTS) estimators,which
remove outliers from the LS fit [14]. LTS estimators have high
breakdown point, but prohibitive complexity except for small sam-
ple sizes [13]. Random sample consensus (RANSAC) provides a
computationally tractable, near-LTS alternative, especially popular
in computer vision for coping with a large number of outliers[4, 7].

A universal sparsity-controlling outlier rejection (USPACOR)
framework is introduced in this paper for robust learning. USPA-
COR is rooted at the crossroads of outlier-resilient estimation, the
least-absolute shrinkage and selection operator (Lasso) for sparse re-
gression, and convex optimization. It is shown that a sparsity-tuning
parameter(λ1) in Lasso controls thedegree of sparsityin the esti-
mator, and thenumber of outliersrejected by USPACOR.

Related approaches for robust linear regression can be found
in [6, 10, 11]. The major difference is thatλ1 in these works is
tied to a preselected outlier model, whereas here it is dictated by the
data. This promotes universality and a systematic approachleverag-
ing solvers for allrobustifaction pathsof Lasso; that is, for all values
of λ1 [2, 5, 17]. In this sense, USPACOR capitalizes on butis not
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limited to sparse settings (few outliers), since one can examine the
gamut of sparsity levels along the robustification path. Dueto space
limitations, USPACOR is detailed only for linear regression. But its
universality is highlighted through diverse generalizations pertain-
ing to: i) the information used for selectingλ1; ii) the inlier model;
and iii) the criterion adopted to fit the chosen model. Simulated tests
demonstrate that USPACOR outperforms RANSAC in a linear re-
gression setup, especially when the percentage of outliersis high.

2. SPARSITY CONTROL FOR ROBUSTNESS

2.1. Robustifying linear regression

Consider the classical regression setup, where a real-valued scalar
responsey is to be predicted usingp known variables (inputs) col-
lected in the vectorx := [x1, . . . , xp]

′ ∈ R
p (′ stands for trans-

position). A linear approximation of the mean-square error(MSE)
optimal regression functionE[y|x] is f(x) = x′

θ, whereθ :=
[θ1, . . . , θp]

′ ∈ R
p comprises the regression coefficients.

Given a setT := {yi,xi}N
i=1 of training data possibly con-

taminated with outliers, and supposingX := [x1, . . . ,xN ]′ has full
column rank for simplicity, the goal is to develop a robust estima-
tor of θ that is universal with respect to the outlier model. The LTS
estimator is universal in this sense, and is given by [14]

θ̂LTS := arg min
θ

s
∑

i=1

r2
[i](θ) (1)

wherer2
[i](θ) is thei-th order statistic among the squared residuals

r2
1(θ), . . . , r2

N(θ), andri(θ) := yi − x′
iθ. The so-termedcoverage

s determines the breakdown point of LTS [14], sinceN −s residuals
are not present in (1). Even though (1) is nonconvex, existence of a
minimizer θ̂LTS can be established as follows: i) for each subset of
T with cardinalitys (there are

(

N

s

)

such subsets), solve the corre-
sponding LS problem to obtain a candidate estimator per subset; and
ii) pick θ̂LTS as the one among all

(

N

s

)

candidates with the least
cost. This solution procedure is combinatorially complex,and thus
intractable except for small sample sizesN . Algorithms to obtain
approximate LTS solutions are available; see e.g., [13].

Instead of discarding large residuals, the alternative approach
here explicitly accounts for outliers in the regression model. To
this end, consider the scalar variables{oi}N

i=1 one per training data
point, which take the valueoi = 0 whenever datumi is an inlier, and
oi 6= 0 otherwise. This leads to the linear regression model

yi = x
′
iθ + oi + εi, i = 1, . . . , N (2)

where{εi}N
i=1 are zero-mean i.i.d. random variables capturing in-

lier errors, whileoi can be deterministic or random with unspecified
distribution. In the under-determined linear system of equations (2),
bothθ as well as theN × 1 vectoro := [o1, . . . , oN ]′ are unknown.
The percentage of outliers dictates the degree ofsparsity(number



of zero entries) ino. Sparsity control will prove instrumental in
efficiently estimatingo, rejecting outliers as a byproduct, and con-
sequently arriving at arobustestimator ofθ. A natural criterion for
controlling outlier sparsity is to seek an estimator which solves

min
θ,o

N
∑

i=1

(yi − x
′
iθ − oi)

2 + λ0‖o‖0 (3)

where‖o‖0 denotes the nonconvexℓ0-(pseudo)norm that is equal to
the number of nonzero entries ofo. Sparsity inô can be directly
controlled by tuning the parameterλ0 ≥ 0.

As with compressive sampling and sparse modeling schemes
that rely on theℓ0-norm [16], problem (3) is also NP-hard. In ad-
dition, the sparsity-controlling estimator (3) is intimately related to
LTS, as asserted next (proofs are omitted due to space limitations).

Proposition 1: If {θ̂, ô} minimizes(3) with λ0 chosen such that
‖ô‖0 = N − s, thenθ̂ also solves(1).

The importance of Proposition 1 is threefold. First, it formally
justifies model (2) and its estimator (3) for robust linear regression,
in light of the well documented merits of LTS [14]. Second, itfurther
solidifies the connection between sparse linear regressionand robust
estimation. Third, problem (3) lends itself naturally to efficient (ap-
proximate) solvers based on convex relaxation. For instance, recall
that theℓ1 norm‖o‖1 :=

∑p

i=1 |oi| is the closest convex approx-
imation of ‖o‖0. This property also utilized by compressive sam-
pling [16], provides the motivation to relax (3) to

min
θ,o

N
∑

i=1

(yi − x
′
iθ − oi)

2 + λ1‖o‖1. (4)

Being a (nondifferentiable) convex optimization problem,(4) can be
efficiently solved by, e.g., resorting to an alternating minimization
algorithm. The resulting iterations comprise a sequence ofLS fits for
θ, and coordinatewise soft-thresholded updates foro. Alternatively,
one can show that the solutions{θ̂, ô} of (4) are respectively given
by θ̂ := X†(y− ôLasso) andô := ôLasso, whereX† := (X′X)−1X′

andôLasso is given by

ôLasso := arg min
o

‖(IN −XX
†)(y − o)‖2

2 + λ1‖o‖1. (5)

It is worth stressing at this point that selectingλ1 is challeng-
ing because existing techniques such as cross-validation (CV) do not
apply when outliers are present. USPACOR includes a generaland
systematic approach to selectingλ1 by leveraging recent convex op-
timization solvers that yield the entire path of Lasso solutions, i.e.,
for all values ofλ1 in (5) [2, 5]. Based on theserobustification paths
and prior knowledge possibly available on the model (2), onecan
effectively selectλ1 – the subject dealt with in the next section.
Remark 1. The estimator obtained from (4) can be robust in the
Huber sense [6]. However, this only holds for a specific choice ofλ1.
The last point appears mundane, but is at the heart of the USPACOR
novelty, since tuningλ1 is tantamount to controlling the number of
outliers rejected.

2.2. Selecting outlier sparsity

The ensuing methods for choosingλ1 depend on prior information
available about the inliers or the outliers (number or statistics).
Number of outliers is known. By direct inspection of the robusti-
fication paths one can determine the range of values forλ1, so that
the degree of sparsity in̂o equals the number of outliersNo. Spe-
cializing to the interval of interest, and after discardingthe identified

outliers,K-fold CV methods can be applied to determine the “best”
λ∗

1. Note thatNo is also assumed known by RANSAC, in order to
determine the number of random draws needed to attain a prescribed
probability of success [4, 7].
Variance of the inlier noise is known. If the varianceσ2

ε of the in-
lier noiseεi in (2) is known, one can proceed as follows. Consider
the estimateŝθg obtained using (4) and (5) after sampling the robus-
tification path for each point{λg}G

g=1 on a prescribed grid of size
G. Based on{θ̂g}G

g=1 and the dataT , find the sample variances
{σ̂2

g}G
g=1 after neglecting those training data{yi,xi} identified as

outliers. The winnerλ∗
1 := λg∗ corresponds to the grid point

g∗ := arg min
g

|σ̂2
g − σ2

ε | . (6)

This is an absolute variance deviation (AVD) criterion for selecting
λ∗

1. Knowledge ofσ2
ε is also required by RANSAC; see also Sec. 5.

Variance of the inlier noise is unknown. If σ2
ε is unknown, one can

still compute a robust estimate of the varianceσ̂2
ε , and repeat the

previous procedure after replacingσ2
ε with σ̂2

ε in (6). One simple
option is based on the median absolute deviation (MAD) estimator,
whereσ̂ε := 1.48×mediani (|r̂i − medianj (|r̂j |) |). The residuals
r̂i are formed based on a nonrobust estimate ofθ, e.g., obtained via
an LS fit using a small subset of the training dataT . The factor
1.48 provides an approximately unbiased estimate ofσε, when the
inlier noise is Gaussian. In general, MAD requires knowledge of
εi’s symmetric pdf to determine the leading factor inσ̂ε [14].
Contamination model. One may know a priori that the disturbances
{oi + εi} in (2) adhere to Huber’s contamination model [9]. Hereεi

can be thought of as nominal noise, andoi as the contamination. If
in this caseλ1 equals the threshold value in Huber’s function, then
θ̂ enjoys asymptotic optimality in a well defined minimax sense[6].
Bayesian framework. Adopting a Bayesian perspective, one could
modelθ as having i.i.d. entries obeying a non-informative (i.e., uni-
form) prior, independent ofo, which is assumed to have i.i.d. entries
adhering to a common Laplacian distribution with parameter2/λ∗

1 .
Usingλ1 = λ∗

1 in (4), USPACOR yields estimateŝθ (andô) which
are optimal in the maximum a posteriori sense; see also [10].

Building on (4), it is possible to envision a number of interesting
generalizations beyond linear regression, which further justify the
universalityof the proposed USPACOR framework. These pertain
to the: i) models adopted for the inliers; ii) loss functionschosen to
penalize the fitting errors; and iii) regularization terms for θ ando.

3. UNIVERSALITY WITH RESPECT TO MODELS

This section shows how the USPACOR approach generalizes to
models other than linear time-invariant regression in (2).
Errors-in-variables (EIV) and total least-squares (TLS). TLS ex-
tends ordinary LS to fully-perturbed linear models, such asthe EIV
one; see e.g., [12]. With̄S denoting the sample covariance of the
data vectors{[x′

i yi]
′}N

i=1, the TLS estimator corresponds to the
eigenvector associated with the smallest eigenvalue ofS̄. As such,
TLS performs “orthogonal regression,” which minimizes thesum of
squaredorthogonaldistances from[x′

i yi]
′ to the fitting hyperplane,

as opposed to thevertical distance minimized by LS [12]. To ro-
bustify TLS against outliers, USPACOR can be applied to yield the
desired robust estimator̂θ as solution of

min
θ,o

N
∑

i=1

(yi − x′
iθ − oi)

2

1 + ‖θ‖2
2

+ λ1‖o‖1 . (7)



Alternating minimization between variablesθ ando can converge to
a stationary point of this nonconvex criterion. Each sub-problem per
iteration reduces to either TLS or a scalar Lasso, and in bothcases
the solutions admit analytical forms.
Dynamical models for recursive (R)LS and Kalman smoothing.
RLS schemes are of paramount importance for reducing complexity
and memory requirements in estimating stationary signals as well as
for tracking slowly varying processes, when no model is available for
the variations and quadratic convergence is desired. Similar to LS,
the quadratic cost minimized online by RLS is not robust against out-
liers. With data (2) becoming available sequentially, USPACOR can
estimate outliers online and apply RLS to the outlier-compensated
datayi − ôi. Specifically, at timei = N it solves

min
θ,o

N
∑

i=1

τN−i
[

(yi − x
′
iθ − oi)

2 + λ1|oi|
]

whereτ ∈ (0, 1] denotes the forgetting factor. Since the cost here is
convex, it can be solved using, e.g., coordinate descent (CD) [5].

The USPACOR approach can be tailored also for Kalman filter-
ing and smoothing, when the time-varying parameters soughtobey a
model. The major novelty here is USPACOR’s ability to cope with
outliers present not only in the measurements but also in thestate
equation (the latter capture unmodeled dynamics of e.g., abrupt tar-
get maneuvering). To outline this doubly-robust approach over a
smoothing horizoni = 1, . . . , N , consider the state space model
θi = Fiθi−1 + oθ,i + wi, whereFi denotes the known state tran-
sition matrix,wi ∼ N (0,Qi) the Gaussian process noise,θ0 ∼
N (m0,Σ0) the Gaussian initial state, andoθ,i (oy,i) the state (mea-
surement) outliers. Extending (2) to the vector case yieldsthe mea-
surement equationyi = Xiθi + oy,i + εi, whereεi ∼ N (0,Ri).
The doubly-robust smooth estimateθ̂ := [θ̂′

0, . . . , θ̂
′
N ]′ is given by

min
θ,oθ,oy

N
∑

i=1

[

‖yi − Xiθi − oy,i‖2

R
−1

i

+ ‖θi − Fiθi−1 − oθ,i‖2

Q
−1

i

]

+ ‖θ0 − m0‖2

Σ
−1

0

+

N
∑

i=1

[λ1,θ‖oθ,i‖1 + λ1,y‖oy,i‖1] . (8)

where‖x‖A := x′Ax for a positive definite matrixA. Again, (8)
can be solved via alternating minimization, andλ1,θ , λ1,y can be
chosen along the lines outlined in Sec. 2.2.
Generalized linear models (GLM). The MSE-optimal regression
function E[y|x] is modeled here by the so-termed activation func-
tion f(x′

θ). A special case popular for (say binary) classification
leads to logistic regression, wheref(u) :=

(

1 + e−u
)−1

, andyi

equals 1 whenxi belongs to the first class, and 0 otherwise [8, p.
119]. To robustify logistic regression USPACOR estimatesθ by

min
θ,o

−
N

∑

i=1

yi log zi + (1 − yi) log(1 − zi) + λ‖o‖1 (9)

wherezi := f(x′
iθ + oi). Problem (9) is convex and can be effi-

ciently solved by reweighted LS iterations [8, p. 120]. The result
can be extended readily to: i) multiclass classification; and ii) probit
regression, wheref(u) is replaced by the standard Gaussian cumu-
lative distribution function.
Nonparametric (kernel) regression. Nonparametric regression is
widely applicable to statistical learning problems, sinceit only as-
sumes that the regression functionf belongs to a (possibly infinite
dimensional) space of e.g., “smooth” functionsH. As estimating

f ∈ H from finite data is inherently ill-posed, the problem is typ-
ically solved by minimizing appropriately regularized criteria; see
e.g. [8, p. 167]. USPACOR can be extended to this nonparametric
context, to yield the desired robust estimatef̂ as solution of

min
f∈H,o

N
∑

i=1

(yi − f(xi) − oi)
2 + µ‖f‖2

H + λ1‖o‖1 (10)

whereµ ≥ 0 is chosen to tradeoff fidelity (to the outlier compen-
sated) data for the degree of “smoothness” measured by‖f‖2

H. In-
terestingly, it can be shown that whenH has the structure of a repro-
ducing kernel Hilbert space, it suffices to solve a particular instance
of Lasso as in (5), in order to obtain̂f in (10).

4. UNIVERSALITY WITH RESPECT TO CRITERIA

This section shows how flexible USPACOR is to encompass a num-
ber of criteria suitable for various statistical inferencetasks.

4.1. Loss functions

Problem (4) relies on a square loss functionV (u) = u2 of the fitting
errors{yi − x′

iθ − oi}N
i=1. If the inlier noise distribution is non-

Gaussian and known, ML or MAP loss functions can replace the LS
cost. AdoptingV (u) = |u| for instance, gives rise toℓ1 regression
that is robust and enjoys ML optimality for Laplacian distributed
(inlier) noise. In addition, USPACOR can be endowed with an inner
layer of robustness by choosingV as Huber’s function [9]. Alterna-
tively, use of anǫ-insensitive loss functionV (u) := max(0, |u|− ǫ)
links USPACOR with robust support vector machine formulations.
Upon departing from a square loss, Lasso can no longer be employed
in the alternating minimization process.

Nonconvex loss functions could be of interest as well, such as
the θ-dependent weighted loss arising with USPACOR-based TLS
formulations [cf. (7)].

4.2. Regularization terms

Concave functions such as the SCAD penalty [3], or the sum-of-logs
regularizer in [1, 11], can approximate better‖o‖0 in (3) but lead
to nonconvex cost functions with multiple local minima. However,
when initialized properly, e.g., with the USPACOR solutionof (4),
they typically provide considerable improvements after a few itera-
tions. Noting thatλ1‖o‖1 biasesô towards zero, the performance
gains due to nonconvex regularizers can be leveraged to biasreduc-
tion [3]. An appealingconvexalternative is the weightedℓ1 norm of
o, which also corrects for bias errors in estimatingo [8, p. 92].

USPACOR is also flexible to include group-Lasso counterparts
of theℓ1-norm ofo. These are useful when one knows a priori that
outliers are clustered, and collections of them can be (non)zero as a
group; or, with high-dimensional data, e.g., images, wheredue to oc-
clusion one may wish to discard the entire image instead of individ-
ual pixels. Group regularization terms does not sacrifice convexity
and thus USPACOR’s computational efficiency, since efficient group
Lasso solvers are now available. In particular, the group LARS
algorithm in [17] returns the entire robustification path. Adiffer-
ent notion of grouping can be effected by superimposingℓ1-norms
of differento terms appearing e.g., with USPACOR-based Kalman
smoothing formulations [cf. (8)]. While in this case sparsity is not
enforced at group level, each group has its own tuning parameter.



Regarding vectorθ, ℓ1-norm regularization is prudent if there is
prior information that the unknown vector is sparse, thus robustify-
ing the Lasso. Ridge penalties of the formλ2‖θ‖2

2 are also useful
when the regression matrixX is ill-conditioned. A convex combi-
nation ofℓ1 andℓ2 norms is known as the elastic net, which encour-
ages sparsity while effectively dealing with strong correlation among
variables [8, p. 662]. Note that being flexible to include these regu-
larization terms, USPACOR can reject outliers even when thelinear
regression problem is under-determined. Group-Lasso counterparts
can be incorporated as standalone regularizers, or jointlywith the
ℓ1-norm of θ to encourage hierarchical sparsity across and within
groups [15]. If there is structure in the data such as smoothness or
piecewise constancy, fused Lasso regularization can be adopted as
well [8, p. 666]. The resulting convex cost may be challenging to
optimize however, since coupling of variables renders CD solvers
ineffective.
Remark 2. The limited space allows only for a closing comment on
areas not covered here, which can also benefit from the USPACOR-
based approach. Those that will be reported in the near future in-
clude robust nonlinear (e.g., Volterra) kernel regression, principal
component analysis, and clustering.

5. NUMERICAL COMPARISON: USPACOR VS. RANSAC

A numerical experiment is carried out in this section, to compare
the performance of USPACOR against RANSAC in a linear regres-
sion setting. ForN = 100, inliers adhere to the linear Gaussian
modelyi = x′

iθ0 + εi, where the “true” parameter vectorθ0 ∼
N (10 × 110, I10), and110 denotes the10 × 1 vector of all ones.
The i.i.d. data arexi ∼ N (010, I10) and εi ∼ N (0, 1). Out-
liers are Laplacian distributed with zero-mean and standard devia-
tion

√
2 × 103, i.e.,yi ∼ L(0, 103) and i.i.d.. Contamination levels

ranging from0% to 80% are examined. The inlier noise variance
σ2

ε = 1 is assumed known.
For USPACOR, the optimum tuning parameterλ∗

1 is obtained
using an AVD criterion in (6). Ten samples of the robustification
path are employed, equispaced on a logarithmicλ1 scale. To further
enhance the performance of USPACOR, a single iteration is carried
out to minimize a concave sum-of-logs surrogate of (3). The refine-
ment step is initialized with the solution to (4), forλ1 = λ∗

1. The
number of RANSAC iterations is fixed to either 1,000 or 10,000; and
the threshold used to decide whether a data point is an outlier is set to
3×σε. RANSAC is enhanced with a follow-up Huber M-estimation
step using the RANSAC-generated inlier set. The Huber function
parameter is set to1.345 × σε as suggested in [6].

Fig. 1 compares RANSAC with USPACOR in terms of root
mean square error (RMSE), defined as RMSE:= E[‖θ̂ − θ0‖2],
and approximated by sample averaging over100 Monte Carlo runs.
It is apparent that both methods generate very accurate results for
small percentages of contamination. However, as the fraction of
outliers increases, RANSAC breaks down resulting in large RM-
SEs with high variability. USPACOR provides accurate results up
to 40% contamination, and degrades gracefully beyond this level.
In terms of complexity, USPACOR falls in between RANSAC 1,000
and RANSAC 10,000. These results corroborate that USPACOR is a
competitive alternative for robust linear regression, andoutperforms
state of the art RANSAC methods.
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