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ABSTRACT
Power distribution system operators require knowledge of
power injections for accomplishing various grid dispatch
tasks. Monitoring, collecting, and processing smart meter
data across all grid nodes however may not be affordable
given the communication and storage resources. In this con-
text, the problem of inferring injections at all nodes by polling
smart meter data from a subset of them is considered here.
For non-synchronized grid data, including (re)active injec-
tions and nodal voltage magnitudes, intuitive topological and
numerical observability criteria are provided. For the case
of synchrophasor data where nodal voltage angles are addi-
tionally known, the improvements in identifiability are also
characterized. The analysis relies on the linearized power
flow model and extends the traditional concept of observabil-
ity in power transmission systems to radial distribution grids.
The derived criteria are numerically validated on the IEEE
123-bus benchmark feeder.

Index Terms— Smart meters, structural observability,
linear distribution power flow, synchrophasor data.

1. INTRODUCTION

With the advent of distributed renewable generation, electric
vehicles, and demand-response programs, network operators
are in dire need of monitoring tools to track the power in-
jections across all grid nodes to perform voltage regulation,
power loss minimization, or optimal dispatch. Nonetheless,
polling smart meter data on a network-wide basis is challeng-
ing due to limited bandwidth and computational resources.

The sheer size of residential distribution grids had made
it cost-prohibitive to achieve observability. Meter placement
schemes to improve distribution system state estimation have
been reported in [1], [2], [3]. A heuristic rule aiming at reduc-
ing the variance of voltage magnitude and angle estimates at
non-metered nodes is suggested in [2] and [3], respectively.
Pseudo-measurements have also been used in restoring ob-
servability in distribution grids [4], and improving state esti-
mation in medium-voltage networks [5]. The trade-off be-
tween state estimation accuracy and investment cost using
synchrophasor and smart meter data is explored in [6].
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For a given measurement set, the identifiability of power
transmission systems has been analyzed under the decoupled
power flow model [7], [8]. Nonetheless, due to the higher
resistance-to-reactance ratios, the latter model cannot be ap-
plied to distribution systems. The work in [9] investigates
necessary and sufficient conditions for observability of a re-
lated power flow problem coupling two system states under
the full AC model. This coupled problem exploits the vari-
ability at metered buses and the stationarity of conventional
loads, to solve the non-linear power flow equations jointly
over successive time instants. Different from the aforemen-
tioned setup, we are interested in system identifiability for a
single time instant, under the linearized power flow model
(LDF) introduced in [10], [11], [12].

Notation: Column vectors (matrices) are denoted using
lower- (upper-) case boldface letters; and sets by calligraphic
symbols; while |X | is the cardinality of set X . The operator
(·)> stands for transposition; dg(x) defines a diagonal matrix
having x on its main diagonal; and rk(·) is the matrix rank.
The notation xA means the subvector of x indexed by the set
A, while XA,B is the matrix obtained by sampling the rows
and columns of X indexed by subsets A and B.

2. GRID MODELING

A distribution grid having N + 1 buses can be represented
by the graph G = (N+,L) with nodes N+ := {0, . . . , N}
corresponding to grid buses, and edges L to distribution lines.
For every bus n ∈ N+, let ūn = v̄ne

jθn and in be the volt-
age and current phasors, and pn + jqn be the complex power
injected from bus n to the grid. The substation bus is indexed
by n = 0 with θ0 = 0, while the remaining buses comprise
set N . The impedance for line ` ∈ L is r` + jx`. The
grid topology is captured by the branch-bus incidence matrix
Ã ∈ {0,±1}L×(N+1) that can be partitioned into its first col-
umn a0 and the reduced incidence matrix A as Ã = [a0 A].

To allow for a compact representation, collect quantities
at all buses modulo the substation bus in the N -dimensional
vectors θ, i, and p+ jq. Introduce also the real-valued vector
v with entries vn := v̄n − v̄0 for n ∈ N , and the complex-
valued vector u with entries un := ūn − v̄0 again for n ∈
N . Upon ignoring shunt elements, it can be readily shown
that i = Yu, where Y := G − jB involves the reduced



conductance and susceptance matrices defined as

G := A> dg

({
r`

r2
` + x2

`

}
`∈L

)
A (1a)

B := A> dg

({
x`

r2
` + x2

`

}
`∈L

)
A. (1b)

Based on the first-order Taylor series expansion of the power
flow equations, voltages can be approximated as [11], [12]:

v ' Rp + Xq (2a)
θ ' Xp−Rq (2b)

where R := (G+BG−1B)−1 and X := (B+GB−1G)−1.
For radial grids where A is square and invertible [13], the in-
volved matrices simplify as R = (A> dg−1({r`})A)−1 and
X = (A> dg−1({x`})A)−1. The (m,n)-th entry of R, i.e.,
Rmn, equals the sum of resistances for all common lines on
the paths from buses n and m to the root bus. The same holds
for Xmn if reactances are used in lieu of resistances [14]. The
approximation in (2a) is known as the linear distribution flow
(LDF) model [10], and numerical tests report approximation
errors in voltage magnitudes less than 0.001 pu [15, 16].

2.1. Problem Statement

Conventionally, the voltage v̄0 at the substation bus is fixed
and the remaining buses are modeled as PQ buses for which
{(pn, qn)}n∈N are specified [10]. This approach though does
not apply when it comes to distributed resources and demand-
response programs. In modern grids, it is more likely that all
three quantities (pn, qn, vn) are accessible in a subsetM ⊂
N of nodes whose smart meters are polled; whereas, for the
remaining nodes comprising set M̄ := N \M, no informa-
tion is available. Even if all buses are equipped with smart
meters, not all meters can be polled due to bandwidth con-
straints. Our task is to discern whether for a given M it is
possible to recover injections in M̄. Upon column and row
permutations, the model in (2a) can be partitioned as:[

vM
vM̄

]
=

[
RM,M RM,M̄
RM̄,M RM̄,M̄

] [
pM
pM̄

]
+

[
XM,M XM,M̄
XM̄,M XM̄,M̄

] [
qM
qM̄

]
. (3)

Apparently, given smart meter data (vM,pM,qM), the un-
known injections (pM̄,qM̄) can be uniquely recovered from
the upper set of equations in (3) using the linear model:

vM −RM,MpM −XM,MqM = HM

[
pM̄
qM̄

]
(4)

if the involved matrix HM := [RM,M̄ XM,M̄] is full
column-rank. The rank of HM is studied next.

3. OBSERVABILITY ANALYSIS

Determining whether a distribution grid is observable given
a set of smart meters M can be performed using topologi-
cal or numerical methods. Some known results linking linear
algebra to graph theory precede our observability analysis.

3.1. Preliminaries

A graph G = (V, E) is bipartite if its vertex set V can be parti-
tioned into two mutually exclusive and collectively exhaustive
subsets V1 and V2 such that every edge e ∈ E connects a node
in V1 with a node in V2. Moreover, a matching Z ⊆ E is a
subset of edges in G so that each node in V appears in at most
one edge in Z . A matching is perfect if each node in V has
exactly one edge incident to it.

The analysis is based on the generic rank of a matrix,
defined as the maximum possible rank attained if the non-
zero entries of this matrix are allowed to take arbitrary val-
ues in R [17], [18]. An N × N matrix is termed generically
invertible if its generic rank is N . Let us associate matrix
E ∈ RN×N with a bipartite graph G having 2N nodes. Each
column of E is mapped to a column node, and each row of E
to a row node. An edge runs from the n-th column node to
the m-th row node only if Em,n 6= 0. Lemma 1 builds on G.

Lemma 1 ([17]). Matrix E is generically invertible if and
only if the bipartite graph G has a perfect matching.

The result extends to block-partitioned matrices [18]. Parti-
tion matrix E as

E =

[
A B
C D

]
(5)

where A ∈ RM×M , B ∈ RM×K , C ∈ RT×M , and D ∈
RT×K with T ≥ K. To characterize the generic rank of E,
the next result can be invoked [19, p. 25]:

Lemma 2 (Rank additivity). If A in (5) is invertible, then it
holds that rk(E) = rk(A) + rk(D−CA−1B).

The next holds for the rank of a matrix product [19].

Lemma 3 (Sylvester’s inequality). If F ∈ RM×K and T ∈
RK×P , it holds that rk(F) + rk(T) − K ≤ rk(FT) ≤
min{rk(F), rk(T)}.

It follows from Lemma 3 that if P ≤ K ≤M and (F,T)
are both full rank, then rk(FT) = P .

3.2. Topological and Numerical Observability

A necessary condition for the linear model in (4) to be iden-
tifiable is that matrix HM is tall implying that |M| ≥ 2|M̄|.
This section considers the case where |M| = 2|M̄|; if |M| >
2|M̄|, our analysis relies on the existence of an appropriate
subset Ms ⊆ M such that |Ms| = 2|M̄|. We first study
rk(RM,M̄) – with the same analysis carrying over to XM,M̄
– and subsequently rk(HM).



Proposition 1. Consider the graph T ′ derived from the tree
T = (N+,L) by removing the substation bus and its incident
edges. Without loss of generality, graph T ′ is assumed to be
a tree. Matrix RM,M̄ is generically full column-rank if and
only if there exists a perfect matching from M̄ toM on T ′.

Proof. Partition matrix L := R−1 conformably to (3) as

L =

[
LM,M LM,M̄
LM̄,M LM̄,M̄

]
. (6)

Matrices L and LM,M are principal minors of the grid graph
Laplacian, and are hence invertible [13]. Since rk(L) = N
and rk(LM,M) = M , Lemma 2 implies that the Schur com-
plement of L with respect to LM,M defined as

L̄M̄,M̄ := LM̄,M̄ − LM̄,ML−1
M,MLM,M̄ (7)

is of full rankN−M . Since LM,M and L̄M̄,M̄ are invertible,
the matrix inversion lemma for blocked matrices yields [19]

RM,M̄ = −L−1
M,MLM,M̄L̄−1

M̄,M̄.

Consequently, it stems from Lemma 3 that RM,M̄ is full-
rank if and only if LM,M̄ is full-rank. Observe that LM,M̄
has non-zero entries only if the nodes in M̄ are adjacent to the
nodes inM. The generic rank of LM,M̄ can then be charac-
terized by Lemma 1. In detail, matrix LM,M̄ and therefore
matrix RM,M̄ are generically invertible if and only if the cri-
terion in Prop. 1 is met.

To verify our analysis consider two leaf nodes in M̄ with
the same parent node in T ′. This scenario not only fails to
satisfy Prop. 1 for topological observability, but breaks down
numerically as well. To check numerical observability, re-
call that the entry Rmn equals the sum of resistances for all
common ancestors of buses n and m up to the substation.
Therefore, if any two nodes n, k ∈ M̄ have the same ances-
tors with respect to every node inM, then the n-th and k-th
columns of RM,M̄ are identical. Having characterized the
rank of RM,M̄, the attention is next focused on HM.

Proposition 2. Matrix HM is generically invertible if every
node in M̄ is connected to a unique node inM1 and a unique
node inM2 withM1 ∪M2 = M andM1 ∩M2 = ∅ on
graph T ′.

Proof. Partition M into two subsets M1 and M2 of equal
cardinality. Then, matrix HM can be expressed as

HM =

[
RM1,M̄ XM1,M̄
RM2,M̄ XM2,M̄

]
. (8)

If the top-left and bottom-right blocks of HM in (8) are full-
rank, then Lemma 1 asserts that HM is of full generic rank.
To characterize the full-rank condition for the top-left block
RM1,M̄, partition now matrix L as

L =

[
LM1,M̄ LM1,M

LM2∪M̄,M̄ LM2∪M̄,M

]
. (9)

Fig. 1: Operating scenarios for the IEEE 13-bus grid [20]:
Scenario A satisfies Prop. 1 and 2; Scenario B fails Prop. 2.

Unlike the partitioning in (6) where LM,M is invertible,
block LM1,M̄ is generically invertible if and only if there ex-
ists a perfect matching between M̄ andM1. Similarly, block
LM2∪M̄,M = LM2∪M̄,M1∪M2

is also invertible under the
same criterion, as the setM2 can be mapped to itself. It then
follows that L is invertible under Lemma 1. Because matri-
ces L and LM2∪M̄,M are invertible under Prop. 2, Lemma 2
implies that the Schur complement of L with respect to the
latter is invertible as well. Then using the matrix inversion
lemma for blocked matrices [19], it follows that the ensuing
matrix is generically of full rank:

RM1,M̄ = (LM1,M̄ − LM1,ML−1
M2∪M̄,MLM2∪M̄,M̄)−1.

To complete the proof, we now characterize the conditions
for the invertibility of XM2,M̄ in (8). Partition U := X−1 as

U =

[
UM,M̄ UM,M
UM̄,M̄ UM̄,M

]
=

[
UM2,M̄ UM2,M

UM1∪M̄,M̄ UM1∪M̄,M

]
.

Utilizing the same arguments used to identify the full rank
condition of RM1,M̄, matrix XM2,M̄ = (UM2,M̄ −
UM2,MU−1

M1∪M̄,MUM1∪M̄,M̄)−1 is generically invert-
ible if and only if there exists a perfect matching between M̄
and M2. Hence, matrices RM1,M̄ and XM2,M̄ are invert-
ible under Prop. 2 and it follows that HM is generically full
rank under Lemma 1.



The established criteria in Props. 1–2 rely on finding map-
pings between M̄ andM on the graph derived by maintain-
ing only the edges L running between M̄ andM on T ′. This
bipartite matching problem an be solved as a maximum net-
work flow problem using the Ford-Fulkerson algorithm [21].
The maxflow algorithm not only yields the size of the match-
ing, but also identifies the edges used in the matching. This
is helpful in identifying problematic nodes, i.e., nodes that do
not meet the matching criterion.

Suppose M̄ = {2, 9},M1 = {4, 5}, andM2 = {1, 12},
shown as Scenario A in Fig. 1. Since the paths (2− 4, 9− 5)
connect every node in M̄ to a unique node in M1 and the
paths (2 − 1, 9 − 12), connect every node in M̄ to a unique
node inM2, the linearized power flow problem is invertible.
Consider now the case where M̄ = {1, 2} shown as Scenario
B in Fig. 1. Although, Prop. 1 is met, there is no partitioning
ofM into two subsets such that Prop. 2 can be satisfied.

Even if Prop. 2 is met, matrix HM could be numeri-
cally rank-deficient. For example, if the line resistance-to-
reactance ratios r`/x` are constant for the common ancestors
of any node n ∈ M̄ with respect to every node in M, then
the n-th column of RM,M̄ will be a scalar multiple of the
n-th column of XM,M̄. While distribution grids have many
lines with similar ratios, it is unlikely that they are all con-
stant. Also note that if any two nodes n, k ∈ M̄ have the
same ancestors with respect to every node inM, the n-th and
k-th columns of HM are identical.

We now consider the observability analysis assuming
PMU data onM. While smart meters are only able to mea-
sure (pn, qn, vn), PMUs can additionally collect the voltage
angles θn. Interestingly, it will be shown that by adding
voltage angle measurements, the sufficient condition for in-
vertibility can be relaxed from Prop. 2 back to Prop. 1.

Consider the LDF model in (2) and the subsequent expan-
sion and partitioning

vM
vM̄
θM
θM̄

 =


RM,M RM,M̄
RM̄,M RM̄,M̄
XM,M XM,M̄
XM̄,M XM̄,M̄

[pMpM̄
]

+


XM,M XM,M̄
XM̄,M XM̄,M̄
−RM,M −RM,M̄
−RM̄,M −RM̄,M̄

[pMqM̄
]
. (10)

Define αM := vM −RM,MpM −XM,MqM and γM :=
θM−XM,MpM+RM,MqM. Given (vM,θM,pM,qM),
the unknown injections (pM̄,qM̄) can be uniquely recovered
from the first and third set of equations in (10)[

αM
γM

]
=
[
H̃M

] [pM̄
qM̄

]
(11)

if the involved matrix

H̃M =

[
RM,M̄ XM,M̄
XM,M̄ −RM,M̄

]
(12)
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Fig. 2: Histograms of condition numbers.

is full column rank. A necessary condition is that H̃M is
tall implying that |M| ≥ |M̄|. Since RM,M̄ is invertible
under Prop. 1, matrix H̃M is full column rank under the same
criterion. To see this, observe that RM,M̄ appears on the
block diagonal of H̃M, thus if RM,M̄ is invertible, then H̃M
is full rank under Lemma 1. Observe that Scenario B in Fig. 1
will not fail the topological or numerical observability test if
synchronized angle measurements are available.

4. NUMERICAL TESTS & CONCLUSIONS

The derived observability criteria were tested by checking the
condition number of HM and H̃M constructed by randomly
placing |M̄| = 4 buses on the IEEE 123-bus feeder [20].
The top part of Fig. 2 reports the condition numbers of HM
when Prop. 2 was met; the higher condition numbers were
attributed to the cases where the matrix is numerically rank-
deficient. The bottom part of Fig. 2 reports the condition num-
ber of H̃M. In conclusion, the topological criterion offers a
sufficient condition for HM and H̃M to be full column-rank,
while the numerical criterion provided some intuition behind
the circumstances under which these matrices may be rank-
deficient. The criteria also indicate that the ideal setup of
allowing 1/3 of smart meters non-polled (1/2 for PMUs) is
constrained by the grid topology. Finally, the graph matching
algorithms reveal which nodes are unobservable and can be
used for designing smart meter polling schemes.



5. REFERENCES

[1] M. E. Baran, J. Zhu, and A. W. Kelley, “Meter place-
ment for real-time monitoring of distribution feeders,”
IEEE Trans. Power Syst., vol. 11, no. 1, pp. 332–337,
Feb. 1996.

[2] A. Shafiu, N. Jenkins, and G. Strbac, “Measurement
location for state estimation of distribution networks
with generation,” in IEE Proceedings - Gen., Trans. and
Dist., vol. 152, no. 2, Mar. 2005, pp. 240–246.

[3] R. Singh, B. Pal, and R. Vinter, “Measurement place-
ment in distribution system state estimation,” in Proc.
IEEE Power & Energy Society General Meeting, Cal-
gary, AB, Jul. 2009.

[4] K. A. Clements, “The impact of pseudo-measurements
on state estimator accuracy,” in Proc. IEEE Power & En-
ergy Society General Meeting, Detroit, MI, Jul. 2011.

[5] J. Wu, Y. He, and N. Jenkins, “A robust state estimator
for medium voltage distribution networks,” IEEE Trans.
Power Syst., vol. 28, no. 2, pp. 1008–1016, May 2013.

[6] J. Liu, J. Tang, F. Ponci, A. Monti, C. Muscas, and P. A.
Pegoraro, “Trade-offs in PMU deployment for state es-
timation in active distribution grids,” IEEE Trans. Smart
Grid, vol. 3, no. 2, pp. 915–924, Jun. 2012.

[7] A. Monticelli, “Electric power system state estimation,”
Proc. IEEE, vol. 88, no. 2, pp. 262–282, Feb. 2000.

[8] Y. Guo, B. Zhang, W. Wu, Q. Guo, and H. Sun, “Solv-
ability and solutions for bus-type extended load flow,”
Intl. Journal of Electrical Power & Energy Systems,
vol. 51, pp. 89–97, 2013.

[9] S. Bhela, V. Kekatos, and S. Veeramachaneni, “Enhanc-
ing observability in distribution grids using smart meter
data,” IEEE Trans. Smart Grid, vol. PP, no. 99, pp. 1–1,
2017.

[10] M. Baran and F. Wu, “Network reconfiguration in dis-
tribution systems for loss reduction and load balancing,”
IEEE Trans. Power Del., vol. 4, no. 2, pp. 1401–1407,
Apr. 1989.

[11] D. Deka, S. Backhaus, and M. Chertkov, “Structure
learning and statistical estimation in distribution net-
works — Part I,” 2015, (submitted). [Online]. Available:
http://arxiv.org/abs/1501.04131

[12] S. Bolognani and F. Dorfler, “Fast power system anal-
ysis via implicit linearization of the power flow mani-
fold,” Allerton, IL, Sep. 2015, pp. 402–409.

[13] C. Godsil and G. Royle, Algebraic Graph Theory. New
York, NY: Springer, 2001.

[14] M. Farivar, L. Chen, and S. Low, “Equilibrium and dy-
namics of local voltage control in distribution systems,”
in Proc. IEEE Conf. on Decision and Control, Florence,
Italy, Dec. 2013, pp. 4329–4334.

[15] L. Gan, N. Li, U. Topcu, and S. Low, “On the exactness
of convex relaxation for optimal power flow in tree net-
works,” in Proc. IEEE Conf. on Decision and Control,
Maui, HI, Dec. 2012, pp. 465–471.

[16] V. Kekatos, L. Zhang, G. B. Giannakis, and R. Baldick,
“Voltage regulation algorithms for multiphase power
distribution grids,” IEEE Trans. Power Syst., vol. 31,
no. 5, pp. 3913–3923, Sep. 2016.

[17] W. T. Tutte, “The factorization of linear graphs,” Journal
of the London Mathematical Society, vol. 22, no. 2, pp.
107–111, 1947.

[18] J.-M. Dion, C. Commault, and J. van der Woude, “Sur-
vey generic properties and control of linear structured
systems: A survey,” Automatica, vol. 39, no. 7, pp.
1125–1144, Jul. 2003.

[19] R. A. Horn and C. R. Johnson, Topics in Matrix Analy-
sis. Cambridge University Press, 2013.

[20] W. H. Kersting, “Radial distribution test feeders,”
in Proc. Power Engineering Society Winter Meeting,
vol. 2, 2001, pp. 908–912.

[21] L. R. Ford and D. R. Fulkerson, “Maximal flow through
a network,” Canadian Journal of Mathematics, vol. 8,
pp. 399–404, 1956.


