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Abstract—When properly operated, microgrids can facilitate
the integration of stochastic renewable energy without com-
promising service reliability. However, in the context of multi-
stage dispatching, finding the optimal day-ahead energy procure-
ment that accounts for the variability of real-time operation
is a computationally challenging task. This paper develops a
computationally efficient two-stage economic dispatch scheme
for a microgrid that exchanges energy with an external power
system. The scheme is designed to minimize the generation and
energy exchange costs, while setting limits on the microgrid-
wide expected load not served. The day-ahead variables, which
are the solution to the first stage, are found using a stochastic
approximation saddle-point algorithm. The proposed algorithm
is asymptotically convergent and can be efficiently implemented
upon drawing samples from the distribution of the real-time state
variables (wind energy, demand, and energy prices). Numerical
tests using the IEEE 14-bus power system benchmark verify that
the proposed scheme outperforms all other tested alternatives,
even for very high wind power penetration.

Index Terms—Smart microgrids, stochastic approximation,
saddle-point problem, dual subgradient.

I. INTRODUCTION

Grid efficiency and supply reliability are two desirable yet
contradicting features of contemporary power systems. The
increasing penetration of renewables renders energy markets
even more sensitive to this tradeoff. Microgrids are envisioned
to provide resiliency against time-variability and seamless in-
tegration of distributed energy resources [5], [8]. Nonetheless,
their optimal operation is challenging due to the uncertainty of
stochastic generation and demand, especially when microgrids
engage in energy transactions with an external power system.

Since uncertainty decreases as the decision time approaches
the operation time, power systems are typically dispatched
in multiple stages [9]. At a day-ahead stage, the microgrid
operator aims at minimizing its generation cost, including
energy transactions with external systems. At the same time,
reliability is traded for redispatching and curtailment costs,
which are expected to occur during subsequent decision stages.
The goal of this paper is to design computationally efficient
day-ahead dispatch schemes guaranteeing that the expected
load not served (ELNS) does not exceed a pre-specified level.
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Redispatching during real-time operation is a common re-
course action, whereas wind curtailment and load shedding are
emergency actions to maintain grid stability in situations of un-
expected energy surplus or deficit, respectively [1], [10]. Com-
mon metrics to quantify load shedding effects are the ELNS,
the loss of load probability (LOLP), and the value of lost
load (VOLL) [2], [16]. With worst-case formulations (see [18]
and references therein), reliability usually comes at the cost
of excessive conservativeness. Replacing worst-case designs
with contingency probabilities constraints has been shown to
yield non-negligible savings at no reliability sacrifices [3].
Hence, stochastic rather than worst-case approaches may be
more desirable.

To that end, the expected costs of preventive actions
and post-disturbance corrective actions are minimized in [2];
yet network constraints have been ignored. The nature of
successive grid redispatching makes microgrid operation a
multi-stage sequential decision problem, which thus calls for
stochastic programming techniques [6]. A suitable stochastic
programming framework is risk-limiting dispatch [15], [13],
[17]. In particular, [17] considers a two-stage risk-limiting
economic dispatch problem under the presumptions of mild
congestion or low-variance stochastic generation.

Dispatching a microgrid under a multi-stage stochastic
problem is considered here under practical conditions. We
first postulate a two-stage stochastic economic dispatch that
incorporates network and ELNS constraints, as well as curtail-
ment and load shedding penalties (Section II). The problem is
subsequently solved by adopting a stochastic approximation
technique to optimize the convex-concave function involved
(Section III). The derived stochastic primal-dual algorithm
relies on data samples drawn from the related joint probability
density function (pdf) of renewable generation, load, and
prices. Efficient iterates involving convex quadratic programs
are guaranteed to converge to the optimal day-ahead decisions
and provide the price of reliability as a Lagrange multiplier.
Numerical tests using the IEEE 14-bus grid corroborate the
validity of our findings (Section IV), by comparing the de-
veloped scheme with worst-case and static spinning reserve
approaches for different wind power penetration levels. Re-
garding notation, lower- (upper-) case boldface letters denote
column vectors (matrices). Symbol " denotes transposition, IE
expectation, while O and 1 the all-zeros and all-ones vectors.



II. PROBLEM STATEMENT

Consider a grid comprising conventional (e.g., thermal) and
renewable generation, as well as loads to be served under
specific reliability guarantees. The microgrid consists of N 41
buses indexed by n, and it is connected to an external power
system through an interconnection bus indexed by n = 0. The
interconnection bus serves also as the reference bus.

For every operation interval, energy trading takes place at
two stages. At the first or day-ahead stage, the microgrid
operator commits to exchange energy po with the external
system at the day-ahead (DA) price (. Since py is the injection
at bus 0, it is positive when the microgrid is importing energy
from the external system; and negative, otherwise. In real-
time operation, actual loads and renewable generation differ
from their day-ahead predictions. Hence, the microgrid oper-
ator redispatches internal generation and adjusts the energy
exchange with the external grid to pg + Jg. The additional
energy exchange &g incurs a real-time (RT) transaction cost.
Note that restraining py and dy to be 0 permits to analyze an
islanded microgrid case.

To model power injections, define the set of all but the
interconnection buses N := {1,..., N}. Let g be the vector
of conventional generation for all n € N during the day-
ahead stage; and d, its correction in real-time. The load
demand and the generated renewable energy over the nodal
set N comprise vectors d and w, which from a day-ahead
perspective are modeled as stochastic. When the microgrid
experiences conditions of extreme energy deficit or surplus,
the operator may decide to shed load by reducing d to d —d4,
or to curtail renewable energy from w to w — d,,. For brevity,
the RT deviations (84,84, d.,,00) are collectively denoted by
4. The vector of nodal power injections is then

P =(g+0g)+(W—0y)—(d—da) (1)

Financially, the internal generation cost for the microgrid
is denoted by the convex functions C'(g) and R(d,) for the
day-ahead and the real-time stages, respectively. Shed load is
penalized with the VOLL incurring quadratic cost

P(84) := 8, Vady 2)

where V; is a diagonal matrix with the per-bus positive
shedding penalties on its main diagonal. In the other extreme,
curtailed renewable energy entails a relatively small, linear
penalty v,|&,. Regarding energy transactions with the ex-
ternal system, the DA price [ is assumed fixed and known,
whereas the RT cost is stochastic. In particular, the real-time
price of buying (selling) energy from the external grid is
B (¥%). To avoid arbitrage, it is assumed that 4% < B
and E[y°] < B < E[y?]; see e.g., [15], [17]. Using the
notation [z]4 := max{0, 2}, the cost of carrying out real-time
transactions with the external grid becomes

T(80) = v"[00]+ — v° 0]+, (3)

which is stochastic due to randomness of (vZ, ). Granted
7% < ~B, the transaction cost can be also expressed as
T(80) = max{yB8y, %80}, which is certainly convex [18].

Taking into account the internal generation cost, the trans-
action cost with the external grid, and the related RT penalties,
the microgrid operator must decide (po,g) at the day-ahead
stage. To that end, the operator aims at solving the problem:

min E¢ [R(8,) + T(60) + P(84) + v, 6w
Po&{8(6).0(6)) ¢ [(89) + T (%) + P(a) J

+ C(g) + Bpo (4a)
sto p=g+0d,+w—0,—d+dq4 (4b)
1"'p+po+dp=0 (4c)
[Hp| < fmex (4d)
0<d,<w (4e)
0<d;<d (4f)
0<4, <6, (4g)
0<g< g™ (4h)
Ee[178,] < n. (4i)

The expectation operator in (4) is over the joint pdf of
the involved random variables (namely renewable generation,
demand, and real-time costs) that are collectively denoted by
&. This pdf may not be necessarily known. The equalities
in (4b)-(4c) result from power balance constraints. Constraint
(4d) guarantees that power flows on transmission lines do not
exceed line capacities. Specifically, based on the linearized DC
power flow model, power flows can be expressed as Hp with
H being the matrix of power transfer distribution factors [9].
To prevent line outages from overheating, constraint (4d)
bounds absolute flows by the known vector of line capacities
fmax The box constraints in (4e)—(4h) capture operational
limits for conventional generation, load shedding, and wind
power curtailment, accordingly. The ELNS constraint in (4i)
guarantees that the average value of load shedding is smaller
than a prescribed level 7.

As a two-stage stochastic problem, (4) involves the day-
ahead variables (pp,g) and infinitely many real-time vari-
ables (6(&),p(€)). Constraints (4¢c)—(4g) apply for each pair
(6(&),p(€)), whereas the ELNS constraint in (4i) couples all
second-stage variables. Second-stage variables will be often-
times denoted simply by (J, p). Although p can be eliminated
by substituting (4b) into (4c), it contributes to present the
problem solution in a compact form.

The formulation in (4) controls system reliability in two
ways: i) via the penalty function P(d,), and ii) by requiring
network-wide shedding to be smaller than a prescribed level 7.
Albeit seemingly redundant, the two mechanisms complement
each other. If the expected revenue from selling power to the
external system is high, the microgrid operator could shed
a significant amount of load. The ELNS constraint prevents
the operator from misusing load shedding simply to make
profit from market opportunities, whereas the VOLL-weighted
penalty term implements different priorities across buses.

III. PROBLEM SOLUTION

The optimal solution to (4) is found in two phases. In the
first phase, the first-stage variables (po, g) are assumed known



and the goal is to obtain the optimal real-time variables {d, p}
(for all &) as a function of (pg,g). This is accomplished
in Section III-A. In the second phase, the optimal real-time
policies found in the first phase are used to obtain the optimal
values of py and g (Section III-B).

A. Second-Stage Problem: Real-Time Operation

In this stage, (po, g) are fixed and the operator solves
f(po. g):= fain E¢[R(8,) +T(J0) + P(4) + V8] (52)

s.to (4b) — (4g) V &
Eg[lTéd] S 7.

(5b)
(50)

To resolve the coupling across RT variables introduced by
(5¢), we will resort to a dual decomposition approach. To be
concrete, if v is the Lagrange multiplier associated with (5c),
the partial Lagrangian function for (5) is

Z({8,p},vip0,8) = Ee[R(d,) + T () + P(da)
+ V0w +v(178a—1)] (6)
the corresponding dual function is
2(vipo, 8) = Tain, 2 ({6,p},¥;po,8) @)
s.to (4b) — (4g) V&
and the associated dual problem is
v* = argmax 7 (v; po, 8)- @®)

Since the problem in (5) is convex and the constraint (5¢) is
linear, strong duality guarantees that f(po,g) = Z2(v*;po, g).
By the KKT optimality conditions and given the strict convex-
ity of £({d,p},v;po,g) with respect to (w.r.t.) d4 [cf. (2)],
the optimal second-stage variables (8 (&), p(£)) can be found
as the minimizers of Z ({3, p}, v*; po, &) in (6). After dualiz-
ing (5¢), the minimization of the Lagrangian can be performed
separately for each pair of primal variables (6 (&), p(£)) as

min  R(8,) + T(50) + P(8a) + Vb + 11784 (9)
5(8).p(8)

s.to (4b) — (4g).

In other words, the minimization of the Lagrangian in (7)
amounts to solving infinitely many instances of (9), one per
&. When R(Jg) is chosen as a linear, quadratic, or piecewise-
linear function, then (9) is a convex problem, and it can be
solved as a linearly-constrained quadratic program.

B. First-Stage Problem: Day-Ahead Operation

Having found the optimal second-stage variables for given
(v, po, g) we next develop an algorithm to obtain (v*, pf, g*).
Let us define h(v, po,g) as

h(v, po,g) == C(g) + Bpro + Z(v; po, )-

Recalling the original problem (4) and leveraging the zero
duality gap between (5) and (8), it follows that

min_C(g) + Bpo+ f(po, g) =
Po,8€G

(10)

min_ max h(v, po, 11
Po,gIEQ I/Z(})( ( bo g) an

where G := {g: 0 < g < g™max},

Observe that function h(v, po, g) is convex-concave. To see
that, note that & is concave w.r.t. v for all (pg,g) as a dual
function. Moreover, & is a convex function of (pg,g) for
every v > 0. To see that, fix v in the definition of Z in (7),
and observe that & is a perturbation function of (po,g) [4],
[7]. Hence, 2(v; po, g) is a convex-concave function. Because
C(g) + Bpo is convex in terms of (pg, g), function h(v, py, g)
is convex-concave too [cf. (10)]. Therefore and given the
stochasticity of &, the problem at the right hand side of (11)
is a stochastic convex-concave saddle point problem [4], [11].

It is clear that (pg,g*,v*) is a saddle point of h(v,po,g).
We next deploy a primal-dual subgradient scheme for finding
it [12]. The partial super-/sub- gradients of h are

dyh = Ee[183(& v, po, 8)] — 1) (12a)
Opoh = B — E¢[A" (&1, po, 8)] (12b)
Ogh = 0gC(g) + E¢[0"(&;v,p0, 8)] (12¢)

where 0gC(g) is the subgradient of C evaluated at g;
A*(&;v,po,g) is an optimal Lagrange multiplier associ-
ated with the power balance constraint (4c) in (9); and
0" (&;v,po,g) is an optimal Lagrange multiplier vector cor-
responding to constraint (4b) in (9). Note that the multipliers
have been written as a function of £ because their optimum
value depends on the specific realization &. The partial sub-
gradient in (12a) holds by definition of the dual function,
while the ones in (12b)—(12c) follow upon viewing & as a
perturbation function [4], [7].

Using a standard primal-dual subgradient method for solv-
ing (11) would require calculating the expectations in (12).
This amounts to solving problem (9) for all possible & and
numerically integrating over the pdf of &; the whole process
being repeated at each iteration k. Such a task would be
intractable even if the joint pdf were known. If only a set of
uniformly drawn samples {&,} is available, a more practical
yet still computationally intensive approach is approximating
the expectations by sample averages. Differently, to reduce
complexity, we will rely on the saddle-point mirror stochastic
approximation methodology proposed in [11]. For the problem
at hand, the methodology involves the ensuing stochastic
primal-dual subgradient iterations indexed by k:

= [ (U785 VR 6,85 — )], (13)
pott = ph —en (B — N (&ivF, ph. gY)) (13b)

ghth = g8 — e (95C (") + 07 (&% 5, 8M)) ], (130)

where ¢, and py are step sizes, and [|g is the projection
operator onto the set G. The actual output of the algorithm at
iteration k is the (possibly weighted) average of the mj most
recent iterates for each of the variables (v, pg, g).

The step size sequences { /i, €y} can be selected using two
alternatives. The first alternative involves constant step sizes
and averaging of all iterates. The second alternative involves
step sizes diminishing across iterations as O(1/v/k) and the
output is a weighted average of the my, last iterates. The first



alternative is useful to provide an approximate solution when
the number of iterations K is fixed (due to e.g., computa-
tional limitations). The second one is more suitable when the
number of iterations is unlimited or unknown a priori, and
its output asymptotically converges to their optimal values as
k — oo [11, Sec. 3.1].

C. Economic Interpretation

It is well-known that the multipliers A*(&;v™*, p, g*) as-
sociated with the nodal balance constraints in (4c) can be
viewed as locational marginal prices (LMPs) [9]. More in-
terestingly, for the problem at hand the optimality condition
E[0p h(v*,p§,8%)] = 0 yields Es[\*(&;v*,ph,8%)] = 5.
This expression reveals that for optimal two-stage operation,
the expected value of the internal real-time LMP at the
interconnection bus should be equal to the DA price of energy.

Regarding the multiplier v associated with the ELNS con-
straint, (9) reveals that v acts as a reliability-controlling
parameter. It can also be seen as the price of reliability because
it represents the marginal operation cost associated with a
small variation of 7. This allows to analyze the sensitivity of
the optimal net cost relative to changes in the reliability level
7, enabling anticipating the effects of regulatory changes.

IV. NUMERICAL TESTS

The proposed scheme has been numerically tested on the
IEEE 14-bus grid [14] complemented with synthetic stochas-
tic generation data to yield illustrative results. The external
power system replaces the generator at bus 1; the rest of the
conventional generators remain unchanged from the original
benchmark, whereas the synthetic renewable generation has
been co-located with demand. For the stochastic demand,
samples were drawn from independent Gaussian distributions
having the nominal demands d” as means and standard
deviations 0.3dZ, while negative values were truncated to
zero. The stochastic renewable generation is sampled from a
uniform distribution in the range [0, 2p,,d?], where the wind
penetration factor p,, indicates the ratio between the average
demand and average wind generation. Regarding the prices,
B is set to 3000 and v® and +° are uniformly distributed in
[4500, 8500] and [750, 1500], respectively. The wind spilling
penalty is v,, = 1000 -1 and the load shedding penalty matrix
is Vg = 5000 - I. All prices and penalties are in terms of $
per unit (p.u.). The ELNS limit n has been fixed to 0.01.

The proposed method (PM) implements the iterations in
(13) with constant stepsize and running averaging iterates as
described in [11, Sec. 3.1]. Since the number of iterations
is finite, the output of the algorithm approximates the global
solution. Once (pp*, g*, v*) are estimated, the RT dispatch is
designed for each realization of £ as the solution to (9).

The PM is compared with three alternative methods (AM).
(AM1) a simple deterministic dispatch scheme that designs
(po, g) for the expected wind generation and demand, neglect-
ing the variability of the wind, demand, and RT prices (this
scheme would be optimal if such variables were deterministic).
(AM2) the deterministic dispatch (AM1) along with a static
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Fig. 2. Expected cost and ELNS as a function of p,, for the tested methods.

spinning-reserve allocation that adds 0.1.-g™%* to the conven-
tional generation at every generation bus. (AM3) a dispatch
scheme that designs (po,g) for an approximate worst-case
scenario where w = 0, d = 1.3 - d”, and the buy (sell)
RT price is the highest (lowest). The RT dispatch for the three
AMs is designed by first minimizing 1" 8,4, and then the RT
operation cost.

Figure 1 shows the convergence of the running averages of
Do, g, and v for a wind penetration factor of 0.8. The expected
operation cost and ELNS are estimated via a Monte Carlo
simulation with a set of randomly generated samples of &
(different from those used to run the optimization). Figure
2 shows the network cost and ELNS for the PS as well as
the three AM. Confirming the findings in [3], the stochastic
method clearly outperforms the alternative methods, which
either violate the ELNS constraint or turn out to be over-
conservative and less efficient.

V. CONCLUSIONS

A two-stage stochastic, distribution-free, optimal dispatch
and procurement scheme has been proposed. The first-stage
variables corresponded to the power procured in the day-ahead
operation, and the dispatch of the conventional generation
units. Second-stage variables were the powers that are actu-
ally generated by the dispatchable generators, and real-time
adjustments such as the shed load, the spilled wind, and the
power traded in the real-time market. Relying on a provably
convergent stochastic approximation saddle-point algorithm,
the developed scheme efficiently finds the optimal primal and
dual variables for the first stage. Once the first-stage variables
are found, the problem decomposes across realizations of &,
and the real-time (second stage) solution can be easily found
by solving a single convex problem.
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