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Abstract—Distributed generation and the urge for a more effi-
cient grid operation will increase the frequency of network topol-
ogy reconfigurations in tomorrow’s power grids. High-throughput
synchrophasor and intelligent electronic device readings provide
unprecedented instrumentation capabilities for generalized state
estimation (GSE), which deals with identifying the power system
state jointly with its network topology. This task is critically
challenged by the complexity scale of a grid interconnection,
especially under the detailed GSE model. Upon modifying the
original GSE cost by block-sparsity promoting regularizers, a
decentralized solver with enhanced circuit breaker verification
capabilities is developed. Built on the alternating direction method
of multipliers, the novel method maintains compatibility with
existing solvers and requires minimum information exchanges
across the control centers of neighboring power grids. Numer-
ical tests on an extended IEEE 14-bus model corroborate the
effectiveness of the novel approach.

I. INTRODUCTION

Network topology cognition and state estimation are two
basic modules in power system monitoring [1]. For improved
topology error detection, the two tasks are typically carried
out jointly under the term generalized state estimation (GSE).
GSE employs a detailed grid model where each substation
is decomposed into its bus sections and switches, while the
power system state is expanded to the bus section level and
augmented by circuit breaker currents. To ensure identifiability,
known breaker statuses can yield structural constraints: open
(closed) switches imply zero currents (voltage drops).

The undergoing smart grid transformation brings about new
challenges and opportunities for GSE. Distributed generation
calls for frequent topology reconfigurations, while the control
areas of an interconnection become even more strongly related
in a deregulated energy market [8]. To enable situational
awareness, power system states comprising thousands of vari-
ables should be securely updated in real time. At the same
time, phasor measurement units (PMU) provide high-accuracy
voltage and current phasors synchronized across the grid giving
rise to simple linear models. Even though intelligent electronic
devices (IED) can record the status of circuit breakers, not all
switches are IED-instrumented, and even for the monitored
ones, the reported status may be erroneous due to switch
malfunctioning, communication failures, or manipulation.

Performing GSE at the interconnection level is the chal-
lenge considered here. Conventional centralized GSE solutions
typically engage the least-absolute value (LAV), or the robust
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Huber estimators [15], [2], [13]. Alternatively, the largest
normalized residual test is borrowed from bad data detection
and applied in [5] on the Lagrange multipliers corresponding
to circuit breaker constraints. Jointly estimating the state and
the faults in DC electric circuits via `1-norm regularization
has been considered in [9], where standard quadratic program
solvers were employed. Reference [4] poses a mixed integer
non-linear program whose complexity is not deterministically
polynomial. In our recent work [12], the prior information on
switches is utilized to effect block-sparsity regularizers, fea-
turing a GSE solver with enhanced breaker status verification
capabilities.

Decentralized solutions are usually confined to the conven-
tional power system state estimator; see e.g., [6] for a recent
survey. This work builds on the GSE approach in [12] and the
framework of [11] to develop a decentralized GSE solver. The
non-differentiability emerging with the circuit breaker verifi-
cation penalties is efficiently tackled by appropriately using
the alternating direction method of multipliers (ADMM) [3].
A systematic cooperation between control centers sharing state
variables is enabled with unique features: backward compati-
bility to existing solvers, minimum inter-area exchanges, and
guaranteed convergence to the centralized solution.

The rest of the paper is outlined as follows: Given phasor
measurements, GSE is first modeled as an `2-norm regularized
linearly-constrained quadratic program in Section II. In Sec-
tion III, the novel decentralized GSE approach is developed,
and it is later numerically evaluated in Section IV.

Notation: Complex-valued variables are indicated by a
tilde. Lower- (upper-)case boldface letters denote column
vectors (matrices), and calligraphic letters stand for sets. The
notation (·)′ denotes transposition.

II. SYSTEM MODELING & PROBLEM STATEMENT

Consider a power interconnection partitioned into K areas,
each one monitored by its own control center; see e.g., Fig. 1.
The grid is modeled at the bus section/switching device net-
work level [1, Ch. 8]. Each area k consists of Bk bus sections,
called simply buses hereafter, Lk transmission lines, and Ck

circuit breakers. Let ṽk ∈ CBk , ĩk ∈ CBk , f̃k ∈ CLk , and
s̃k ∈ CCk denote the vectors of bus voltages, current injections,
line currents, and breaker currents, respectively. By convention,
current directionality is from lower- to higher-indexed buses.

If Ỹf,k is the area k’s line-bus admittance matrix, Ohm’s
law implies

f̃k = Ỹf,kṽk. (1)



To model the effect of area k’s breakers, define the Ck × Bk

breaker-bus incidence matrix Ak: if the c-th breaker connects
buses m and n in area k, the m(n)-th entry of the c-th row of
Ak is equal to +1(−1), and zero otherwise. Kirchoff’s current
law asserts that the sum of the currents flowing out of every
bus is zero, or

ĩk = Ỹkṽk +A′
ks̃k (2)

where Ỹk is the bus admittance matrix of area k [6].

Power systems are currently being instrumented with pha-
sor measurement units that can measure voltage and current
phasors across the grid. Moreover, if an intelligent electronic
device has been installed on a circuit breaker, the breaker status
(open or closed) is reported to the control center. However, not
all entries of (ṽk, ĩk, f̃k, s̃k) are measured, and not all breakers
are monitored either. Given the area grid model [cf. (1)-
(2)], together with the analog measurements and the reported
breaker statutes collected in that area; the generalized state
estimator (GSE) aims at jointly estimating the area system
state and determining the status of unmonitored breakers.

Specifically, the power system state in GSE is augmented
from ṽk to include s̃k too. According to (1)-(2), the mea-
sured entries of (ṽk, ĩk, f̃k, s̃k) are linearly related to the
augmented state x̃k := [ṽ′

k s̃′k]
′. Upon expressing both PMU

measurements z̃k and states x̃k in rectangular coordinates, the
following real-valued measurement model holds:

zk = Hkxk + nk (3)

where zk := [Re {z̃k}′ Im {z̃k}′]′ ∈ RMk ; Hk is the associ-
ated measurement matrix; xk := [Re {x̃k}′ Im {x̃k}′]′ ∈ RNk

for Nk := 2(Bk + Ck); while nk captures instrumentation
errors and modeling inaccuracies modeled as a zero-mean
random vector whose covariance is the identity matrix.

Although each measurement is collected by a single control
center, neighboring areas may have shared state variables re-
sulting in partially overlapping xk’s. In the toy interconnection
of Fig. 1 for example, area 1 measures the current flowing on
line 37-44. Even though the voltage at bus 44 is not in the
footprint of area 1, it is included in state vector x1 since it is
related to the aforementioned 37-44 line current reading.

The measurements described by (3) typically do not suffice
to ensure identifiability of the augmented state xk. GSE
alleviates this concern by further imposing network topology-
implied constraints. In detail, if no load or generation resides
at a bus, its bus injection current is always zero; and that is the
case for the majority of the buses in Fig. 1 – except for those
indicated by arrows such as bus 15. It is then obvious from
(2) that every zero-injection bus incurs two real-valued linear
constraints on xk. Additional nullspace constraints are dictated
by breaker statuses. When a breaker is open, its current is
apparently zero; whereas, if closed, the voltage drop across its
ends is zero (recall that a breaker has zero-impedance). To form
the constraints, let em be the m-th canonical vector. If breaker
m of area k is open, then e′ms̃k = 0; otherwise, e′mAkṽk = 0.
Hence, every monitored breaker status contributes a pair of
linear constraints on xk.

Upon expressing all Tk topology-imposed constraints as
Ckxk = 0, finding the GSE for area k can be then posed as

the linearly-constrained least-squares problem

x̂k,LSE := argmin
xk

1

2
‖zk −Hkxk‖22 (4)

s.t. Ckxk = 0.

Albeit the GSE in (4) can be found in closed form, it has
several limitations. First, prior information on uninstrumented
breakers, such as typical substation configurations, is not
accounted for. Even for a monitored breaker, there could be
reasonable concerns (e.g., large measurement residuals) in
using its recorded status as a hard constraint. Furthermore,
inferring the status of an unmonitored breaker m could be
misleading, since the (ˆ̃sk,LSE, ˆ̃vk,LSE) corresponding to x̂k,LSE

will yield neither e′mˆ̃sk,LSE = 0, nor e′mAk
ˆ̃vk,LSE = 0.

Finally, solving separately the K GSE problems of (4) is
suboptimal due to the variable sharing, and the risk of com-
promising local observability.

To tackle the limitations associated with uninstrumented or
“suspected” circuit breakers, a block-sparsity-promoting GSE
approach was proposed in [12]. Let Bk be the set of all breakers
whose status must be verified in area k. If breaker m ∈ Bk is
suspected to be open, then the vector [Re{e′ms̃k} Im{e′ms̃k}]′
is zero. Alternatively, if breaker m is expected to be closed,
the vector [Re{e′mAṽk} Im{e′mAṽk}]′ will be zero instead.
Either way, prior information on breaker m incurs block spar-
sity on the vector Bk,mxk for an appropriately defined 2×Nk

matrix Bk,m. Penalizing the cost in (4) by the number of
nonzero {Bk,mxk}m∈Bk

leads to a hard optimization problem.
Motivated by advances in block-compressed sensing, the latter
problem was finally relaxed to the second-order cone program

min
xk

1

2
‖zk −Hkxk‖22 + λ

∑
m∈Bk

‖Bk,mxk‖2 (5)

s.t. Ckxk = 0

where λ > 0 is a tuning parameter.

III. A DECENTRALIZED ALGORITHM

Solving each per area GSE of (5) separately is clearly
suboptimal. Indeed, measurements are used only by the control
center they are collected at shared state estimates will not
agree, while control areas may become unidentifiable. An
interconnection-wide GSE should consider minimizing the
sum of the per area costs subject to the per-area constraints in
(5), yet critically ensure inter-area consensus on shared states.
Such a goal can be achieved via solving

min
{xk}

K∑
k=1

(
1

2
‖zk −Hkxk‖22 + λ

∑
m∈Bk

‖Bk,mxk‖2

)
(6a)

s.t. Ckxk = 0, ∀ k (6b)
xk[l] = xl[k], ∀ l ∈ Nk,∀ k (6c)

where Nk is the set of areas sharing states with area k, and
xk[l] denotes the subvector of xk containing the state variables
shared with area l ∈ Nk.

Towards a decentralized algorithm for solving (6), the
consensus constraints in (6c) should be decoupled across areas.
That can be accomplished upon introducing auxiliary variables
xkl, and replacing (6c) by the pair of constraints xk[l] = xkl



and xl[k] = xkl. Moreover, to effectively cope with the
nondifferentiability of the ‖Bk,mxk‖2 terms in (6a), additional
auxiliary variables uk,m = Bk,mxk are introduced as

min
{xk,xkl}
{uk,m}

K∑
k=1

(
1

2
‖zk −Hkxk‖22 + λ

∑
m∈Bk

‖uk,m‖2

)
(7a)

s.t. Ckxk = 0, ∀ k (7b)
uk,m = Bk,mxk, ∀ m ∈ Bk, ∀ k (7c)
xk[l] = xkl, ∀ l ∈ Nk, ∀k. (7d)

Optimization in (7) is subsequently solved using ADMM, a
method that has been applied for distributing several optimiza-
tion problems [14], [3]. Lagrange multipliers {µk,m}m∈Bk,k

and {νkl}k,l are first introduced for constraints (7c) and (7d),
respectively. ADMM then exploits the method of multipliers
concatenated with an iteration of the Gauss-Seidel algorithm.
After defining the augmented Lagrangian function of (7) as

Lc

(
{xk,uk,m,xkl}; {µk,mνkl}

)
:= (8)

K∑
k=1

(
1

2
‖zk −Hkxk‖22 + λ

∑
m∈Bk

‖uk,m‖2

+
∑

m∈Bk

(
µ′

k,m(uk,m −Bk,mxk) +
c

2
‖uk,m −Bk,mxk‖22

)
+
∑
l∈Nk

(
ν′
kl(xk[l]− xkl) +

c

2
‖xk[l]− xkl‖22

))

for a predefined constant c > 0, ADMM iterates through the
following steps:

{xt+1
k } = arg min

{Ckxk=0}
Lc({xk,u

t
k,m,x

t
kl}; {µt

k,mνt
kl})

(9a)
{xt+1

kl ,ut+1
k,m} = arg min

{xkl},
{uk,m}

Lc({xt+1
k ,uk,m,xkl}; {µt

k,mνt
kl})

(9b)
µt+1

k,m = µt
k,m + c · (ut+1

k,m −Bk,mxt+1
k ), ∀m ∈ Bk, ∀k

(9c)
νt+1
kl = νt

kl + c · (xt+1
k [l]− xt+1

kl ) ∀k, l (9d)

which are elaborated next.

Starting with the update of xk’s, notice that the min-
imization in (9a) decouples across areas. Assuming that
{ut

k,m,µ
t
k,m}m∈Bk

and {xt
kl,ν

t
kl}l∈Nk

are available at the k-
th control center, the local state iterate xt+1

k can be updated in
closed form as the minimizer of a linearly-constrained convex
quadratic program. Actually, it will be shown shortly that the
auxiliary variables {xt

kl}l∈Nk
can be eliminated.

Since the augmented Lagrangian is separable with respect
to {uk,m} and {xkl}, the minimization of (9b) decouples over
the two variable sets. Then, it can be verified that xkl’s are
updated as

xt+1
kl =

xt+1
k [l] + xt+1

l [k]

2
+

νt
kl + νt

lk

2c
. (10)

Fig. 1: The IEEE 14-bus system modeled at the substation
level [7]. Solid (hollow) squares indicate closed (open) circuit
breakers, and thick (thin) lines correspond to transmission lines
(breaker connections). Lassos show control area footprints.

Consider next the updates of νkl and νlk according to (9d). As
in [11] and [14], adding the two updates by parts and solving
for xt+1

kl yields

xt+1
kl =

xt+1
k [l] + xt+1

l [k]

2
+
νt
kl + νt

lk

2c
−
νt+1
kl + νt+1

lk

2c
. (11)

By equating the right-hand sides of (10) and (11), yields
νt
kl + νt

lk = 0 for all t. Thus, the second summand in (10) is
cancelled, and the iterate xt

kl can be merely substituted by the
mean of xt

k[l] and xt
l [k] in all other updates.

Regarding the {uk,m} variables, the minimization in
(9b) decouples not only across areas, but over the single
{uk,m}m∈Bk

too. After completing the squares, the latter can
be updated by solving

ut+1
k,m := arg min

uk,m

λ‖uk,m‖2 +
c

2
‖uk,m − dt+1

k,m‖
2
2 (12)

where dt+1
k,m := Bk,mxt+1

k − 1
cµ

t
k,m. Interestingly, using the

notion of the subdifferential, the minimizer of (12) is provided
in closed form as (see e.g., [10, Sec. V.B])

ut+1
k,m = dt+1

k,m ·

[
1− λ

c · ‖dt+1
k,m‖2

]
+

(13)

where [x]+ := max{x, 0}. The block-thresholding operator in
(13) indicates that depending on the value of λ, the iterates
ut
k,m will be block-sparse, and thus most of the Bk,mxt

k
vectors will be driven to zero as desired.

An iteration cycle ends with the steps (9c)-(9d). Using
again the simplification of (10), (9d) boils down to

νt+1
kl = νt

kl + c ·
xt+1
k [l]− xt+1

l [k]

2
. (14)
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Fig. 2: Per area error curves etk,c (bottom) and etk,o}k (top) for
the novel decentralized GSE algorithm.

IV. NUMERICAL TESTS

The derived decentralized GSE is numerically evaluated us-
ing the IEEE 14-bus benchmark system depicted in Fig. 1 [7].
Power system measurements and admittance matrices were
generated by the MATLAB toolbox MATPOWER [16]. The
interconnection-wide state comprises 65 bus voltages and 73
circuit breaker currents, and 316 measurements are collected.
Among all 65 buses, bus voltages phasors are recorded only
at the 30 buses indicated by either boxed numbers, the bus-
bar symbol, or the injection symbol; e.g. buses 1, 17, and 15,
respectively. Injection currents are metered at the 15 injection
buses, and line currents are measured on both ends of all
transmission lines. Finally, IEDs record the current flow on
all 73 breakers. Measurement noise is modeled as Gaussian
with standard deviation per real component σV = 0.01 and
σI = 0.02 for voltages and currents, respectively.

To evaluate the convergence of the algorithm, two perfor-
mance metrics are adopted: the per area error to the centralized
solution of (6), that is etk,c := ‖x(c)

k − xt
k‖2/Nk, and the per

area error to the true state defined as etk,o := ‖xk −xt
k‖2/Nk.

The obtained error curves shown in Fig. 2 indicate that the
decentralized algorithm achieves the estimation accuracy of
the centralized one within a few iterations.

The circuit breaker verification capabilities of the new
approach were considered next. A subset of suspected breakers
S was sampled uniformly at random from {1, . . . , 73}. In 80%
of the breakers in S, the assumed status coincided with the
true one, whereas for the rest 20% it was reversed. Figure 3
shows the number of breaker status errors obtained by the
ordinary GSE [cf. (6) with λ = 0] and the decentralized
`2-regularized GSE of (7) with λ = 103, for subsets S of
increasing cardinality and averaged over 100 Monte Carlo
experiments. The numerical results corroborate the enhanced
breaker status verification properties of the novel approach.
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