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ABSTRACT

Energy storage systems are becoming a key component in
smart grids with increasing renewable penetration. Storage
technologies feature diverse capacity, charging, and response
specifications. Investment and degradation costs may require
charging batteries at multiple timescales, potentially match-
ing the control periods at which grids are dispatched. To this
end, a microgrid equipped with slow- and fast-responding
batteries is considered here. Energy management decisions
are taken at two stages. Slow-responding batteries are dis-
patched at an hourly resolution with decisions remaining in-
variant over multiple fast control slots. Building on Lyapunov
optimization, slow- and fast-responding batteries are charged
based on real-time and data-dependent with quantifiable sub-
optimality bounds. Numerical tests using real data demon-
strate the advantage of operating heterogeneous batteries.

Index Terms— Lyapunov optimization, stochastic ap-
proximation.

1. INTRODUCTION

With lowering costs, electric energy storage systems (ESS)
constitute an efficient means for energy arbitrage, balance
and reserve, frequency or voltage control, and peak shav-
ing [1]. Built on diverse technologies, ESS exhibit hetero-
geneous characteristics in terms of capacities (1–100 kWh),
response times (milliseconds to seconds), and (de)charging
rates ranging from seconds to hours [2]; hence, complement-
ing well power system tasks at various timescales.

Scheduling ESS is challenging due to decision coupling
across time and the uncertainty involved in generation and
costs. Storage scheduling solutions can be broadly classi-
fied into three groups. Approximate dynamic programming
solvers typically incur high computational complexity and re-
quire the joint probability distribution function (pdf) of the
related random processes to be known in advance; see e.g.,
[3], [4]. The second group comprises model predictive con-
trol (MPC)-schemes, where battery charging is tackled in a
deterministic or stochastic fashion over a finite horizon that is
progressively shifted as time advances [5], [6]; yet there are
no performance guarantees. The third group involves real-
time solutions stemming from Lyapunov optimization with
relatively mild assumptions. Leveraging tools from stochas-

tic networking [7], methods in this group relax time-coupling
constraints and apply a modified greedy policy attaining fea-
sible solutions with bounded suboptimality. In the smart grid
context, the Lyapunov technique was first applied to harvest
price differentials in [8], and to integrate energy storage in
data centers [9]. A distributed implementation of online Lya-
punov policies is derived in [10] as the coordination proto-
col between an energy aggregator and multiple storage de-
vices. Coupling storage with load shedding, [11] puts forth
a stochastic approximation view of Lyapunov minimization.
The Lyapunov technique is modified in [12] to account for
battery leakage and charging inefficiencies.

In all previous schemes, battery decisions are synchro-
nized with the control period of the energy system. However,
storage technologies operating at slower timescales may have
to be employed to lower investment costs. Slower control
rules could also be enforced by batteries having high degra-
dation costs [2]. Hence, coordinating batteries at multiple
timescales is practically relevant. A double-timescale Lya-
punov energy management scheme for data centers is devised
in [13]. Reference [14] combines non-ideal batteries with the
latter framework for online management of communication
stations with renewables and storage. Building on the lat-
ter, this work develops a real-time control scheme for coor-
dinating batteries at two timescales. The scheme entails Lya-
punov optimization at the fast timescale and stochastic ap-
proximation at the slow timescale to yield feasible solutions
with bounded suboptimality gap. Numerical tests on real data
show the advantage of heterogeneous storage.

2. MICROGRID MODELING

Consider a microgrid consisting of a photovoltaic, a variable
load, and two energy storage units, which is coordinated by a
controller as shown in Fig. 1. Due to heterogeneous storage
technologies and the manner energy is exchanged between
the microgrid and the main grid, control operations evolve
in two timescales: The control horizon at the fast timescale
is discretized into slots of equal duration indexed by t. A
sequence of T consecutive fast-timescale slots comprises a
control period for the slow timescale indexed by n = bt/T c.
Time t can be then expressed as t = nT + τ to indicate the
slow control period it belongs to, and the related offset τ .

At the slow timescale, the microgrid exchanges energy



with the main grid through a time-ahead energy market and
it operates the slower battery. The control decisions taken for
slow period n remain unchanged over the next T fast control
slots. If Sn represent the state of charge (SoC) for the slow
battery at the beginning of slow period n, and Bn the amount
by which the same unit is charged over period n, it holds

Sn+1 = Sn +Bn (1a)

S ≤ Sn ≤ S (1b)

B ≤ Bn ≤ B (1c)

where (1a) captures battery dynamics; (1b) preserves the SoC
within the capacity (S, S); and (1c) enforces charging rates
(B,B). The microgrid buys energy Pn from the main grid to
charge the slow battery by Bn, while the remaining energy

En = Pn −Bn (2)

serves the load over the next T fast control slots, and it is
bounded as En ∈ [E,E].

At the fast timescale, the controller collects information
on solar generation and load demand, operates the fast battery,
and exchanges energy with the main grid through a real-time
market. Let `t denote the difference between demand and
solar generation over fast period t. Similarly to (1), the SoC
st and the charge bt for the fast battery at time t satisfy

st+1 = st + bt (3a)
s ≤ st ≤ s (3b)

b ≤ bt ≤ b. (3c)

If pt is the energy bought from the real-time market at period
t and the amount of energy En is delivered uniformly across
the next T fast times slots, then energy balance implies

pt = `t + bt −
En
T
. (4)

Energy costs are modeled as convex increasing functions
Cn(Pn) and ct(pt) for the time-ahead and the real-time mar-
ket, respectively. Two functions are assumed random. If
Gn = ∂Cn(Pn) and gt = ∂ct(pt) denote the cost sub-
gradients, define their extreme values as G := minn{Gn},
G := maxn{Gn}, g := mint{gt}, and g := maxt{gt}.

3. PROBLEM FORMULATION

Given that the time-ahead cost Cn(Pn) occurs once every T
control periods and the real-time cost ct(pt) at each control
period t, the energy management task can be posed as

φ∗1 = min lim
N→∞

1

NT

N−1∑
n=0

T−1∑
τ=0

E
[
Cn(Pn)

T
+ ct(pt)

]
(5)

over {Pn, Bn, Sn, En}, {pt, st, bt}

Fig. 1. Charging batteries at different timescales.

s.to (1)− (4)

where the expectation E is with respect to (wrt) {Cn, ct, `t}.
Solving (5) is challenged by the randomness and the coupling
across successive periods in (1a) and (3a). Conventional so-
lutions based on approximate dynamic programming suffer
from the curse of dimensionality and presume the joint pdf
to be known [15]. Alternatively, Lyapunov optimization can
approximately tackle infinite-horizon problems of particular
structure by solving a sequence of relatively simple problems
as time proceeds [7].

To transform the energy management task in (5) into the
Lyapunov optimization framework, consider the problem

φ∗2 = min lim
N→∞

1

NT

N−1∑
n=0

T−1∑
τ=0

E
[
Cn(Pn)

T
+ ct(pt)

]
(6a)

over {Pn, Bn, En}, {pt, bt}
s.to (1c), (2), (3c), (4) (6b)

lim
N→∞

1

N

N−1∑
n=0

Bn = 0 (6c)

lim
N→∞

1

NT

N−1∑
n=0

T−1∑
τ=0

bt = 0 (6d)

where constraints (1a)–(1b) and (3a)–(3b) appearing in (5)
have been replaced by the time-averaged constraints (6c)–
(6d) and variables {Sn, st} have been eliminated. Problem
(6) constitutes a relaxation of (5); see also [9], [11]. To see
this, consider sequences {Pn, Bn, Sn, En} and {pt, st, bt}
that are feasible for (5). Unfolding the dynamics (1a) and
(3a) yields SN = S0 +

∑N−1
n=0 Bn and sNT = s0 +∑N−1

n=0

∑T−1
τ=0 bt. Due to (1b) and (3b), the states SN and

sNT are finite at all times. Dividing the previous equations
by N and NT respectively, and sending N to infinity pro-
vides (6c) and (6d). Therefore, the sequence {Pn, Bn, En}
and {pt, bt} that are feasible for (5) are also feasible for (6).

Since (6) is a relaxation of (5), it follows that φ∗2 ≤ φ∗1.
If an algorithm solves (6) with a suboptimality gap of ε, and
yields {Pn, Bn, En, pt, bt} that are feasible for (5), then this
algorithm attains an optimal value φ′2 for which φ∗1 ≤ φ′2 ≤
φ∗2 + ε. Combining the latter with φ∗2 ≤ φ∗1 proves that the



algorithm would be ε-suboptimal for (5) too, i.e., φ∗1 ≤ φ′2 ≤
φ∗1 + ε. Since (6) does not involve time-coupling constraints,
it is easier to solve than (5). An online approximate solver for
(6) yielding control decisions feasible for (5) is derived next.

The Lyapunov technique introduces two queues Xn and
xt and minimizes the drift plus penalty cost for all n [16]:

min XnBn + V Cn(Pn) +

T−1∑
τ=0

E [xtbt + V ct(pt)] (7)

over Pn, Bn, En, {pt, bt}
s.to (1c), (2), (3c), (4)

where the virtual queues relate to the SoCs as

Xn := Sn + Γ, xt := st + γ (8)

for constants Γ and γ to be specified later. Heed that the ex-
pectation in the cost of (7) is now only wrt (ct, `t). Nonethe-
less, problem (7) is still challenging since it involves expecta-
tions over the future values of the queue parameter xt. Simi-
larly to [13], [14], to overcome this difficulty, the queue val-
ues {xt}T−1τ=0 are replaced by xn and the resultant problem is
handled using stochastic approximation.

Upon the aforesaid simplification and if {ct, `t}τ are iid,
problem (7) is substituted by

min
E≤En≤E

H(En;Xn) + TE [Ft(En;xn)] (9)

where the function H(En;Xn) is defined as

H(En;Xn) := min
B≤Bn≤B

XnBn + V Cn(Bn + En) (10)

and each Ft(En;xn) relies on a single realization (ct, `t) as

Ft(En;xn) := min
b≤bt≤b

xnbt + V ct(`t + bt − En/T ). (11)

Because functionsH(En;Xn) and {Ft(En;xn)} are convex,
the minimization in (9) is convex too.

Minimizing (9) over En could be solved via a pro-
jected subgradient scheme. A subgradient of H(En;Xn)
is V Gn(Bjn + Ejn) with Bjn being a minimizer of (10) at-
taining H(Ejn;Xn). Likewise, a subgradient of Ft(En;xn)
is −VT gt(`t + bjt − Ejn/T ), where bjt is a minimizer of (11)
attaining Ft(Ejn;xn). The j-th subgradient update reads

Ej+1
n =

[
Ejn−µjV (Gn(Bjn+Ejn)− 1

T E[gt(`t+b
∗
t−

Ej
n

T )])
]E
E

for µj > 0. Observe that updating En requires solving (10)
once, but also infinitely many problems of the form in (11).

To avoid the computational burden, stochastic approxima-
tion surrogates the previous update with a single evaluation of
the related stochastic subgradient Ft(En;xn), that is

Ej+1
n :=

[
Ejn − µjV Gn(Bjn + Ejn)

Algorithm 1 Two Timescale Storage Management Scheme
1: for t = 0, 1, 2, . . . do
2: if t/T is integer then
3: Set n = t/T and observe cost Cn.
4: Set E0

n = E∗n−1 and Xn = Sn + Γ.
5: for j = 0, 1, 2, . . . do
6: Draw sample (`t, ct) and solve (11) for Ejn.
7: Update Ej+1

n from (12).
8: end for
9: Find B∗n by solving (10) for E∗n.

10: Buy energy P ∗n = B∗n + E∗n from main grid.
11: end if
12: Observe (ct, `t) and set xt = st + γ.
13: Find b∗t from (11) for E∗n.
14: Buy energy p∗t = `t + b∗t − E∗n/T from main grid.
15: end for

+
µjV

T
gt(`t + bjt −

Ej
n

T )
]E
E
. (12)

For µj = µ/j with µ > 0, the stochastic subgradient update
of (12) is guaranteed to converge to a minimizer of (7). The
charge B∗n can now be found as the minimizer of (10) for E∗n.

Having found (E∗n, B
∗
n), the real-time control decisions

(pt, bt) for the next T fast time slots can be found by solving
(11) for E∗n. Steps 2–11 of Alg. 1 precede the slow control
period n, and Steps 12–14 correspond to fast control slots.

4. ALGORITHM PERFORMANCE

We first provide the conditions under which the charging de-
cisions of Alg. 1 are feasible for problem (5) [9], [13]

Proposition 1. Under the mild assumptions that S − S ≥
B − B and s − s ≥ T (b − b), the control decisions {B∗n}
and {b∗t } found by Alg. 1 are feasible for problem (5) if the
parameters (Γ, γ, V ) satisfy:

−V G+B − S ≤ Γ ≤ −V G+B − S (13a)

−V g + Tb− s ≤ γ ≤ −V g + Tb− s (13b)

0 < V ≤ V (13c)

where V = min
{
S−S+B−B

G−G , s−s+T (b−b)
g−g

}
.

Proof of Prop. 1. Proving (13a) by mathematical induction, it
is shown next that if Sn ∈ [S, S], the same holds for Sn+1.
From (1a) and (8), it follows that Sn+1 = Sn + Bn = Xn −
Γ + Bn, where Bn is the minimizer of (10). Depending on
the queue value Xn, three cases can be considered:

(C1) If Xn ≤ −V G, it is easy to see that Bn = B, and
hence, Sn+1 can only increase compared to Sn. To ensure
Sn+1 = Xn−Γ+B ≤ S, it suffices that Γ ≥ −V G+B−S.



(C2) If Xn ≥ −V G, it holds that Bn = B, and hence,
Sn+1 can only decrease compared to Sn. To ensure Sn+1 =
Xn − Γ +B ≥ S, it suffices that Γ ≤ −V G+B − S.

(C3) When −V G ≤ Xn ≤ −V G, the minimizer has to
be feasible Bn ∈ [B,B]. The previous limits on Xn are valid
since G ≤ G and V > 0. A sufficient condition ensuring
Sn+1 ≤ S is Γ ≥ −V G + B − S and a sufficient condition
ensuring Sn+1 ≥ S is Γ ≤ −V G + B − S. Claim (13a)
follows since the limits under case (C3) are tighter than the
respective limits under (C1) and (C2).

Claim (13b) is shown likewise. From (3a) and (8), it holds
that sn+1 = sn+

∑T−1
τ=0 bt = xn−γ+

∑T−1
τ=0 bt, where bt is a

minimizer of (11). Based on xn, three cases are distinguished:
(c1) If xn ≤ −V g, then {bt = b}T−1τ=0 . Thus, sn+1 is

larger than sn and sn+1 ≤ s is ensured if γ ≥ −V g+Tb−s.
(c2) If xn ≥ −V g, then {bt = b}T−1τ=0 . Thus, sn+1 is

smaller than sn and sn+1 ≥ s is ensured if γ ≤ −V g+Tb−s.
(c3) When −V g ≤ xn ≤ −V g, the minimizers {bt}T−1τ=0

lie in [b, b]. Guaranteeing sn+1 ∈ [s, s] is assured if γ ≥
−V g + Tb − s and γ ≤ −V g + Tb − s. These two bounds
are tighter than those obtained under (c1)–(c2), and (13b) fol-
lows. Ensuring sn ∈ [s, s] implies that st ∈ [s, s] at all times.

Bounding V by V in (13c) assures that the upper bounds
in (13a)–(13b) are larger than the related lower bounds, and
hence, Γ and γ are implementable.

Lemma 1 ([7]). Let {P st
n , B

st
n, E

st
n, p

st
t , b

st
t } be the decisions

under a policy that selects them based solely on the current
realization {Cn,ct,`t}. If states are iid over time, there exists
one such policy satisfying (1c), (3c), (2), and (4), for which:

E[Bst
n] = 0,E[bst

t ] = 0,E [Cn(P st
n )/T + ct(p

st
t )] = φ∗1. (14)

The next result upper bounds φ̂1 and asserts that V = V
yields the tightest bound while maintaining feasibility.

Proposition 2. If {ζt} are iid over time, then φ̂1 ≤ φ∗1 +
KB

2TV + TKb

2V , where KB := max{B2, B
2} and Kb :=

max{b2, b2}.
Proof of Prop. 2. Define the Lyapunov functionLt := 1

2 (X2
t +

x2t ) and the T -slot Lyapunov drift ∆t := E[Lt+T−Lt|Xt, xt]
for t = nT . Using (1a), (3a), and (8) yields

∆nT = 1
2E[X2

n+1 −X2
n + x2n+1 − x2n|Xn, xn]

=
1

2
E

2XnBn +B2
n + 2xn

T−1∑
τ=0

bt +

(
T−1∑
τ=0

bt

)2

|Xn, xn


≤ E

[
XnBn + xn

T−1∑
τ=0

bt|Xn, xn

]
+
KB + T 2Kb

2
(15)

Define φtn = Cn(Pn)/T+ct(pt); add V
∑T−1
τ=0 E[φtn|Xn, xn]

on both sides of (15); and rearrange to get

∆nT + V

T−1∑
τ=0

E[φtn|Xn, xn] ≤ E[XnBn + xn

T−1∑
τ=0

bt|Xn, xn]
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Fig. 2. Time-averaged microgrid operation cost.

+ V

T−1∑
τ=0

E[φtn|Xn, xn] +
KB + T 2Kb

2
. (16)

Notice that the minimization of the right-hand side of (16)
coincides with (7). Hence, the value of (16) attained by Alg. 1
would be the minimum over all feasible policies, including
the one of Lemma 1. From (14) if follows:

∆nT +

T−1∑
τ=0

E[φtn|Xn, xn] ≤ V Tφ∗1 + KB+T 2Kb

2 . (17)

Taking expectations on both sides of (17) wrt (Xn, xn); ap-
plying the law of total expectation; and summing over N
consecutive slow intervals yields V

∑N−1
n=0

∑T−1
τ=0 E[φtn] ≤

V NTφ∗1 + N(KB+T 2Kb)
2 −E[LNT −L0]. Prop. 2 is obtained

by dividing both sides of the last inequality by V NT ; taking
N to infinity; and noting E[L0] is finite and E[LNT ] ≥ 0.

5. NUMERICAL TESTS

Algorithm 1 was tested using 5-min load data from Home C
of the Smart* project [17], scaled up by a factor of 10 and
repeated to yield 20 weeks of load `t [17]. Costs {Cn, ct}
were modeled as convex piecewise linear with different sell-
ing and buying prices. Buying prices forCn were taken as the
hourly day-ahead prices for the Michigan hub in the MISO
market over April, 2015, repeated to match the duration of `t.
Buying prices for ct were simulated as uniformly distributed
having the related Cn as mean and $10/MWh as variance.
Selling prices for Cn and ct were set to 0.9 times the buy-
ing prices. The faster timescale had T = 12 fast intervals.
Battery parameters were set to S = 1 MWh, s = 84 kWh,
S = s = 0 kWh, and B = −B = b = −b = 10 kW, and
E = −E = 30 kWh. Figure 2 depicts the time-averaged
operational costs for three microgrid scenarios. The curves
demonstrate that adding heterogeneous batteries lowers the
operational cost compared to the other two cases.
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