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Abstract—Distributed control agents have been advocated as
an effective means for improving the resiliency of our physical in-
frastructures under unexpected events. While purely local control
has been shown to be insufficient, centralized optimal resource
allocation approaches can be slow. In this context, we put forth
a hybrid low-communication saturation-driven protocol for the
coordination of control agents that are distributed over a physical
system and are allowed to communicate with peers over a ‘hot-
line’ communication network. According to this protocol, agents
act upon on local readings unless their control resources have
been depleted, in which case they send a beacon for assistance
to peer agents. Our ripple-type scheme triggers communication
locally only for the agents with saturated resources, and is proved
to converge. Moreover, under a monotonicity assumption on the
underlying physical law coupling control outputs to inputs, the
devised control is proved to converge to a configuration satisfying
safe operational constraints. The assumption is shown to hold for
voltage control in electric power systems and pressure control in
water distribution networks. Numerical tests on both networks
corroborate the efficacy of the novel scheme.

Index Terms—Energy networks, event-triggered control, dis-
tributed control, resiliency, voltage control.

I. INTRODUCTION

Utility systems, such as power, water, and gas networks, are
significant examples of networked systems and are undergoing
rapid changes. Power systems experience significant penetra-
tion of distributed energy resources and flexible load thus
increasing the system volatility. Natural gas-fired generators
serve as a fast-acting balancing mechanism for power systems,
inadvertently increasing the volatility in gas networks. Rising
threats of clean water scarcity have motivated tremendous
efforts towards judicious planning for bulk water systems
and enhanced monitoring and control for water distribution
networks. Moreover, increasing occurrence of natural disasters
and other critical (cyber and physical) disruptions undermines
the stable and efficient operation of the aforesaid systems.

Classic operation of utility systems is performed via man-
agement systems that aim at satisfying consumer demands in
a cost-effective manner while meeting the related operational
and physical constraints. Such tasks constitute the family
of optimal dispatch problems (ODP). ODPs are typically
solved at regular intervals based on anticipated demands
and network conditions. Stochastic optimization formulations
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are oftentimes leveraged to account for the uncertainty in
network conditions and ensure reliable operation within the
ODP interval. Although ODP solutions can ensure reliable sys-
tem operation during normal conditions, they cannot account
for the occurrence of low-probability high-impact disruptions
that might undermine system operation. To improve system
resilience to these events, emergency control schemes are
required that can help avoid system collapse by executing fast
actions in real time.

This paper focuses on the design of emergency control
mechanisms that can ensure the satisfaction of system op-
erational requirements during the time-interval between two
ODP actions. The proposed strategy can be referred to as
ripple-type control and draws features from local, distributed,
and event-triggered control. In local control rules, agents
take decision based upon on locally available readings. For
example, in [1], [2], power generators control their reactive
power output given their local power injection and voltage.
However, local schemes have limited efficacy [3]. Distributed
control strategies, in which agents compute their control action
after sharing information with neighbors in a communication
network, have a wide spectrum of applications, e.g., energy
systems [4], [5], [6]; or camera networks [7]. To avoid wasting
resources and communicate only when it is really needed,
event-triggered control techniques have been advocated in [8],
[9]. Essentially, every agent evaluates locally a triggering
function, e.g., in a consensus setup, the mismatch between the
current state and the state that was last sent to neighbors [10].
When the triggering function takes some specified values,
agents communicate and update their control rule.

On the contrary, in the proposed ripple-type control, agents
first try to satisfy their local constraints via purely local
control. Only when such control efforts reach their maximum
limit, an assistance is sought from neighboring agents on
a communication graph. The process is continued until the
control objectives of every agent are met. Another property
of the proposed algorithm is that it is model-free in the
sense that it does not require the knowledge of the system
model parameters. This is an essential property of real-time
emergency control due to lack of accurate model information
during contingency scenarios [11].

A ripple-type control algorithm for ensuring satisfaction
of operational requirements is devised and formally analyzed
next. To show its applicability in real systems, the control
scheme is tested on electric power and water networks.



2

II. SYSTEM MODELING

Consider a networked system modeled 1 by an undirected
graph G = (N , E). The set N is a collection of N nodes
hosting controllable agents and vector x ∈ RN represents their
control inputs. A subset of agents comprising set Y ⊂ N of
cardinality M are assumed to be making local noiseless scalar
observations, which are stacked in vector y ∈ RM . The entries
of y, henceforth referred to as outputs, are to be regulated
within a desired range. Given an input x, the system has a
locally unique output y, determined by a mapping F : RN →
RM . Heed that the mapping F may not necessarily have an
explicit form. This work considers physical systems in which
the related mapping F adheres to the following property.

Assumption 1. The input-output mapping F is such that, for
any x, m ∈ Y , and n ∈ N , it holds

∂ym
∂xn

≥ 0

Albeit it might seem restrictive at the outset, the postulated
monotonicity property holds true for several physical systems
abiding by a dissipative flow law, such as natural gas transmis-
sion systems and water distribution networks; see e.g., [12].
Moreover, this assumption is approximately true for electric
power systems as delineated next.

A. Electric Power Systems

This section considers the task of maintaining power trans-
mission system voltages above given lower limits. A power
transmission system may be modeled by a graph G = (N , E),
wherein electrical buses can be interpreted as agents. Buses
in transmission networks are typically modeled as generator
(PV) buses for which the active power injection and voltage
magnitude are controlled; and load (PQ) buses for which the
complex power injection is fixed and is independent of voltage.
Let (vn, qn) denote the voltage magnitude (or simply voltage)
and reactive power injection at bus n ∈ N . Vectors v,q ∈ RN

collect the voltages and reactive injections across buses.
Transmission lines are often approximated as lossless, since

their resistances are much smaller than their reactances.
Thanks to this lossless approximation and the assumption
of small voltage angle differences across neighboring buses,
voltage angles (resp. magnitudes) are rather insensitive to vari-
ations in reactive (resp. active) power injections. To develop
voltage control algorithms, the focus here is on the q − v
system . Vectors v and q adhere to the approximate model [13]

q = dg(v)Bv. (1)

where B ∈ RN×N is a Laplacian matrix with line suscep-
tances as weights. In detail, its (m,n)-th entry Bmn < 0
equals the negative susceptance of line (m,n) ∈ E ; it equals

1Notation: Lower- (upper-) case boldface letters denote column vectors
(matrices). Sets are represented by calligraphic symbols. Symbol > stands for
transposition. Inequalities, max, and min operators are understood element-
wise. All-zero and all-one vectors are represented by 0 and 1; the respective
dimensions are deducible from context. The dg(·) operator on vectors places
the vector on the principal diagonal of a matrix; for argument being a matrix,
it extracts the diagonal as a vector. Symbol ‖ · ‖ represents the L2 norm.

zero if there is no line between buses m and n; and its diagonal
entries are Bmm = −

∑
n 6=mBmn > 0.

Partition the node set N into generator and load buses as
N = NS ⊕ NL. Arranging v and q as v = [v>G v>L ]> and
q = [q>G q>L ]>, model (1) can be written as[

qG

qL

]
=

[
dg(vG) 0

0 dg(vL)

] [
BGG BGL

BLG BLL

] [
vG

vL

]
(2)

where B has been partitioned accordingly.
For the voltage regulation task at hand, the control variable

depends on the type of each bus n:

xn :=

{
qn , n ∈ NL

vn , n ∈ NS
.

Generators can control their voltages, while loads could par-
tially control their reactive injections due to inverters, capacitor
banks, and flexible AC transmission systems (FACTS).

By controlling the inputs x, voltage regulation aims to
maintain the load voltages vL within acceptable levels. To this
end, we need to analyze the dependence of the output y = vL

on the control input x = [q>L v>G]>. Unfortunately, the
quadratic equations in (2) are not amenable to a closed-form
expression of y in terms of x. We thus adopt the linearization
of [14] to compute the Jacobian matrix of y with respect to
x. Let ṽ := minn∈NG

vn and define[
εG
εL

]
:=

1

ṽ

[
vG

vL

]
− 1. (3)

The second block equation of (2) provides

qL = ṽ2 dg(1 + εL) (BLG(1 + εG) + BLL(1 + εL))

' ṽ2(BLGεG + BLLεL), (4)

wherein we ignored terms involving products between ε’s and
used the property [BLG BLL]1 = 0 of B. Solving for εL in
(4) and re-substituting voltages from (3) yields

vL '
1

ṽ
B−1LLqL −B−1LLBLGvG. (5)

Equation (5) approximates the mapping F for the voltage
regulation task. Being a diagonal block of a Laplacian, matrix
BLL is known to be positive definite and hence a non-singular;
see e.g., [15]. Because in addition its off-diagonal entries are
non-positive, matrix BLL is an M-matrix, so that all entries
of B−1LL are non-negative. This establishes that the Jacobian of
y = vL with respect to qL has non-negative entries. The same
property holds for the Jacobian of vL with respect to vG since
BLG has non-positive entries. The previous arguments show
that the approximate model (1) satisfies Assumption 1. This
linearized model is employed due to analytical convenience
for verifying Assumption 1. However, the numerical tests in
Section V use a nonlinear AC power flow model [16].

B. Water Distribution Networks

A water distribution system (WDS) can be modeled by an
undirected graph G = (N , E), where the nodes in N corre-
spond to water reservoirs, tanks, junctions and consumers. If
dn denotes the rate of water injection at node n, then dn ≥ 0
for reservoirs; dn ≤ 0 for water consumers; tanks may be
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filling or emptying; and dn = 0 for junctions. Nodes are
connected by edges in E which represent pipelines, pumps
and valves. Let σmn denote the water flow rate on edge (m,n)
along the direction from m to n, with σmn = −σnm. Flow
conservation at node n dictates

dn =
∑

m:(n,m)∈E

σnm. (6)

The relation between water flow σmn across edge (m,n) and
the pressures πm and πn at nodes m and n takes the form

πm − πn = ρmn(σmn). (7)

The operation of a WDS involves serving water demands
while maintaining nodal pressures within desirable levels.
The task of pressure control may include continuous-valued
variables, such as reservoir and tank output pressures, as
well as water injections at different nodes. Pressure control
may also involve binary variables capturing the on/off status
of fixed-speed pumps and valves [17]. These continuous
and binary control variables are oftentimes determined by
periodically solving ODPs; see [17] and references therein.
Assuming the binary variables to be fixed between two ODP
instances, we next focus on the continuous-valued variables.
Partition set N into the subset NS comprising of reservoirs
and tanks, and subset NL representing loads. The pressures
and demands for nodes in NS and NL, respectively, are
assumed to be controllable. This is without loss of generality
as inelastic quantities can be modeled with lower and upper
limits coinciding. Thus, the control variables are

xn :=

{
πn , n ∈ NS

dn , n ∈ NL
.

Given x, the water injections for the nodes in NS and the
pressures at nodes in NL are determined by the water flow
equations (6)–(7). Since nodal pressures over NL need to be
maintained at stipulated levels, they constitute vector y. Note
that for the aforementioned assignments of vectors x and y,
the mapping F is implicitly defined by (6)–(7). Reference [18]
guarantees that the mapping F maps a given x to a unique y.

To verify the validity of Assumption 1, we will use a
monotonicity result for dissipative flow networks from [12].
To qualify as a disspative flow network per [12], functions
ρmn(·) should be non-decreasing and continuous. Both these
requirements hold true for edges in a WDS. Specifically, for
a pipe (m,n) ∈ E , the function ρmn models the pressure
drop due to friction along the pipe described by the Darcy-
Weisbach or the Hazen-Williams laws [18]; both being non-
decreasing and continuous. For pumps and valves, pressures
πm and πn relate to flow σmn via non-decreasing empirical
laws as well [19]. Therefore, WDS come within the purview
of dissipative networks and the ensuing result applies [12].

Lemma 1. [12, Corollary 4] Let π and π′ be N -length
pressure vectors satisfying the water flow equations (6)-(7)
for demand vectors d and d′. If πn ≥ π′n for all n ∈ NS , and
dn ≥ d′n for all n ∈ NL, then πn ≥ π′n for all n ∈ NL.

In terms of the assigned vectors x and y, Lemma 1 states
that controls x ≥ x′ result in y ≥ y′. Thus, considering

infinitesimal changes at node pairs m and n, Lemma 1
translates to ∂ym

∂yn
≥ 0, hence satisfying Assumption 1.

III. PROBLEM FORMULATION

Operators manage the networked system by computing pe-
riodically the control setpoints that agents should implement.
Usually, these control setpoints are the solution of an optimal
dispatch problem (ODP) of the form

x∗ ∈ arg min
x

c(x,y) (ODP)

s.to y = F(x) (8a)
h(x,y) ≤ 0, (8b)
x ≤ x ≤ x̄ (8c)
y ≥ y (8d)

where c(x,y) is a cost function depending on both the
system inputs and outputs; the mapping in (8a) corresponds
to the physical laws governing the networked system; while
inequality constraints can be divided into two categories:
• The function in (8b) captures requirements that are im-

portant for efficiently operating the system, but can in
principle be safely violated (especially for a short amount
of time). These will be referred to as soft constraints.

• Constraints (8c) and (8d) impose limitations on input and
output variables, respectively. If violated, they can lead
to system failure. These constraints will be referred to as
hard constraints.

Typically, given the set of parameters defining mapping F,
a central dispatcher solves (ODP) and communicates optimal
control setpoints x∗ to agents. Ideally, this process shall be
repeated every time there is a change in the system model
that modifies the underlying definition of F, such as an abrupt
load change or line tripping for the case of power systems.
Constrained by communication and computational resources
however, problem (ODP) is solved only at finite time intervals.
As a consequence, the setpoints x∗ can become obsolete or
even result in network constraint violations.

Such limitations motivate the design of mechanisms to at
least ensure that some important operational requirements are
met between two consecutive centralized dispatch actions, i.e.,
to make the control vector x belong to the feasible set

F = {x : x ≤ x ≤ x̄, y = F′(x),y ≥ y}

in which F′ is the input-output mapping defined by the system
model after a disruptive event. Set F only considers the hard
constraints of (ODP), namely (8c) and (8d).

Remark 1. For power systems, constraint (8b) models line
flow limits, which can be considered soft constraints as their
violation could be briefly tolerated. Limits on the power or
voltage output of generators are captured by (8c). Inequal-
ity (8d) models load voltage constraints. Avoiding dangerously
low voltages is important to prevent a voltage collapse.

Remark 2. For water distribution systems, the inequali-
ties (8b) can represent the water flow limits on pipes and
pumps. Although such limits shall normally be respected,
they can be characterised as soft over short time intervals.
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Constraints (8c) represent the limits on pressure at water
sources and demands by consumers. These limits can not
be violated physically as they are determined by the actual
capacity of the WDS components and available demands.
The inequalities in (8d) can model the minimum pressure
requirements at consumer nodes. The latter requirements must
be adhered to at all times as low pressures may cause service
failures and equipment malfunction at the consumer end.

IV. RIPPLE-TYPE NETWORK CONTROL

We next put forth an algorithm for steering x to F with the
ensuing key attributes:
A1) Agent n ∈ Y measures yn and controls xn locally. Upon

a violation of (8d), local control resources are used first.
A2) Agent n transmits communication signals to a few peer

agents over a “hotline” communication network only
if xn = x̄n, i.e., only when local control resources
reach their maximum limit, assistance is sought from
neighboring nodes on a communication graph; and

A3) The control scheme is agnostic to system parameters, i.e.,
it is a model-free approach that does not require explicit
knowledge of operator F′.

The hotline communication network is modeled as a graph
Gc = (N , Ec) in which the communication links Ec do not
necessarily coincide with the physical connections among
agents. Graph Gc is henceforth assumed to be connected.
Considering unit edge weights for Gc, we denote its Laplacian
matrix as Lc. Setting the diagonals of the Laplacian matrix
to zero, define L := Lc − dg(dg(Lc)). Let us also introduce
function f : RN → RN defined entry-wise as

fn(x) :=

{
y
n
− yn(x), y

n
≥ yn(x), n ∈ Y

0, otherwise.
(9)

Assume that, at time t = 0, a violation of (8d) occurs as a
consequence of a model change. Let x(0) be the initial control
variables, and introduce an auxiliary vector λ ∈ RN , which
is initialized as λ(0) = 0. At subsequent times t ≥ 1, the
control scheme proceeds in four steps as delineated next.

Step 1: Agents compute f(x(t)) ≥ 0 according to (9). The
entries of f(x(t)) are strictly positive if the associated nodes
in Y experience a violation of (8d); and zero, otherwise.

Step 2: A target setpoint is computed as

x̂(t+ 1) = x(t) + dg(η1)f(x(t))− dg(η2)Lλ(t) (10)

for positive η1 and η2. Note that for node n, the target x̂n(t)
is computed using the local reading yn(t) and the entries of
λ sent from its peers (neighbor nodes of node n on Gc).

Step 3: Agents compute the auxiliary vector λ as

λ(t+ 1) = max{0,dg(η3)(x̂(t+ 1)− x̄)}. (11)

for a positive η3. Vector λ serves as a beacon for assistance
that is communicated across peer nodes.

Step 4: The target setpoint is projected to the feasible range

x(t+ 1) = min{x̂(t+ 1), x̄}, (12)

and is physically implemented.

Fig. 1. Modified PJM system. Communication links as red dashed lines.

To establish the effectiveness, Proposition 1 proves that the
proposed scheme reaches an equilibrium point and Proposi-
tion 2 that this equilibrium belongs to F . The proofs for these
results are provided in the Appendix.

Proposition 1. Given any x(0), the sequence {x(t)} con-
verges asymptotically.

Proposition 2. Let Assumption 1 hold, F be non-empty, and

‖ dg(η2) dg(η3)L‖ < 1. (13)

A pair (x, λ) is an equilibrium for the proposed scheme if
and only if x belongs to F and λ = 0.

The novel control scheme satisfies attribute A1) by design.
Moreover, for a node n with target setpoints x̂n(t+ 1) within
the local control limit x̄n, the corresponding entry of λ(t+ 1)
is zero. Thus the computation of x̂m from (10) for nodes m
that are neighbors of n requires no communication from node
n, hence fulfilling A2). The scheme also meets A3) since it is
agnostic to changes in topology and/or demands.

Remark 3. Apparently, parameter η1 does not influence the
control scheme convergence. Indeed, (13) provides a condition
only on η2 and η3. However, η1 plays a role in determining
the equilibrium point and the speed of convergence, whose
analytical quantification is beyond the scope of this work.

V. NUMERICAL TESTS

The control algorithm was tested for two utility network
applications: voltage control in power systems and pressure
control in water systems. Commencing with the power system,
parameters η2 and η3 were chosen so that (13) holds true.

A. A Power System Test Case

The benchmark network used for the tests on power systems
is a modified version of the PJM 5-bus system [20] shown
in Fig. 1. Buses 1 and 2 serve as generators, whereas buses
3, 4, and 5 are loads. Generators are allowed to raise their
voltage output to 1.02 p.u.; loads can reduce their power
demand by 10 MW and their voltages are required to be above
Vthr = 0.94 p.u., which represents a safe threshold. The top
panel of Figure 2 shows the bus voltage trajectories, while the
bottom panel plots the ratio of control resources used xn/x̄n.
After an abnormal event, buses 2 and 3 find themselves with
voltage below Vthr and start performing the proposed control
strategy. Since their local efforts do not manage to regulate
the voltages, they seek assistance from their neighbors in the
communication network, precisely, bus 4 (around the 200-th
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Fig. 2. Top: Bus voltages. Bottom: Normalized control effort xn/x̄n used.

Fig. 3. A 10-node benchmark water distribution system.

iteration) and bus 1 (around the 300-th iteration). Finally, when
bus 1 hits its control limits, bus 5 kicks in (after the 400-th
iteration) and is finally able to bring the voltage within the
safe interval.

B. A Water Network Test Case

The proposed algorithm was applied for pressure task
on the 10-node WDS of Fig. 3, which consists of 2
reservoirs and a tank; 3 fixed-speed pumps; and 7 lossy
pipes. Pipe dimensions and friction coefficients were
taken from [17]. The minimum pressure requirement
πn for nodes 3 to 10 is {10, 7, 10, 10, 5, 10, 10, 10} m.
The pumps (1, 2), (2, 5), and (7, 3) are considered to be
operating at fixed speeds with constant pressure gains of
10, 10, and 5 m, respectively. All water flow instances
were solved using the optimization-based solver of [18].
The base operating condition involves injection d0 =
[380, 300,−170, 0, 0,−220,−200,−150,−140, 200]>m3/hr
and π = [3.0, 1.8, 11.6, 13, 11.9, 10.2, 6.6, 10.3, 10.9, 12.9]>m.
A disruption was modeled by considering a failure
of pump (2, 5) resulting in unavailability of
node 2 reservoir and reservoir at node 1 supplying
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Fig. 4. Top: Difference of pressures at nodes 3-10 from their lower limits.
Bottom: Normalized control effort xn/x̄n used at nodes 1, 3, 8, and 10

d1 = 680m3/hr. This contingency would result in
π = [3.0, 0, 9.1, 13, 8.8, 7.7, 4.1, 8.2, 9.6, 12.7]> m, which
violates the minimum pressure needed at nodes 3 and 5− 9.

To study a scenario where not all agents have control capa-
bility, only two demand nodes, namely 3 and 8, are allowed
to reduce demand by 50 m3/hr. Further, the tank node 10 has
an injection flexibility of ±200 m3/hr and reservoir 1 has a
controllable pressure range of [0, 5] m. The performance of the
proposed algorithm in restoring the pressures is demonstrated
in Fig. 4. The top panel shows the difference πn − πn for
nodes n = {3 . . . 10}. As anticipated, the pressures are non-
decreasing and the algorithm succeeds in restoring them above
the respective lower limits. The bottom panel plots the ratio
of control resource used xn/x̄n for nodes {1, 3, 8, 10}. As
desired, once all pressures are restored at desired levels, the
algorithm attains an equilibrium and x saturates.

VI. CONCLUSIONS

A novel ripple-type coordination scheme for emergency
control of networked systems has been put forth. The involved
agents act based upon local control rules as long as local
resources have not been saturated. Otherwise, they solicit help
from peer agents through a “hotline” communication network
not necessarily coinciding with the underlying physical system
graph. The algorithm provably converges to safe operating
conditions under an appropriate choice of parameters. Its
validity has been illustrated on power and water network
examples.

APPENDIX

Proof of Proposition 1: Owing to the projection in (12),
it is evident that x(t) ≤ x̄ for all t. Thus, proving a non-
decreasing property x(t) ≤ x(t+ 1) for all t is sufficient for
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establishing convergence of the sequence {x(t)}. Consider an
arbitrary node n and time t. When xn(t+1) = x̄n we trivially
have xn(t) ≤ xn(t+ 1). When xn(t+ 1) < x̄n, Step 4 yields
x̂n(t+ 1) = xn(t+ 1) and (10) implies

xn(t+ 1) = xn(t) + η1,nfn(t)− η2,n
N∑

m=1

Lnmλm(t) ≥ xn(t)

because fn(t) and λm(t) are non-negative; η1,n and η2,n are
positive; and matrix L has non-positive entries.

Proof of Proposition 2: Assume x ∈ F and λ = 0.
It follows that y(x) ≥ y and so f(x) = 0 from (9). Upon
initializing the proposed control scheme at x and λ, Step 1
provides f(x) = 0; Step 2 yields x̂(1) = x; Step 3 provides
λ(1) = 0; and Step 4 that x(1) = x. Therefore, (x, λ) is an
equilibrium for the proposed control steps.

To establish the reverse direction, we will prove the contra-
positive statement, i.e., if x does not belong to F or λ 6= 0,
then (x,λ) is not an equilibrium. We show the two cases
separately using proof by contradiction.

Case 1) Vector x does not belong to F : Since F is not
empty by hypothesis, Assumption 1 implies that y(x̄) ≥ y(x′)
for x ≤ x′ ≤ x̄ and hence

y(x̄) ≥ y. (14)

In other words, applying the maximum control effort makes
the constraints on observed outputs hold. Suppose x /∈ F ,
yet there exists a λ such that (x,λ) is an equilibrium for the
algorithm. Since x is projected in its permissible range by (12),
its infeasibility means there exists a node n ∈ Y such that

y
n
> yn(x). (15)

Define x̂n := xn+η1,nfn(x)−η2,n
∑N

`=1 Ln,`λ` as in (10).
Because fn(x) > 0, it follows that x̂n > xn. However, since
by hypothesis xn = min{x̂n, x̄n}, it follows that xn = x̄n
and x̂n > x̄n, so that λn > 0.

Consider a node m neighbor of n in Gc and define

x̂m = xm + η1,mfm(x)− η2,m
N∑
`=1

Lm,`λ`. (16)

Since λn > 0 and xm = min{x̂m, x̄m}, it holds again that
x̂m > xm = x̄m and so λm > 0. Repeating this argument for
all neighbors of n, one gets that λ > 0 and that

x = x̄. (17)

This concludes the proof for Case 1 since (15) and (17)
contradict (14).

Case 2) Vector λ 6= 0: Suppose x ∈ F , and there exists
a λ 6= 0 such that (x,λ) is an equilibrium for the proposed
scheme. First, note that by plugging (10) into (11), we can
express λ(t+ 1) as a function of λ(t) and x(t) as

λ(t+ 1) = max
{
0,dg(η3)

(
x(t) + dg(η1)f(x(t))−

dg(η2)Lλ(t)− x̄
)}
.

The feasibility assumption provides f(x) = 0 and the equilib-
rium condition yields

λ = max
{
0,dg(η3)

(
x− dg(η2)Lλ− x̄

)}

≤ max
{
0,−dg(η3) dg(η2)Lλ

}
≤ −dg(η3) dg(η2)Lλ (18)

where the first and the second inequalities stem from the fact
that x− x̄ and dg(η2) dg(η3)Lλ(t) have non-positive entries.

Invoking the norm inequality on (18), we get
‖λ‖ ≤ ‖dg(η2) dg(η3)L‖‖λ‖. Also, using the condition
‖dg(η2) dg(η3)L‖ < 1 with λ 6= 0 yields ‖λ‖ < ‖λ‖,
which is a contradiction.
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