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Abstract—Instrumenting power networks with phasor mea-
surement units (PMUs) facilitates several tasks including opti-
mum power flow, system control, contingency analysis, visualiza-
tion, and integration of renewable resources, thus enabling situa-
tional awareness – one of the key steps toward realizing the smart
grid vision. The installation cost of PMUs currently prohibits
their deployment on every bus, which in turn motivates their
strategic placement across the power grid. As state estimation is
at the core of grid monitoring, PMU deployment is optimized here
based on estimation-theoretic criteria. Considering both voltage
and current PMU readings and incorporating conventionally
derived state estimates under the Bayesian framework, PMU
placement is formulated as an optimal experimental design task.
To obviate the combinatorial search involved, a convex relaxation
is also developed to obtain solutions with numerical optimality
guarantees. In the tests performed on standard IEEE 14- and
118-bus benchmarks, the proposed relaxation is very close to and
oftentimes attains the optimum.

I. INTRODUCTION

Phasor measurement units are contemporary metering de-
vices installed on system buses to measure phasors of bus
voltages and currents flowing across lines [13], [6]. Merits of
PMUs (a.k.a. synchrophasors) over conventional power meters
include increased precision in measuring phasor angles due to
network-wide synchronization and higher sampling rates.

PMU penetration has so far been rather limited, mainly be-
cause of the installation and networking costs involved. How-
ever, their important role in network operation and the growing
maturity of PMU technology are expected to markedly in-
crease their deployment [4]. According to the North American
Synchrophasor Initiative, the number of PMUs installed and
networked in the eastern/western interconnection will likely
raise from 105/56 as of 2009 to 400-600 by 2014 [11].

Strategic placement of synchrophasors is currently a critical
issue for the power operators worldwide, and has been consid-
ered in the context of topological observability (existence of a
spanning measurement tree) [2], and incomplete observability
[12]. Building on these notions, optimal PMU placement
has been posed as a binary linear program [7]; as a binary
quadratic one [5]; or as a stochastic optimization problem [1].

In this work, PMU sites are selected purely based on
estimation-theoretic criteria. Estimating the power grid state
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is traditionally performed by the supervisory control and data
acquisition (SCADA) center based on conventional meter
readings [16, Ch. 12]. The improvement in estimation ac-
curacy by combining PMU and SCADA measurements has
been documented in [17]. Similar to [10], PMU placement
is formulated here as a variation of the optimal experimen-
tal design problem [14], [3, Sec. 7.5]. After posing system
state estimation as a linear regression problem, SCADA-
based estimates are utilized as Gaussian priors (Section II).
PMU placement is then optimized by minimizing the error
covariance matrix (Section III). The combinatorial problem
involved is suboptimally solved after relaxing it to a convex
semidefinite program (SDP) [3], [8]. The SDP-derived cost
value yields bounds on the suboptimality gap. Surprisingly, the
numerical results of Section V show that this gap is small or
oftentimes zero for the IEEE 14- and 118-bus power network
benchmarks [15]. In contrast, the approach of [10] ignores
current measurements of PMU lines, and estimates only the
phase of the system state using a greedy algorithm.

Notation: Lower- (upper-) case boldface letters denote col-
umn vectors (matrices), and calligraphic letters stand for sets;
1N (0N ) denotes the all-ones(zeros) vector of length N ; (·)T

and (·)? transposition and complex conjugation, respectively;
N (m,Σ) stands for the multivariate Gaussian probability
density function with mean m and covariance matrix Σ.

II. PMU-BASED STATE ESTIMATION

Consider a power grid consisting of Nb buses connected
through Nl transmission lines. The problem of estimating the
state of the grid is equivalent to estimating the complex volt-
ages across its buses. In rectangular coordinates, the system
state is described by the 2Nb × 1 vector vo := [vT

o,r vT
o,i]

T ,
where vo,r and vo,i comprise the real and imaginary parts of
nodal voltages, respectively.

Consider the PMU measurements collected at the n-th bus.
Without loss of generality, these readings include the complex
bus voltage and the complex currents flowing over the Ln lines
incident to the n-th bus. The synchrophasor measurements in
rectangular coordinates are collected in the vector zn ∈ RMn

with Mn := 2(Ln + 1), and obey the following linear model

zn = Hnvo +wn (1)

where Hn ∈ RMn×2N is the associated regression matrix, and
wn ∼ N (0,Σn) denotes the additive Gaussian noise vector



that is assumed independent across PMUs.
To capture presence or absence of a PMU, a binary variable

an is introduced per bus: its value is 1 if a PMU is present
at the n-th bus; and 0, otherwise. For a given PMU indicator
vector a := [a1 · · · aNb

]T , the maximum likelihood estimate
(MLE) of the system state obeying the linear-Gaussian model
(1), is

v̂MLE = A−1

(

Nb
∑

n=1

anHT
nΣ

−1
n zn

)

(2)

where matrix A (assumed non-singular) is given by

A :=
Nb
∑

n=1

anHT
nΣ

−1
n Hn. (3)

Invertibility of A apparently depends on the non-zero entries
of a. As the number of PMUs is small, especially during their
initial deployment phase, system identifiability is at risk. By
incorporating SCADA measurements however, it is possible to
regularize the system matrix, and thus enable state estimation
even when A is singular [17]. Nonetheless, simply aggregating
SCADA and PMU readings faces three challenges: (i) SCADA
measurements are available every 1–5secs, whereas PMU ones
are sampled every 0.1–0.2secs [4]; (ii) explicitly including
conventional measurements results in a nonlinear estimation
problem of even higher dimensionality; and (iii) upgrading the
existing estimation software to accommodate high-rate PMU
readings compromises backward compatibility [17].

These challenges are addressed here using a Bayesian
estimation approach. The SCADA-based state estimate v̂s ex-
pressed in rectangular coordinates is used as prior information
for the PMU-based estimation task. Specifically, it is assumed
that the actual state vector is distributed as vo ∼ N (v̂s,Σs).
Based on the linear model of (1) and the SCADA-based
Gaussian prior information, the system state can now be
obtained via the maximum a-posteriori probability (MAP)
estimate uniquely given by

v̂p = Σp

(

Nb
∑

n=1

anHT
nΣ

−1
n zn +Σ−1

s v̂s

)

(4)

where the so-called gain matrix is defined as [16], [13]

Σp :=
(

A+Σ−1
s

)−1
. (5)

Standard results assure that v̂p ∼ N (vo,Σp) [9].
Phase Alignment: To align the phase of the SCADA-

based prior with that of PMU readings, a PMU needs to be
installed at the so-called reference bus – typically enumerated
as first; see also [13]. Once the reference bus has been PMU-
instrumented, its measured voltage phase is subtracted from
all other PMU readings so that Im(v1o) is artificially set to
zero in the PMU-based system state. This clearly implies
that a1 = 1 and that Im(v1o) is removed from the state
vector. For notational brevity, vo will henceforth refer to the
reduced (2Nb−1)×1 vector, while Hn’s (A) will denote the
corresponding matrices obtained after ignoring the (N +1)-st
column (and row) from the respective matrices of (1) and (3).

III. OPTIMAL PMU PLACEMENT

Building on the state estimate in (4), the problem of PMU
placement can be now stated as follows. Given

i) a power network of Nb buses (nodes);
ii) matrices {Hn,Σn}Nb

n=1 (cf. (1) and Section IV-A);
iii) the covariance matrix Σs (cf. Section IV-B);
iv) an integer k with k ≤ N ,

and assuming a PMU installed at the reference bus, the goal
is to choose (k − 1) buses to be PMU-instrumented so that
the estimation error of (4) is minimized.

PMU placement is cast here as a variation of the optimal
experimental design problem [14]. The state estimation er-
ror for a specific PMU placement a has covariance matrix
Σp(a) =

(

A(a) +Σ−1
s

)−1
, where the dependence on a will

be explicitly denoted throughout this section.
Apparently, between two candidate placements a and a′

with 1T
Nb

a = 1T
Nb

a′ = k, placement a is preferable over a′ if
Σp(a′) � Σp(a). But, if Σp(a′) − Σp(a) is an indefinite
matrix, none of the placements is better than the other.
To overcome this partial ordering limitation, placements are
typically ranked based on a scalar-valued function of Σp(a),
that is to be minimized [14], [3]. Typical function choices are:

(c1) E-optimal design: fE(a) := λmax(Σp(a)), where λmax

denotes the maximum eigenvalue of Σp(a);
(c2) A-optimal design: fA(a) := trace(Σp(a)) that is equal

to the sum of the eigenvalues of Σp(a);
(c3) M-optimal design: fM (a) := maxi{[Σp(a)]ii} corre-

sponding to the maximum diagonal entry of Σp(a); and
(c4) D-optimal design: fD(a) := log det (Σp(a)), where

det(·) denotes matrix determinant.
Details and interesting geometric interpretations regarding
choices (c1)-(c4) can be found in [3, Sec. 7.5], [14].

After this scalarization step, the C-optimal PMU placement
can be found as the solution of the optimization problem

ãC := argmin
a

fC(a) (6a)

s.t. aT1Nb
= k, a1 = 1 (6b)

a ∈ {0, 1}Nb (6c)

where C ∈ {E,A,M,D}. Unfortunately, solving (6) entails
combinatorial complexity [3], [8]. Suboptimal solutions can
be obtained by converting the troublesome binary constraint
to the box constraint 0Nb

≤ a ≤ 1Nb
with the inequalities

understood entry-wise [3]. Since {0, 1}Nb ⊂ [0, 1]Nb , such
a conversion is a relaxation of the original problem. After
defining the relaxed feasible set A := {a : aT1Nb

= k, a1 =
1, 0Nb

≤ a ≤ 1Nb
}, the relaxed problem is expressed as

ǎC := argmin
a∈A

fC(Σp(a)). (7)

The problem in (7) can be efficiently solved as a convex
problem for all C ∈ {E,A,M,D} [3], [8]. The convex
formulations are presented briefly for completeness.

For the E-optimal design, instead of minimizing
λmax(Σp(a)), one can alternatively maximize λmin(Σ−1

p (a))



by introducing the auxiliary variable t and solving the SDP

(ǎE , ťE) := arg min
a∈A,t

{

−t : A(a) +Σ−1
s � tI2Nb−1

}

. (8)

For the A-optimal design, minimizing the trace of Σp(a) can
be accomplished after introducing the auxiliary vector variable
t := [t1 . . . t2Nb−1], leading to the SDP

(ǎA, ťA) := arg min
a∈A,t

tT12Nb−1 (9)

s.t.
[

A(a)+Σ−1
s ek

eTk tk

]

� 0, k = 1, . . . , 2Nb−1.

The M-optimal design can be suboptimally solved by the SDP

(ǎM , ťM ) := arg min
a∈A,t

t (10)

s.t.
[

A(a)+Σ−1
s ek

eTk t

]

� 0, k = 1, . . . , 2Nb−1.

Finally, the relaxed D-optimal placement can be expressed as
the convex optimization problem

ǎD := argmin
a∈A

− log det
(

A(a) +Σ−1
s

)

(11)

that can be efficiently solved via standard software.
The minimizers ǎC of (8)-(11) do not necessarily have

binary entries. A simple heuristic to obtain a binary solution
is to set the largest k entries of ǎC to 1, and zero the rest
[3]. The so-acquired vector, denoted by âC , belongs to the
feasible set of the original non-convex problem (6), but in
general it is not a minimizer of (6). It provides though the
upper bound fC(ãC) ≤ fC(âC) for all C. Additionally, due
to the relaxation, the minimizers of (8)-(11) yield also the
lower bound fC(ǎC) ≤ fC(ãC) for all C. When the non-
negative gap fC(âC)− fC(ǎC) becomes zero, the relaxation
is deemed exact in the sense that fC(âC) = fC(ãC) [8].

IV. INPUT DATA

A. Regression Matrices

Let ṽ = vr + jvi be the Nb × 1 vector of complex nodal
voltages. The vector of complex nodal currents is [18]

ĩ = Yṽ (12)

where Y ∈ CNb×Nb denotes the bus admittance matrix, and
can be explicitly expressed in terms of the bus admittances,
the line series admittances and charging susceptances, and
potential tap ratios and phase shifters. Similarly, the 2Nl × 1
vector of complex line currents can be written as [18]

ĩfl = Yflṽ (13)

where Yfl ∈ C2Nl×Nb is the line-to-bus admittance matrix.
Note that the current flowing from bus m to bus n is not equal
to the negative of the current flowing in the reverse direction.
Hence, each line is considered twice in ĩfl.

The regression matrices Hn in (1) can now be expressed as

Hn =









eTn 0T

0T eTn
Sn Re(Yfl) −Sn Im(Yfl)
Sn Im(Yfl) Sn Re(Yfl)









(14)

where en is the n-th canonical vector, and Sn denotes the bi-
nary Ln×2Nl matrix selecting the rows of Yfl corresponding
to the lines originating from bus n.

B. Covariance of the SCADA-based State Estimate

Conventional power meters measure subsets of nodal real
and reactive power injections, real and reactive power line
flows, as well as nodal voltage magnitudes. Consider M such
measurements concatenated in z ∈ RM that are related to vo

through the function h(·) : R2Nb → RM . The SCADA reading
model is

z = h(vo) + e (15)

where e ∼ N (0,Σe) denotes the noise vector. Supposing
that the SCADA-based estimate v̂s has converged to the MLE
based on (15), the estimate v̂s is asymptotically (as M → ∞)
normal; that is, v̂s

a∼ N (vo,Σs(vo)), where [9]

Σs(vo) =
(

JT (vo)Σ−1
e J(vo)

)−1
(16)

and J(vo) := ∇vh(v)|v=vo
is the M × 2Nb Jacobian matrix

of h(v) evaluated at v = vo. Since h(v) is nonlinear, the
covariance matrix in (16) depends on the actual nodal voltage
values vo, which are unknown. To resolve this vicious cycle,
one approach is to surrogate (16) by Σs(v̂s) in (4).

For optimal PMU placement however, the goal is to solve
(6) or (7) without having acquired any measurements and for
all possible values of vo. Toward this end, the idea here is
to replace vo in (16) by the so-called flat voltage profile
vflat := [1T

Nb
0T
Nb

]T , commonly used for initializing state
estimation algorithms [16]. For this reason, wherever Σs

appears in the previous section it is replaced by Σs(vflat).
Then, the Jacobian J(vflat) can be neatly expressed in terms
of Y and Yfl. (Pertinent expressions are skipped due to space
limitations.)

V. SIMULATED TESTS

The relaxed PMU placement methods developed are eval-
uated numerically in this section using the IEEE 14- and
118-bus power network benchmarks [15], [18]. Regarding
SCADA measurements, 50% of the bus voltage magnitudes
and (real/reactive) powers are measured at buses and lines,
selected uniformly at random. The covariance matrix Σe

is modeled as diagonal: the standard deviation for voltage
magnitude, bus power injections, and line power flows is
0.01, 0.015, and 0.02, respectively [18]. PMU measurements
are assumed to have a diagonal Σn too. Compliant with
SCADA readings, the standard deviation for bus voltage and
line current PMU readings is 0.01 and 0.02, respectively.

For the IEEE 14-bus test case, PMU placements were
evaluated for k ∈ [1, 14] units. Figures 1-3 depict the cost
values for: (i)-(ii) fC(âC) and fC(ǎC) acquired by solving
(7); (iii) a random placement cost; and, (iv) the cost fC(ãC)
obtained by exhaustively solving (6); all for C ∈ {A,M,D}.
In most cases tested, âC coincided with ãC , as verified
by the zero gap f(âC) − f(ǎC). In general, âM differs
from ãM by at most one unit. For the IEEE 118-bus case,
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Fig. 1. IEEE 14-bus test case: A-optimal design.
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Fig. 2. IEEE 14-bus test case: M-optimal design.

the network size renders combinatorial search prohibitively
complex. However, the relaxed E-optimal PMU placement is
possible, as confirmed by Fig. 4.

Regarding the 14-bus test case, note first that the minimizers
ãC for C ∈ {E,M} do not possess a nesting property
for varying k, meaning that the optimal k-placement is not
necessarily a subset of the optimal (k + 1)-one. This implies
that greedy approaches cannot yield the optimum placement.
Secondly, the numerical tests conducted verify the importance
of the SCADA-based prior: For the A-optimal placement and
k = 14, the trace of Σp(ãA) increases from 1 × 10−4 to
2.5× 10−4 when the prior is ignored. More critically, without
the SCADA-based prior in (4), one needs k ≥ 5 units to obtain
a finite Σp(ãA).
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