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Abstract—One of the key challenges in sensing networks is *

the extraction of information by fusing data from a multitude of

possibly unreliable sensors. Robust sensing, viewed here as the

simultaneous recovery of the wanted information-bearing signal

vector together with the subset of (un)reliable sensors, is a preb

lem whose optimum solution incurs combinatorial complexity.

The present paper relaxes this problem to its closest convex

approximation that turns out to yield a vector-generalization

of Huber’s scalar criterion for robust linear regression. The

novel generalization is shown equivalent to a second-order cone o _
program (SOCP), and exploits the block-sparsity inherent to a / pmarEEe e == '",‘»--((E JD)
suitable model of the residuals. A computationally efficient solver e - B o g B l %
is developed using a block-coordinate descent algorithm, and is < m -~ a8 s o . ) v
tested with simulations. ;:. : - = [ | [ ] = - |
o = = -
I. INTRODUCTION h [ s

Recent advances in sensor technology have made it feas B e e
to deploy a network of sensors for carrying out synergiitica
even sophisticated inference tasks. In applications sich Fég. 1. A wireless sensor network linked with a fusion cenfein)reliable

. . . . sensors are color coded as (red) green.

environmental monitoring, the typical concept of openatio
involves a large set of sensors locally observing the signal
of interest, and transmitting their measurements to a Inighe
layer fusion center. This so-termed layered sensing apmarainknown vector based on reliable sensor data. This task is
entails three operational conditions: henceforth referred to ambust sensingRS), and provides
(c1) Each node’'s measurement vector comprising eithercantext of the present paper. Even though the related proble
collection of scalar observations across time, or a sndpsledoutlier detection in sensor networks has been studieshext
of different sensor readings, is typically linearly retateo sively (see e.g., [16] for a recent survey), the RS setup laad t
the unknown variable(s). Suchliaear model can arise when approaches described here have not been considered before.
the sensing system is viewed as a linear filter, or, when the [9], RS was studied under the asymptotically high SNR
measured field is linearly represented over a fixed basis; regime, identifiability conditions were developed, and &sw
(c2) Due to stringent power, delay, bandwidth, or modehown that for Gaussian sensing matrices a convex relaxatio
constraints, the linear model can be alsader-determined of the NP-hard problem involved recovers the solution with
i.e., the dimension of the unknown vector exceeds that di eagverwhelming probability.

sensor’s vector observation; and The approach here considers a practical noisy setup and
(c3) Not all sensors areeliable due to failures in the sens-yjews the unreliable sensors as outliers, thus placing e R
ing devices, fades of the sensor-to-fusion-center comeakinitask under a robust multivariate linear regression franmewo
tion link, physical obstruction of the scene of interestdan1). By proper modeling of the unreliable sensors, the RS
(un)intentional interference; see Fig. 1. task is formulated as a combinatorial optimization problem
Conditions (c1)-(c3) suggest that the fusion center shoudghq subsequently surrogated by (non-)convex approximants
not simply aggregate all sensor measurements, but inst@ag@restingly, the novel cost functions turns out to be aklo
identify and discard unreliable sensors before estimatiiey yersion of Huber's function [8]. The resultant optimizatio

, Aoroblem is transformed to a group Lasso-type cost [15], and a
Work was supported by the European Community’s Seventh Frarkew: . . . .
Programme (FP7/2008 under grant agreement No. 234914); an&ByNnt FompUtat'ona”y attr?-Ct'Ve .block-coordlnate descenbatgm
CCF-1016605. is developed. The simulations corroborate the results.



Il. PROBLEM STATEMENT AND PRELIMINARIES Based on (2), the RS problem can now be cast as a linear

) . T
To concretely formulate the problem under conditions (c1§€9ression problem with respect to the vedtof o”]". Note
at even whenA is tall (km > n), the involved regression

(c3), consider a network of sensors. Each sensor acquire . - . , I
a measurement vectofb, Rm}le through the known matrix [A Ij,,] is under-determined. To derive a well-posed

k regression problem, the block sparsityoo$hould be explicitly

i i A mxXn
sensing matri{A,; € R }i—1- However, among the set Oftaken into account by constraining the number of nonzgio
sensord := {1,...,k}, only s of them are reliable and adhereaS

to the per-sensor linear regression model

min ||b — Ax —ol|3 3
b; = Aix, + Vi, 1€S8, (1) X,0
k
where S, denotes the unknown subset of reliable sensors s.to ZI(HOin #0)<s
S, C 7 with cardinality |S,| = s, and v, stands for inde- i—1

pendent identically distributed zero-mean noise of vaman,ynherel(.) is the indicator function. The problem in (3) is non-
o that captures quantization effects, communication noisgnyex due to the constraints. Following the idea of convex

and/or unmodeled dynamics. With reference to (1), the tagijaxation that has successfully been applied in the area of
of robust sensingRS) amounts to estimating the unknown  compressive sampling (CS) [5], [4], the indicator function

as the solution of is replaced by the/,-norm of theo;’s which is its closest
min min [|bs — Asx][2 (P) convex app_rOX|mat|o_n. The optimization problem derived in
x [S|=s its Lagrangian form is

whereA s is the|S|m xn matrix constructed by concatenating k

o1
{A;}ics, and likewise forbs for any S ¢ Z. Unfortunately, o §||b —Ax —ol3 + A Z [04]]2 (P1)
solving the problem(P;) incurs combinatorial complexity, _ =1 _
since one has to find a(ll:) solutions of PO) using e.g., least- where\ > 0 can be selected in the ways described later. The
squares (LS). second term in the penalized LS estimator Bf)(resembles
Looking for practical solvers, the LS estimator aiming téh€ group Lasso cost function [13], [15]. Similarly to group
minimize ||bz — Azx|2 is not appropriate, since the unreliabld-2sS0, we will show that thé,-norm penalty favors zero
sensors will adversely influence the solution. When the sgnsi%:’S: and thus, the ;) estimator automatically reveals the
matricesA;'s are tall (n > n), a heuristic approach would (Un-)reliable sensors as those having (non-)zefe.
be to find the per sensor LS solutions, i A;)"'ATb;, Interestingly, when\ — oo, the optimum is attained at
and try identifying the outlying ones. The problem becomés = 0; hence, all sensors are deemed consistent @&hl (
even more challenging for < n, and recall that under- 'educes to the LS estimator. On the contrary, when 0%,
determinacy can arise naturally as explained in operatiffff Minimizingo,;’s are {o; = b; — Aix}iy where x is
condition (c2). the minimizer of () and a_II sensors are considered outliers
One could possibly try;-error regression, which seeks tdCf- the subsequent analysis). In the latter casg) becomes
miny ||bz — Azx||; and is known to be outlier resistant, or arfquivalent to the problem
M-estimator from robust linear regression [8]. Howevegsh k
two approaches do not account for the block structure imttere min Z IIb; — A;x|2. (4)
to the problem. Indeed, as outliers constitute quantitiekat I
ing (1), they are not single measurements, but a group of In [9], [10], the optimization problem in (4) has been de-
measurements. veloped for the RS task when the consistent measurements
do not contain noise, or practically, in the high SNR regime.
I1l. A C ONVEX RELAXATION We also provide necessary and sufficient conditionsiofor

Thus, the RS task falls under the realm of robust multivariathe identifiability of the problem, and show that whenis
linear regression [1]. The novel approach developed harésst drawn from the Gaussian ensemble the probability of exgct
by recognizing that model (1) is not valid for the unreliabl&ecovery is overwhelmingly high.
sensors. Hence, consider modeling the unreliable sensig u 0 better understand the optimization problef )(and to
the auxiliary outlier vector§o; € R™}*_,. Vectoro, is zero later develop an efficient solver, we study the form of its
if the i-th sensor is reliable: and; # 0 deterministically, Minimizer(s). Let(x*)” (o*)"]" denote a minimizer off,),
otherwise. Model (1) can now be extended to incorporate tR8d define the associated residual veetor= b—Ax*. Given
unreliable sensors ds; = A;x + o; + n; for everyi € Z, or X', the vectors{o} }}_; in (P;) can be found separately as the

collectively minimizers of
b=Ax,+o0+n (2) min  ¢(o;) (5)
O;
where the subscrigf has been dropped from the variables 1, 9 .
. o s.t. ) = —||r; — o Aoill2, i=1,... k.
A, o, andn for notational simplicity. ¢(0:) 2 i = oillz + Alloillz, 4



Although ¢(0;) is not everywhere differentiable, its subdiffer-Remark1. The models in (1) (2) assumed the noise term

ential 0¢(o;) can be defined as [2] to be independent. Specifications such as the geographical
\ . distribution of sensors may impose correlation acrosfit
dp(0;) = { 0Oi (1 + W) - , 0 70 (6) sensor readings. In this case, if the covariance mairof the
{Mgi—r;: |lgill2 <1} , 0;=0. aggregate noise vectaer is known, a standard preprocessing
Vector o is a minimizer of (5) if and only if0 € dp(or). St€P is to prewhiten the data & := 3~'/*b and A’ :=
If o # 0, the first order optimality condition yielde? = »~1/2A. Prewhitening “spreads” the influence of unreliable

;<1 - 5” ) which holds only if|[r*[s > A [9]. On the Sensors across the entrieddf As a result, the LS and—erro_r

"i 12 L N regression estimators and even the robust Huber M-estimato
other hand, the minimizer 16; = 0 when [rf]> < /\'.Thef are not applicable; see also [7] for similar observationtha
Ia*tter proves that#;) indeed admits a block-sparse minimizeg ., caser, — 1). On the contrary, given thas remains
o block sparse, theH;) estimator can successfully handle a

Substitutingo® into (5 , yields ¢(or) = |[|r*]|2/2, when . . o
el < A: agdlgb(of) i ))\”13"’*”2 _¢)(\2;% otrl‘ersziQS/e. Having colored noise setup by simply modifying its cost as

minimized (P;) over theo;’s, the minimizerx* can then be

r

k
1 —~1/2
min 7 [[b’ — A'x — 3 /o||§+AZ;||oiuz. 8)

found as
k
min va(b- — Ax) (7a) IV. A NON-CONVEX APPROXIMATION
* = To derive (;), the non-smooth indicator functid(||o;||2 #
%||ri||§ , lesllz < A 0) was approximated by its closest convex approximation,
St pu(ri) = Arilla = & Jrilla > A (7b) ., |lo;||o. However, by letting the surrogate function to be

non-convex, tighter approximations are possible. In CS for

Itis now evident that £,) is equalent'to (7)’ which rat,herexample, the indicator functiol(z # 0) for z € R has been
surprisingly turns out to be a generalization of Huber's M

estimator to the vector case [8], [12]; see also [7] for thedac tsr:igr?o?:;e?h?gigi‘rﬂiz:lgz)rf\()i;a(;ng?b>e0r e[:;}acB euolllil;g on
(m = 1) case. The sensors capable of achieving a Idixrgf. '

value, and are more likely to be reliable, are treated by (7)
through the conventional LS criterion. But the sensors figwvi
lrill2 > A, contribute(\||r;||2 — A?/2) < ||r;]|3/2 to the cost, o . S
and are deemed “less important” in specifyingFor the latter Which is a non-convex problem and its minimization is
set of sensors)” # 0 holds too. Thus, ;) not only estimates non-trivial. In the quest of local optimization methodseg th

the unknown vectok, but also reveals the sensors most likeljn@orization-minimization (MM) approach is followed. The
to be unreliable in the presence of noise. concavity of the logarithm implies that a linearization of

A heuristic rule of thumb for practically selecting is 10g(z +9) around any:(?) > 0 serves as a majorizer, i.e.,
setting it toTy/m, wherer is the equivalent parameter for the z — 2
scalar Huber case. Regardi iers’ distributi log (z +9) < log (x(o) + 5) T s
. Regardingwhen the outliers’ distribution 20) 1§
is known a-priori, its value is available in closed form satth
Huber's M-estimator is optimal in a well-defined sense; s
[8], [12]. Alternatively, assuming that the noise is stamta 1 )
Gaussiany is usually set tor = 1.34 such that the Huber M- §||b —Ax—ofz+A
estimator derived is 95% asymptotically efficient at thenmalr
distribution [8], [12]. To render Huber’s M-estimator imient Following the MM rationale and lettingx®,o®) be the
to any noise variance?, one has to multiplyr by o. If ¢ tentative estimates at theth iteration, (%) can be driven
is unknown, a robust estimate of it is commonly used inste$al a stationary point [11] by updating**?), o(**1)) as the

k
o1
I}3}({15”]0—AX—0||§‘i‘/\z:log(||0i||2+5) ()

i=1

eTehus, given any®, the cost in £,) is majorized by

k
l|oi|2

oz +0

[8], [12]. minimizers of
Alternatively, If the number of reliable sensors is roughly 1 k
known (e.g., based on prior operation of the network), aoth min ~|b—Ax—ol3 + 1> w||oi 2, 9)
approach is solving#;) for a grid of A values and selecting xo 2 i=1
the one identifying the prescribed number of outliers. Note w® (\\o(t)||2 +6>_1 P %
that solving (?;) for several values of\ can be efficiently ' ' ’ e

performed either through the group-LARS algorithm [15], ointerestingly, a single iteration of (9) is a weighted versi
by using the block coordinate descent algorithm preserggtl nof (P;). When the residual error of a sensor is small, the
with what is called “warm startup” [6]. The latter initias sensor becomes more influential at the minimization of the
the tentative solutions ofF;) for a grid value of\ with the next iteration. Iterations can be initialized by the sautiof
solution derived for the previous grid value df The compu- (P;), while simulation results indicate that even one addi-
tational efficiency of such an approach has been numericdiignal iteration can significantly improve the mean-squerer
verified for the Lasso problem [6], [13]. (MSE) performance of ;) over (P;).



V. ABLOCK COORDINATE DESCENTALGORITHM 10°

The optimization problem in/;) can be cast as a SO( —6—GA-LS
and solved by generic interior point-based solvers. Torbaye
the special structure of the cost and offer computati
savings, a block coordinate descent algorithm is develc
Specifically, (P;) can be solved by iteratively minimizing wi
respect tox while keepingo fixed, and vice-versa. At the
th iteration and for a fixed = o(!~1), the solution becomt
available in closed form as

x .= (ATA)'AT (b — oV) (10)

which is a LS estimator on the outlier-compensated data
o"=1). Then, by settingc = x(¥) and

107 i

l 1 1 1
rz(. )= b; — A;x® (112) 10 11 12 13 14 15 16
Number of Consistent Sensors, s

the cost is separable over the’'s and the minimizers are
provided again in closed form as Fig. 2. MSE performance of RS solvers for white noise with, k)

(20,4, 16)
ol = £ [1_(?) ] (12)
1Pl ]

for i = 1,...,k and where[z]; = max{0,z}. The block:
coordinate descent algorithm consists of the updates (10),
and (12), and it is initialized as(?) = 0. The convergence
this iterative algorithm to the global optimum aPy) follows
readily from [14]. Its complexity can be as low &(kmn)
per iteration, while the simulated tests demonstrate thes
faster than interior point-based algorithms. The algamittar
be readily applied to the iterations in (9) by simply reptey
A by )\Z(.l) = )\wgl).

—6— GA-LS
—A— S

L1
==& Huber

MSN
—¢— W-MSN
—— P2
—¥— P3(1)

MSE

10 °f
VI. SIMULATED RESULTS
To evaluate the performance of the RS solvers devel
a setup involving a network of = 16 sensorsyn = 4 per
sensor measurements, and an unknown vector of dime 107 ‘ ‘ ‘ ‘
n = 20, was simulated. The entries &f were independent 10 1 Nurfber of Con;item Sensi‘r‘s . 15 16
drawn fromA/ (0, 1). The reliable sensors followed the mo.._. ’
_ o —1/2 o .
Er]].()a L?]rr;fat;e Znes \}V,ér:nddranvim {;SLN,\(,OJ’\/Q(SL 1I{n)imV\)/f}1Zr§OaS (FQ'% i 16|\)/|.SE performance of RS solvers for colored noise withg, k) =
The MSE,E [||x, — /]3], of each method was empirically
estimated by averaging over 1,000 Monte Carlo experiments.
The comparison included: (i) the LS estimator; (ii) a genie-
ald_ed (GA) LS estlwator which knows a-priori the subsgt %folution of (P,) clearly combines robustness when outliers
reliable sensor§?; (iii) the El—erro_r regression estimator; (iv) are present with efficiency when they are absent.
the Huber M-estimator [8]; (v)-(vi) the two solvers devetap
in [9] called here (W-)MSN; (vii) the estimator defined by To test the effect of correlated sensor measurements, the
(P,); and (viii) the () estimator run for a single iteration.following experiment was performed. The reliable sensors
The parametek for both (P;)-(P) was set using the first rule were modeled again dss, = As,xo + ns,, the unreliable
of thumb described in Section I, andwas set tol0~* even ones asbs = n,, + ng, wheren,, ~ N(0,Ij_),,), while

though the solution of ) was insensitive in the range of[ng, n§ ]" ~ N(0,%) andX is a symmetric Toeplitz matrix
values10~2 down to 108 tested. with first column[1 0.9 0.9% --- 0.9*m~17 The two RS

In Fig. 2 the MSE is plotted versus the number of consistesblvers were modified according to Remark 1 and optimization
sensorss. The curves show that the block-sparsity-ignoramtroblem (8). Fig. 3 shows the MSE curves obtained at SNR
LS, ¢1, and Huber's estimators are generally outperformed 10 dB. In this correlated noise setup, the superiority of RS
by the novel schemes. The?) estimator initialized at the solvers is even more prominent.



VIl. CONCLUSIONS

The fresh viewpoint offered here broadens the scope of
sparsity-exploiting algorithms to settings where modek-mi
match induced by unreliable sensors or outliers gives ose t
sparsity in an appropriately defined residual domain and not
necessarily in the signal of interest domain. This perspect
bridges compressive sampling and sparse linear regression
with robust multivariate linear regression. Leveragings th
connection, robust sensing algorithms were developed/&aate
unreliable sensors and recover the signal of interest based
on reliable sensors. The RS task was reformulated to a
combinatorially complex problem that was subsequentlyosur
gated by (non-)convex costs. The two subsystem-aware trobus
estimators derived can be solved by an efficient block ceordi
nate descent algorithm. The simulated tests demonstraéged t
success of the methods proposed.

REFERENCES

[1] Z. D. Bai, C. R. Rao, and Y. Wu, “M-estimation of multivareatinear
regression parameters under a convex discrepancy furicBoatistica
Sinicg vol. 2, pp. 237-254, 1992.

[2] S. Boyd and L. Vandenbergh€onvex Optimization New York, NY:
Cambridge University Press, 2004.

[3] E. J. Canés, M. B. Wakin, and S. Boyd, “Enhancing sparsity by
reweighted¢; minimization,” Journal of Fourier Analysis and Appli-
cations vol. 14, no. 5, pp. 877-905, Dec. 2008.

[4] E. J. Canés and T. Tao, “Decoding by linear programmin¢fZEE
Trans. Inform. Theoryvol. 51, no. 12, pp. 4203-4215, Dec. 2005.

[5] S.S.Chen,D. L. Donoho, Michael, and A. Saunders, “Atodecompo-
sition by basis pursuit,5IAM Journal on Scientific Computingol. 20,
pp. 33-61, 1998.

[6] J. Friedman, T. Hastie, and R. Tibshirani, “Regularizegthg for
generalized linear models via coordinate descelutirnal of Statistical
Software vol. 33, no. 1, pp. 1-22, 2010.

[7] J.-J. Fuchs, “An inverse problem approach to robustasgjon,” inProc.
ICASSPR Phoenix, AZ, 1999, pp. 1809-1812.

[8] P.J. Huber and E. M. RonchetfRobust Statistics New York: Wiley,
2009.

[9] V. Kekatos and G. B. Giannakis, “From sparse signals tarspe
residuals for robust sensing,” Submitted May 2010; RevisedNov
2010; Available online aar Xi v: 1011. 0450.

[10] ——, “Selecting reliable sensors via convex optimizafioin Proc.
SPAWGC Marrakech, Morocco, Jun. 2010.

[11] K. Lange, D. Hunter, and I. Yang, “Optimization transtesing surrogate
objective functions (with discussion)Journal of Computational and
Graphical Statisticsvol. 9, pp. 1-59, 2000.

[12] R. A. Maronna, R. D. Martin, and V. J. Yohdobust Statistics: Theory
and Methods Wiley, 2006.

[13] R. Tibshirani, “Regression shrinkage and selection the Lasso,”
Journal of the Royal Statistical Society, Series ®&l. 58, no. 1, pp.
267-288, 1996.

[14] P. Tseng, “Convergence of block coordinate descent adetbr nondif-
ferentiable minimization,'Journal on Optimization Theory and Appli-
cations vol. 109, pp. 475-494, Jun. 2001.

[15] M. Yuan and Y. Lin, “Model selection and estimation in regsion with
grouped variables,Journal of the Royal Statistical Society, Series B.
vol. 68, no. 1, pp. 49-67, 2006.

[16] Y. Zhang, N. Meratnia, and P. Havinga, “Outlier detentitechniques
for wireless sensor networks: A surveyZEE Commun. Surveys Tuts.
vol. 12, no. 2, pp. 159-170, 2010.



