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Abstract—Recent advances in metering technology, deregu-
lation of the energy market, rapid penetration of renewables,
and the smart grid vision for situational awareness, all call
for a system-wide power system state estimation (PSSE). On
the other hand, complexity of an interconnected power grid,
privacy policies of local authorities, and vulnerability concerns
preclude a centralized estimator. In this context, several possible
manifestations of PSSE are treated in the present paper under
a unified and systematic framework. Building on the alternating
direction method of multipliers, a novel decentralized PSSE
approach is developed. The obtained algorithm waives local ob-
servability concerns, leverages existing software, while requiring
local system operators exchange minimal information only across
tie lines. Numerical tests on two commonly used benchmarks,
namely IEEE 14- and 118-bus power grids, show that the desired
statistical accuracy is attained within 5-10 inter-area exchanges.

Index Terms—Alternating direction method of multipliers;
phasor measurement units; multi-area state estimation.

I. INTRODUCTION

Power system state estimation (PSSE) has been traditionally

performed at regional control centers with limited cross-

regional interaction. Due to the recent deregulation of the

electric energy market, large amounts of power are transfered

over high-rate, long-distance lines spanning several control

areas [6]. These so-called tie lines, originally constructed

for emergency situations, are now fully operational and must

be accurately monitored. Renewable sources further intensify

inter-area power transfers, while they necessitate more fre-

quent state acquisition. The latter can be now supported by

the advanced metering infrastructure currently being installed,

which includes phasor measurement units (PMU) [6].

Since any control area can be strongly affected by events

and decisions elsewhere, independent system operators (ISO)

can no longer operate in a truly independent fashion. Rather

PSSE should be performed at an interconnection level. An

interconnection typically consists of several ISOs and may

include some thousands of buses, while 2-3 measurements per

state are typically needed [6]. Requiring also real-time process-

ing along with resilience to malicious data attacks on mea-

surements make centralized state estimation computationally

intractable. Further, a centralized approach is vulnerable and

violates policy and privacy considerations. It is further worth

mentioning that power grid information processing should
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be decentralized at several levels [6]: PMU measurements

can be processed by phasor data concentrators (PDC) [10];

conventional measurements and PDC results can be aggregated

by the ISO; and finally, ISO estimates can be merged at the

interconnection level. For all the above reasons, distributed

PSSE becomes an essential component of upcoming smart

grids.

Distributed solutions were pursued since the statistical for-

mulation of PSSE [11]. In [11, Part III], it was realized

that for a chain of interconnected areas, Kalman filter-type

updates readily apply. For an arbitrary area dependency graph

though, a two-level approach is required [11]: States are

locally estimated using solely the measurements related to

them. Local estimates of shared variables, their associated

covariance matrices, and tie line measurements are then

forwarded and processed by a global coordinator. Several

approximate variations of this protocol can be found in [14],

[6], [7], but they assume local observability, i.e., the local state

estimate derived after excluding boundary bus measurements

is uniquely identifiable. Such an assumption may not hold

due to bad data removal and/or because state estimation is

now accomplished at lower grid hierarchies (e.g., substations

or PDC). Additionally, the need for a coordinator hinders

system’s reliability, while such a protocol may be infeasible

due to computational, communication, or policy limitations.

Decentralized solutions have been proposed too. Block

Jacobi methods are developed in [3]. In [5], a decentralized

algorithm is derived upon approximating the optimality condi-

tions involved. But these methods require local observability

too, while convergence is not always guaranteed. The auxiliary

problem principle is employed in [4], where several parameters

must be tuned. In [13] local observability is waived and each

area is envisioned to maintain a copy of the interconnection-

wide state: a first-order algorithm is proposed, but its linear

convergence scales unfavorably with the interconnection size.

The PSSE problem, its unique requirements and challenges

are presented in Section II. In Section III, a new distributed

PSSE methodology is developed. Based on the alternating

direction method of multipliers (AD-MoM) [2], a systematic

way of cooperation between local control centers is provided

having unique features: several practical PSSE formulations

can be handled under the AD-MoM framework; the informa-

tion exchange between neighboring areas is minimal; conver-

gence to the centralized solution is guaranteed regardless of

local observability; the algorithm can be executed by solvers

already installed and currently in use by control centers. The



numerical tests presented in Sec. IV illustrate that the method

can essentially converge within 5-10 iterations. The paper is

concluded in Sec. V. Regarding notation, lower- (upper-) case

boldface letters denote column vectors (matrices); calligraphic

letters stand for sets; and (·)T denotes transposition.

II. PROBLEM FORMULATION

Let an interconnected power system consist of K control

areas. A control area is defined here as a subset of (geograph-

ically adjacent) buses supervised by a control center. The latter

is able to (i) collect the electrical measurements recorded at

area buses; (ii) reliably communicate with neighboring control

centers; and (iii) accomplish specific computational tasks, such

as solving a (linearly constrained) least-squares (LS) problem.

At the other extreme, a control area here is not restricted to the

conventional ISO region, but it can model other power system

entities residing at lower grid hierarchies, e.g., a substation or

a PDC [10]. A control area may degenerate even to a single

bus under a micro-grid setup.

Suppose that the Mk measurements aggregated at the k-th

area are stacked in z̃k ∈ R
Mk , obeying

z̃k = hk(xk) + w̃k (1)

where xk ∈ R
Nk contains the subset of the interconnected

power system states involved in the measurements in z̃k; hk

is a vector of Mk functions; and w̃k is an error term capturing

measurement error and modeling inaccuracies. Error vectors

{w̃k}Kk=1 are assumed zero mean, having known covariance

matrix Σk, and independent across areas.

Functions {hk(xk)}
K
k=1 depend on the system’s admittance

matrix and are in general nonlinear – except for some PMU

data cases [10]. Performing state estimation with nonlinear

hk’s entails solving non-convex optimization problems. Typ-

ically, such models are linearized iteratively via the Gauss-

Newton method, or by resorting to the so called DC approx-

imation [9], [1]. Hence, the focus here is on the special, yet

computationally ubiquitous linear model where (1) becomes

z̃k = H̃kxk + w̃k (2)

with H̃k being a known real Mk×Nk matrix. Note that when

the {hk} are originally nonlinear, (2) is the model assumed

at a Gauss-Newton iteration. To simplify the presentation,

measurements are premultiplied by the inverse square root of

the noise covariance matrix, Σ
−1/2
k , to yield

zk = Hkxk +wk (3)

where zk := Σ
−1/2
k z̃k, Hk := Σ

−1/2
k H̃k, and the noise term

wk := Σ
−1/2
k w̃k now is zero-mean but with identity covari-

ance matrix. This prewhitening step is easily implemented and

does not destroy the sparsity of Hk due to the usually (block)

diagonal structure of Σk.

PSSE could be performed locally at each area. Specifically,

area k could aim solving

min
xk∈Xk

fk(xk; zk,Hk) (4)

Fig. 1. The IEEE 14-bus system divided into four areas [12], [7]. The states
belonging to xk’s are shown in dotted lassos. PMU bus voltage (line current)
measurements shown as green circles (blue squares).

where fk(·) is a convex function of xk for the model in (3);

and the convex set Xk captures possible prior information,

such as zero-injection buses, short circuits, or operational

limits [9], [1]. Typically, fk is chosen as 1
2‖zk−Hkxk‖22. For

this choice, the minimizer of (4) is the least-squares estimate,

that is the maximum-likelihood estimate (MLE) of xk if wk is

Gaussian. To derive MLEs or facilitate bad data analysis, other

forms of fk could be envisioned. For notational simplicity, the

dependence of fk on zk and Hk is henceforth dropped.

One of the characteristics of state estimation in power

interconnections is that the local state vectors {xk}Kk=1 overlap

partially. To solidify that, consider the toy interconnection

depicted in Fig. 1. Supposing that both PMU data (bus voltage

and line current measurements) and interconnection states (bus

voltages) are expressed in rectangular coordinates, the linear

model of (3) is exact. Area 2 supervises buses {3, 4, 7, 8}. But,

since it collects the electric current readings on lines (7, 9) and

(4, 5), its state vector x2 contains not only {3, 4, 7, 8}, but also

the voltages on buses {5, 9}. Hence, area 2 shares the states of

bus 5 (9) with area 1 (4). Similarly, x3 and x4 overlap on buses

11 and 14. Notationally, let the N × 1 vector x collect all the

states. For every two areas, say k and l, let Skl denote the set

of their shared states. Let also xk[l] (xl[k]) be the subvector

of xk (xl) consisting of their |Skl| overlapping variables.

Solving the K problems of the form (4) in isolation is

apparently suboptimal, let alone that control areas may be

locally unobservable. Moreover, disagreement on boundary

bus estimates over tie lines is another important limitation

of solving (4) independently on a per-area basis. On the

other hand, upon defining X := {x : xk ∈ Xk ∀k}, jointly



optimizing

min
x∈X

K
∑

k=1

fk(x) (5)

waives all these problems and can considerably improve

estimation accuracy. Yet this comes at the expense of computa-

tional and communication burden, increased vulnerability, and

disclosure of the internal system structure. Targeting the sweet

spot between these two extremes, a decentralized method is

proposed next.

III. DECENTRALIZED PSSE APPROACH

Tying the local tasks of (4) into a single optimization

problem equivalent to (5) can be accomplished as

min
{xk∈Xk}

K
∑

k=1

fk(xk) (6)

s.t. xk[l] = xl[k], for all l ∈ Nk, k = 1, . . . ,K

where Nk is the set of areas sharing states with area k.

The constraints of (6) force neighboring areas to consent

on their shared variables, and thus, problems (6) and (5) are

equivalent. But, the same constraints couple the optimization

across areas. To enable a truly decentralized solution, an

auxiliary variable denoted by xkl ∈ R
|Skl| is introduced per

pair of interacting areas k, l. To keep the notation uncluttered,

symbols xkl and xlk are used interchangeably for the same

variable. Then, (6) is alternatively expressed as

min
{xk∈Xk},{xkl}

K
∑

k=1

fk(xk) (7)

s.t. xk[l] = xkl, for all l ∈ Nk, k = 1, . . . ,K.

The novelty here is solving (7) using AD-MoM, a method

with well-appreciated merits that has been successfully applied

to several large-scale optimization problems; see [2] for a

review. In AD-MoM, Lagrange multipliers vk,l ∈ R
|Skl| are

introduced for each constraint of (7). Observe that vk,l and

vl,k correspond to the distinct constraints xk[l] = xkl and

xl[k] = xkl, respectively. AD-MoM then exploits the method

of multipliers concatenated with an iteration of the Gauss-

Seidel algorithm. Specifically for (7), one first defines the

augmented Lagrangian function

L ({xk}, {xkl}; {vk,l}) := (8)

K
∑

k=1

[

fk(xk) +
∑

l∈Nk

(

vT
k,l(xk[l]− xkl) +

c

2
‖xk[l]−xkl‖

2
2

)

]

where c > 0 is a predefined constant. Letting r denote the

iteration index, AD-MoM cycles through three steps:

{xr+1
k } := arg min

{xk∈Xk}
L
(

{xk}, {x
r
kl}; {v

r
k,l}
)

(9a)

{xr+1
kl } := arg min

{xkl}
L
(

{xr+1
k }, {xkl}; {v

r
k,l}
)

(9b)

vr+1
k,l := vr

k,l + c
(

xr+1
k [l]− xr+1

kl

)

for all k, l. (9c)

During the first step, xk are updated as the minimizers of the

augmented Lagrangian function keeping xkl and vk,l fixed to

their previous iteration values; xkl and vk,l can be initialized

to zero. Similarly, xkl are updated in (9b). Finally, (9c) is a

simple gradient ascent of L
(

{xr+1
k }, {xr+1

kl }; {vk,l}
)

using

the step size c.
Inheriting AD-MoM features, the minimization in (9a)

decouples over control areas. Moreover, by exploiting the

problem structure, the iterations (9) can be greatly simplified

as presented next and detailed in the Appendix.

Proposition 1. The steps in (9) yield the same xr
k iterates as

the following steps

xr+1
k := arg min

xk∈Xk

fk(xk)+
c

2

Nk
∑

i=1
N i

k
6=∅

|N i
k| (xk(i)−prk(i))

2
, ∀k

(10a)

sr+1
k (i) :=

1

|N i
k|

∑

l∈N i

k

xr+1
l [i], ∀i with N i

k 6= ∅ (10b)

pr+1
k (i) := prk(i) + sr+1

k (i)−
xr
k(i) + srk(i)

2
, ∀i,N i

k 6= ∅

(10c)

where xk(i) is the i-th entry of xk; the set N i
k consists of

the areas sharing the variable xk(i) with area k; and xl[i]
denotes the entry of xl corresponding to xk(i) defined for all

l ∈ N i
k. Regarding initialization, state variables xk are set to

arbitrary values x0
k; p0k(i) are initialized to (x0

k(i)+s0k(i))/2;

and s0k(i) as in (10c).

In lieu of a prior estimate, state variables can be initialized to

the flat profile which assumes unitary real and zero imaginary

parts for all bus voltages.

The minimization in (10a) and the simple update of (10c)

are performed at the local centers. The averaging step of

(10b) is accomplished either by a coordinator, or locally

too. Notice though that either in the decentralized, or in

the coordinated mode, the information revealed by area k is

minimal: No measurements or regression matrices, but only the

boundary bus states need to be exchanged, and only between

the interested neighboring areas.

For notational convenience, define per area k a diagonal

matrix Dk with (i, i)-th entry |N i
k|. Recall that by definition,

for strictly local states |N i
k| is zero. Also, define the Nk-

dimensional vector pr
k with i-th entry the prk(i) in (10c) when

|N i
k| > 0, and 0 otherwise. Hence, the second term in the cost

of (10a) is expressed as c
2

∥

∥

∥D
1

2

k (xk − pr
k)
∥

∥

∥

2

2
. For the typical

case of unconstrained LS estimator (LSE), the minimizer of

(10a) is clearly given by

x̂r+1
k :=

(

HT
kHk + cDk

)−1 (
HT

k zk + cDkp
r
k

)

(11)

which is an easy yet systematic modification of the local LSE.

It can be shown that under mild conditions, the iterates of (10)

converge to the optimal value of (7) [2], even when areas are

not locally observable. As empirically observed, the algorithm

of (10) can be terminated after a few iterations; cf. Sec. IV.



Fig. 2. The IEEE 118-bus power partitioned into three areas [12], [8]; only
tie lines are shown here.

TABLE I
EMPIRICAL PER STATE STANDARD DEVIATION

Estimator IEEE 14-bus grid IEEE 118-bus grid

Internal LSE 3.4 · 10
−3

4.1 · 10
−4

Local LSE 3.1 · 10
−3

4.0 · 10
−4

Global LSE 1.0 · 10
−3

2.2 · 10
−4

IV. SIMULATED TESTS

In this section, the developed decentralized state estimator is

numerically tested. Two power network benchmarks, namely

the IEEE 14- and 118-bus systems are considered [12], while

their admittance matrices and the underlying power system

states are obtained using the MATPOWER software [15].

For both systems, the state vector contains the real and the

imaginary parts of all bus voltages. Measurements consist of

PMU recordings on bus voltages and line currents, expressed

in rectangular coordinates too. Measurement noise is simulated

as independent zero Gaussian with standard deviation per real

component σV = 0.01 and σI = 0.02, for voltages and

currents, respectively [15].

For the IEEE 14-bus network, PMU sites and types are

shown in Fig. 1: 6 bus voltage- and 17 line current-meters yield

a total of 46 measurements which translates to a redundancy

ratio of 1.6 measurements per state [9]. For the IEEE 118-

bus network, PMU sites are selected uniformly at random

(including tie line current measurements): 77 bus voltage- and

205 line current-meters are assumed, yielding a redundancy

ratio of 2.4. Regarding control areas, the IEEE 14-bus grid is

partitioned into the 4 areas depicted in Fig. 1, while the IEEE

118-bus interconnection is split into 3 control areas as shown

in Fig. 2 [8].

A reasonable question is whether interconnection-wide

PSSE offers any improvement over local PSSE. To this end,

three estimators are numerically compared: First, an estimator

that uses only the measurements related to the states of the
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Fig. 3. Per area error curves e
r
k,c

’s (bottom) and e
r
k,o

’s (top) for the

decentralized LSE of the IEEE 14-bus system of Fig. 1.

area, henceforth called “internal.” Second, a “local” estimator

which extends its state to boundary buses that can be reached

via tie line measurements. Lastly, the interconnection-wide

or “global” estimator. The empirical standard deviation per

state is computed over 100 Monte Carlo runs. Table I lists

the acquired standard deviations for the two power grids.

The IEEE 118-bus grid attains better estimation accuracy due

to its increased redundancy ratio. More importantly, the im-

provement of the local over the internal estimator is marginal,

whereas the accuracy of the global estimator roughly doubles.

This observation speaks for the importance of interconnection-

wide PSSE even when local observability is guaranteed.

Having recognized the need for interconnection-wide PSSE,

the decentralized LSE is evaluated next. State variables are

initialized to the flat profile. Even though the iterations of

(10) are guaranteed to converge to the centralized solution of

(5) for any c > 0, the value of c affects the convergence rate.

After scaling the problem data to obey the model in (3), c is

empirically set to 104.

Two performance metrics are adopted: (i) the per area ℓ2-

norm distance to the centralized solution of (5), denoted by

erk,c := ‖x
(c)
k − xr

k‖2; and (ii) the per area ℓ2-norm distance

to the true underlying state, defined as erk,o := ‖xk − xr
k‖2.

Fig. 3 depicts the erk,c and erk,o curves obtained for the IEEE

14-bus network. As indicated by the curves, the decentralized

minimizer approaches the centralized one to an accuracy of

10−3 in 10 iterations. Interestingly, the accuracy dictated by

the measurements has been reached within 10-15 iterations.

Another important issue is the consent of neighboring areas

on the values of shared estimates. Fig. 4 shows the differences

on the real part of shared bus voltages across areas. The curves

indicate that only 5-10 iterations suffice for adjacent areas to

consent.

To evaluate the new algorithm in scenarios where local

observability does not hold, the electric current measurement

on line (6, 11) is removed from the IEEE 14-bus measurement

set (cf. Fig. 1). Since the only measurement directly related
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to bus 11 is the current measurement on line (10, 11) and that

is collected by control area 4, area 3 is locally unobservable.

The error curves obtained and plotted in Fig. 5 verify that the

new method does not require local observability.

Switching to the IEEE 118-bus benchmark, similar results

are observed. As evidenced by the erk,c and erk,o depicted in

Fig. 6, the decentralized solution attains the desired statistical

accuracy within only 5-10 iterations.

V. CONCLUSIONS

Decentralized PSSE has been treated here in a unified

and systematic manner. The proposed algorithm waives local

observability requirements and maintains backward compati-

bility. Within few iterations, local control centers can acquire

highly accurate estimates for the parts of the state which are of

interest to them, without violating privacy policies. Building

on this approach, several exciting research issues emerge, such

as extensions to robust and generalized PSSE, which are of

extreme practical interest for realizing the forthcoming smart

grid vision.
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APPENDIX

A useful lemma is shown first.

Lemma 1. For every pair of adjacent areas k and l, the

Lagrange multipliers updated by (9c) satisfy vr
k,l + vr

l,k = 0

per iteration r > 0.

Proof: Note that step (9b) decouples over the xkl’s as

min
xkl

− xT
kl

(

vr
k,l + vr

l,k

)

+
c

2

∥

∥xkl−xr+1
k [l]

∥

∥

2

2

+
c

2

∥

∥xkl−xr+1
l [k]

∥

∥

2

2
, for all k, l,

whose minimizer can be easily shown to be

xr+1
kl :=

(

xr+1
k [l] + xr+1

l [k]

2

)

+

(

vr
k,l + vr

l,k

2c

)

. (12)

Next, consider the updates of vk,l and vl,k according to

step (9c). Adding the two updates by parts and solving for the

common term xr+1
kl , yields

xr+1
kl =

(

vr
k,l + vr

l,k

2c

)

−

(

vr+1
k,l + vr+1

l,k

2c

)

+

(

xr+1
k [l] + xr+1

l [k]

2

)

. (13)

By equating the right-hand sides of (12) and (13), the claim

of the lemma follows readily.

Proof of Proposition 1: The optimization in (9a) is

separable across areas. Upon completing the squares, the

optimization task for area k during step (9a) becomes

min
xk

fk(xk) +
c

2

∑

l∈Nk

∥

∥

∥

∥

xk[l]−

(

xr
kl −

vr
k,l

c

)∥

∥

∥

∥

2

2

. (14)

Apparently, the ℓ2-norms in (14) decouple over the entries

of the vectors involved. However, a single entry of xk, say

xk(i), may be shared not only between areas k and l, but

rather among area k and all the areas in N i
k. If xkl[i] (vk,l[i])



denotes the entry of xkl (vk,l) corresponding to xk(i), the

optimization in (14) can be expressed as

min
xk

fk(xk) +
c

2

∑

i∈Nk

N i

k
6=∅

|N i
k|
(

xk(i)− pr+1
k (i)

)2
(15)

where for all k, and i = 1, . . . , Nk with N i
k 6= ∅,

pr+1
k (i) :=

1

|N i
k|

∑

l∈N i

k

(

xr
kl[i]−

vrk,l[i]

c

)

. (16)

By Lemma 1, step (9b) simplifies to

xr+1
kl =

1

2

(

xr+1
k [l] + xr+1

l [k]
)

. (17)

In other words, the auxiliary variable xkl is the average of

the shared state variables across areas k and l per iteration.

Based on (17), step (9b) can be dropped after eliminating

the auxiliary variables xkl from the updates of (16) and (9c).

Hence, one arrives at the iterates

xr+1
k := argmin

xk

fk(xk) +
c

2

∑

i∈Nk

N i

k
6=∅

|N i
k| (xk(i)− prk(i))

2

(18a)

vr+1
k,l := vr

k,l + c

(

xr+1
k [l]− xr+1

l [k]

2

)

(18b)

pr+1
k (i) :=

1

2



xr+1
k (i) +

1

|N i
k|

∑

l∈N i

k

xr+1
l [i]





−
1

|N i
k|

∑

l∈N i

k

vr+1
k,l [i]

c
. (18c)

To further simplify the iterations, define the average of the

shared variable xk(i)’s copies over N i
k as

srk(i) :=
1

|N i
k|

∑

l∈N i

k

xr
l [i] (19)

as well as the average of the weighted Lagrange multipliers

ur
k(i) :=

∑

lN i

k

vrk,l[i]/(c|N
i
k|). Then, (18c) can be written as

pr+1
k (i) :=

1

2

(

xr+1
k (i) + sr+1

k (i)
)

− ur+1
k (i). (20)

With the vk,l’s initialized to zero, the uk(i)’s can be

recursively updated as

ur+1
k (i) := ur

k(i) + (xr+1
k (i)− sr+1

k (i))/2.

Hence, update (20) can be alternatively performed as

pr+1
k (i) := prk(i) + sr+1

k (i)−
xr
k(i) + srk(i)

2
. (21)

Collecting (18a), the definition in (19), and the recursion of

(21), the algorithm of (10) is derived.
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[6] A. Gómez-Exposito, A. Abur, A. de la Villa Jaén, and C. Goḿez-Quiles,
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