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Abstract— While the effect of network topology, line
impedances, and (synthetic) inertia/damping coefficients of
synchronous generators and distributed energy resources (DER)
on dynamic performance have been extensively investigated, the
impact of the power network operating point has not been
studied. This work proposes a novel semi-definite program
(SDP)-based optimal power flow (OPF) formulation to find
a more stable generator dispatch. Different stability metrics
widely used in industry can be captured by a carefully selected
H2-norm of a linear time-invariant (LTI) system obtained
from swing dynamics. Under practical approximations, the
dependence of this norm on the operating point can be captured
by a convex model. This allows selecting the operating point
to minimize stability metrics, generation costs, or combinations
thereof through an SDP-based OPF. A two-stage approach can
also be followed, where first, active power setpoints are decided
by a standard OPF, and reactive power setpoints are decided
subsequently by the proposed OPF. Pareto optimality analysis
carried out to study the relative trade-off between generation
and stability costs reveals that a significant improvement in
stability can be obtained with small increments in generation
cost. Dynamic simulations on the IEEE 68-bus system corrob-
orate that the found OPF schedules feature improved dynamic
behavior.

I. INTRODUCTION

Power systems constantly experience disturbances of vary-
ing magnitudes and time scales, which can lead to sustained
oscillations or even power outages. This fact renders system
stability a sought-after attribute. Along with rotor angle,
voltage magnitude, and frequency stability, resonance, and
converter-driven stability also need to be considered due
to the addition of HVDC, FACTs, and power-electronic
converter-based devices [1], [2]. Most studies aim to design
control mechanisms to enhance system stability. However,
stability also relies on the initial operating conditions a
system is subject to. In transmission networks, rotor angle
stability has been studied based on the effect of large and
small disturbances, called transient and small-signal stability,
respectively. While transient stability has been incorporated
in finding stable operating points [3], studies optimizing over
small-signal stability metrics to obtain generator dispatches
are relatively sparse.

Small-signal stability studies have focused on ensuring
that the state transition matrix of linearized power system
dynamics have negative real parts. Several works aim at
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either perturbing or obtaining operating points while min-
imizing the spectral abscissa [4]. Such methods require
computing eigenvalues iteratively and are challenged by the
non-smoothness of spectral abscissa [4]. With the evolv-
ing understanding of stability [1], studies have aimed to
classify system stability using various metrics based on the
intended application. Popular industry metrics include event-
based measures of frequency nadir, settling times, frequency
deviations from the center of inertia, network coherence,
short circuit current during faults [5], [6], and have been
incorporated into unit commitment [7] and resource planning
studies [8]. System theoretic metrics invoked in analytical
studies include the H2 and H∞ norms of appropriately
defined linear dynamical systems [9], [10], [11]. Planning
studies optimize the previous metrics while selecting network
topologies and line impedances, placing virtual inertia and
damping through inverter-interfaced resources, and designing
controllers [9], [12]. However, investigations on the effect of
the operating point of such stability metrics are relatively
sparse. While the planning studies involving sophisticated
metrics assume a fixed operating point, most works pursuing
stability-improving operating points are challenged by the
computationally burdensome notion of spectral abscissa [13].
Although [14] obtains a stability-promoting OPF by mini-
mizing the H2-norm of linearized system dynamics, it uses
gradient updates that might miss the global optimum.

In this work, we capture various industry-relevant stability
metrics using the H2-norm of an LTI system and connect
them to the operating point of a power system using a novel
SDP-based formulation of the OPF. This formulation can
utilize additional reactive power support provided by DERs
to enhance system stability. Although the proposed formu-
lation relies on a constant damping assumption, numerical
tests demonstrate the approach’s effectiveness even when the
assumption is waived. Along with studying the Pareto front
between generation cost and stability metric, we also suggest
and numerically evaluate a two-stage approach, similar to the
one suggested in [15]. This two-stage approach decides ac-
tive power setpoints based on the standard OPF formulation
and, subsequently, decides reactive power setpoints on an
OPF that minimizes the stability cost. The obtained operating
points are validated by simulating system responses due
to load variations in a practical system with heterogeneous
damping and third-order machine models.

The rest of the paper is organized as follows. Section II
reviews the algebraic and dynamic power system model.
Section III includes different stability metrics, their con-
nection to the H2-norm of an LTI system, and a convex
reformulation of the H2-norm. The stability-aware SDP-



based OPF is presented in Section IV and numerically
validated in Section V. Section VI concludes the article.

II. SYSTEM MODELING

A power transmission system can be represented by a
graph G = (N ,L). The set of nodes N includes the N + 1
buses indexed by n ∈ N := {0, 1, . . . , N}, and the set of
edges L the transmission lines indexed by ` = (m,n) ∈
L, where m,n ∈ N . Set N constitutes a collection of
generation, load, and zero-injection buses. Load buses may
represent sub-transmission networks with DERs connected
to them. If needed, buses hosting DERs can provide reactive
power support to enhance grid dynamic stability. For reasons
to be discussed later, we collectively refer to load and gen-
eration buses as synchronous buses contained in set S ⊂ N
indexed by n = 0, . . . , S. Zero-injection buses are collected
in set S̄ = N \ S, and indexed by n = S + 1, . . . , N .

Let vector v collect the complex voltages vn = Vn∠θn
for all buses n ∈ N . Each synchronous bus n ∈ S can
be modeled as an internal voltage source en = En∠δn
connected to the terminal bus via reactance xn > 0. The
current flowing from the internal to the terminal bus n is
en−vn
jxn

. While v governs OPF studies, vector e collecting
all internal voltages governs swing power system dynamics.
Ignoring shunts, the two voltage vectors are related through
Ohm’s law as [16]:[

YS,S YS,S̄
Y>S,S̄ YS̄,S̄

] [
vS
vS̄

]
=

[
YS(e− vS)

0

]
(1)

where the left-hand side involves the bus admittance matrix
partitioned into synchronous and non-synchronous buses,
and the diagonal matrix YS = dg({1/(jxn)}) collects all
internal reactances. Eliminating buses in S̄ provides:

vS = ΓYSe. (2)

where matrix Γ := (YS,S + YS − YS,S̄Y
−1
S̄,S̄Y

>
S,S̄)−1 is

known to exist [17]. Equation (2) relates terminal to internal
voltages and, thus, couples OPF to dynamic stability studies.
We next review models for the OPF and swing dynamics.

Optimal power flow (OPF) models are expressed in terms
of v and typically involve the ensuing constraints:

vHMpnv = pgn − p̄dn ∀n ∈ S (3a)

vHMqnv = qgn − qdn ∀n ∈ S (3b)
pg
n
≤ pgn ≤ p̄gn ∀n ∈ S (3c)

qg
n
≤ qgn ≤ q̄gn ∀n ∈ S (3d)

(1− αn)q̄dn ≤ qdn ≤ (1 + αn)q̄dn ∀n ∈ S (3e)

vn ≤ vHMvnv ≤ v̄n ∀n ∈ N (3f)

vHMimnv ≤ īmn ∀(m,n) ∈ L (3g)

Constraints (3a)–(3b) relate net complex power injections to
terminal voltages using appropriately defined (N+1)×(N+
1) Hermitian matrices (Mpn ,Mqn) [18]. Constraints (3c)–
(3d) impose limits on power generation. Symbol p̄dn denotes
the fixed active load demand at bus n. Constraint (3e) allows
reactive power demands to vary by ±αn off their nominal

values q̄dn. Selecting αn = 0 for all buses yields standard
OPF formulations. Positive αn’s expand the OPF feasible
set and capture the capability for additional reactive power
support by DERs to improve on generation costs, grid stabil-
ity, and/or other operational objectives [14]. Constraint (3f)
confines squared voltage magnitudes V 2

n within given ranges
with Mvn = ene>n , where en is the n-th canonical vector.
Constraint (3g) limits squared current magnitudes per line
ratings. If ymn is the series impedance of line (m,n) ∈ L,
the current flowing on this line is imn = (vm − vn)ymn, so
that Mimn = |ymn|2(em − en)(em − en)>.

We proceed with dynamic stability models [19]. The active
power injection pn is the active power flow over reactance
xn across internal voltage en and terminal voltage vn:

pn =
EnVn
xn

sin(δn − θn) =
1

xn
Im{env∗n}. (4)

Eliminating vn from (4) using (2) provides [19]:

pn =

S∑
k=0

EnEk
xnxk

Re
{

Γnk · ej(δn−δk)
}
.

Because |Re{Γnk}| � | Im{Γnk}| under a lossless power
system model, the previous expression simplifies as

pn =

S∑
k=0

EnEk
γnk

sin(δn − δk). (5)

where γnk := −(xnxk)/ Im(Γnk) > 0 serves as the effective
reactance between the synchronous machines connected to
buses k and n, and is symmetric γnk = γkn [16].

Let the synchronous machine connected to bus n ∈ S
be associated with frequency ωn = δ̇n and inertia/damping
constants Mn and Dn. Recall that the complex phasor
representation En∠δn(t) corresponds to a sinusoidal voltage
waveform

√
2En cos(ωt + δn(t)), where ω is the nominal

angular frequency. Frequency ωn represents the deviation
from the nominal and should be close to zero. Swing
dynamics for the synchronous machine n dictate [2]

Mnω̇n +Dnωn = pgn − pn − p̄dn (6)

where pgn, pn, and pdn denote respectively the mechanical
power input, the electric power flowing from bus n to the
grid, and the power demand at bus n. While (6) applies to
bus n, injection pn couples all S + 1 machines via (5).

Collect {ωn}n∈S and {δn}n∈S in ω and δ. Let the
state tuple (ω0, δ0) correspond to an equilibrium of (6) so
that ω̇n = 0 for all n. We are interested in frequency-
synchronized solutions of (6) implying that ω0 = ω01.
Because

∑S
n=0 pn = 0 from (5), one obtains

ω0 =

∑S
n=0 p

in
n∑S

n=0Dn

where pin
n := pgn − pdn is the net power entering the system

at bus n.
Assume for convenience that

∑S
n=0 p

in
n = 0 and so ω0 =

0 at steady state. This is without loss of generality: If the
assumption is violated, one can seamlessly resort to a change



of variables ω̃n(t) = ωn(t) − ω0, p̃in
n(t) = pin

n(t) − ω0Dn,
and δ̃n(t) = δn(t)− ω0t. Proceeding with ω0 = 0, we note
from (5)–(6) that the angles δ0 at equilibrium are such that

pin
n = pn =

S∑
k=0

EnEk
γnk

sin(δ0
n − δ0

k). (7)

We next obtain a linear time-invariant (LTI) system by lin-
earizing (6) at the equilibrium point. To this end, we assume
constant voltage magnitudes and consider small perturbations
in (pin

n , pn) to (pin
n+∆pin

n , pn+∆pn) corresponding to angles
δ0
n + ∆δn. Linearizing (5) provides

∆p ' Lδ0∆δ (8)

where ∆p collects {∆pn}Sn=0, vector ∆δ collects
{∆δn}Sn=0, and the Jacobian matrix Lδ0 is evaluated at
δ = δ0 with entries

[Lδ0 ]nk =


∑
m6=n

EnEm
γnm

cos(δ0
n − δ0

m) , n = k

−EnEkγnk
cos(δ0

n − δ0
k) , n 6= k.

(9)

Note that γnk > 0 and |δ0
n − δ0

k| < π/2 holds for
admissible power system operating points. The Jacobian
is a graph Laplacian matrix and is known to be positive
semidefinite [20].

Let diagonal matrices M and D carry the inertia and
damping coefficients per unit, respectively. Linearizing (6)
for all buses in S and substituting (8) yields

Mω̇ + Dω + p + Lδ0∆δ = pin + ∆pin. (10)

The steady-state operating schedules of input powers p and
injected powers pin cancel out due to (7). Note that ω =

δ̇
0

+ ∆δ̇ = ∆δ̇, and hence, vector ω actually represents
the deviation of bus frequencies from nominal. Therefore, all
states and inputs of the LTI system in (10) involve deviations
from their nominal values. For notational brevity, we will
henceforth omit the ∆’s. The linearized dynamics of (10)
can be endowed with the state-space model [20]:[
δ̇
ω̇

]
=

[
0 I

−M−1Lδ0 −M−1D

]
︸ ︷︷ ︸

A:=

[
δ
ω

]
+

[
0

M−1

]
︸ ︷︷ ︸

B:=

pin (11a)

y =

[
C11 0
0 C22

]
︸ ︷︷ ︸

C:=

[
δ
ω

]
(11b)

where the vector of observables y collects Kδ outputs
related to voltage angles and Kω outputs related to volt-
age frequencies. Because observables associated with angles
and frequencies are typically disparate, it is customary to
impose a block-diagonal structure on matrix C with C11 ∈
RKδ×(S+1) and C22 ∈ RKω×(S+1). Critically, the presented
dynamics relate to the operating point of the power system
through the Jacobian Lδ0 appearing in A. The LTI system
of (11) will be referred to as system H . We next review how
commonly used grid stability metrics relate to y for proper
choices of C.

III. STABILITY METRICS AND OPERATING POINT

One common metric of system stability is network coher-
ence. It quantifies how much voltage angles differ from their
network average. It can be expressed as ‖y(t)‖22 by selecting
C11 = I − 1

S+111> and C22 = 0 in (11b); see [10]. In
large multi-area systems, area-wise coherency may be more
practical. Such metric can be captured by ‖y(t)‖22 upon
choosing a block-diagonal C11. To capture oscillations on
the power flow across line (m,n) ∈ L, the operator may
use the stability metric (δm(t) − δn(t))2 corresponding to
C11 = (em−en)>. We reserve fδ(t) to denote any stability
metric related only to voltage angles (C22 = 0).

Stability metrics of interest can also be imposed on volt-
age angular frequencies. One such metric is synchrony [5],
defined as the sum of squared frequency deviations from
the center of inertia ω̄(t) :=

∑S
n=0Mnωn(t)∑S

n=0Mn
. Synchrony

can be expressed as ‖y(t)‖22 by setting C11 = 0 and
C22 = I− 1

1>M1
11>M. A simpler stability metric is the

sum of squared frequency excursions obtained by setting
C22 = I. Metrics on angular frequencies alone (C11 = 0)
will be denoted by fω(t).

Different stability metrics can be captured by the output
norm ‖y(t)‖22 of the system H for appropriate choices of
C. However, the output norm varies with time and depends
on input pin(t). We are interested in a cost function cap-
turing stability that is time-independent. The H2-norm is a
commonly used measure for quantifying the stability of LTI
systems [21]. Given the LTI system H in (11), its H2-norm
can be computed as ‖H‖2H2

= Tr(B>QB). Matrix Q is the
observability Grammian and can be found as the solution to
the Lyapunov equation A>Q + QA = −C>C.

The H2-norm is defined only for stable systems. Because
Lδ0 is a Laplacian, matrix A in (11) has [1> 0>]> in its
nullspace. All other system poles are strictly in the negative
complex half-plane, hence resulting in a marginally stable
system. The marginally stable eigenvector of A corresponds
to a common shift in δ. Because voltage angles are defined
with respect to a reference anyway, a uniform shift is often
non-detectable, and Assumption 1 hold in practice [10].

Assumption 1. The outputs are chosen such that C111 = 0.

Thanks to Assumption 1, system H is BIBO stable and
its H2-norm is finite [9]. The way norm ‖H‖2H2

relates to
‖y(t)‖22 is amenable to various interpretations [10]:
i1) The expected steady-state value of an angle-based sta-

bility metric for unit-variance white noise input pin(t):

‖H‖2H2
= lim
t→∞

E
[
‖y(t)‖22

]
= lim
t→∞

E [fδ(t)] ;

i2) The sum of time-integrals of an angle-based stability
metric fnδ (t) for unit-impulse disturbances pin

n(t) =
enδ(t)

1:

‖H‖2H2
=

S∑
n=0

∫ ∞
0

fnδ (t) dt.

1Note that δ(t) denotes the Dirac delta (impulse) function, whereas δn(t)
denotes the voltage angle of machine n. Moreover, vector en denotes the
n-th canonical vector, whereas en is the internal voltage at bus n ∈ S.



i3) The sum of time-integrals of a frequency-based stability
metric fnω (t) for unit-step disturbances pin

n(t) = enu(t):

‖H‖2H2
=

S∑
n=0

∫ ∞
0

fnω (t) dt.

Matrix A depends on the operating point via Lδ0 . In turn,
norm ‖H‖2H2

depends on A through Q being the solution
of the Lyapunov equation. Aiming for a more stable system
operation, one may attempt to find an OPF dispatch yielding
smaller ‖H‖2H2

. Norm ‖H‖2H2
has been optimized before

over inertia coefficients or transmission topologies [9], [12].
Unfortunately, norm ‖H‖2H2

is not amenable to a con-
venient expression over v or the generation setpoints [9],
[5]. Nonetheless, under Assumption 1, this H2-norm can be
bounded as [9]:

‖Hc(Dmax)‖2H2
≤ ‖H‖2H2

≤ ‖Hc(Dmin)‖2H2
(12)

where Dmin := minn∈S Dn and Dmax := maxn∈S Dn are
the minimum and maximum damping coefficients, and

‖Hc(D)‖2H2
:=

1

2D

(
Tr(C>11C11L

†
δ0) + Tr(C>22C22M

−1)
)

is the H2-norm of an LTI system Hc(D) obtained upon
simplifying the original system H by setting D = DIS in
(11). In other words, system Hc(D) has constant damping
across all buses. Matrix L†

δ0 is the pseudo-inverse of Lδ0 .
Rather than minimizing ‖H‖2H2

, we aim at minimizing
‖Hc(D)‖2H2

for some D and leverage its favorable analytic
expression. The bounds in (12) become tighter when damp-
ing coefficients lie in a limited range. The latter typically
holds when damping coefficients are expressed in per unit.

Clearly, if the stability criterion of interest relates solely to
frequencies (C11 = 0), norm ‖Hc(D)‖2H2

becomes indepen-
dent of Lδ0 and depends only on the inertia and damping
parameters. Nonetheless, in such cases the operating point
still affects frequency dynamics. Specifically, basic linear
system theory dictates that the step response of voltage
frequencies coincides with the impulse response of voltage
angles; contrast interpretations i2) and i3) earlier. Therefore,
if one is interested in studying a stability metric fω(t)
obtained by choosing (C11,C22) = (0,Cω) under a step
disturbance, it suffices to choose (C11,C22) = (Cω,0)
and analyze the resulting impulse response of ‖y(t)‖22. Such
reformulation enables us to study the effect of the operating
point and network parameters on the frequency dynamics of
the power network as well. We next incorporate ‖Hc(D)‖2H2

into OPF models.

IV. STABILITY-COGNIZANT OPTIMAL POWER FLOW

To balance between economic efficiency and grid stability,
we put forth the ensuing stability-cognizant OPF model:

min (1− λ)
∑
n∈S

cpnp
g
n + λ‖Hc(D)‖2H2

(13)

over v, e,Lδ0 , {pgn, qgn, qdn}n∈S
s.to (2), (3), (9).

The model trades generation cost for grid stability, with the
latter captured by the approximate norm ‖Hc(D)‖2H2

. The
precise value of D is apparently inconsequential as it appears
as a constant scaling factor in ‖Hc(D)‖2H2

. By solving (13)
for different values of λ ∈ [0, 1], a system operator can obtain
the Pareto front across the two objectives.

Albeit constraint (2) is linear in (v, e), standard OPF
constraints in (3) and the definition of Lδ0 in (9) are non-
convex: OPF constraints are quadratic in v and matrix Lδ0 is
quadratic in e. Variable lifting is a known trick to bypass the
non-convexity of (3): Introduce a matrix variable V = vvH ,
express standard OPF constraints linearly in V, eliminate
variable v, and enforce V to be positive semidefinite and
rank-1. Because rank constraints are non-convex, drop the
rank-1 constraint to relax the OPF into a semidefinite pro-
gram (SDP) [18]. If the minimizer V∗ turns out to be rank-1,
the SDP relaxation of the OPF is deemed exact.

Interestingly, variable lifting can also alleviate the non-
convexity of Lδ0 in terms of e. Constraint (9) can be
expressed as a linear constraint on the lifted matrix variable
E := eeH as

[Lδ0 ]nk =


∑
m 6=n

Re{Enm}
γnm

, n = k

−Re{Enk}
γnk

, n 6= k.

(14)

Variable e can be eliminated as long as the relation between
(v, e) from (2) is passed onto (V,E). This is possible
by imposing constraint (15e). In [19], we adopted variable
lifting to minimize inter-area oscillations. Here, we aim at a
broad class of stability metrics captured as the H2-norm of
an LTI system that can be posed as SDPs.

Minimizing ‖Hc(D)‖2H2
over Lδ0 entails minimizing

Tr(C>11C11L
†
δ0). The latter can be further simplified ac-

cording to the ensuing result, whose proof is a simple
generalization of [22, Lemma 1] and is omitted.

Lemma 1. For W := C>11C11, let W̃ and L̃δ0 be the S ×
S matrices obtained after removing the first row and first
column from W and Lδ0 , respectively. If Assumption 1 holds,
then

Tr(WL†
δ0) = Tr(W̃L̃−1

δ0 ).

Using variable lifting and Lemma 1, the OPF in (13) can
be reformulated as the following SDP:

min (1− λ)
∑
n∈S

cpnp
g
n + λTr(X) (OPFλ)

over X,V,E, L̃δ0 , {pgn, qgn, qdn}n∈S
s.to (3c)− (3e), (14)

Tr(MpnV) = pgn − p̄dn ∀n ∈ S (15a)

Tr(MqnV) = qgn − qdn ∀n ∈ S (15b)
vn ≤ Tr(MvnV) ≤ v̄n ∀n ∈ N (15c)
Tr(MimnV) ≤ īmn ∀(m,n) ∈ L (15d)

VS,S = ΓYSEYH
S ΓH (15e)[

X W̃1/2

W̃1/2 L̃δ0

]
� 0 (15f)



V � 0,E � 0 (15g)

where VS,S is the submatrix obtained upon selecting only
the first (S + 1) rows and columns of V. By Schur’s
complement, constraint (15f) is equivalent to L̃δ0 � 0 and
X � W̃1/2L̃−1

δ0 W̃1/2. The former holds by the definition
of Lδ0 in (14). The latter holds with equality if λ > 0, in
which case Tr(X) = Tr(W̃L̃−1

δ0 ) at optimality. The relaxed
stability-cognizant OPF is deemed exact if the optimal V,
and consequently E, are rank-1.

Two-stage OPF model: Problem (OPFλ) can be useful to
a system operator in different ways. For λ = 0, we get the
plain (OPF0), for which constraints (15e)–(15g) and E � 0
should be dropped. For λ = 1, problem (OPF1) aims at
minimizing the approximate stability metric alone. Because
(OPF1) may yield higher generation costs, the operator
may decide to first solve (OPF0) and decide {pgn}n∈S . The
operator may subsequently solve (OPF1) to decide {qgn}n∈S
and/or {qdn}n∈S while {pgn}n∈S are set to the values decided
by (OPF0). We denote this two-stage model as (OPF0→1).

V. NUMERICAL TESTS

The proposed OPF models were numerically tested on
the IEEE 68-bus system using YALMIP with solver Mosek.
The network parameters, generator limits, nominal loads,
inertia, and damping coefficients were obtained from Power
Simulation Toolbox (PST) data files [23]. We emulated DERs
on load buses having virtual inertia 10−2 p.u. and damping
coefficients drawn randomly from a normal distribution with
mean 10−2 and standard deviation 10−3. Upon eliminating
zero-injection buses, the benchmark system was reduced to
51 buses. We used identical costs cpn = 1 across all gener-
ators. To ensure exactness of (OPFλ), a small resistance of
10−4 pu was added to all lossless network branches. Network
coherence and line flow oscillation across transmission line
1-2 were selected as the stability metrics. Line 1-2 is a major
inter-tie, prone to low-frequency inter-area oscillations.

To study the exactness of the SDP relaxation, we evaluated
the ratio of the largest to the second largest eigenvalue of
OPF solution V recovered by (OPFλ) using the two stability
metrics. This ratio was more than 1, 000 for all λ ∈ [0, 1]
and for both αn = 0 and αn = 0.3. Thus, problem (OPFλ)
gives nearly rank-1 solutions of V, indicating the relaxation
to be exact for different problem instances.

To explore the trade-off between generation and stability
costs, (OPFλ) was solved for different λ ∈ [0, 1] and at full
load. Figure 1 shows the obtained Pareto fronts with network
coherence as the stability metric. Recall that (OPFλ) mini-
mizes ‖Hc(Dmin)‖2H2

, which is an upper bound of the actual
stability cost ‖H‖2H2

. Interestingly, the Pareto front reveals
that the relative improvement in ‖Hc(Dmin)‖2H2

roughly
coincides with the relative improvement in ‖H‖2H2

=
Tr(B>QB). The Pareto front without reactive power support
by DERs (αn = 0) shows that the stability metric can be
improved by 8.48% at the expense of raising generation
costs by 0.33%. If not aiming for the most stable operation,
a significant improvement in stability can be attained with

Fig. 1. Pareto front obtained by single-stage (OPFλ) for λ ∈ [0, 1]
under network coherence as stability metric, with (αn = 0.3) and without
(αn = 0) reactive power support by DERs. Improvements in stability metric
achieved by two-stage (OPF0→1) are also shown For each operating point,
the left y-axis shows the actual stability metric ‖H‖2H2

, while the right
y-axis shows the approximated stability metric ‖Hc(D)‖2H2

.

Fig. 2. Deviations of voltage angle at bus 39 from average due to a 1-pu
impulse change at load bus 39.

a marginal increase in generation cost. For instance, the
stability metric can be reduced by 7.92% for only a 0.17%
increase in generation cost. Further, the two-stage (OPF0→1)
model improved stability by 2.85% at the same generation
cost as (OPF0). Similar observations can be inferred from
the Pareto front obtained with αn = 0.3.

Similarly, evaluating (OPF0) and (OPF1) with line flow
oscillation as the stability metric, we observed an improve-
ment of 13.14% in ‖H‖2H2

(around 11.93% with α = 0.3),
while the increase in generation cost was only by around
0.5% in both cases. The two-stage OPF reduced the stability
cost by 5.28% for αn = 0, and 3.50% for αn = 0.3.
These results show the flexibility of (OPFλ) in finding more
stable operating points. Moreover, it utilizes reactive power
support by DERs to improve stability for a lesser increase
in generation cost.

We also evaluated system dynamics due to load variations
at different operating points obtained from (OPFλ). Although
(OPFλ) considers only swing dynamics, our tests included



Fig. 3. Flow deviations on line 1-2 due to a 0.1-pu pulse change at bus 2.

third-order machine models with droop coefficients rn =
0.04 p.u. and turbine time constant τn = 0.4 sec. For
DERs, this resembles the commonly used droop-control-
based strategy for inverter operation. Comparing the network
coherence obtained under (OPF0) and (OPF1) setpoints, the
maximum value reduces from 1.55 to 1.45, an improvement
of about 7%. This corresponds to a maximum of 6◦ reduction
in voltage angle excursions from their average across buses.
For instance, Figure 2 depicts the angle deviations from the
average at load bus 39. Note that summed-up bus frequency
deviations from the COI frequency under a step disturbance
would also follow a similar trend; refer to discussion in
Sec. III. Figure 3 shows the deviations in active power
flow along line 1-2 caused by 0.1-pu load change at bus
2 that lasted for 2 seconds. Thanks to (OPF1) with the
line flow stability metric, the maximum line flow excursions
are reduced by 15%. The settling time was also reduced.
These results indicate the effectiveness of (OPFλ) towards
improving dynamics at a system or component (critical inter-
tie) level.

VI. CONCLUSIONS

Commonly used stability metrics and their dependence
on the operating point have been approximately captured
through a convex model. Thanks to this model, operating
points of enhanced stability can be identified through an
SDP-OPF. Numerical tests demonstrate that the SDP relax-
ation enjoys a practically rank-one solution under different
stability metrics, generation costs, and combinations thereof.
Stability metrics can be reduced significantly at the expense
of minimal increases in generation costs. Such increases
become smaller when DERs provide additional reactive
power support as the feasible space of the OPF widens.
Stability metrics can be global (network coherence) or local
(line flow oscillations). Dynamic simulations on a practical
system corroborate that the found schedules feature lower
nadir, faster settling times, and/or reduced flow oscillations.

REFERENCES

[1] N. Hatziargyriou, J. V. Milanovic, and et.al., “Definition and classifi-
cation of power system stability- revisited & extended,” IEEE Trans.
Power Syst., vol. 36, no. 4, pp. 3271–3281, Jul. 2021.

[2] P. Kundur, Power system stability and control. New York, NY:
McGraw-Hill, 1994.

[3] T. Chen, A. Y. Lam, Y. Song, and D. J. Hill, “Fast tuning of
transmission power flow routers for transient stability constrained
optimal power flow under renewable uncertainties,” Electric Power
Systems Research, vol. 213, p. 108735, 2022.

[4] P. Li, J. Qi, J. Wang, H. Wei, X. Bai, and F. Qiu, “An SQP method
combined with gradient sampling for small-signal stability constrained
OPF,” IEEE Trans. Power Syst., vol. 32, no. 3, pp. 2372–2381, May
2017.

[5] F. Paganini and E. Mallada, “Global analysis of synchronization
performance for power systems: bridging the theory-practice gap,”
IEEE Trans. Automat. Contr., vol. 65, no. 7, pp. 3007–3022, Jul 2020.

[6] S. S. Guggilam, C. Zhao, E. Dall’Anese, Y. C. Chen, and S. V. Dhople,
“Optimizing DER participation in inertial and primary-frequency
response,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5194–5205,
2018.

[7] Z. Chu and F. Teng, “Stability constrained optimization in high
IBR-penetrated power systems-Part II: Constraint validation and
applications,” 2024. [Online]. Available: https://arxiv.org/abs/2307.
12156

[8] ——, “Coordinated planning for stability enhancement in high
ibr-penetrated systems,” 2024. [Online]. Available: https://arxiv.org/
abs/2404.14012

[9] B. K. Poolla, S. Bolognani, and F. Dorfler, “Optimal placement of
virtual inertia in power grids,” IEEE Trans. Automat. Contr., vol. 62,
no. 12, pp. 6209–6220, Dec. 2017.

[10] E. Tegling, B. Bamieh, and D. Gayme, “The price of synchrony:
Evaluating the resistive losses in synchronizing power networks,” IEEE
Trans. Control of Network Systems, vol. 2, no. 3, pp. 254–66, Sep.
2015.
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