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Abstract—Although nodal loads and renewable generation
need to be known for solving different grid optimization tasks,
power distribution networks currently lack extensive metering
infrastructure. The fresh idea here is to exploit the capabilities of
smart inverters found in solar panels and energy storage devices
to probe the grid and thus infer the power injections at non-
metered nodes. Probing can be accomplished by commanding
inverters to change their active injections and power factors
momentarily, and subsequently record the incurred voltages as
responses of the underlying physical system. Load inference
via grid probing boils down to an implicit nonlinear system
identification task and involves solving a sequence of power
flow problems coupled over multiple probing periods. Invoking
results from structured control, an intuitive rule pertaining to
the locations of metered and non-metered nodes on the grid
graph is shown to be sufficient for ensuring local identifiability
in radial and meshed networks. The identifiability criterion scales
favorably over time and is numerically corroborated on the IEEE
34-bus feeder.

Index Terms—Smart inverters, power flow problem, Jacobian
matrix, graph Laplacian, generic rank, structural observability.

I. INTRODUCTION

With the integration of renewables, electric vehicles, and
demand-response programs, there is an urging need for solving
optimization tasks in power distribution grids. Optimal con-
trol and resource allocation in power grids however requires
knowing precisely the non-controllable power injections at
all network nodes. Although only a few buses are currently
metered frequently enough, the power inverters found in solar
panels, electric vehicles, and batteries, with their advanced
actuation, sensing, and communication capabilities, constitute
an excellent opportunity for learning non-metered loads.

Nodal power injections can be calculated once the power
system state, that is the complex voltages across all nodes, is
known. Given noiseless specifications, the latter task consti-
tutes the widely studied power flow (PF) problem involving a
set of non-linear equations [1], [2], [3]. The existence and
uniqueness of PF solutions as well as devising PF solvers
are active research areas [4], [5], [6], [7]. Providing two
specifications per node though may be unrealistic in current
distribution grids. Under a noisy setup, the system state can
be inferred through state estimation presuming the set of grid
data is sufficiently rich [8], [9], [10]. A kernel-based load
learning scheme ignoring network information is suggested
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in [11]. Under an approximate grid model, conditions under
which smart meter data from a subset of nodes can be used
to infer non-metered loads are developed in [12].

The aforementioned approaches passively collect data to in-
fer loads. This work builds on the idea of grid probing for load
inference as introduced in [13]. Probing, that is intentionally
perturbing a power system to infer unknown parameters, has
been advocated in [14] and [15] for estimating the oscillation
modes of high-voltage power transmission systems. Moreover,
modulating the primary droop control loop of inverters for
learning direct-current microgrids has been suggested in [16].

This work extends our previous work in [13] in two fronts.
First, we provide intuitive and easily verifiable graph-theoretic
conditions under which probing over multiple time slots can
successfully recover unmonitored loads. The conditions cap-
ture the effects of the number of probing actions and the
topological setup between actuated and non-metered loads.
Second, a new proving technique generalizes our results from
radial to meshed grids, thus covering the timely topic of loopy
multiphase distribution grids as well as transmission systems.

Notation: Column vectors (matrices) are denoted by lower-
(upper-) case boldface letters; sets by calligraphic symbols;
while |X | is the cardinality of set X . The operator (·)> stands
for transposition; d(x) defines a diagonal matrix having x
on its main diagonal; and rank(·) is the matrix rank. The
notation xA means the sub-vector of x indexed by the set A,
while XA,B is the matrix obtained by sampling the rows and
columns of X indexed by subsets A and B.

II. MULTI-INSTANCE GRID PROBING

Before presenting our learning approach, let us briefly
review a grid model and the related PF equations. A power
network having N + 1 nodes can be represented by a graph
G = (N+,L), whose nodes N+ := {0, . . . , N} correspond
to buses, and edges L to distribution lines. The substation bus
is indexed by n = 0 and the remaining buses comprise set
N . The voltage phasor at bus n is expressed in rectangular
coordinates as vr,n + jvi,n. The 2(N + 1)–length vector
collecting the rectangular coordinates of all nodal voltage
phasors, namely v := [v>r v>i ]> with vr := [vr,0 . . . vr,N ]>

and vi := [vi,0 . . . vi,N ]>, constitutes the system state.
Let Y := G + jB denote the system bus admittance

matrix with G and B being the Laplacian matrices of the grid
graph G weighted respectively by the line conductances and



reactances [17, Ch. 3], [18]. By definition, the entries Bnm and
Gnm for n 6= m are non-zero only if buses n and m are phys-
ically connected. The active and reactive power injections at
bus n can be expressed as quadratic functions of v as pn(v) =
vr,n

∑N
m=1(vr,mGnm − vi,mBnm) + vi,n

∑N
m=1(vi,mGnm +

vr,mBnm) and qn(v) = vi,n
∑N

m=1(vr,mGnm − vi,mBnm)−
vr,n

∑N
m=1(vi,mGnm + vr,mBnm), accordingly. The squared

voltage magnitude at bus n is a quadratic function of v as
well since un(v) = v2r,n + v2i,n.

In the conventional PF problem, the system operator fixes
two out of the three quantities (un, pn, qn) for each bus n ∈ N
to specified values along with vr,0 + jvi,0 = 1 for the substa-
tion, and solves (locally) the related nonlinear PF equations to
recover v [17, Ch. 3]. Although the requirement of knowing
two out of the three quantities is typically met in transmission
systems, that is hardly the case in distribution grids due to
limited metering and communication infrastructure [19].

On the other hand, with the proliferation of smart meters and
smart inverters, the grid operator may have access to all three
quantities (un, pn, qn) on a subset of buses. Different from the
classic PF setup, let us partition N+ into two subsets:
• The set M of metered nodes for which (un, pn, qn) are

known and injections are possibly controllable. This set
includes the substation and nodes equipped with meters
and/or smart inverters.

• The remaining set O of non-metered nodes where no
information is available.

If |M| = M and |O| = O, it follows that M + O = N + 1.
At time t and given the grid data {(ut

n, p
t
n, q

t
n)}n∈M, the

system operator could try recovering the unknown loads in
O by first finding the unknown system state vt and then
substituting vt into {pn(vt), qn(vt)}n∈O. Finding vt entails
solving the set of nonlinear equations

un(vt) = ut
n, ∀n ∈M (1a)

pn(vt) = ptn, ∀n ∈M (1b)
qn(vt) = qtn, ∀n ∈M. (1c)

To waive the phase ambiguity in voltage phasors, the substa-
tion voltage angle is arbitrarily set to zero, thus adding vi,0 = 0
in the equation set of (1). By a simple count of the number
of unknowns and equations, a necessary condition for solving
(1) is that 3M + 1 ≥ 2(N + 1) or M ≥ 2O − 1, that is the
number of metered buses must be at least twice the number of
non-metered ones. This condition may be hard to meet either
because either there are not sufficiently many metered buses
or data cannot be communicated frequently enough.

To relax the condition on M , we propose a multi-instant
coupled power flow (MCPF) approach. The idea is to couple
the specifications related to multiple different system states
{vt}Tt=1. The grid transitions from vt to vt+1 by intentionally
perturbing inverter injections. Smart inverters can be com-
manded within microseconds to curtail their active power or
change their power factor for one second, and then return
to their initial status. After each probing action, the grid
converges promptly to a new steady state which nevertheless

depends on the non-perturbed injections as well. Grid probing
can be repeated T successive slots indexed by t ∈ T with
T := {1, . . . , T}. Each probing action provides an additional
set of equations identical in structure to those in (1).

The sets of equations in (1) for t ∈ T are seemingly inde-
pendent. But if non-metered injections remain unaltered during
the probing period, we obtain the additional specifications

pn(vt) = pn(vt+1), ∀n ∈ O, t = 1, . . . , T − 1 (2a)
qn(vt) = qn(vt+1), ∀n ∈ O, t = 1, . . . , T − 1 (2b)

that couple system states across T . The MCPF task can be
now formally stated as follows.

Definition 1 (MCPF task). Given the grid admittance matrix
Y and grid data {(ut

n, p
t
n, q

t
n)}n∈M,t∈T , the multi-instance

coupled power flow problem entails solving the equations in
(1) for t ∈ T jointly with the coupling equations in (2).

The total number of equations in (1) is (3M + 1)T , while
the coupling equations in (2) is 2O(T − 1). Since the total
number of variables is 2(M +O)T , a necessary condition for
solving MCPF is M ≥ 2O

T − 1, which improves upon the
single-slot condition of M ≥ 2O − 1. But is this condition
sufficient for solving the MCPF problem? The next section
studies the identifiability of MCPF.

III. IDENTIFIABILITY ANALYSIS

MCPF can be interpreted as a nonlinear system identifica-
tion problem where the perturbed injections {ptn, qtn}n∈M,t∈T
are the inputs, the metered voltage magnitudes {ut

n}n∈M,t∈T
are the outputs, and the time-invariant non-metered injections
{pn, qn}n∈O are the sought system variables. As customary in
identifiability analysis, data will be assumed noiseless; noisy
counterparts of MCPF are considered in [20].

The MCPF input-output relationship is implicit since the
PF equations involve {vt} as nuisance variables. Because of
this, MCPF is tackled in two steps. The first step of finding
{vt} is the challenging one. The second step simply evaluates
{pn(v1), qn(v1)}n∈O. Hence, if the system states {vt} are
identifiable through (1)–(2), MCPF is deemed successful.

Since the MCPF equations are non-linear, identifiability can
be guaranteed only within a neighborhood of the nominal
{vt}. According to the inverse function theorem, a necessary
and sufficient condition for locally solving MCPF is that the
Jacobian matrix J ({vt}) related to the functions in (1)–(2)
is full column rank. Due to the nonlinearity, matrix J ({vt})
apparently depends on the system state values. Because char-
acterizing the column rank of J ({vt}) for any {vt} is
challenging, we resort to the concept of the generic rank
of a matrix. The identifiability of MCPF is analyzed after
introducing the tool of structural identifiability.

The generic rank of a matrix has been widely used in
observability and controllability of linear dynamical systems
[21]. It is defined as the maximum possible (column) rank
attained if the non-zero entries of the matrix are allowed to
take arbitrary values in R. Thus, the generic rank of a matrix
depends only on its sparsity pattern. Apparently, the sparsity



pattern of J ({vt}) cannot adequately capture its column rank.
Even in the conventional PF setup, there exist specification
sets for which the related Jacobian matrix is invertible in
general, though it becomes singular under specific state values
(including the boundaries for voltage collapse); see e.g., [17].

The generic rank relates to a graph defined by the sparsity
pattern of the matrix. To explain this link, some definitions
from graph theory are needed. A graph is bipartite if its
vertex set V can be partitioned into two mutually exclusive
and collectively exhaustive subsets V1 and V2, such that every
edge e ∈ E connects a node in V1 with a node in V2. Moreover,
a matching E ′ ⊆ E is a subset of edges so that each node in
V is adjacent to at most one edge in E ′. A matching is perfect
if each node in V has exactly one edge in E ′ incident to it.

Let us associate matrix E ∈ RM×N with a bipartite graph
GE having M + N nodes. Each column of E is mapped to
a column node, and each row of E to a row node. An edge
runs from the n-th column node to the m-th row node only if
Emn 6= 0. Based on GE , the ensuing result holds [22].

Lemma 1 ([22]). Matrix E has full generic column rank if
and only if the bipartite graph GE exhibits a perfect matching
from the column nodes to its row nodes.

From Lemma 1, the generic identifiability of MCPF relies
on the sparsity pattern of J ({vt}). The goal is to match every
column node of J ({vt}) to a unique row node. The non-zero
entries of J ({vt}) designate the available links. Recall that its
columns correspond to state variables vtr,n or vti,n for n ∈ N+

and t ∈ T , while its rows relate to the equations in (1)–(2).
The MCPF task can be equivalently expressed as the prob-

lem of solving the nonlinear equations h ({vt}) = 0 where
the mapping h : R2(N+1)T → R(3M+1)T+2O(T−1) stacks
the equations in (1)–(2). To find the related Jacobian matrix,
define the mappings from v to the vectors of squared voltage
magnitudes and power injections at all buses

u(v) := [u0(v) . . . uN (v)]> (3a)

p(v) := [p0(v) . . . pN (v)]> (3b)

q(v) := [q0(v) . . . qN (v)]>. (3c)

Nodal power injections are defined as p+jq = d(v)i∗ with
i = Yv being the vector of nodal currents. Eliminating i yields
p + jq = d(v)Y∗v∗. By transforming these equations to
their rectangular coordinates and differentiating, the Jacobian
matrices for the mappings in (3) can be shown to be [6]

Ju(v)=
[
2 d(vr) 2 d(vi)

]
(4a)

Jp(v)=

[
−Gd(vr)−Bd(vi) −Gd(vi)+Bd(vr)
−d(Gvr)+ d(Bvi) −d(Bvr)−d(Gvi)

]
(4b)

Jq(v)=

[
Bd(vr)−Gd(vi) Bd(vi)+Gd(vr)

+ d(Bvr)+ d(Gvt,i) − d(Gvr)+ d(Bvi)

]
(4c)

Neglecting the particular matrix entry values, the sparsity
pattern of Ju(v) is captured by [IN+1 IN+1]. Matrices Jp(v)
and Jq(v) have the same sparsity pattern that can be depicted
in a simpler form via one of the grid Laplacians as [B B].

The block partitions of the MCPF Jacobian J constitute
row-sampled submatrices of Ju(vt), Jp(vt), and Jq(vt) for
all t. The matrix obtained by preserving the rows of Jp(vt)
associated with M (resp. O) is denoted by Jp

M(vt) (resp.
Jp
O(vt)). Similar notation is used for Ju(vt) and Jq(vt).

Then, matrix J ({vt}) can be partitioned as

JM(v1) 0 0 · · · 0
0 JM(v2) 0 · · · 0

0 0 JM(v3)
... 0

...
...

...
. . .

...
0 0 0 · · · JM(vT )

JO(v1) −JO(v2) 0 · · · 0
0 JO(v2) −JO(v3) · · · 0
...

...
. . . . . .

...
0 0 0 · · · −JO(vT )


(5)

with the two types of blocks defined as

JM(vt) :=


2e>N+2

Ju
M(vt)

Jp
M(vt)

Jq
M(vt)

 and JO(vt) :=

[
Jp
O(vt)

Jq
O(vt)

]

where eN+2 is the (N+2)-th canonical vector of length 2(N+
1). Each JM(vt) block is of dimension (3M + 1)×2(N + 1)
and each JO(vt) block is 2O × 2(N + 1).

The rows of J ({vt}) associated with the coupling equations
can be interlaced with the block rows associated with the
single-slot equations such that the resultant row-permuted
version of J ({vt}) denoted by J̃ ({vt}) is block-tridiagonal

J̃ ({vt}) =


J̃1(v1) · · · · · · 0

... J̃2(v2) · · · · · ·

0
...

. . . · · ·

0 0
... J̃T (vT )

 . (6)

The 2O(T − 1) coupling equations can be evenly distributed
over the T slots. Then, the blocks {J̃t(vt)} on the main diag-
onal of J̃ ({vt}) are of dimension

(
3M + 1 + 2O(T−1)

T

)
×

2(N + 1). If each one of these blocks enjoys a bipartite
matching, J̃ ({vt}) and hence J ({vt}) are generically full
column rank by Lemma 1. In this case, the blocks lying on
the super- and sub-diagonals of J̃ ({vt}) can be ignored.

While designing {J̃t(vt)}t∈T , an equation coupling slots t
and t+1 can be assigned to J̃t(vt) or J̃t+1(vt+1). In [20], we
show that this assignment can be accomplished in a way such
that each J̃t(vt) gets O coupling (active or reactive power)
equations covering the entire set O. Each J̃t(vt) receives
O(T−2)

T additional coupling equations related to a subset of
nodes Ot ⊂ O. The sparsity pattern of J̃t(vt) is then

IM,N+ IM,N+

BM,N+ BM,N+

BM,N+ BM,N+

BO,N+ BO,N+

BOt,N+ BOt,N+

 (7)



where the first block row relates to metered voltage magni-
tudes; the second and third block rows to metered injections;
while the fourth and fifth block rows to coupled injections.

To create a bipartite matching for block J̃t(vt), unfold the
sparsity pattern in (7) column-wise using N+ =M∪O as

IM,M IM,O IM,M IM,O

BM,M BM,O BM,M BM,O

BM,M BM,O BM,M BM,O

BO,M BO,O BO,M BO,O

BOt,M BOt,O BOt,M BOt,O

 . (8)

The first block column in (8) is associated with variables
{vtr,n}n∈M and it can be matched to the first block row via
the diagonal of IM,M. Similarly, the second block column
(variables {vtr,n}n∈O) can be matched to the fourth block
row; and the third block column (variables {vti,n}n∈M) can
be matched to the second block row.

To complete a bipartite matching, the fourth block column
(variables {vi,n}nO) has to be matched to the union of the
third and fifth block rows. Lacking a simple diagonal matching
now, we leverage the sparsity pattern of B capturing the grid
topology. It suffices to match the nodes in O to the nodes
in M ∪ Ot. Because O = Ot ∪ Ōt, the nodes in Ot can
be matched to themselves (through some diagonal entries of
BOt,O). We are left with having to match the nodes in Ōt to
the nodes in M. Since |Ot| = O(T−2)

T , it follows |Ōt| = 2O
T .

In summary, to guarantee that J ({vt}) is generically full
column rank, we have to match each subset Ōt independently
over t ∈ T to M. Devising T/2 instead of T matchings is
actually sufficient as asserted by the next result shown in [20].

Lemma 2. For even T , the diagonal blocks {J̃t(vt)}t∈T in
(6) exhibit only T/2 distinct sparsity patterns. Specifically,
the blocks J̃t(vt) and J̃t+1(vt+1) for odd t have identical
patterns, that is Ōt = Ōt+1 for odd t.

The intuition behind the modulo-2 repetition is that injection
equations occur in active-reactive pairs with identical sparsity
patterns. Based on the above, the main claim on the identifi-
ability of MCPF follows; see [20] for a proof.

Theorem 1. Consider the grid graph G = (N+,L) with
N+ = M ∪ O. If O can be partitioned into the mutually
exclusive and collectively exhaustive sets {Ōk}T/2

k=1 such that
each one of them independently is perfectly matched to M,
the Jacobian matrix J ({vt}) is generically full column rank.

Theorem 1 implies that for T = 2, the entire O has to
be mapped to M. This was previously shown in [23] using
a different technique confined to radial grids. Theorem 1
applies to meshed networks including multiphase grids. The
seemingly cumbersome task of matching {Ōk}T/2

k=1 to M can
be efficiently performed by properly casting it as a maxflow
problem [20]. Theorem 1 suggests also that as T increases,
progressively smaller subsets of non-metered nodes need to
be mapped to M improving identifiability as illustrated next.

Fig. 1: Matchings on the IEEE 34-bus grid for (T,O)=(4, 18).
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Fig. 2: Condition number histograms for J ({vt}).

IV. ILLUSTRATING EXAMPLES

We will use a single-phase equivalent of the IEEE 34-bus
feeder [24], [25]. At each zero-injection bus, a load equal to the
load of its parent bus was inserted. Solar panels with capacity
of 0.1 MVA were considered on all buses in M. Figure 1
depicts a scenario where O = 18 out of the 34 buses are
non-metered. Probing over T = 4 slots is successful, since O
can be partitioned into O1 and O2 with 9 buses each, such
that they are independently matched to metered buses. Probing
over T = 2 is not successful though because buses {5, 7}
for example cannot be uniquely matched to metered ones.
Returning to T = 4, if buses {20, 32} are swapped between
O and M, the criterion of Th. 1 is not met either.

Since Th. 1 relies on the sparsity pattern rather than the
exact values of J ({vt}), we evaluated J ({vt}) for 1,000
random {vt}. At t = 1, the solar panels were assumed to
be producing 4 times their active load or 0.1 MW, whichever
was smaller. During probing t ∈ {2, 3, 4}, solar generation was
randomly curtailed in a uniform fashion independently per bus
inM. Reactive injections used the remaining inverter apparent
capacity with random signs. The histograms for the condition
number of J ({vt}) obtained with and without swapping buses
{20, 32} are shown in Fig. 2 and comply with Th. 1.

To conclude, this work has put forth multi-period probing
for learning non-metered injections. A sufficient identifiability
condition has been derived applying to meshed grids and
quantifying the benefit of longer probing periods. The effect
of noise, efficient solvers, optimal probing design, and graph-
imposed bounds on O and T constitute current research topics.
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