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Abstract—Recognizing the importance of smart grid data ana-
lytics, modern statistical learning tools are applied here to whole-
sale electricity market inference. Market clearing congestion
patterns are uniquely modeled as rank-one components in the
matrix of spatiotemporally correlated prices. Upon postulating
a low-rank matrix factorization, kernels across pricing nodes
and hours are systematically selected via a novel methodology.
To process the high-dimensional market data involved, a block-
coordinate descent algorithm is developed by generalizing block-
sparse vector recovery results to the matrix case. Preliminary
numerical tests on real data corroborate the prediction merits of
the developed approach.

I. INTRODUCTION

In a typical whole-sale day-ahead electricity market, an
independent system operator (ISO) collects bids submitted
by generator owners and utilities. Compliant with network
and reliability constraints, the grid is dispatched in the most
economical way for every hour of the following day. Due to
transmission grid limitations though, cheap electricity cannot
be delivered everywhere across the grid, but out-of-merit en-
ergy sources have to be dispatched to balance the load. Hence,
congestion together with heat losses lead to spatiotemporally-
varying electricity prices, known as locational marginal prices
(LMPs) [14].

Forecasting LMPs is undoubtedly an important decision
making tool for traders [2]. In addition, conventional and par-
ticularly renewable asset owners plan their trading according to
pricing predictions. Recently, ISOs broadcast their own market
forecasts as proactive signals to relieve congestion [8]. At a
larger geographical and time scale, electricity price analytics
are pursued by government services to identify “transmission
congestion corridors” [23].

To concretely formulate LMP forecasting, consider an elec-
tricity market over a network of pricing nodes and over the last
T hours. In a day-ahead market, LMPs correspond to the cost
of buying or selling electricity at each node and over one-hour
periods for the following day. Setting LMPs as target variables,
explanatory variables (features) can be LMPs from past days,
load estimates, weather forecasts, scheduled outage capacity,
and inter-area transfers.

Electricity market forecasting methods proposed so far aim
at predicting single-node prices using either on time series
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models, neural networks and fuzzy logic systems, or combi-
natorial physical system modeling; see e.g., [6], [24], [25],
and references therein. However, LMPs are not independent;
but rather exhibit a transmission network-imposed dependence
that is uniquely exploited next.

Distinct from existing approaches where predictors are
trained on a per-node basis, an interconnection-wide inference
framework is pursued in this work. Our first contribution is
casting electricity market inference as a low-rank learning
task [1], [3]. The matrix of spatio-temporal prices is modeled
as a superposition of few congestion patterns and is subse-
quently learned using kernel-based trace-norm regularization.
A systematic methodology for judiciously selecting kernels
over space and time is the second contribution of this paper.
Our novel analytic results extend kernel learning tools to low-
rank multi-task models [18], [11]. The optimization problem
derived is non-convex and involves high-dimensional price
matrices. A block-coordinate descent algorithm converging
to a stationary point of the postulated problem is our third
contribution. Generalizing results from (block) compressed
sensing [20], the resultant algorithm boils down to univariate
minimizations and exploits the Kronecker product structure
involved. The framework can be used for extrapolation in time
(prediction) and space (node additions), or even imputation of
missing entries. Prediction results using real data from the
MISO market corroborate our findings.

Notation. Lower- (upper-) case boldface letters denote col-
umn vectors (matrices); calligraphic letters stand for sets.
Symbols A> and Tr(A) denote transposition and matrix trace.

II. PROBLEM FORMULATION

Consider a whole-sale electricity market over a set N of
pricing nodes indexed by n. In a day-ahead market, locational
marginal prices (LMPs) correspond to the cost of buying
or selling electricity at each grid node and over one-hour
periods for the following day [19]. Viewing price forecasting
as an inference problem, LMPs are the targets to be learned.
Explanatory variables (features) can be any data available at
the time of forecasting relevant to the day-ahead market.

One could try designing per pricing node predictors; yet
locational prices are not independent. They are collectively de-
termined as the solution of the network-constrained economic
dispatch and the unit commitment problems [9], [10]. Lever-
aging this network-imposed dependence, market forecasting is
uniquely interpreted here as learning over a graph; see e.g.,



[15]. The market is further considered to be stationary only
over the T most recent time periods comprising the set T .

Adopting a kernel-based learning approach, the market
could be regarded as a function p : N×T → R to be inferred.
It is postulated that the price at node n and time t denoted by
p(n, t) belongs to the function space

P :=

p(n, t) =
∑
n′∈N
t′∈T

K⊗ ((n, t), (n′, t′)) an′t′ : an′t′ ∈ R


defined by the kernel K⊗ : (N ×T )× (N ×T )→ R. When
K⊗ is a symmetric positive definite function, the function
space P becomes a reproducing kernel Hilbert space (RKHS)
equipped with a finite norm [4]

‖p‖2K⊗ :=
∑

n,n′∈N

∑
t,t′∈T

K⊗((n, t), (n
′, t′))antan′t′ .

The sought p can be then found via the regularization [1], [12]

min
p∈P

‖Z−P‖2F + µ‖p‖K⊗ (1)

where P ∈ RN×T has entries [P]n,t = p(n, t), and Z is the
matrix of observed prices arranged accordingly. The regular-
izer ‖p‖K⊗ constraints p ∈ P and facilitates generalization
over unseen data. Balancing between the regularizer and the
least-squares (LS) data fit is controlled by µ > 0, a parameter
typically tuned via cross-validation [12].

When K⊗ is additionally selected as the tensor product
kernel K⊗((n, t), (n′, t′)) := K(n, n′)G(t, t′), where K :
N × N → R and G : T × T → R are kernels over nodes
and hours, respectively; then every function in P admits the
spatio-temporal decomposition [4], [1]

P =

{
p(n, t) =

R∑
r=1

fr(n)gr(t), fr ∈ HK , gr ∈ HG

}
(2)

where HK and HG are the RKHSs defined accordingly by K
and G, while R may be infinite [4].

Our modeling contribution is that the sought p(n, t) admits a
low-rank decomposition, i.e., p(n, t) is decomposed in a small
number of pr(n, t) = fr(n)gr(t) components. The market is
determined by few congestion patterns {fr(n)}Rr=1 occurring
when a transmission line has reached its capacity rating;
congested lines contribute linearly to determining prices; while
prices are modulated by temporal features. However, the
p(n, t) minimizing (1) will not be decomposable into a few
pr. To promote p(n, t)’s with a parsimonious spatiotemporal
factorization, the trace norm ‖p‖∗ is used in lieu of the‖p‖K⊗
regularizer. Precisely, for every p ∈ P , its ‖p‖∗ can be
expressed as [1]

‖p‖∗ = min
{fr,gr}

1

2

(
R∑

r=1

‖fr‖2K +

R∑
r=1

‖gr‖2G

)
(3)

s.to p =

R∑
r=1

frgr, fr ∈ HK , gr ∈ HG.

To build connections with low-rank matrix completion,
consider N and T being Euclidean spaces, while the kernels
K(n, n′) and G(t, t′) are selected as the Kronecker delta
functions δ(n − n′) and δ(t − t′), respectively; see e.g., [5].
In this case, function p(n, t) is fully described by matrix P,
‖p‖K⊗ is its Frobenius norm ‖P‖F , and ‖p‖∗ is its nuclear
norm ‖P‖∗ (the sum of the matrix singular values), which has
been widely used as a low-rank matrix regularizer [1].

It is worth mentioning that writing ‖P‖∗ equivalently as
[21, Lemma 5.2]

‖P‖∗ = min
F,G

{
‖F‖2F + ‖G‖2F

2
: P = FG>

}
(4)

has been proved beneficial both algorithmically and for ap-
plying the Representer’s Theorem in trace-norm regularization
[21], [17], [5]. If P ∈ RN×T and R = min{N,T}, the vari-
ables F and G in (4) should have R columns. However, when
(4) is used for matrix completion, the ensuing P is expected
to be low-rank and smaller values for R are practically used.

To exploit the aforementioned low-rank factorization, mar-
ket inference is posed as the regularization problem

min
p∈P

‖Z−P‖2F + µ
√
‖p‖∗. (5)

To derive efficient algorithms, problem (5) is transformed
according to the following result (due to space limitations all
proofs can be found in [13]):

Lemma 1. The optimization in (5) is equivalent to

min
p,{fr,gr}

‖Z−P‖2F +
µ

2

(
R∑

r=1

‖fr‖2K

) 1
2

+
µ

2

(
R∑

r=1

‖gr‖2G

) 1
2

s.to p =
R∑

r=1

frgr, fr ∈ HK , gr ∈ HG. (6)

The equivalence is based on (2) as well as the key result

‖p‖
1
2
∗= min

p=
∑

r frgr

1
2

(
R∑

r=1

‖fr‖2K

) 1
2

+ 1
2

(
R∑

r=1

‖gr‖2G

) 1
2

(7)

which for Euclidean spaces and Kronecker delta kernels, yields
interestingly

‖P‖
1
2
∗ = min

F,G

{
‖F‖

1
2

F + ‖G‖
1
2

F

2
: P = FG>

}
. (8)

III. KERNEL SELECTION

Solving (6) presumes that kernels K and G are known. Prac-
tically though, the designer if often given candidate kernels
and would like to determine which of them provide better
inference results. The kernel selection approach of [18] is
generalized here to the function regularization of (6). Two
kernel function sets, {Kl}Ll=1 and {Gm}Mm=1, are provided
for nodes and time. Consider the kernel spaces constructed as

K := Conv
(
{Kl}Ll=1

)
, G := Conv

(
{Gm}Mm=1

)
. (9)



Optimizing the outcome of (6) over the convex combination
weights in K and G provides a disciplined kernel design
methodology. The following result shows how that can be
accomplished without finding explicitly the weights.

Lemma 2. Minimizing (6) over the kernel spaces K and G
defined in (9) is equivalent to solving

min
p∈P′

‖Z−P‖2F +µ

L∑
l=1

√√√√ R∑
r=1

‖flr‖2Kl
+µ

M∑
m=1

√√√√ R∑
r=1

‖gmr‖2Gm

(10)
over P ′ :=

{
p(n, t) =

∑R
r=1 fr(n)gr(t) : fr =

∑L
l=1 flr,

flr ∈ HKl
, gr =

∑M
m=1 gmr, gmr ∈ HGm

}
, where {HKl

}
and {HGm} are the function spaces defined Kl and Gm.

The result asserts that kernel learning over P boils down
to the functional minimization in (10) where now p ∈ P ′.
Practically solving (10) requires transforming the functional to
a vector minimization which can be accomplished as follows.

Lemma 3. The functional minimization in (10) is equivalent
to solving the vector minimization problem

min
P,{Bl},{Γm}

‖Z−P‖2F + µ

L∑
l=1

‖Bl‖Kl
+ µ

M∑
m=1

‖Γm‖Gm

s.to P =

L∑
l=1

M∑
m=1

KlBlΓ
>
mGm (11)

where Kl ∈ SN++ (Gm ∈ ST++) is the spatial (temporal) kernel
matrix, and ‖X‖2B := Tr(X>BX) for positive definite B.

The key for showing Lemma 3 is that minimizing (10) over
a specific flr is actually a functional minimization regularized
by an increasing function of ‖flr‖Kl

. Hence, according to the
Representer’s Theorem (see e.g., [3], [12]), the minimizing flr
can be expressed as flr(n) =

∑N
n′=1Kl(n, n

′)βlr,n′ for some
βlr,n′ ∈ R. In other words, flr is a linear combination of the
kernel Kl evaluated only at the observed n′ ∈ N . The result
holds for all flr’s. Every gmr can be similarly expressed as
gmr(t) =

∑T
t′=1Gm(t, t′)γmr,t′ for some γmr,t′ ∈ R. Hence,

the functional minimization is converted to the vector mini-
mization (11) over the coefficients βlr,n′ and γmr,t′ , collected
in matrices {Bl ∈ RN×R}Ll=1 and {Γm ∈ RT×R}Mm=1.

Since (11) admits low-rank minimizers anyway, the column
dimension of {Bl} and {Γm} could be possibly restricted to a
small R0. If the P minimizing (11) over this restricted feasible
set turns out to be of rank smaller than R0, the restriction
comes at no loss of optimality; see also [5], [1], [18], [16].
The dimension R will be henceforth set to 20.

IV. BLOCK-COORDINATE DESCENT ALGORITHM

Problem (11) not only is nonconvex, but it involves multi-
ple high-dimensional matrices. The block-coordinate descent
(BCD) algorithm developed next scales well with the prob-
lem dimensions and converges to a stationary point of (11).
According to the BCD methodology, the initial optimization

variable is partitioned into blocks. Per block minimizations
retaining the rest of the variables fixed are then iterated
cyclically over blocks.

The variable blocks are selected here in the order
{B1, . . . ,BL,Γ1, . . . ,ΓM}. The per block minimizations in-
volved are detailed next. Consider minimizing (11) over a
specific Bl, while all other variables are fixed to their most
recent values {B̂l′}l′ 6=l and {Γ̂m}Mm=1. Upon rearranging
terms in (11), block Bl can be updated as

B̂l = argmin
Bl

‖ZB
l −KlBlH

>‖2F + µ‖Bl‖Kl
(12)

where H :=
∑M

m=1 GmΓ̂m and ZB
l := Z−

∑
l′ 6=l Kl′B̂l′H

>.
Similarly, a particular Γm can be updated as

Γ̂m = argmin
Γm

‖ZΓ
m − FΓ>mGm‖2F + µ‖Γm‖Gm (13)

where F :=
∑L

l=1 KlB̂l and ZΓ
m := Z−

∑
m′ 6=m FΓ>m′Gm′ .

Problems (12) and (13) exhibit the same canonical form that
can be efficiently solved according to the following lemma
generalizing the results of [20] to the matrix case.

Lemma 4. Let A ∈ Rd1×d3 , B ∈ Sd1
++, C ∈ Rd3×d2 , and

µ > 0. The convex optimization problem

min
X
‖A−BXC>‖2F + µ‖X‖B (14)

has a unique minimizer X̂ provided by the solution of

BX̂C>C +
µ2

4ŵ
X̂ = AC (15)

if ‖B1/2AC‖F > µ/2; or, X̂ = 0, otherwise. The scalar
ŵ > 0 in (15) is the minimizer of the convex problem

ŵ := argmin
w≥0

w −
d1∑
i=1

d2∑
j=1

[W]2ijλiµjw

λiµjw + µ2/4
(16)

where W := U>BAUC; (UB , {λi}d1
i=1) are the eigenpairs of

B; and (UC , {µj}d2
j=1) the non-zero eigenpairs of CC>.

Lemma 4 asserts that if ‖B1/2AC‖F ≤ µ/2, the sought
X̂ is set to zero. This property reveals that some of the {B̂l}
and {Γ̂m} minimizing (11) will be zero, thus effecting kernel
selection. When ‖B1/2AC‖F > µ/2, the non-zero X̂ can be
computed in O(d3

1 + d3
2) numerical operations after rewriting

(15) as a Sylvester equation. The scalar ŵ involved in (15) can
be found by any algorithm solving the univariate minimization
in (16).

The BCD algorithm for solving (11) is tabulated as Alg. 1.
The subroutine SOLVECANONICAL(A,B,C, µ) returns the
minimizer of (14). Due to the separability of the non-
differentiable cost over the chosen variable blocks and the
uniqueness of the per block minimizers, the BCD iterates are
guaranteed to converge to a stationary point of (11) [22].



Algorithm 1 BCD algorithm for solving (11)
Input: Z, {Kl}Ll=1, {Gm}Mm=1, R, µ

1: Randomly initialize {B̂l}Ll=1 and {Γ̂m}Mm=1

2: Compute F =
∑L

l=1 KlB̂l and H =
∑M

m=1 GmΓ̂m

3: repeat
4: for l = 1→ L do
5: Update F = F−KlB̂l

6: Define ZB
l = Z− FH>

7: B̂l = SOLVECANONICAL(ZB
l ,Kl,H,µ)

8: Update F = F + KlB̂l

9: end for
10: for m = 1→M do
11: Update H = H−GmΓ̂m

12: Define ZΓ
m = Z− FH>

13: Γ̂m = SOLVECANONICAL((ZΓ
m)>,Gm,F,µ)

14: Update H = H + GmΓ̂m

15: end for
16: until convergence.
Output: {B̂l}Ll=1, {Γ̂m}Mm=1

V. NUMERICAL TESTS

The proposed multi-kernel learning approach with the
BCD solver was tested using real data from the Midwest
ISO (MISO) market. Day-ahead hourly LMPs were collected
across N = 1, 732 nodes for three consecutive months from
June 1 to August 31, 2012, a total of 2,208 hours.

Two pools of K = 5 nodal and L = 5 temporal kernels
were constructed as briefly outlined next. Kernels K1 and K2

were selected as the regularized and the diffusion Laplacian
kernel of a surrogate of the nodal connectivity graph; K3

is a Gaussian kernel of the categorical features using the
information of nodal names and types, i.e., generator, load,
interface, and hub. Kernel K4 was chosen to be the identity
matrix capturing potential independence, while K5 the sample
covariance of historical prices. Regarding temporal kernels,
several features were utilized including yesterday’s same-
hour LMPs; load, outage, and weather forecasts; as well as
categorical features such as hour of the day, day of the week,
and a holiday indicator. Kernels {Gm}5m=1 were designed by
plugging these features into the linear and the Gaussian kernel
for different bandwidth values and feature subsets.

Market prices in Z were centered upon subtracting the
per-hour sample mean to cope with cyclostationarity. Hence,
instead of forecasting the absolute nodal prices, the developed
predictor will forecast the mean-compensated ones, which are
of interest in practice since bilateral transactions depend on
exactly such nodal differentials [7]. Consider the possible non-
stationarity, hourly prices of a day were predicted using the
market data of the previous week. The regularization parameter
µ was tuned via cross-validation over the first two weeks.
To enhance convergence speed and numerical accuracy of
the solution to problem (16), the solver fmincon with the
interior-point method in Matlab was used for solving the
univariate optimization problem.
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Fig. 1. RMSE comparison of forecasting methods. The RMSEs averaged
across 78 evaluation days are 6.53 (red), 7.55 (blue), and 7.20 (black).
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Fig. 2. Kernel selection: a black (white) square indicates that the respective
kernel has been selected (eliminated) while forecasting that specific day.

The forecasting performance is provided in Fig. 1. Specifi-
cally, three methods were tested: (i) the novel low-rank multi-
kernel learning method; (ii) the ridge regression forecast where
each node predictor is independently obtained by solving
mina ‖z−G1a‖22+µaTG1a; and (iii) the persistence method
which simply repeats yesterday’s prices. Clearly, the derived
low-rank and sparsity-leveraging multi-kernel forecast attains
almost consistently the lowest root mean-square error (RMSE).

Figure 2 shows the kernel selection capability of the novel
multi-kernel learning approach. Checking whether the ob-
tained {‖Bl‖Kl

}Ll=1 and {‖Γm‖Gm}Mm=1 are zero or not,
indicates whether the corresponding kernels, {Kl} and {Gm}
have been eliminated. Interestingly, out of the 10 kernels, the
identity kernel K4 and the linear kernel G1 with a prescribed
bandwidth were consistently not selected.

Figure 3 depicts the singular values of 78 successive ma-
trices Z in decreasing order. The fast-decaying distribution
implies that most of the market information could be possibly
captured by the top 20 singular values. Such an observation
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M ]>, where the predictors {Bl} and {Γm} are the optimal

solutions to problem (11).

not only justifies the trace norm regularization in (5), but also
hints at fixing R to 20 for a good complexity-performance
tradeoff. Finally, Fig. 4 shows the sorted singular values of
matrices B̃ and Γ̃ as obtained by solving (11). Clearly, the
rank of B̃’s and Γ̃’s is no more than 10 in all 78 predictions,
which justifies the prescribed choice of R = 20.

VI. CONCLUSIONS

The contribution of this paper is three-fold. On the appli-
cation side, upon recognizing that electricity prices exhibit
low-rank properties, market inference was postulated as a
trace-norm regularized kernel-based learning task. The op-
timization framework derived enables market data extrapo-
lation, imputation, and extrapolation. On the learning side,
this paper develops a systematic kernel selection methodology
under a collaborative filtering or matrix completion setup.
Algorithmically, a BCD-based solver handling efficiently high-
dimensional market data and converging to a stationary point
was developed. Our findings were corroborated using real
market data.
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