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Abstract— The uncoordinated charging of large electric ve-
hicle (EV) fleets could have an adverse influence on power
network operation. To guarantee the secure and economic
operation of power grids, vehicle charging needs to be coordi-
nated to minimize the power supply cost, while catering vehicle
charging requests. Provisioning large-scale fleets scheduled at
fine timescales, the task of EV scheduling is tackled here by
properly adopting the Frank-Wolfe method. Upon devising an
optimal step size rule, the novel scheme is shown to enjoy
fast convergence rate, especially during the first iterations.
The derived charging protocol features affordable compu-
tational requirements from vehicle controllers and minimal
information exchange between vehicles and their aggregator.
To cope with random cyber delays in the communication
links between vehicles and the aggregator, an asynchronous
version of the charging scheme is also studied. Interpreted as
a block stochastic Frank Wolfe algorithm, the latter ensures
feasibility across iterations, converges in the mean, and enjoys
the same order of convergence rate attained by its synchronous
counterpart. Numerical tests demonstrate the advantage of our
deterministic scheme over a state-of-the-art projected gradient
descent alternative, as well as the robustness of its stochastic
counterpart to asynchronous updates.

I. INTRODUCTION

Electric vehicles (EVs) receive increasing attention as an
effective means to reduce greenhouse gas emission and mit-
igate oil dependency. Nonetheless, charging large numbers
of EVs will greatly affect the overall load profile. Without
proper coordination scheme, charging of even a penetration
10% of EV loads will cause voltage magnitude drop and
unacceptable load peaks [1]. On the other hand, vehicle
loads can be controlled to minimize charging costs or provide
auxillary sevices leveraging power electronics.

Charging protocols for electric vehicles has been an active
area of current research; see [2] for a review. Compared
to centralized control, decentralized control strategies en-
joy computational efficiency and enhance user privacy. A
heuristic decentralized EV scheduling mechanism based on
congestion pricing used in Internet Protocol (IP) networks
is proposed in [3]. A game theoretic approach is devised
in [4], where a Nash equilibrium point is proved to exist
presuming the unrealistic scenario that all vehicles have iden-
tical charging requests and plug-in/-out times. Leveraging the
Lagrange relaxation method, iterative optimal decentralized
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schemes are proposed in [5] and [6]. Coordination of vehicles
is achieved through distribution locational marginal prices
in [7]. Reference [8] shows that a feasible valley-filling
charging profile is optimal for any convex charging cost,
and it further proposed a decentralized protocol that can be
interpreted as a projected gradient descent (PGD). An ant-
based swarm optimization algorithm is used in [9], while [10]
suggests a multi-agent system. The vehicle charging problem
is solved in a decentralized manner via the alternating
direction method of multipliers (ADMM) in [11]. To tackle
the spatial coupling introduced by transformer capacity limi-
tations, a combination of ADMM and PGD has been reported
in [12]. A real-time decentralized charging method based
on dual decomposition and projected subgradient is devel-
oped in [13]; nevertheless, vehicle charging requirements
are neglected. Considering unpredictable load and vehicle
plug-in times, an online decentralized charging scheme is
devised in [14]; its asymptotic performance is analyzed under
the presumption that the EV charging requirements can be
automatically satisfied. Resorting to the water filling scheme,
a joint optimal power flow and EV management problem is
solved in [15].

The contribution of this work is two-fold. First, a de-
centralized charging protocol is developed based on the
Frank-Wolf method. The devised scheme enjoys fast conver-
gence, especially during the first few iterations. Its closed-
form updates pose minimal computational requirements for
the vehicle controllers, and the overall computational time
is significantly reduced. In particular, our numerical tests
demonstrate a 100-times speed-up advantage over existing
alternatives. Second, to cope with cyber failures in the
communication link between the aggregator and the vehicle
controllers, an asynchronous variant of the charging scheme
is studied. By judiciously modifying its step size, the asyn-
chronous scheme is shown to converge in the mean at the
same O( 1

k ) rate attained by its synchronous counterpart.
This work complements [16], where synchronous charging
protocols complying with distribution grid constraints were
built on the plain Frank-Wolfe scheme.

The remainder of this paper is organized as follows:
Section II introduces the Frank-Wolfe method for solving
general convex quadratic programs. Section III formulates
the optimal EV charging control problem. The optimal charg-
ing scheme and its asynchronous counterpart are detailed in
Section IV. Section V shows simulation results and the paper
in concluded in Section VI.

Notation. Lower- (upper-) case boldface letters are re-
served for column vectors (matrices). Calligraphic symbols



denote sets. Symbol > is used to represent vector and matrix
transposition. Vectors 0 and 1 stand for the all-zeros and all-
ones vectors, respectively.

II. THE FRANK-WOLFE ALGORITHM

We first apply the Frank-Wolfe algorithm for solving
a general convex quadratic optimization problem. Define
the function f(x) := 1

2x
>Ax + b>x for a symmetric

positive semi-definite matrix A. Consider then the quadratic
minimization problem

x∗ ∈ arg min
x

f(x) (1)

s. to x ∈ X

over the convex and compact feasible set X . The Frank-
Wolfe method, also known as conditional gradient algorithm,
selects an initial feasible vector x0 ∈ X , and iterates over k
between the next two updates [17]

sk ∈ arg min
s∈X

s>∇f(xk) (2a)

xk+1 = xk + γk(sk − xk) (2b)

for a step size γk ∈ (0, 1]. By selecting γk = 2
k+2 , a

convergence rate of O
(
1
k

)
can be achieved; see e.g., [17].

Nevertheless, if the γk’s are selected optimally, a faster
convergence rate can be attained, especially in the first few
iterates. To facilitate the analysis, let us define the surrogate
duality gap as [17]

g(x) := max
s∈X

(x− s)>∇f(x). (3)

Evaluating the latter at xk and due to (2a), yields

g(xk) = −(vk)>∇f(xk) (4)

where vk := sk − xk. From the convexity of f(x), it holds
that g(x) ≥ f(x)− f(x∗) ≥ 0; see [17] for details. For the
problem in (1), the per-iteration optimal step size γk can be
found in closed form as asserted next.

Lemma 1. The optimal step size γk in (2b) for solving (1)
is

γk = min

{
g(xk)

(vk)>Avk
, 1

}
. (5)

Proof. Performing line-search for γk entails tackling the
univariate quadratic problem

γk := arg min
γ∈[0,1]

1
2 (xk+γvk)>A(xk+γvk)+b>(xk+γvk)

whose solution is obtained by projecting the unconstrained
solution −v

>
k (Axk+b)

(vk)>Avk = g(xk)
(vk)>Avk onto [0, 1]. The solution

in (5) is obtained upon noticing that g(xk)
(vk)>Avk ≥ 0.

If γk is selected according to (5), the optimality gap is
characterized as follows.

Proposition 1. Let h(xk) := f(xk) − f(x∗). If γk is set
according to (5), it holds that

h(xk+1) ≤
(

1− γk
2

)
h(xk). (6)

Proof. To simplify notation, denote f(xk+1), h(xk+1), xk+1

as f+, h+, x+; and f(xk), h(xk), xk, vk, γk as f(x), h(x),
x, v, γ, respectively. It holds that

f+ = f +
1

2
γ2v>Av + γv>(Ax + b)

= f +
1

2
γv>(Ax + b) +

1

2
γ
[
γv>Av + v>(Ax + b)

]
= f − 1

2
γg(x) +

1

2
γ
[
γv>Av − g(x)

]
≤ f − γ

2
g(x) (7)

since γ ≤ g(x)
v>Av

from (5). Given that −g(x) ≤ −h(x),
subtracting f∗ from both sides of the inequality in (7) yields

h+ ≤
(

1− γ

2

)
h

which proves the claim.

Proposition 1 not only implies the convergence of (2); it
further shows that the optimality gap is non-increasing. For
large γk, an exponential decay can be expected. During the
first iterations, h(xk) are g(xk) are expected to be large, thus
resulting in large γk’s [cf. (5)]. This justifies our experimental
observations that the Frank-Wolfe scheme based on line
search converges faster during the initial iterates. A related
analysis but for the so termed generalized Lagrangian is
provided in [18].

The Frank-Wolfe algorithm features a disciplined stopping
criterion: Because g(xk) ≥ f(xk)− f(x∗), a valid stopping
criterion could be selected as

g(xk)

|f(xk)|
≤ ε (8)

where ε is the desired accuracy. Upon obtaining sk from (2a),
the calculation of g(xk) via (4) is straightforward.

III. VEHICLE CHARGING CONTROL PROBLEM

Suppose an aggregator wants to charge a fleet of N EVs
over a period of T consecutive time slots comprising the set
T := {t : t = 1, . . . , T}. The charging rate for vehicle n at
slot t is denoted by pn(t), and it can lie within [0, p̄n(t)].
Because a vehicle can be charged only when it is connected
to the grid; if Tn ⊆ T is the connection interval for vehicle
n, then p̄n(t) = 0 for t /∈ Tn, or

p̄n(t) =

{
p̄n , t ∈ Tn
0 , otherwise ∀t ∈ T

where p̄n is its maximum charging rate determined by the
battery specifications. By the end of the horizon T , the total
energy needed by EV n is represented by Bn. The latter
depends on the initial and desired state of charge as well
as the battery efficiency. The charging profile for vehicle n
denoted by pn := [pn(1) · · · pn(T )]> should lie in the set

Pn :=
{
pn : p>n 1 = Bn, 0 ≤ pn(t) ≤ p̄n(t) ∀t ∈ T

}
(9)

which is convex and compact.



To minimize its electricity cost, the aggregator aims at
solving the optimal EV charging problem [8]

p∗ ∈ arg min
p

F (p) (10)

s. to pn ∈ Pn, ∀ n ∈ N

where p := [p>1 · · · p>N ]>, and the total cost is defined as

F (p) :=

T∑
t=1

C

(
d(t) +

N∑
n=1

pn(t)

)
(11)

where {d(t)}Tt=1 models any inelastic base load assumed to
be known in advance, and C(·) is the electricity cost for the
aggregator that is assumed fixed across time t. Observe that
due to the summation

∑N
n=1 pn(t) appearing in the argument

of C(·), the objective function F (p) is not strongly convex in
p, even when C(·) is quadratic. The feasible set for problem
(10) is the Cartesian product P := P1 × . . . × PN , and as
such it is convex and compact too. Therefore, problem (10)
is convex.

Assuming the electricity cost to be a quadratic function

H(p) :=
∑T
t=1

(
d(t) +

∑N
n=1 pn(t)

)2
, the ensuing instance

of problem (10) is obtained

min
p

H(p) (12)

s. to pn ∈ Pn, ∀ n ∈ N

Interestingly, the minimizers of (12) are also minimizers of
(10). The ensuing proposition generalizes the result in [8]
which confined C(·) to be strictly convex; thus excluding
linear costs.

Proposition 2. If p∗ is a minimizer of (12), then p∗ is a
minimizer of (10) with respect to any convex differentiable
function C(·).

Proof. If p∗ is a minimizer of (12), then the first order
optimality condition imply that

N∑
n=1

〈d +

N∑
n=1

p∗n, pn − p∗n〉 ≥ 0, ∀pn ∈ Pn, ∀n ∈ N

where d := [d(1) · · · d(T )]>. Equivalently, it holds that
N∑
n=1

〈d +

N∑
n=1

p∗n, pn〉 ≥
N∑
n=1

〈d +

N∑
n=1

p∗n, p∗n〉.

The latter implies that p∗ is also the minimizer of

p∗ ∈ arg min
p

N∑
n=1

〈d +

N∑
n=1

p∗n, pn〉 (13)

s. to pn ∈ Pn, ∀ n ∈ N

Given that the linear program in (13) is separable across
vehicles, the p∗n’s are equivalently the minimizers of

p∗n ∈ arg min
pn

〈d +

N∑
n=1

p∗n, pn〉 (14)

s. to pn ∈ Pn

for all n ∈ N . Define the vector of the cost gradients across
all time slots as

gC(p):=[Ċ
(
d(1)+

N∑
n=1

pn(1)
)
· · · Ċ

(
d(T )+

N∑
n=1

pn(T )
)
]>.

Recall that function Ċ(·) is increasing for any convex C(·).
Therefore, the ordering of the entries in gC(p∗) coincides
with the ordering of the entries in d +

∑N
n=1 p

∗
n. The latter

implies that the p∗n’s minimizing (14) are also minimizers of

p∗n ∈ arg min
pn∈Pn

〈gC(p∗),pn〉

for all n. The latter is equivalent to the inequalities:

〈gC(p∗), pn − p∗n〉 ≥ 0 ∀ n ∈ N .

Since all pn’s are feasible and satisfy the latter inequality,
they are also minimizers for problem (10) for any convex
differentiable objective C(·).

Proposition 2 enables us to tackle a general class of vehicle
charging problems: Solving (10) is rendered equivalent to
solving its quadratic counterpart in (12). The latter can be
efficiently solved using the Frank-Wolfe iterates of (2) as
delineated next. Note that vehicle charging problems with a
more general time-varying cost can still be talcked by the
plain Frank-Wolfe scheme [16]; nonetheless, the superior
convergence property of (6) no longer holds.

IV. OPTIMAL CHARGING SCHEDULERS

Since H(p) is convex differentiable and set P is convex
and compact, the Frank-Wolfe scheme of Section II is
adopted here for tackling the charging problem in (12).

A. Optimal Decentralized Charging Control

At iteration k, the gradient gk := ∇H(pk) is evaluated,
and the optimization problem in (2a) is subsequently solved.
The latter corresponds to the linear program

{skn} ∈ arg min
{sn}

N∑
n=1

s>n g
k
n (15)

s. to sn ∈ Pn ∀n ∈ N

where the gradient vector has been partitioned as gk :=
[(gk1)> . . . (gkN )>]>. Two important observations are in
order. Heed first that due to the form of H(p), the per-
vehicle partial gradients coincide, that is gkn = ck for all
n ∈ N ; the t-th entry of vector ck is

ck(t) := 2(d(t) +

N∑
n=1

pkn(t)) (16)

for t ∈ T . The second observation is that because of the
separable structure of its feasible set P , the linear program
in (15) decouples across vehicles as

skn ∈ arg min
sn

s>n c
k (17)

s. to sn ∈ Pn



for all n. Problem (17) entails minimizing a linear function
over the polytope Pn. The latter problem can be solved
using a simple sorting algorithm [19]: First, the entries of
ck are sorted in increasing order as ck(tk1) ≤ ck(tk2) ≤ . . . ≤
ck(tkT ). Recognizing that the subproblems (17) share vector
ck for all n, this sorting operation is performed only once
using for example the Merge-Sort algorithm with complexity
O(T log T ) [20]. Subsequently, for every vehicle n, find the
index mk

n for which

mk
n∑

i=1

p̄n(tki ) ≤ Rn and
mk

n+1∑
i=1

p̄n(tki ) > Rn. (18)

Then, the entries of skn in (17) are neatly decided as

skn(tki ) =


p̄n(tki ) , i = 1, . . . ,mk

n − 1

Rn −
∑mk

n−1
j=1 p̄n(tkj ) , i = mk

n

0 , i = mk
n + 1, . . . , T

(19)
per vehicle n. The aforementioned solution reveals that vehi-
cles charge during periods of lowest load. Critically, making
the decisions in (19) requires knowing only the ordering of
the time slots {tk1 , tk2 , . . . , tkT }, and not the actual values of
the common gradients {ck(tk1), ck(tk2), . . . , ck(tkT )}.

The second step of the Frank-Wolfe algorithm [cf. (2b)]
simply performs convex combinations to update the charging
profiles for all n as

pk+1
n = (1− γk)pkn + γks

k
n. (20)

The step size γk can be set to γk = 2
k+2 , or chosen optimally

according to (5), which for the problem at hand yields

γk = −
∑T
t=1 a(t)w(t)∑T
t=1(w(t))2

(21)

with a(t) := d(t) +
∑N
n=1 p

k
n(t) and w(t) :=

∑N
n=1 s

k
n(t)−∑N

n=1 p
k
n(t).

A decentralized charging protocol is proposed next to
implement the aforementioned Frank-Wolfe control scheme.
Each EV is presumed to be equipped with a smart controller
that communicates with the aggregator and is able to perform
simple computing tasks, such as finding the decisions in (18)
and (19). Smart controllers are treated as the nodes of a
tree graph whose root is the aggregator server. This cyber
architecture matches well the physical system structure of a
radial information router system.

To optimally select γk from (21), the aggregator needs
to acquire the summation vector

∑N
n=1 s

k
n from the vehicle

controllers. To achieve that, either each vehicle commu-
nicates its own skn to the aggregator, or the summation∑N
n=1 s

k
n is successively calculated over the nodes of a

tree. The information exchange for the latter scheme is as
follows. Each vehicle controller first initializes a Pn–feasible
charging profile {p0

n} with respect to its charging demands
{(Tn, Rn)}. It then collects the aggregate charging profile
from downstream vehicles and adds it up to its own charging
profile. The calculated partial sum is forwarded to the next

Control center

router

,  time slot ordering

Vehicles update

Control center

Vehicles calculate

Fig. 1: Information flows for Algorithm 1 at iteration k ≥
1. Left: Aggregator broadcasts γk−1 and the ordering of
{ck(t)} (smallest to largest) to EVs. Right: Summations
of intermediate charging profiles {skn} are forwarded to
aggregator.

vehicle up the tree. Upon getting
∑N
n=1 p

0
n, the aggregator

calculates the marginal costs {c0(t)}t∈T according to (16),
and sorts them by their values to obtain the time slot
ordering {t01, t02, . . . , t0T }. The ordering is then broadcast
to all vehicles, where controllers implement in parallel the
simple decision rule of (19) to acquire {s0n}. The summation
of {s0n} is transmitted back to the aggregator as depicted in
the right panel of Fig. 1.

For iterations k ≥ 1, the aggregator calculates γk−1 from
(21). The summation of the charging loads is updated as

N∑
n=1

pkn =

N∑
n=1

pk−1n +γk−1

(
N∑
n=1

sk−1n −
N∑
n=1

pk−1n

)
. (22)

The gradient ck is calculated from (16). Then, γk−1 and
the ordering of the entries of ck are broadcast to all EVs as
demonstrated in the left panel of Fig. 1. Upon receiving γk−1
and the time slot ordering, each vehicle controller calculates
pkn via (20), and updates skn based on (18) and (19). Note
that the obtained pkn is stored locally at vehicle n.

According to this architecture, the charging controllers do
not submit their charging profiles to the aggregator, thus
preserving the privacy of the EV users. The aggregator
controller on the other hand does not announce per-slot
marginal costs, but instead broadcasts time slot rankings.
The overall decentralized charging scheme is summarized
in Algorithm 1.

A PGD based scheme for solving (10) has been suggested
in [8]. According to that scheme, at iteration k every vehicle
updates its charging profile as

pk+1
n := arg min

pn∈Pn

‖pn − (pkn − µck)‖22 (23)

for a step size µ > 0. Problem (23) projects vector (pkn −
µck) onto Pn, which is a non-trivial computational task.
Granted that (11) entails a non-strongly convex objective
function, the convergence rate of this PGD scheme is at most
O
(
1
k

)
; see [21].



Algorithm 1 Optimal decentralized charging control

Input: Stopping criterion ε.
1: Initialize {p0

n}, c0, and {s0n}.
2: for k = 1, 2, . . . do
3: Aggregator obtains γk from (21);
4: (or it sets γk = 2

k+2 ).
5: Aggregator updates

∑N
n=1 p

k
n according to (22).

6: Aggregator evaluates ck using (16).
7: Aggregator sends sorted {ck(t)}Tt=1 to all EVs.
8: Vehicle n calculates {pkn} via (20).
9: Vehicle n updates {skn} from (18) and (19).

10: end for

B. Asynchronous Updates

At each iteration, Alg. 1 requires all vehicles to update
their charging profiles according to the current control signal.
In practical charging scenarios, vehicle controllers may not
be able to update their charging profiles synchronously.
That could be the result of failures in the communication
links between the aggregator and the vehicle controllers,
or due to processing delays in vehicle controllers. In such
scenarios, the step size γk has to be modified to guarantee the
convergence of Alg. 1. Let us assume that lost updates occur
independently at random across iterates and vehicles. If the
probability of a successful update is larger than α := N̄/N ,
the step size γk can be modified as

γk =
2

αk + 2
. (24)

To proceed with the iteration complexity analysis, define
h̃(p) := H(p) − H(p∗), and denote the diameter of the
feasible set P as

DP := sup
x1,x2∈P

‖x1 − x2‖22.

Proposition 3. If the probability of successful updates is
larger than α and the step size is set as γk = 2

αk+2 , then
Algorithm 1 achieves

E[h̃(xk)] ≤ 4(1− α)h̃(x0) + 2kDP
(αk + 2− α)2

(25)

for k ≥ 1.

Proof. In view of [22, Lemma 2], the next inequality holds

E[h̃(xk+1)] ≤ (1− αγk)E[h̃(xk)] +
γ2k
2
DP (26)

where the expectation operator E[·] is applied over commu-
nication failures. For k = 1, inequality (25) holds, since
E[h̃(x1)] ≤ (1− α)h̃(x0) + 1

2DP by (26).
Proving by induction, assume that (25) holds true for k.

To prove (25) for k + 1, note that

(αk + 2− 2α)(αk + 2) = (αk + 2− α)2 − α2

≤ (αk + 2− α)2

thus yielding

αk + 2− 2α

(αk + 2− α)2
≤ 1

αk + 2
. (27)

From 1− αγk = αk+2−2α
αk+2 and (27), it holds that

1− αγk
(αk + 2− α)2

≤ 1

(αk + 2)2
. (28)

Plugging (28) into (26) provides

E[h̃(xk+1)] ≤ 4(1− α)h̃(x0)

(αk + 2)2
+

2kDP
(αk + 2)2

+
2DP

(αk + 2)2

=
4(1− α)h̃(x0) + 2(k + 1)DP

(αk + 2)2

thus proving the claim.

Stochastic Frank-Wolfe updates have also been been con-
sidered in [22], where the step size was modified as γk =

2α
α2k+2/N which can yield γk > 1 (check e.g., γ1 and γ2 for
N = 100, and α = 0.9), thus introducing infeasibility issues
in the Frank-Wolfe iterates.

To summarize, considering asynchronous updates of EVs,
the step size of Alg. 1 has to be modified. Proposition 3
asserts that for the step size rule in (24), the updates of
Alg. 1 remain feasible at all times, while the objective value
is guaranteed to converge in expectation with rate O

(
1
k

)
.

V. NUMERICAL TESTS

The efficacy of the devised charging scheme was verified
by simulating the charging of 52 EVs. The battery capacity
of all vehicles was assumed to be 24 kWh. The maximum
charging power was fixed to 3.45 kW. According to actual
travel survey data [23], the probability density function (pdf)
for EV plug-in times in hours is

fin(τ) =

{
N (µin − 24, σin), 0 < τ ≤ µin − 12
N (µin, σin), µin − 12 < τ ≤ 24

(29)

where µin = 17.47, σin = 3.41, and N (µ, σ2) denotes a
Gaussian pdf with mean µ and variance σ2. The pdf for
plug-out times in hours is

fout(τ)=

{
N (µout, σout), 0 < τ ≤ µout + 12
N (µout + 24, σout), µout + 12 < τ ≤ 24

(30)
where µout = 8.92 and σout = 3.24. Moreover, daily travel
miles are distributed according to

fmiles(y) =
1√

2πσmilesy
exp

(
− (log(y)− µm)

2

2σ2
m

)
(31)

where µmiles = 2.98 and σmiles = 1.14. For each vehicle, the
expected state of charge (SOC) was set to 90%. The energy
needed per 100 km was E100 = 15 kWh, and the initial
SOC was obtained as S0

n = 0.9−MnE100/(100Bn), where
Mn denotes daily travel miles for vehicle n, and Bn is the
battery capacity of vehicle n. Normalized base load curves
with base unit 1000 kW were obtained by averaging the 2014
residential load data from Southern California Edison [24].
The simulation horizon, set from 12:00 pm to 12:00 pm the
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Fig. 2: Load curves after uncoordinated charging of 52 EVs.

next day, comprised T = 96 time slots. Numerical tests were
run using Matlab on an Intel CPU @ 3.6 GHz (32 GB RAM)
computer.

Uncoordinated charging: In this case, all EVs were as-
sumed to begin charging as soon as they plug-in, and stop
charging when the desired SOC level was reached. The
resultant total load curves were demonstrated in Fig. 2, which
clearly indicates that uncoordinated charging for even 52 EVs
increases the load peak tremendously.

Optimal decentralized scheduling: Algorithm 1 with op-
timal γk or with γk = 2

k+2 , was compared to the PGD
method of [8]. In PGD, the subproblems (23) are tackled via
the default solver provided by YALMIP [25]. Asynchronous
updates where 51 out of 52 EVs were randomly selected
to update their charging profiles at each iteration, was also
tested. To serve as a benchmark, the quadratic problem (12)
was solved using the off-the-shelf solver SeDuMi. All al-
gorithms were initialized using the uncoordinated charging
profiles and run until the relative cost error ε became smaller
than 2× 10−5. As can be seen from Fig. 3, all the obtained
load curves feature a flat load valley without increasing
the peak load, thus verifying the efficacy of Alg. 1 and
PGD. However, running both algorithms sequentially, the
required computational time differs significantly: 41.1 sec
for Alg. 1 with optimal γk; 174.9 µsec for Alg. 1 with
γk = 2

k+2 ; 187.7 µsec for Alg. 1 with asynchronous updates;
and 94.84 sec for PGD. The numerical tests confirm that the
proposed methods enjoy a notable speedup advantage over
existing alternatives.

The convergence curves of our novel scheme and PGD are
shown in Fig. 4: The decreasing rate of Alg. 1 with optimal
step size is large at first and gradually decays. The iterations
required by Alg. 1 with the optimal step size and PGD to
reach an ε smaller than 2× 10−5 are almost identical. Even
with asynchronous updates, Alg. 1 converges at a rate similar
to the synchronous Alg. 1 for γk = 2

k+2 . Figure 5 shows
how the running time per update (averaged over vehicles
and iterations) scales with the charging slots T : Although
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Fig. 3: Load curves after optimal charging of 52 EVs.
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Fig. 4: Convergence performance of Alg. 1 and PGD.

the update time increases linearly with T for both schemes,
our method requires times in the order of 10−5 sec, while
PGD times are in the order of 0.1 sec. This superior behavior
is attributed to the closed-form updates in (19).

VI. CONCLUSIONS

Optimal charging of EVs introduces time-coupling con-
straints, while the problem dimension increases linearly with
the number of vehicles and time slots. To address the com-
putational issues involved in scheduling large fleets over fine
timescales, a decentralized charging scheme was developed
based on the Frank-Wolfe method. Based on numerical tests,
the novel charging protocol converged 100 times faster than
a competing alternative, while its closed-form updates pose
minimal computing requirements to vehicle controllers. To
account for random cyber delays, an asynchronous variant
was also devised. This stochastic block-coordinate protocol
was shown to converge at the rate of O

(
1
k

)
upon properly

controlling its step size. Extending our schemes to real-
time vehicle scheduling constitutes a challenging research
direction.
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