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Abstract—The Volterra series expansion has well-documented
merits for modeling smooth nonlinear systems. Given that nature
itself is parsimonious and models with minimal degrees of
freedom are attractive from a system identification viewpoint,
estimating sparse Volterra models is of paramount importance.
Based on input-output data, existing estimators of Volterra
kernels are sparsity agnostic because they rely on standard
(possibly recursive) least-squares approaches. Instead, the present
contribution develops batch and recursive algorithms for estimat-
ing sparse Volterra Kkernels using the least-absolute shrinkage
and selection operator (Lasso) along with its recent weighted
and online variants. Analysis and simulations demonstrate that
weighted (recursive) Lasso has the potential to obviate the “curse
of dimensionality,” especially in the under-determined case where
input-output data are less than the number of unknowns dictated
by the order of the expansion and the memory of the kernels.

I. INTRODUCTION

Nonlinear time-invariant systems with memory appear fre-
quently in science and engineering. Widespread applications
span the gamut of physiological and biological processes,
power amplifiers, loudspeakers, speech, and image models to
name a few; see e.g., [1]. If the nonlinearity is sufficiently
smooth, the Volterra series offers a well-appreciated model of
the output expressed as a polynomial expansion of the input
using Taylor’s theorem. The expansion coefficients of order
p > 1 are p-dimensional kernel sequences generalizing the
one-dimensional impulse response sequence encountered with
linear systems. Their support is dictated by the memory.

The popularity of Volterra models stems from the fact
that the input-output relationship is linear in the unknown
kernel parameters. This allows their estimation based on input-
output data via least-squares (LS). The major bottleneck is the
“curse of dimensionality.” Indeed, even when the expansion is
truncated at a finite order P and the memory L is also finite,
the number of unknowns is exponentially large, namely of
order LY. For reliable estimation, this necessitates long data
records which may violate the time-invariance assumption.

On the other hand, in various applications multiple polyno-
mial orders are missing, and/or, only a few kernel coefficients
are nonzero because the memory is selectively nonzero. The
nonlinearity order, the memory size, and which kernel coef-
ficients are nonzero may all be unknown. Nonetheless, the
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Volterra expansion in such applications is sparse - a fact that
can be attributed either to a parsimonious underlying physical
system, or, to an overparameterized model assumed. Sparsity
has not been so far exploited in the identification of Volterra
systems and constitutes the motivation behind this work. It is
well known that LS estimators do not account for sparsity;
whereas the least-absolute shrinkage and selection operator
(Lasso) [2] and the recent advances on compressive sampling
offer a precious toolbox for estimating sparse signals. Existing
sparsity-aware algorithms however, deal with linear systems.

The major contribution of the present work is the de-
velopment of sparsity-aware kernel estimators of nonlinear
Volterra systems. After expressing the estimation problem in
matrix form, two batch estimators are developed based on
the Lasso [2], and the weighted Lasso [3]. Their sequential
counterparts are further introduced by solving a sequence of
sparsity-promoting convex optimization problems. To reduce
the computational burden and allow for recursive estimation,
the coordinate descent approach is employed. By applying
a single cycle of the coordinate descent scheme per time
instant, two novel sparsity-aware recursive algorithms are also
developed having computational complexity comparable to
the recursive least-squares (RLS) algorithm. Simulated tests
demonstrate that the novel batch and recursive estimators can
cope with the curse of dimensionality present when identifying
Volterra kernels, and yield parsimonious and accurate models
with relatively short data records.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a nonlinear, discrete-time, time-invariant and
causal system described by the following input-output (I/O)
relationship

y(”) :f(x(n)’7x(1)) (1)

where x(n) and y(n) denote respectively the input and output
samples at time n. While (1) can capture nonlinear depen-
dencies of infinite memory, the finite-memory assumption
adopted frequently in practice amounts to having y(n) =
f(xz(n),...,z(n— L+ 1)) with L finite. Under smoothness
conditions, this I/O relationship can be approximated by a
Volterra expansion often truncated to order P as [4], [1]

P
y(n) =ho+ > hplz(n),...,z(n— L+ 1] +v(n) (@)



where v(n) captures unmodeled dynamics as well as observa-
tion noise, and hy,(k1, ..., kp) denotes the p-th order Volterra
kernel given by

L-1  L-1
hyz(n),...,x(n — L+1)] = Z th(kla s Kp)
ki=0  k,=0
p
X H x(n —k;) 3
i=1
N

Given 1/0 samples {x(n),y(n)},_,, the goal is to estimate
the Volterra kernels hy(ki,...,k,) for p = 0,1,..., P, and
ki = 0,1,...,L — 1, when the upper bounds P and L
on the expansion order and the memory size are known.
Although the task of truncated Volterra kernel estimation
has been extensively studied [1], the sparsity present in the
Volterra kernel representation of many nonlinear systems will
be exploited hereafter to develop efficient kernel estimators.

To this end, the I/O relationship will be first expressed in
a linear matrix-vector form. With the L x 1 vector X1 (n) :=
[z(n) -~ z(n— L+1)]" collecting the input samples affect-
ing the output at time n, the input corresponding to the p-th
order Volterra kernel is

Xp(n) =x1(n)®...0%(n), p=1,...,P 4

p times
where @ denotes Kronecker product. The output of the p-th
order Volterra kernel can be written as the inner product
hy[x(n),...,x(n— L+1)] = )_(Z(n)flp, p=1,...,P (5

where vector h, contains the coefficients of the kernel
hp(k1,. .., k,) arranged accordingly. Using (5), the model (2)
can be rewritten as

y(n) = xT(n)h+wv(n), n=1,...,N, where (6)
x(n) == [1 x{(n) ... xh(n) }T, and (7)
h o= [he B ... 551" ®)

Upon considering the time instances n = 1,..., N, and
defining y := [y(1) --- y(N)]”, the Volterra series expansion
in (2) reduces to

y=Xh+v )

where X := [x(1) --- x(N)]", and v := [v(1) --- o(N)]".

Note that the number of coefficients in the p-th order kernel
hp(ki1,...,kp) is LP, that is exponential in the order of the
system nonlinearity. However, all possible permutations of a
fixed set of indices {k1,...,k,} multiply the same input term
x(n—ky)---x(n—k,). To obtain a unique representation of
(3), only one of these permutations must be retained. Thus, by
properly discarding the redundant coefficients, the dimension
of the vector l_lp, and similarly for the input vectors X,, (n), can

be reduced to (L+5 _1). By exploiting the redundancy of all
kernels, vectors h and x(n) can be shortened from L1

I—1
to M := (L‘Iﬁp ) [1]. Taking this redundancy into account,
matrix X in (9) will be hereafter considered to have dimension
N x M.

III. ESTIMATION OF SPARSE VOLTERRA KERNELS

One of the nice properties of the Volterra representation
is that the output y(n) is a linear function of the kernel
coefficients h,(k1,...,k,). Thus, one can utilize the linear
regression model (9) to develop standard estimators for h [1].
However, the number of kernel coefficients M is large for
reasonable values of P and L. Thus, long observation intervals
are needed for accurate estimation of h.

In many applications on the other hand, it can be argued
that the associated Volterra kernels are sparse, meaning that
many of the entries of h are zero. Typical examples of sparse
Volterra series expansions are outlined next.

Consider first the Linear - Nonlinear - Linear (LNL)
model employed in various applications to model e.g., the
effect of nonlinear amplifiers in OFDM, the satellite com-
munication channel, or the transfer function of loudspeakers
and headphones. The LNL model consists of a linear filter

{ha(k)}1eyt, in cascade with a memoryless nonlinearity
f(z), and a second linear filter {h;(k) igl. The overall

memory is thus L = L, + L, — 1. If the nonlinear function
is analytic on an open set (a,b), it accepts a Taylor series
expansion: f(x) = >_°°¢,aP, ¥V € (a,b). It can be shown
that the p-th order Volterra kernel is then given by [1]

Ly—1
hp(kr, .. kp) = cp Y hy(k)ha(k1—k) .. ha(ky—k). (10)
k=0

In (10), there exist p-tuples (k1,...,k,) for which there is no
k € {0,...,Ly — 1} such that (k; — k) € {0,L, — 1} for
all = 1,...,p. For these p-tuples, the Volterra kernel equals
zero. As an example, for filters of length L, = L; = 6 and
for P = 3, among the 364 non-redundant kernel coefficients,
the nonzero ones are no more than 224. Furthermore, when
the LNL cascade is used to model, e.g., the satellite channel,
the number of nonzero Volterra coefficients may be further
reduced depending on the input; e.g., if 2(n) is drawn from a
constant modulus constellation [5]. Hence, when the constel-
lation is unknown (as in blind demodulation problems), extra
sources of sparsity may be possible to exploit.

If the second filter in the LNL model is dropped, then the
Wiener model is obtained, for which the p-th order Volterra
kernel is expressed as

ho(kys .. k) = cpha(k1) .. ha(ky). (11)

Due to the separability of the kernel in (11), if the impulse
response h, (k) is also sparse, then the Volterra kernel becomes
even sparser.

Apart from these nonlinear systems with special structure,
it has been observed that in many applications only a few
kernel coefficients contribute to the output [5]. Furthermore,
the sparsity of the Volterra representation can arise when
the degree of the nonlinearity and the system memory are
not known a priori. In this case, kernel estimation must
be performed jointly with model order selection. Based on
these considerations, exploiting the sparsity present in many



Volterra representations is well motivated. Batch sparsity-
aware estimators are described next.

A. Batch Estimators of Volterra Kernels

The system identification problem stated in Section II can
be solved by using the LS approach as

h'% = argmgnll.V—XhH%. (12)
If N > M and matrix X has rank M, the solution of the
problem is uniquely found as his = (XTX)f1 XTy. If
the input samples {z(n)}N_, are drawn from a continuous
distribution, then X7 X is invertible with probability (w.p.)
1 [6]. However, the condition number of the matrix X7X
grows with L and P [7]. A large condition number translates to
numerically ill-posed inversion of the matrix and amplification
of the noise.

If N < M, the solution of the convex optimization problem
(12) is not unique but can be rendered unique if one chooses
the minimum ¢s-norm solution. Alternatively, one may resort
to the ridge regression (¢2-norm regularized) solution given by

flRidge _ (13)

(XTX +6Ty) " X7y
for some & > 0. In any case, both h%5 and hf9¢ are not
sparse.

To capitalize on the prior information about the Volterra
kernel coefficients, sparsity can be effected by the ¢;-norm
penalized regression [3]

M

where h; is the ¢-th entry of h, and w; > 0, « = 1,..., M.
Two choices of w; are commonly adopted:
(wl) w;=1for¢=1,..., M, which corresponds to the
conventional Lasso estimator [2]; or,
(W2) w; = [hF9°~1 for i = 1,..., M, which leads to

the weighted Lasso estimator [3].

The weighted Lasso estimator exhibits improved asymptotic
properties over the conventional one at the price of requiring
the ridge regression estimates to evaluate the w;’s [3].

B. Recursive Estimators of Volterra Kernels

Contrary to the batch estimators, their recursive counterparts
offer computational and memory savings, and enable tracking
of time-varying systems. The RLS algorithm represents an
efficient sequential implementation of the LS, as well as the
ridge regression estimator. Indeed, it solves sequentially in
time the following optimization problem:

hiks — argm}}n JRES (h) (15)
al 2
TS (M) = N (y(n) = x" (n)h)” + V6|3
n=1

where (3 denotes the forgetting factor and § a small positive
constant. For time-invariant systems, (3 is set to 1, while

TABLE I
RECURSIVE CYCLIC COORDINATE DESCENT (RCCD) ALGORITHM

1: Initialize ho = 05, and Rg = eI ;.

2: for N=1,2,...,do

3: Update ry and Ry using (17) and (18), respectively.
4 fori=1,...,M do

5 Calculate zpy ; using (20).

6: Update h N,i according to the thresholding rule (19).
7 end for

8: end for

0 < B < 1 enables tracking of slowly time-varying systems.
Similar to the batch LS estimator, the RLS estimator does
not exploit the prior knowledge on the sparsity of h, and
suffers from numerical instability especially when the effective
memory of the algorithm, 1/(1 — (), becomes comparable to
the dimension M of the desired vector.

To overcome these limitations, the following estimation
criterion is advocated; see also [8]

hy = arg min JE(h) (16)

N M
Th(m) =3 V" (y(n) —x"(n)h)* + Ax > wwilhl

n=1 i=1

where, wy,; can be chosen as

(al) wn; =1VYN,i=1,...,M, leading to the time-
weighted ALasso (TWL); or,
@2) wn,; = |h]1\%,,LiS\*1 VN, i=1,..., M, which corre-

sponds to the time penalty-weighted Lasso (TPWL).

The sequence {fl N} cannot be updated recursively, and each
one of the problems in (16) calls for a convex optimization
solver. To avoid the computational burden involved, several
methods have been developed [8], [9]. Coordinate descent-
based recursive algorithms that approximately solve (16) are
described next.

Solving (16) separately for each entry of h admits a simple
closed-form solution. Using the recursive updates

ry = fry_1+x(N)y(N)
Ry = BRy_1+x(N)xT(N)

7)
(18)

and a provisional solution at time N — 1, namely BN,l, the
recursive update of the i-th component of hy is

~ sgn (ZNz)

hni = —F—F il = A i 19

N, R (is1) ([Nl = ANwn ], (19)
where [z], := max(z,0), Ry(i,4) is the (i,i)-th entry of

matrix Ry, and 2y ; is given by

i—1 M
avi =rNna— Y Bu(i )hn— > Ry(i,j)hn-1;. (20)
Jj=1 j=i+1

The developed algorithm, called hereafter recursive cyclic
coordinate descent (RCCD), is summarized in Table I. Its
complexity is dominated by the O(M?) computations needed
for updating the matrix R, which is of the same order as
the RLS. If wy; in (19) is setto 1 VN and ¢ = 1,..., M,
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Fig. 1. MSE of batch estimators versus the number observations.

the RCCD algorithm approximately solves the TWL problem,
and is thus abbreviated as RCCD-TWL. Similarly, if wy ; =
|fzﬁﬁvs|fl VN andi=1,..., M, the RCCD approximates the
solution of TPWL and is referred to as RCCD-TPWL. It is
worth stressing that the RLS, RCCD-TWL, and RCCD-TPWL
algorithms are implemented in O(M?).

IV. SIMULATED TESTS

The developed estimators were tested through computer
simulations. The system under study was an LNL one,
consisting of a linear filter with impulse response h;y =
[0.36 00.91 00 O.IQ}T, in cascade with the memoryless non-
linearity f(x) = —0.52%+0.42% 4, and the same linear filter.
This system is exactly described by a Volterra expansion with
L =11 and P = 3, leading to a total of M = (L;P) = 364
kernel coefficients stored in the vector hy. Out of the 364 co-
efficients only 48 are nonzero. The system input was modeled
as z(n) ~ N(0,1), while the output was corrupted by additive
noise v(n) ~ N(0,0.1). First, the batch estimators of Section
III-A were tested, followed by their sequential counterparts.

In Fig. 1, the obtained mean-square error (MSE),
E [Hho - f1||§} averaged over 100 Monte Carlo experiments,
is plotted against the number of observations, N, for the
following estimators: (i) the ridge regression estimator of (13)
with d=1; (ii) the Lasso estimator with )\N:O.7\/N ; and,
(iii) the weighted Lasso estimator with Ay=0.08log N. It can
be seen that the sparsity-agnostic ridge regression estimator
is outperformed by the Lasso estimator for short observation
intervals (/N <600). For larger NV, where XTX becomes well-
conditioned, the former provides improved estimation accu-
racy. However, the weighted Lasso estimator offers the lowest
MSE for every N, and provides a reasonable accuracy even
for the underdetermined case (N <364).

Performance of the sequential estimator of Section III-B was
assessed in the same setup. Fig. 2 illustrates the convergence
of the MSE, averaged over 100 Monte Carlo runs, for the
following three recursive algorithms: (i) the conventional RLS
of (15); (ii) the RCCD-TWL; and, (iii) the RCCD-TPWL.
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Fig. 2. MSE of recursive estimators.

Since the system was time-invariant, the forgetting factor was
set to J = 1. It can be observed that the conclusions drawn
for the batch case carry over to the recursive algorithms too.
Moreover, the sparsity-aware iterates of Table I are a close
approximation to the problem in (16).

V. CONCLUSIONS

The idea of exploiting sparsity in the representation of a
system, already widely adopted for linear regression and linear
system identification, has been permeated here to estimate
sparse kernels of nonlinear Volterra models. The resultant
weighted Lasso batch estimator outperforms the LS-based
kernel estimator, and provides reasonable estimation accuracy
even for a limited number of input-output observations. Fur-
thermore, the novel RCCD-TPWL algorithm, derived as an
approximate solution of the time penalty weighted Lasso cost
function, is shown to converge fast to the exact solution. Thus,
it offers an accurate and sparse solution, recursively updated
at complexity comparable to the conventional RLS.
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