
A BLOCK ADAPTIVE FREQUENCY DOMAIN
MIMO DFE FOR WIDEBAND CHANNELS

Vassilis Kekatos1, Kostas Berberidis1, Athanasios A. Rontogiannis2,
1Dept. of Computer Engineering & Informatics / C.T.I.-R&D, University of Patras, Greece

2Institute for Space Applications and Remote Sensing, N.O.A., Athens, Greece
Emails: {kekatos,berberid}@ceid.upatras.gr, tronto@space.noa.gr

Abstract— The equalization of MIMO frequency selective
channels is a challenging task due to the increased lter
lengths required and the presence of interstream interference. In
wideband systems where high delay spread channels arise and
long transmission bursts are employed, adaptive equalization is
necessary. In this work, we develop an adaptive MIMO DFE
for wideband time varying systems. To reduce computational
complexity and accelerate convergence rate, the equalizer is fully
implemented in the frequency domain, while an inherent causality
problem is ef ciently solved through an iterative scheme. As
veri ed by simulations, the proposed method offers a good trade
off in terms of complexity and convergence, compared to other
related adaptive algorithms.

Index Terms— MIMO systems, Adaptive equalizers.

I. INTRODUCTION

In high data rate spatial multiplexing multi-input multi-
output (MIMO) systems, the introduced intersymbol and inter-
stream interference cause a severe performance degradation.
In order to deal with this situation, sophisticated receivers
should be designed [1]. When the channel does not change
signi cantly within a burst of data, then single carrier cyclic
pre xed (SC-CP) techniques may be employed [2], [3]. In
this case, the insertion of the CP makes the channel matrix
circulant thus reducing the receiver’s complexity. The price
paid is that the overall throughput is affected due to the CP
overhead.

However, when the channel impulse response changes
within a burst (a case arising in relatively long bursts and/or
fast varying conditions), the above techniques fail to equalize
the channel and ef cient adaptive methods are required. Two
linear adaptive equalizers have recently been presented in [4],
[5]. To our knowledge, the only adaptive MIMO decision feed-
back equalizer (DFE) designs are those proposed in [6] and
[7]. Both these equalizers are updated using the recursive least
squares (RLS) algorithm, although their underlying structures
are different.

Two are the main problems in adaptive MIMO equalization
compared to classical SISO equalization. First, the size of the
equalizer is naturally increased, and second, due to interstream
interference, the noise turns out to be colored. These charac-
teristics affect severely the convergence rate of a least mean
square (LMS) based equalizer. On the other hand, despite the
fast convergence of RLS equalizers, their high computational
complexity may be prohibitive. Motivated by the work in
[8], we develop an LMS MIMO DFE fully implemented
in the frequency domain. The gain of such an approach is

twofold. First, computational complexity is drastically reduced
by employing ef cient fast Fourier transform (FFT) operations.
Furthermore, convergence speed is improved by appropriately
weighting the different modes of the adaptive MIMO process.
The proposed algorithm operates on a block-by-block basis,
and the causality problem, which is inherent in a block
adaptive DFE, is resolved using an ef cient iterative scheme.

II. SYSTEM MODEL

Let us consider a MIMO communication system operating
over a frequency selective wireless channel. The channel is
considered quasi-static, i.e., it remains xed for a short dura-
tion ofQ symbol periods. The system employsM transmit and
N receive antennas, with M≤N , while spatial multiplexing
is assumed. If the transmitted signal at time k is

s(k) =
[
s1(k) s2(k) . . . sM (k)

]T
(1)

where sm(k), m = 1, . . . ,M , are i.i.d. symbols, then the
symbol spaced signal at receive antenna n is

xn(k) =
1√
M

M∑
m=1

L∑
l=0

hnm(l)sm(k − l) + ηn(k) (2)

where hnm(l), for l=0, . . . , L, is the sampled impulse re-
sponse between transmitter m and receiver n, and ηn(k), n =
1, . . . , N , are white Gaussian complex noise samples of vari-
ance σ2/2 = N0/2 per dimension.

III. EQUALIZER DESIGN

To mitigate the intersymbol and interstream interference
involved in the system described by (2), we propose a MIMO
DFE completely implemented in the frequency domain. The
algorithm originates from a proper block formulation of the
MIMO DFE in the time domain as brie y discussed next.

A. Block MIMO DFE in the Time Domain

The proposed MIMO DFE is a set of M MISO DFEs
operating in parallel to extract the M transmitted streams [1].
Each MISO DFE consists of N feedforward lters with a
temporal span of Kf symbol periods, each one adjusted to
a receive antenna, and M feedback lters that subtract the
contribution of Kb postcursor symbols from all streams. Thus,
the feedforward part of the MIMO DFE can be described by
the KfN ×M matrix lter

W(k) =
[

w1(k) · · · wM (k)
]

(3)
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where its m-th column processes the samples from all receive
antennas to extract the m-th stream, and can be written as

wm(k) =
[
wTm,1(k) · · · wTm,N (k)

]T
, m = 1, . . . ,M. (4)

Likewise, the feedback part of the equalizer is described by
the KbM ×M matrix

B(k) =
[

b1(k) · · · bM (k)
]
. (5)

In a block adaptive operation of the equalizer, its lters are
updated on a block-by-block basis, i.e., the lters are kept
xed for a block of Q symbol periods, and are nally updated

at the end of the block. During the b-th block interval, the
received data are collected and accumulated together with the
data of the previous block in the Q×KfN matrix

X(k) =
[

X1(k) · · · XN (k)
]

(6)

where k = bQ, and the Q×Kf Toeplitz matrix Xn(k), n =
1, . . . , N , is given by

Xn(k) =

⎡
⎢⎣

xn(k) · · · xn(k −Kf + 1)
...

. . .
...

xn(k +Q− 1) · · · xn(k +Q−Kf )

⎤
⎥⎦ . (7)

Similarly to the received data, decisions from all streams are
stored in the Q×KbM matrix

D(k) =
[

D1(k) · · · DM (k)
]

(8)

where the Toeplitz matrix Dm(k), is de ned as

Dm(k) =

⎡
⎢⎣

dm(k − 1) · · · dm(k −Kb)
...

. . .
...

dm(k +Q− 2) · · · dm(k +Q−Kb − 1)

⎤
⎥⎦, (9)

for m = 1, . . . ,M , and dm(k) is the decision for symbol
sm(k). Notice that the decisions in the upper triangular part of
Dm(k) are related to symbols of previous blocks, i.e., dm(k−
Kb), . . . , dm(k − 1), whereas its strictly lower triangular part
contains decisions of the current block.

After having de ned the input data and the lters of the
MIMO DFE, its output can be compactly expressed by

Y(k) = X(k)W(k) + D(k)B(k) (10)

where the Q×M output matrix is de ned as

Y(k) =

⎡
⎢⎣

y1(k) · · · yM (k)
...

. . .
...

y1(k +Q− 1) · · · yM (k +Q− 1)

⎤
⎥⎦ . (11)

Each output ym(k) is fed into the slicer to yield the decision
dm(k), i.e., dm(k) = f [ym(k)], where f [·] stands for the
decision device function. In (10), a ‘causality’ problem arises,
that is, decisions of the current block are needed to extract
symbols of the same block. This problem is solved by the
iterative scheme presented later. Until then, let us assume that
all required decisions are available. Such an assumption is
valid during the training mode operation of the equalizer.

During the training mode, known symbol sequences are
utilized to form the error at the equalizer output, i.e.,

E(k) = S(k)−Y(k) (12)

where the Q×M symbol matrix S(k) is expressed by using
(1) as S(k) =

[
s(k) · · · s(k +Q− 1)

]T
. In decision

directed mode, matrix S(k) is replaced by the hard decisions
on Y(k), i.e., f [Y(k)]. In both cases, an appropriate delay
Δ should be inserted between the received samples and the
desired symbol, which is typically set to Δ = Kf − 1.

The update of the equalizer can now be performed as
[

W(k +Q)
B(k +Q)

]
=

[
W(k)
B(k)

]
+ μ

[
XH(k)
DH(k)

]
E(k) (13)

where (·)H stands for Hermitian transposition, and μ is the
step size of the LMS algorithm. A normalized version of the
LMS (NLMS) can be obtained by substituting the constant
μ by μ(k) = μ

p(k)+ε , where p(k) is a power estimate of the
equalizer input, and ε a small positive constant.

Equations (10), (12), and (13) constitute the time domain
block DFE algorithm. We now proceed with the derivation of
the algorithm in the frequency domain.

B. Block MIMO DFE in the Frequency Domain

The time domain block LMS algorithm presented in the pre-
vious subsection suffers from two problems: 1) the correlation
and convolution quantities in (10), (13) are of high complexity,
and 2) the block implementation limits the allowable range of
the step size and consequently reduces the convergence rate
of the algorithm [9], [8]. A frequency domain implementation
can alleviate these problems.

To proceed with the derivation of the algorithm in the
frequency domain, we de ne S = 2max{Kf ,Kb, Q}, and
F as the S×S FFT matrix operator. To describe zero padding
and sample removal operations required by the overlap and
save method, we de ne the S × T constraint matrices

G1,T =
[

IT
0(S−T )×T

]
, G2,T =

[
0(S−T )×T

IT

]
. (14)

Moreover, to sum up outputs from different receive antennas
or streams, we de ne the S × SM matrix GM as

GM =
[

IS · · · IS
]
. (15)

Then, input data are transformed in the frequency domain.
At the n-th receive antenna, S samples are collected, FFT
transformed, and stored in the diagonal matrix

Xn(k) = diag

⎛
⎜⎝F

⎡
⎢⎣
xn(k +Q− S)

...
xn(k +Q− 1)

⎤
⎥⎦
⎞
⎟⎠ (16)

where diag(x) stands for a diagonal matrix having the ele-
ments of vector x on its diagonal. In a similar way, frequency
domain expressions for decision sequences can be stored in
diagonal matrices

Dm(k) = diag

⎛
⎜⎝F

⎡
⎢⎣
dm(k +Q− S − 1)

...
dm(k +Q− 2)

⎤
⎥⎦
⎞
⎟⎠ (17)
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for m = 1, . . . ,M . The frequency domain quantities of (16)-
(17) are accumulated in the diagonal matrix

L(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1(k) · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · XN (k) 0 · · · 0
0 · · · 0 D1(k) · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · DM (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

The feedforward lters can be transformed in the frequency
domain after zero padding, yielding the SN ×M matrix

W(k) =
(
IN ⊗ FG1,Kf

)
W(k), (19)

where ⊗ denotes the Kronecker matrix product. The feedback
part of the MIMO DFE is represented by the SM×M matrix

B(k) = (IM ⊗ FG1,Kb
)B(k). (20)

By using the de nitions of (18), (19), (20), and (15), the
convolutions of (10) are replaced by multiplications in the
frequency domain as

Y(k) = GN+ML(k)
[ W(k)
B(k)

]
. (21)

The output of the MIMO equalizer in the time domain can
be calculated after IFFT transforming (21), and keeping the
last Q elements for each stream, i.e.,

Y(k) = GT2,QF
HY(k) (22)

The time domain output is fed into the slicer, the correspond-
ing error signal is formed through (12), and subsequently
transformed in the frequency domain in the S ×M matrix

E(k) = FG2,QE(k). (23)

The correction term needed to update the MIMO DFE is
given by LH(k)GTN+ME(k). To have an exact correspondence
between the time and frequency domain implementations of
the algorithm, each frequency domain lter should be premul-
tiplied by the constraint matrix FG1,KGT1,KFH , where K is
the lter length. The application of this constraint over each
lter is described by the block diagonal matrix

C=
[
IN⊗FG1,Kf

GT1,Kf
FH 0

0 IM⊗FG1,Kb
GT1,Kb

FH

]
(24)

which premultiplies the correction term de ned above.
Up to this point, a new mathematically equivalent imple-

mentation of the block adaptive MIMO DFE of subsection III-
A has been derived, while a complexity reduction advantage
has been gained through FFT operations. To improve conver-
gence rate as well, one can exploit the approximate decoupling
of the frequency domain lters [8]. It can be proved1 that the
autocorrelation matrix of the problem has a structure of near
to diagonal blocks, and can be approximated as

R̂(k) = λR̂(k −Q) (25)

+ (1− λ)Q
S

⎡
⎢⎣
XH1 (k)X1(k) · · · XH1 (k)DM (k)

...
. . .

...
DHM (k)X1(k) · · · DHM (k)DM (k)

⎤
⎥⎦

1The proof is omitted here due to space limitations.

TABLE I

SKETCH OF THE PROPOSED ALGORITHM

1) Transform equalizer inputs in the frequency domain, (16)-(18).
2) Calculate equalizer output in the frequency domain (21).
3) Transform output in the time domain (22).
4) Calculate error in the time domain (12).
5) Transform error in the frequency domain (23).
6) Update the autocorrelation matrix from (25), and compute its

inverse.
7) Update frequency domain equalizers (26).

where 0 < λ � 1 is an exponential forgetting factor. Matrix
R̂(k) consists of (N +M)2 diagonal blocks of dimension S.
The inverse of R̂(k), P(k), has the same structure as R̂(k),
and hence, inversion can be performed by simply inverting S
smaller matrices of dimension (N +M) in O

(
S(N +M)3

)
operations. Alternatively, P(k) can be calculated even more
ef ciently, by applying the matrix inversion lemma [9].

By incorporating the constraint (24), as well as the matrix
step size P(k), we end up with the update equation[W(k+Q)
B(k+Q)

]
=

[W(k)
B(k)

]
+ μCP(k)LH(k)GTN+ME(k). (26)

The main steps of the proposed algorithm are summarized
in Table I. The unknown decisions for the current block
appearing in step 1 (Eq.(17)) are obtained through the iterative
scheme presented next.

C. Iterative Scheme

To solve the ‘causality’ problem in (10), the iterative method
of [8] is properly modi ed and generalized to the MIMO case.
At each block step, the ltering equation of the MIMO-DFE
is iterated I times, while keeping xed the DFE lters. At the
end of the i-th iteration new hard estimates are extracted for
the current symbols, denoted by dim(p), p = k, . . . , k +Q−
1, m = 1, . . . ,M .

Let us rst separate the decisions of the previous and the
current block. Thus, the decision vector appearing in the right-
hand side of (17) at the end of the i-th iteration can be divided
into two parts:

Dim(k) = Dpm(k) +Dc,im (k) (27)

where matrix Dpm(k) is the frequency domain representation
of previous block symbols, i.e.,

Dpm(k) = diag

⎛
⎜⎝FG1,S−Q+1

⎡
⎢⎣
dm(k+Q−S−1)

...
dm(k − 1)

⎤
⎥⎦
⎞
⎟⎠ , (28)

and matrix Dc,im (k) is the frequency domain representation of
the current decisions, i.e.,

Dc,im (k) = diag

⎛
⎜⎝FG2,Q−1

⎡
⎢⎣

dim(k)
...

dim(k +Q− 2)

⎤
⎥⎦
⎞
⎟⎠ . (29)

To get the nal estimate of the current block, the equalizer
iterates through Steps 1-3 of the algorithm in Table I. However,
at the i-th iteration the decisions made at the (i−1)-th iteration
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Fig. 1. Convergence of the equalizers for a 2×2 system operating constantly
in training mode over a static channel at SNR=16dB.

are used, and thus matrices Di−1m (k) substitute Dm(k) in (17).
Each iteration ends by making hard decisions for the desired
symbols based on the soft equalizer output of this iteration.

During the rst iteration, unknown decisions of the current
block are initialized to zeroes. Furthermore, by using the
rationale of [8], it can be proved that the number of iterations
required for the method to converge to the decisions provided
by the MMSE solution is Q. After the iterative procedure has
been completed, the remaining steps of Table I are executed.

Finally, we consider the computational complexity of the
proposed algorithm in terms of complex multiplications per
symbol period. To simplify the analysis, we assume Kf =
Kb = Q, and M = N . During the training mode, the
complexity of the proposed equalizer (FD-MIMO-DFE) is
CTFD = (8M2+10M) log2Q+16M3+69M2. During the de-
cision directed mode and assuming I iterations, its complexity
increases to CDDFD = CTFD+(4M log2Q+4M2+4M)I . Since
M is typically much smaller than Q, the proposed algorithm is
O(Q log2Q). The symbol-by-symbol NLMS implementation
of the algorithm is O(Q), while the RLS equalizer of [6] is
O(Q2). Notice that the above complexity of FD-MIMO-DFE
appears only when I � Q, but usually fewer iterations are
adequate. Hence, the proposed algorithm offers a good trade
off in terms of complexity and convergence, as will be shown
in the simulations.

IV. PERFORMANCE EVALUATION & CONCLUSION

The proposed equalizer was evaluated through computer
simulations. We considered a 2 × 2 system transmitting un-
coded QPSK symbols of Ts=0.2μsec over a wireless channel
simulated according to the SUI-5 channel model [10]. The
proposed equalizer (FD-MIMO-DFE) was compared with its
symbol-by-symbol NLMS counterpart (TD-MIMO-DFE), as
well as with the RLS equalizer (RLS-MIMO-DFE) of [6],
whereas Kf=Kb=Q=64 was selected for all the equalizers.

To study the convergence of the equalizers, the channel was
kept static for a period of 32768Ts, while the system was
operating constantly in training mode at SNR=16dB. As can
be seen by the MSE plots of Fig. 1, RLS-MIMO-DFE has
the fastest convergence rate, while FD-MIMO-DFE curve lies
between RLS and NLMS curves. The tracking performance
together with the error propagation effects were studied by
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Fig. 2. Convergence and tracking performance of equalizers for a 2 × 2
system trained for 4096Ts over a time varying channel at SNR=25dB.

simulating the system over a time-varying channel, whereas
the training period was restricted to 8192Ts and SNR=25dB.
A normalized Doppler frequency of fDTs = 1.8 · 10−6 was
simulated by using the Jakes method. As illustrated in Fig. 2,
all the algorithms managed to track channel variation. The
differences in the achieved steady-state errors are due to the
different convergence and tracking properties and the related
error propagation effects.

To conclude, in this paper we developed a block adaptive
frequency domain MIMO DFE. To combat the causality prob-
lem inherent in the block DFE formulation, we generalized the
iterative scheme of [8], while a more accurate approximation
of the inverse autocorrelation matrix of the problem was em-
ployed. The resultant equalizer exhibits favorable convergence
properties at reasonable computational complexity, making it
a feasible solution for wideband MIMO systems.
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