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ABSTRACT

Clustering is a basic task in a variety of machine learning appli-
cations. Partitioning a set of input vectors into compact, well-
separated subsets can be severely affected by the presence of model-
incompatible inputs called outliers. The present paper develops
robust clustering algorithms for jointly partitioning the data and
identifying the outliers. The novel approach relies on translating
scarcity of outliers to sparsity in a judiciously defined domain, to ro-
bustify three widely used clustering schemes: hard K-means, fuzzy
K-means, and probabilistic clustering. Cluster centers and assign-
ments are iteratively updated in closed form. The developed outlier-
aware algorithms are guaranteed to converge, while their compu-
tational complexity is of the same order as their outlier-agnostic
counterparts. Preliminary simulations validate the analytical claims.

Index Terms— K-means, robust clustering, convex relaxation,
block coordinate descent, expectation maximization.

1. INTRODUCTION

Clustering aims to partition a set of observations into disjoint sub-
sets, called clusters, such that observations assigned to the same clus-
ter are similar in some sense. Working with unlabeled data and under
minimal assumptions makes clustering a universal tool for revealing
data relations in a gamut of applications such as DNA microarrays,
bioinformatics, social networks, image processing, and data mining.

From the multitude of non-probabilistic clustering methods, the
K-means algorithm is among the most popular ones [6, 7]. Either in
its hard form or itssoft (fuzzy) version, K-means is computationally
simple. However, points lying relatively far from all other points can
deteriorate its performance in terms of estimating the cluster centers
and point assignments. Such points are called outliers and emerge
either due to reading errors or because they belong to rarely-seen,
and thus extremely informative, clusters. Past attempts to robustify
K-means include: the noise clustering scheme, which adds an extra
“outlier-cluster” and heuristically assumes its center to be equidis-
tant from all input points [3]; and theα-cut fuzzy K-means algorithm
that parsimoniously trims the core data of each cluster [9].

Probabilistic clustering assumes that the observed data are
drawn from a probability density function (pdf) following a mix-
ture model, where each component corresponds to a cluster [7].
Under the maximum likelihood (ML) framework, the expectation-
maximization (EM) algorithm can be used to estimate the parameters
of the data pdf and automatically provide the probability of a point
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being drawn from each cluster. In the presence of outliers, prob-
abilistic clustering capabilities are still limited to mixture models
with outlier-sensitive likelihood functions.

The contributions of this paper are: (i) a novel data model
that explicitly includes outliers, and naturally lends itself to ro-
bust clustering criteria; (ii) outlier-aware K-means and probabilistic
clustering algorithms based on a convex relaxation of the resul-
tant non-smooth criteria, which permeates benefits of contemporary
advances in compressive sensing to the clustering problem; and
(iii) non-convex optimization solvers for robust clustering using
block-coordinate descent (BCD) or EM iterations, with the iter-
ates obtained in closed form, provably convergent to a stationary
point, and capable of revealing the outliers present, at negligible ex-
cess cost relative to their non-robust counterparts. The simulations
performed validate the performance of the clustering methods.

Notation: Lowercase (uppercase) boldface letters are reserved
for column vectors (matrices), and calligraphic letters for sets;(·)T

denotes transposition;N (m,Σ) stands for the multivariate Gaus-
sian pdf with meanm and covariance matrixΣ, whileN (x;m,Σ)
denotes the same pdf evaluated atx.

2. ROBUSTIFYING CLUSTERING METHODS

2.1. Robustifying Hard K-Means

Given a set ofp-dimensional vectorsX := {x1, . . . ,xN}, let
{X1, . . . ,XC} be a partition of X with the subsets (clusters)
Xc ⊂ X , c = 1, . . . , C, being collectively exhaustive, mutually
exclusive, and non-empty. Hard K-means seeks a partition for
which vectors assigned to the same cluster are in some sense closer
(in e.g., Euclidean distance) to each other when compared to vectors
belonging to other clusters.

In the K-means setup, a cluster centermc ∈ R
p is introduced

per clusterXc. Then, instead of comparing distances between pairs
of points inX , the distances‖xn − mc‖

2
2 are considered. More-

over, K-means introduces the unknown membershipsunc defined
to be 1 whenxn ∈ Xc and 0 otherwise for alln, c. To guaran-
tee a valid partition, the membership coefficients apart from being
binary (c1) unc ∈ {0, 1}; they should also satisfy the constraints
(c2)

∑N

n=1 unc > 0 for all c to preclude empty clusters; and(c3)∑C

c=1 unc = 1 for all n, so that each vector is assigned to a cluster.
Under (c1)-(c3), consider the following data model which ac-

counts explicitly for outliers

xn =
C∑

c=1

uncmc + on + vn, n = 1, . . . , N (1)



where the vectoron is deterministically nonzero ifxn corresponds
to an outlier, and0 otherwise; andvn is a zero-mean random vector
capturing the deviation of(xn−on) from its cluster center.

The unknown parameters{unc}, {mc}, and{on} in (1) can
be estimated using a least-squares (LS) approach as the minimizers

of
∑N

n=1

∥∥∥xn−
∑C

c=1 uncmc−on

∥∥∥
2

2
, which is equivalent to ML

if vn ∼ N (0, σ2
Ip). Even ifunc’s were known, estimating{mc}

and{on} based solely on{xn} would be a highly under-determined
problem. Note however that most of the{on} are zero. This moti-
vates the following criterion for hard clustering and identification of
at mosts ∈ {1, . . . , N} outliers

min
U∈U1,M,O

N∑

n=1

∥∥∥∥∥xn −
C∑

c=1

uncmc − on

∥∥∥∥∥

2

2

(2)

s.to
N∑

n=1

I(‖on‖2 6=0) ≤ s

whereU ∈ R
N×C denotes the membership matrix with entries

[U]
n,c

:= unc; U1 is the set of allU matrices satisfying the con-
straints (c1)-(c3);M := [m1 · · · mC ]; O := [o1 · · · oN ]; and
I(·) denotes the indicator function.

Due to (c1) and (c3), each summand in the cost of (2) can be
re-written as

∑C

c=1 unc‖xn−mc−on‖
2
2, which turns out to render

(c2) redundant. The binary-alphabet constraint (c1) can be equiva-
lently relaxed by the box constraint(c4) unc ∈ [0, 1] for all n, c.
Then, after definingU2 to be the set of allU matrices satisfying
(c3)-(c4), the Lagrangian form of (2) becomes

min
U∈U2,M,O

N∑

n=1

C∑

c=1

unc ‖xn − mc − on‖
2
2 + λ I(‖on‖2 6=0) (3)

whereλ ≥ 0 is an outlier-controlling parameter. Forλ = 0, every
on can be set to the (generally) nonzero valuexn−mc for anyc and
yield a zero optimum cost. Thus, allxn’s are declared as outliers for
λ = 0. Whenλ → ∞, the optimumO is zero, all thexn’s are
deemed as inliers, and the problem in (3) interestingly reduces to the
cost related to theK-means algorithm

min
U∈U2,M

N∑

n=1

C∑

c=1

unc ‖xn − mc‖
2
2 . (4)

Hence, K-means can be formulated based on model (1) once ignor-
ing theon terms. Such a simplification together with the sensitivity
of the square cost to large residuals explains K-means vulnerability
to outliers [3].

Solving the clustering problem in (4) is known to be NP-hard,
even forC = 2 [2]. Typically, a suboptimal solution is pursued
using the K-means algorithm by alternately minimizing with respect
to (wrt) one of the variablesM andU, while keeping the other one
fixed, and iterating. K-means iterations are guaranteed to converge
to a stationary point of (4).

As far as the more general, outlier-aware problem is concerned,
iterations similar to K-means do not provide any convergence guar-
antees due to the non-smooth indicator function present in (3). Aim-
ing at a practically feasible solver of (3), consider first thatU is
given. The optimization wrt{M,O} remains non-convex due to∑N

n=1 I(‖on‖2 6=0). Upon adopting the convex relaxation proposed

in [4], this term can be approximated by
∑N

n=1 ‖on‖2 to yield

min
U∈U2,M,O

N∑

n=1

C∑

c=1

unc ‖xn − mc − on‖
2
2 + λ

N∑

n=1

‖on‖2 . (5)

The robust hard K-means minimizes the cost in (5), which is convex
in {M,O}, but jointly non-convex; see also Section 3.1 for an alter-
native solver. Note also that (5) resembles the group Lasso criterion
used in [10] for recovering block-sparse vectors. This establishes a
neat link between robust clustering and compressive sampling.

Remark 1. If the covariance matrix ofvn in (1) is known (call itΣ),
the Euclidean distance in (2)-(5) can be replaced by the Mahalanobis
one, namely‖xn−mc−on‖

2
Σ−1 , where‖z‖2

H := z
T
Hz.

2.2. Robustifying Soft Clustering Methods

The criteria in (3) and (5) yieldhard membership assignments.
However, soft memberships are well motivated because they: (i)
can lead to improved clustering results [1]; (ii) identify ambigu-
ous points lying at the intersection of clusters; and, (iii) can also
provide a hard partition ofX by assigning eachxn to the cluster
ĉ := arg maxc unc. To this end, two soft clustering approaches
are robustified under the view of model (1): fuzzy K-means and
probabilistic clustering.

The fuzzy K-means algorithm introduces a parameterq ≥ 1 and
by raising theunc’s in (4) to theq-th power can yield fractional
memberships [1]. Forq = 1, it boils down to the hard K-means.
The outlier-aware fuzzy K-means scheme proposed here amounts to
replacingxn with its outlier-compensated counterpart(xn − on),
and further promoting the sparsity constraints onon. These steps
lead to the following criterion

min
U∈U2,M,O

N∑

n=1

C∑

c=1

uq
nc

(
‖xn − mc − on‖

2
2 + λ ‖on‖2

)
(6)

which can be optimized using the iterative scheme in Section 3.1.
An alternative approach to obtain soft memberships is via prob-

abilistic clustering, which relies on a mixture model for the data
pdf [7]. Suppose for simplicity that eachxn in (1) is drawn from
a mixture of Gaussians, and view theunc’s as hidden random
variables. Assume further that for eachn, p(xn|unc = 1) =
N (xn;mc+on, σ2

Ip), whereσ2 denotes the common variance.
This implies thatp(xn) =

∑C

c=1 πcN (xn;mc+on, σ2
Ip), where

πc := Pr(unc = 1). If the xn’s are independent, the log-likelihood
of the entire data is

L(X ; {πc},M,O, σ2):=
N∑

n=1

log

(
C∑

c=1

πcN (xn;mc+on, σ2
Ip)

)
.

To control the number of outliers (number of zeroon’s) suggests
penalizing the negative log-likelihood to arrive at

min
π∈P,M,O,σ2>0

−L(X ; π,M,O, σ2) + λ
N∑

n=1

‖on‖2 (7)

whereP is the set of allπ := [π1 · · ·πC ]T vectors satisfying
π

T
1=1, andπ≥0. The non-convex problem in (7) will be solved

in Section 3.2 using EM iterations. Note that theunc’s in the proba-
bilistic clustering criterion (1) are binary; while the posterior proba-
bilities γnc:= Pr(unc=1|xn) explicitly emerging in the expectation
step of the algorithm, can be interpreted as soft memberships.



3. SOLVERS

3.1. Robust (Fuzzy) K-Means via Block Coordinate Descent

Consider first solving (6) forq > 1. Even though the cost in (6) is
jointly non-convex, it is convex wrt each one of the block optimiza-
tion variablesU, M, andO. This observation suggests a block-
coordinate descent (BCD) solver. According to the BCD method,
the cost is iteratively minimized wrt one of the three block variables
at a time, while keeping the other two fixed. Specifically, letU

(t),
M

(t), andO(t) be the tentative solutions during thet-th iteration.
In the first step of thet-th iteration, (6) is minimized overU,

while M andO are set toM(t−1) andO
(t−1), respectively. As in

the fuzzy K-means update, the solution is provided in closed form
for all n andc as (proofs are omitted due to space limitation)

u(t)
nc=




C∑

c′=1

(
‖xn−m

(t−1)
c −o

(t−1)
n ‖2

2+λ||o(t−1)
n ||2

‖xn−m
(t−1)

c′
−o

(t−1)
n ‖2

2+λ||o(t−1)
n ||2

) 1

q−1




−1

. (8)

In the second step, (6) is optimized wrtM for U = U
(t) and

O = O
(t−1), while the problem decouples over themc’s. Every

mc is the closed-form solution of a weighted least-squares problem

m
(t)
c =

N∑

n=1

(u(t)
nc )q

(
xn−o

(t−1)
n

)

N∑

n=1

(u(t)
nc )q

. (9)

In the third step, the task is to minimize (6) overO while U =
U

(t) andM = M
(t). The optimization decouples over the indexn,

so that eachon can be found as the minimizer of

φ(t)(on) :=
C∑

c=1

(u(t)
nc )q

(
‖xn − m

(t)
c − on‖

2
2 + λ‖on‖2

)
. (10)

The costφ(t)(on) is convex and can be solved as a second-order
cone program. Interestingly though, following the method in [4], we
are able to show that its minimizer is provided in closed form too as

o
(t)
n = r

(t)
n

[
1 −

λ

2‖r(t)
n ‖2

]

+

, where (11)

r
(t)
n :=

(
C∑

c=1

(u(t)
nc )q

(
xn−m

(t)
c

))( C∑

c=1

(u(t)
nc )q

)−1

(12)

and [x]+:= max{x, 0} for all n. The update in (11) reveals two
critical issues: (i) indeedφ(t)(o

(t)
n ) favors zero minimizerso(t)

n ; and
(ii) outliers can be identified. After updating the weighted residual
r
(t)
n , its norm is compared against the thresholdλ/2. If it is larger,

this input vector is deemed an outlier, and it is compensated by a
nonzeroo(t)

n . Otherwise,o(t)
n is set to zero andxn is being clustered

as a regular point.
The developedrobust fuzzy K-means algorithm (RFKM) entails

the updates (8), (9), and (11). Regarding initialization,M is ran-
domly chosen andO is set to zero. A careful counting of the compu-
tations involved shows that the total time-complexity is maintained
in O(NCp), while O can be efficiently stored using sparse struc-
tures. The robust hard K-means (RHKM) algorithm corresponds to
q = 1, and can be derived by replacing (8) as follows: for every

n, set theunc corresponding toc(t)
n := arg minc ‖xn − m

(t−1)
c −

o
(t−1)
n ‖2 to 1, and the rest of theunc’s to zero.

The following proposition can be established by using the
convergence results of: (i) the BCD method [8]; and, (ii) the
majorization-minimization argument in [5].

Proposition 1. The RKM algorithm converges to a stationary point
of the cost function in (6).

3.2. An EM Algorithm for Robust Clustering

Problem (7) is approximately solved here using EM iterations. The
algorithm, called hereafterrobust probabilistic clustering (RPC), en-
tails two steps during thet-th iteration. Theexpectation step, where
the posterior probabilitiesγnc are updated for alln, c, as

γ(t)
nc =

π
(t−1)
c N

(
xn;m

(t−1)
c + o

(t−1)
n , σ2(t−1)

Ip

)

∑C

c′=1 π
(t−1)

c′
N
(
xn;m

(t−1)

c′
+ o

(t−1)
n , σ2(t−1)Ip

) (13)

and themaximization step, which involves the updates

π(t)
c =

N∑

n=1

γ(t)
nc /N, for all c (14)

m
(t)
c =

(
N∑

n=1

γ(t)
nc

(
xn−o

(t−1)
n

))( N∑

n=1

γ(t)
nc

)−1

, ∀ c (15)

σ2(t) = (Np)−1
N∑

n=1

C∑

c=1

γ(t)
nc ‖xn − m

(t)
c − o

(t−1)
n ‖2

2 (16)

o
(t)
n = r

(t)
n

[
1 −

λσ2(t)

‖r(t)
n ‖2

]

+

, for all n where (17)

r
(t)
n := xn−

C∑

c=1

m
(t)
c γ(t)

nc . (18)

The algorithm cycling through updates (13)-(17) can be shown con-
vergent to a stationary point of (7). Comparing the updates in (8)-
(11) with those in (13)-(18), reveals that: (i) the probabilistic ap-
proach provides a solid interpretation of the soft memberships over
the fuzzy one; and (ii) the thresholding operator is data-adaptive
throughσ2(t).

3.3. Weighted Solvers

The robust methods presented so far approximateI(‖on‖2 6=0) by
‖on‖2. It has been argued though that non-convex functions such as
log(‖on‖2 + δ) for a smallδ > 0 can be tighter approximants; see
[4] and references therein. The same reasoning motivates replacing
‖on‖2 by the penaltylog(‖on‖2 + δ) in (5), (6), and (7) to enhance
robustness. The involved optimizations wrton are no longer con-
vex, but single-iteration majorization-minimization updates (cf. [5])
can be derived [4]. It turns out that the resultant updates simply dif-
fer in the thresholding rules (11) and (17), where nowλ becomes

λ
(t)
n = λ

(
‖o(t−1)

n ‖2 + δ
)−1

. The variability ofλ(t)
n across itera-

tions explains the adjective “weighted” in these solvers. Note that
input vectors with rather large‖o(t−1)

n ‖2 here are compared to a
smaller threshold, and are thus more likely to be declared as outliers.



−20 −10 0 10 20
−20

−10

0

10

20

x1

x
2

Fig. 1. Outlier-contaminated dataset.

4. SIMULATIONS

The developed robust clustering methods are evaluated through com-
puter simulations. The synthetic dataset comprises vectorsxn ∈ R

2

belonging toC = 5 clusters with 100 vectors per cluster. The dataset
is contaminated by adding a fixed set of outlier vectors shown as
stars in Fig. 1. The figures of merit used are: (i) the squared-root of
the mean-square error (RMSE) between the estimated cluster cen-
tersM and the cluster sample means; (ii) the probability of correctly
identifying an outlier vectorPD; and (iii) the probability of falsely
characterizing an inlier vector as an outlierPFA.

The algorithms simulated were: hard K-means (HKM); fuzzy
K-means (FKM); hard/fuzzy noise clustering HNC/FNC [3];α-cut
clustering [9]; probabilistic clustering under the assumptions of Sec-
tion 3.2 (PC); robust hard/fuzzy K-means plain and weighted ((W-
)RHKM/(W-)RFKM); and robust probabilistic clustering plain and
weighted (W-)RPC. The parameterq is set toq = 2 for all fuzzy
clustering algorithms. In each Monte Carlo run, the cluster centers
were randomly initialized (at the same value for all algorithms), and
O was set to zero. In all probabilistic clustering algorithms, the prior
probabilities are set toπ(0) = 1/C, and the variance is initialized to
10. The thresholdλ as well as the parameters involved in HNC and
FNC were tuned per algorithm such that the predetermined number
of outliers was identified. Forα-cut clustering, a grid ofα values
was used, and the one achieving the smallest RMSE was retained.

Table 1 shows the RMSE obtained by the algorithms for differ-
ent levels of outlier contamination: 25 out ofN = 525 points (ap-
proximately 5%), and 50 out ofN = 550 (approx. 10%). The robust
counterparts of the clustering algorithms simulated achieved a lower
RMSE with an extra improvement by their weighted versions. The
last two columns of Table 1 list the probabilitiesPD andPFA in the
presence of 50 outliers. A dash indicates that the corresponding al-
gorithm does not identify outliers inherently. In this case, W-RFKM
correctly identified all the outliers introduced in the dataset.

Table 1. Performance of the clustering algorithms.

Outliers/N 25/525 50/550 50/550

RMSE PD PFA

HKM 6.4237 10.1763 − −

FKM 0.1909 0.4283 − −

HNC 2.2075 1.4610 0.950 0.005

FNC 0.0522 0.0607 0.980 0.002

α-cut 0.1781 0.4021 − −

PC 0.7320 1.4322 − −

RHKM 0.4344 0.6836 0.858 0.010

WRHKM 0.1899 0.2688 0.900 0.010

RFKM 0.0664 0.0932 0.958 0.000

WRFKM 0.0148 0.0147 1.000 0.000

RPC 0.2155 0.4720 0.980 0.002

WRPC 0.0073 0.0381 0.980 0.002
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