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Abstract—One of the key challenges in sensing networks is
the extraction of information by fusing data from a multitude of
possibly unreliable sensors. Robust sensing, viewed here as the
simultaneous recovery of the wanted information-bearing signal
vector together with the subset of (un)reliable sensors, is a prob-
lem whose optimum solution incurs combinatorial complexity.
The present paper relaxes this problem to its closest convex
approximation that turns out to yield a vector-generalization
of Huber’s scalar criterion for robust linear regression. The
novel generalization is shown equivalent to a second-order cone
program (SOCP), and exploits the block-sparsity inherent to a
suitable model of the residuals. A computationally efficient solver
is developed using a block-coordinate descent algorithm, and is
tested with simulations.

I. I NTRODUCTION

Recent advances in sensor technology have made it feasible
to deploy a network of sensors for carrying out synergistically
even sophisticated inference tasks. In applications such as
environmental monitoring, the typical concept of operation
involves a large set of sensors locally observing the signal
of interest, and transmitting their measurements to a higher-
layer fusion center. This so-termed layered sensing apparatus
entails three operational conditions:
(c1) Each node’s measurement vector comprising either a
collection of scalar observations across time, or a snapshot
of different sensor readings, is typically linearly related to
the unknown variable(s). Such alinear model can arise when
the sensing system is viewed as a linear filter, or, when the
measured field is linearly represented over a fixed basis;
(c2) Due to stringent power, delay, bandwidth, or model
constraints, the linear model can be alsounder-determined,
i.e., the dimension of the unknown vector exceeds that of each
sensor’s vector observation; and
(c3) Not all sensors arereliable due to failures in the sens-
ing devices, fades of the sensor-to-fusion-center communica-
tion link, physical obstruction of the scene of interest, and
(un)intentional interference; see Fig. 1.

Conditions (c1)-(c3) suggest that the fusion center should
not simply aggregate all sensor measurements, but instead
identify and discard unreliable sensors before estimatingthe
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Fig. 1. A wireless sensor network linked with a fusion center. (Un)reliable
sensors are color coded as (red) green.

unknown vector based on reliable sensor data. This task is
henceforth referred to asrobust sensing(RS), and provides
context of the present paper. Even though the related problem
of outlier detection in sensor networks has been studied exten-
sively (see e.g., [16] for a recent survey), the RS setup and the
approaches described here have not been considered before.
In [9], RS was studied under the asymptotically high SNR
regime, identifiability conditions were developed, and it was
shown that for Gaussian sensing matrices a convex relaxation
of the NP-hard problem involved recovers the solution with
overwhelming probability.

The approach here considers a practical noisy setup and
views the unreliable sensors as outliers, thus placing the RS
task under a robust multivariate linear regression framework
[1]. By proper modeling of the unreliable sensors, the RS
task is formulated as a combinatorial optimization problem
and subsequently surrogated by (non-)convex approximants.
Interestingly, the novel cost functions turns out to be a block
version of Huber’s function [8]. The resultant optimization
problem is transformed to a group Lasso-type cost [15], and a
computationally attractive block-coordinate descent algorithm
is developed. The simulations corroborate the results.



II. PROBLEM STATEMENT AND PRELIMINARIES

To concretely formulate the problem under conditions (c1)-
(c3), consider a network ofk sensors. Each sensor acquires
a measurement vector{bi ∈ R

m}k
i=1 through the known

sensing matrix{Ai ∈ R
m×n}k

i=1. However, among the set of
sensorsI := {1, . . . , k}, only s of them are reliable and adhere
to the per-sensor linear regression model

bi = Aixo + vi, i ∈ So (1)

where So denotes the unknown subset of reliable sensors
So ⊂ I with cardinality |So| = s, and vi stands for inde-
pendent identically distributed zero-mean noise of variance
σ2 that captures quantization effects, communication noise,
and/or unmodeled dynamics. With reference to (1), the task
of robust sensing(RS) amounts to estimating the unknownxo

as the solution of

min
x

min
|S|=s

‖bS − ASx‖2
2 (P0)

whereAS is the|S|m×n matrix constructed by concatenating
{Ai}i∈S , and likewise forbS for any S ⊂ I. Unfortunately,
solving the problem(P0) incurs combinatorial complexity,
since one has to find all

(

k
s

)

solutions of (P0) using e.g., least-
squares (LS).

Looking for practical solvers, the LS estimator aiming to
minimize‖bI−AIx‖2

2 is not appropriate, since the unreliable
sensors will adversely influence the solution. When the sensing
matricesAi’s are tall (m ≥ n), a heuristic approach would
be to find the per sensor LS solutions, i.e.,(AT

i Ai)
−1AT

i bi,
and try identifying the outlying ones. The problem becomes
even more challenging form < n, and recall that under-
determinacy can arise naturally as explained in operating
condition (c2).

One could possibly tryℓ1-error regression, which seeks to
minx ‖bI −AIx‖1 and is known to be outlier resistant, or an
M-estimator from robust linear regression [8]. However, these
two approaches do not account for the block structure inherent
to the problem. Indeed, as outliers constitute quantities violat-
ing (1), they are not single measurements, but a group ofm
measurements.

III. A C ONVEX RELAXATION

Thus, the RS task falls under the realm of robust multivariate
linear regression [1]. The novel approach developed here starts
by recognizing that model (1) is not valid for the unreliable
sensors. Hence, consider modeling the unreliable sensors using
the auxiliary outlier vectors{oi ∈ R

m}k
i=1. Vectoroi is zero

if the i-th sensor is reliable; andoi 6= 0 deterministically,
otherwise. Model (1) can now be extended to incorporate the
unreliable sensors asbi = Aix + oi + ni for every i ∈ I, or
collectively

b = Axo + o + n (2)

where the subscriptI has been dropped from the variablesb,
A, o, andn for notational simplicity.

Based on (2), the RS problem can now be cast as a linear
regression problem with respect to the vector

[

xT oT
]T

. Note
that even whenA is tall (km ≥ n), the involved regression
matrix [A Ikm] is under-determined. To derive a well-posed
regression problem, the block sparsity ofo should be explicitly
taken into account by constraining the number of nonzerooi’s
as

min
x,o

‖b − Ax − o‖2
2 (3)

s.to
k

∑

i=1

I(‖oi‖2 6= 0) ≤ s

whereI(·) is the indicator function. The problem in (3) is non-
convex due to the constraints. Following the idea of convex
relaxation that has successfully been applied in the area of
compressive sampling (CS) [5], [4], the indicator function
is replaced by theℓ2-norm of theoi’s which is its closest
convex approximation. The optimization problem derived in
its Lagrangian form is

min
x,o

1

2
‖b − Ax − o‖2

2 + λ
k

∑

i=1

‖oi‖2 (P1)

whereλ > 0 can be selected in the ways described later. The
second term in the penalized LS estimator of (P1) resembles
the group Lasso cost function [13], [15]. Similarly to group
Lasso, we will show that theℓ2-norm penalty favors zero
oi’s, and thus, the (P1) estimator automatically reveals the
(un-)reliable sensors as those having (non-)zerooi’s.

Interestingly, whenλ → ∞, the optimum is attained at
o = 0; hence, all sensors are deemed consistent and (P1)
reduces to the LS estimator. On the contrary, whenλ → 0+,
the minimizing oi’s are {oi = bi − Aix}k

i=1 where x is
the minimizer of (P1) and all sensors are considered outliers
(cf. the subsequent analysis). In the latter case, (P1) becomes
equivalent to the problem

min
x

k
∑

i=1

‖bi − Aix‖2. (4)

In [9], [10], the optimization problem in (4) has been de-
veloped for the RS task when the consistent measurements
do not contain noise, or practically, in the high SNR regime.
We also provide necessary and sufficient conditions onA for
the identifiability of the problem, and show that whenA is
drawn from the Gaussian ensemble the probability of exactxo

recovery is overwhelmingly high.
To better understand the optimization problem (P1) and to

later develop an efficient solver, we study the form of its
minimizer(s). Let[(x⋆)T (o⋆)T ]T denote a minimizer of (P1),
and define the associated residual vectorr⋆ := b−Ax⋆. Given
x⋆, the vectors{o⋆

i }k
i=1 in (P1) can be found separately as the

minimizers of

min
oi

φ(oi) (5)

s.t. φ(oi) :=
1

2
‖r⋆

i − oi‖2
2 + λ‖oi‖2, i = 1, . . . , k.



Althoughφ(oi) is not everywhere differentiable, its subdiffer-
ential ∂φ(oi) can be defined as [2]

∂φ(oi) :=

{

oi

(

1 + λ
‖oi‖2

)

− r⋆
i , oi 6= 0

{λgi − r⋆
i : ‖gi‖2 ≤ 1} , oi = 0.

(6)

Vector o⋆
i is a minimizer of (5) if and only if0 ∈ ∂φ(o⋆

i ).
If o⋆

i 6= 0, the first order optimality condition yieldso⋆
i =

r⋆
i

(

1 − λ
‖r⋆

i
‖2

)

which holds only if ‖r⋆
i ‖2 > λ [9]. On the

other hand, the minimizer iso⋆
i = 0 when ‖r⋆

i ‖2 ≤ λ. The
latter proves that (P1) indeed admits a block-sparse minimizer
o⋆.

Substitutingo⋆
i into (5), yields φ(o⋆

i ) = ‖r⋆
i ‖2

2/2, when
‖r⋆

i ‖2 ≤ λ; and φ(o⋆
i ) = λ‖r⋆

i ‖2 − λ2/2, otherwise. Having
minimized (P1) over theoi’s, the minimizerx⋆ can then be
found as

min
x

k
∑

i=1

ρv(bi − Aix) (7a)

s.t. ρv(ri) :=

{ 1
2‖ri‖2

2 , ‖ri‖2 ≤ λ

λ‖ri‖2 − λ2

2 , ‖ri‖2 > λ
(7b)

It is now evident that (P1) is equivalent to (7), which rather
surprisingly turns out to be a generalization of Huber’s M-
estimator to the vector case [8], [12]; see also [7] for the scalar
(m = 1) case. The sensors capable of achieving a lower‖ri‖2

value, and are more likely to be reliable, are treated by (7)
through the conventional LS criterion. But the sensors having
‖ri‖2 > λ, contribute(λ‖ri‖2 −λ2/2) < ‖ri‖2

2/2 to the cost,
and are deemed “less important” in specifyingx. For the latter
set of sensors,o⋆

i 6= 0 holds too. Thus, (P1) not only estimates
the unknown vectorx, but also reveals the sensors most likely
to be unreliable in the presence of noise.

A heuristic rule of thumb for practically selectingλ is
setting it toτ

√
m, whereτ is the equivalent parameter for the

scalar Huber case. Regardingτ , when the outliers’ distribution
is known a-priori, its value is available in closed form so that
Huber’s M-estimator is optimal in a well-defined sense; see
[8], [12]. Alternatively, assuming that the noise is standard
Gaussian,τ is usually set toτ = 1.34 such that the Huber M-
estimator derived is 95% asymptotically efficient at the normal
distribution [8], [12]. To render Huber’s M-estimator invariant
to any noise varianceσ2, one has to multiplyτ by σ. If σ
is unknown, a robust estimate of it is commonly used instead
[8], [12].

Alternatively, If the number of reliable sensors is roughly
known (e.g., based on prior operation of the network), another
approach is solving (P1) for a grid of λ values and selecting
the one identifying the prescribed number of outliers. Note
that solving (P1) for several values ofλ can be efficiently
performed either through the group-LARS algorithm [15], or,
by using the block coordinate descent algorithm presented next
with what is called “warm startup” [6]. The latter initializes
the tentative solutions of (P1) for a grid value ofλ with the
solution derived for the previous grid value ofλ. The compu-
tational efficiency of such an approach has been numerically
verified for the Lasso problem [6], [13].

Remark1. The models in (1) (2) assumed the noise term
to be independent. Specifications such as the geographical
distribution of sensors may impose correlation across different
sensor readings. In this case, if the covariance matrixΣ of the
aggregate noise vectorn is known, a standard preprocessing
step is to prewhiten the data asb′ := Σ−1/2b and A′ :=
Σ−1/2A. Prewhitening “spreads” the influence of unreliable
sensors across the entries ofb′. As a result, the LS andℓ1-error
regression estimators and even the robust Huber M-estimator
are not applicable; see also [7] for similar observations inthe
scalar case (m = 1). On the contrary, given thato remains
block sparse, the (P1) estimator can successfully handle a
colored noise setup by simply modifying its cost as

min
x,o

1

2
‖b′ − A′x − Σ

−1/2
o‖2

2 + λ

k
∑

i=1

‖oi‖2. (8)

IV. A N ON-CONVEX APPROXIMATION

To derive (P1), the non-smooth indicator functionI(‖oi‖2 6=
0) was approximated by its closest convex approximation,
i.e., ‖oi‖2. However, by letting the surrogate function to be
non-convex, tighter approximations are possible. In CS for
example, the indicator functionI(x 6= 0) for x ∈ R has been
surrogated bylog(|x| + δ) for a smallδ > 0 [3]. Building on
this idea, the optimization in (3) can be replaced by

min
x,o

1

2
‖b − Ax − o‖2

2 + λ

k
∑

i=1

log(‖oi‖2 + δ) (P2)

which is a non-convex problem and its minimization is
non-trivial. In the quest of local optimization methods, the
majorization-minimization (MM) approach is followed. The
concavity of the logarithm implies that a linearization of
log(x + δ) around anyx(0) > 0 serves as a majorizer, i.e.,

log (x + δ) ≤ log
(

x(0) + δ
)

+
x − x(0)

x(0) + δ
.

Thus, given anyo(t), the cost in (P2) is majorized by

1

2
‖b − Ax − o‖2

2 + λ

k
∑

i=1

‖oi‖2

‖o(t)
i ‖2 + δ

.

Following the MM rationale and letting(x(t),o(t)) be the
tentative estimates at thet-th iteration, (P2) can be driven
to a stationary point [11] by updating(x(t+1),o(t+1)) as the
minimizers of

min
x,o

1

2
‖b − Ax − o‖2

2 + λ

k
∑

i=1

w
(t)
i ‖oi‖2, (9)

w
(t)
i :=

(

‖o(t)
i ‖2 + δ

)−1

, i = 1, . . . , k.

Interestingly, a single iteration of (9) is a weighted version
of (P1). When the residual error of a sensor is small, the
sensor becomes more influential at the minimization of the
next iteration. Iterations can be initialized by the solution of
(P1), while simulation results indicate that even one addi-
tional iteration can significantly improve the mean-squareerror
(MSE) performance of (P2) over (P1).



V. A B LOCK COORDINATE DESCENTALGORITHM

The optimization problem in (P1) can be cast as a SOCP,
and solved by generic interior point-based solvers. To leverage
the special structure of the cost and offer computational
savings, a block coordinate descent algorithm is developed.
Specifically, (P1) can be solved by iteratively minimizing with
respect tox while keepingo fixed, and vice-versa. At thel-
th iteration and for a fixedo = o(l−1), the solution becomes
available in closed form as

x(l) := (AT A)−1AT (b − o(l−1)) (10)

which is a LS estimator on the outlier-compensated data(b−
o(l−1)). Then, by settingx = x(l) and

r
(l)
i := bi − Aix

(l) (11)

the cost is separable over theoi’s and the minimizers are
provided again in closed form as

o
(l)
i = r

(l)
i

[

1 − λ

‖r(l)
i ‖2

]

+

(12)

for i = 1, . . . , k and where[x]+ = max{0, x}. The block-
coordinate descent algorithm consists of the updates (10),(11),
and (12), and it is initialized ato(0) = 0. The convergence of
this iterative algorithm to the global optimum of (P1) follows
readily from [14]. Its complexity can be as low asO(kmn)
per iteration, while the simulated tests demonstrate that it is
faster than interior point-based algorithms. The algorithm can
be readily applied to the iterations in (9) by simply replacing
λ by λ

(l)
i := λw

(l)
i .

VI. SIMULATED RESULTS

To evaluate the performance of the RS solvers developed,
a setup involving a network ofk = 16 sensors,m = 4 per
sensor measurements, and an unknown vector of dimension
n = 20, was simulated. The entries ofA were independently
drawn fromN (0, 1). The reliable sensors followed the model
(1) for xo = n−1/21n and ni ∼ N (0, 0.1 · Im), whereas
the unreliable ones were drawn as{bi ∼ N (0, 1.1 · Im)}i/∈So

.
The MSE, E

[

‖xo − x̂‖2
2

]

, of each method was empirically
estimated by averaging over 1,000 Monte Carlo experiments.

The comparison included: (i) the LS estimator; (ii) a genie-
aided (GA) LS estimator which knows a-priori the subset of
reliable sensorsSo; (iii) the ℓ1-error regression estimator; (iv)
the Huber M-estimator [8]; (v)-(vi) the two solvers developed
in [9] called here (W-)MSN; (vii) the estimator defined by
(P1); and (viii) the (P2) estimator run for a single iteration.
The parameterλ for both (P1)-(P2) was set using the first rule
of thumb described in Section III, andδ was set to10−4 even
though the solution of (P2) was insensitive in the range of
values10−2 down to10−8 tested.

In Fig. 2 the MSE is plotted versus the number of consistent
sensorss. The curves show that the block-sparsity-ignorant
LS, ℓ1, and Huber’s estimators are generally outperformed
by the novel schemes. The (P2) estimator initialized at the
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Fig. 2. MSE performance of RS solvers for white noise with (n, m, k) =
(20, 4, 16)
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Fig. 3. MSE performance of RS solvers for colored noise with (n, m, k) =
(20, 4, 16).

solution of (P1) clearly combines robustness when outliers
are present with efficiency when they are absent.

To test the effect of correlated sensor measurements, the
following experiment was performed. The reliable sensors
were modeled again asbS0

= AS0
x0 + nS0

, the unreliable
ones asbS̄0

= nw + nS̄0
wherenw ∼ N (0, I(k−s)m), while

[nT
S0

nT
S̄0

]T ∼ N (0,Σ) andΣ is a symmetric Toeplitz matrix
with first column [1 0.9 0.92 · · · 0.9km−1]T . The two RS
solvers were modified according to Remark 1 and optimization
problem (8). Fig. 3 shows the MSE curves obtained at SNR
= 10 dB. In this correlated noise setup, the superiority of RS
solvers is even more prominent.



VII. C ONCLUSIONS

The fresh viewpoint offered here broadens the scope of
sparsity-exploiting algorithms to settings where model mis-
match induced by unreliable sensors or outliers gives rise to
sparsity in an appropriately defined residual domain and not
necessarily in the signal of interest domain. This perspective
bridges compressive sampling and sparse linear regression
with robust multivariate linear regression. Leveraging this
connection, robust sensing algorithms were developed to reveal
unreliable sensors and recover the signal of interest based
on reliable sensors. The RS task was reformulated to a
combinatorially complex problem that was subsequently surro-
gated by (non-)convex costs. The two subsystem-aware robust
estimators derived can be solved by an efficient block coordi-
nate descent algorithm. The simulated tests demonstrated the
success of the methods proposed.
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