Lecture Notes for ECE 440: Transmission of Information

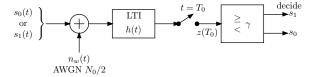
Digital Communications – Spring 2022

J. V. Krogmeier School of Electrical and Computer Engineering Purdue University West Lafayette, IN

April 25, 2022 1

1 Digital Communications

1.1 Binary Single Shot in Noise



Above block diagram shows model for reception of a single information bit in AWGN. The receiver consists of a LTI filter followed by a sampler and a threshold device.

Assumptions are:

• Signals are of finite energy

$$E_i = \int s_i^2(t) dt < \infty \quad (i = 0, 1)$$

• Channel noise $n_w(t)$ is AWGN and independent of the choice of signal $s_i(t)$ that was transmitted.

1.1.1 Statistical Model

Sampler output $z(T_0)$ is a Gaussian r.v. written as the sum of a signal part and a noise part:

$$z(T_0) = h * s_i(T_0) + h * n_w(T_0)$$

= $\hat{s}_i(T_0) + \hat{n}(T_0)$

i = 0, 1. Therefore, with $\mu_i = \hat{s}_i(T_0)$ and

$$\sigma^{2} = \operatorname{Var}[\hat{n}(T_{0})]$$

$$= \frac{N_{0}}{2} \int |H(f)|^{2} df = \frac{N_{0}}{2} \int h^{2}(t) dt$$

the statistical model for the decision r.v. is

• Assuming s_0 was transmitted:

$$z(T_0) \sim \mathcal{N}(\mu_0, \sigma^2).$$

• Assuming s_1 was transmitted:

$$z(T_0) \sim \mathcal{N}(\mu_1, \sigma^2).$$

Assume (WLOG) that $\mu_1 > \mu_0$.

1.1.2 Performance

Performance criterion is to minimize the probability of error. There are two types of errors:

• Probability of error given s_0 was transmitted:

$$P_{e,0}(\gamma) = \Pr[z(T_0) \ge \gamma | s_0 \text{ trans.}]$$

= $Q\left(\frac{\gamma - \mu_0}{\sigma}\right)$

• Probability of error given s_1 was transmitted:

$$P_{e,1}(\gamma) = \Pr[z(T_0) < \gamma | s_1 \text{ trans.}]$$

$$= 1 - Q\left(\frac{\gamma - \mu_1}{\sigma}\right)$$

$$= Q\left(\frac{\mu_1 - \gamma}{\sigma}\right)$$

1.1.3 Minimax and Bayesian

It is impossible to simultaneously minimize $P_{e,0}$ and $P_{e,1}$ over γ . More information is needed to have a well-posed minimization problem. There are two approaches:

<u>Minimax:</u> γ_m^* is the threshold which minimizes the maximum error (minimize the worst case)

$$P_{e,m}(\gamma) = \max\{P_{e,0}(\gamma), P_{e,1}(\gamma)\}.$$

The minimax error is $P_{e,m}^* = P_{e,m}(\gamma_m^*)$.

Bayesian: Have prior probabilities $\pi_0 = \Pr[s_0 \text{ trans.}], \ \pi_1 = \Pr[s_1 \text{ trans.}], \ \pi_0 + \pi_1 = 1. \ \gamma_b^*$ is the threshold which minimizes the average probability of error

$$P_{e,b}(\gamma) = \pi_0 P_{e,0}(\gamma) + \pi_1 P_{e,1}(\gamma).$$

The Bayes error is $P_{e,b}^* = P_{e,b}(\gamma_b^*)$.

Solutions (Case $\mu_1 > \mu_2$): Following are optimal threshold and the minimum criterion for the two cases.

• For minimax $\gamma_m^* = (\mu_0 + \mu_1)/2$ and

$$P_{e,m}^* = Q\left(\frac{\mu_1 - \mu_0}{2\sigma}\right).$$

• For Bayes

$$\gamma_b^* = \gamma_m^* + \frac{\sigma^2}{\mu_1 - \mu_0} \ln(\pi_0 / \pi_1)$$

April 25, 2022 3

and

$$P_{e,b}^{*} = \pi_{0}Q \left(\frac{\sigma}{\mu_{1} - \mu_{0}} \ln(\pi_{0}/\pi_{1}) + \frac{\mu_{1} - \mu_{0}}{2\sigma} \right) + \pi_{1}Q \left(\frac{\mu_{1} - \mu_{0}}{2\sigma} - \frac{\sigma}{\mu_{1} - \mu_{0}} \ln(\pi_{0}/\pi_{1}) \right)$$

1.1.4The Matched Filter

Optimization over choice of filter and sampling time: It is obvious that $P_{e,m}^*$ is smaller the larger is the argument of the Q function, i.e., $(\mu_1 - \mu_0)/2\sigma$. The same is true for $P_{e,b}^*$ (although this would require a little proof). Maximizing $(\mu_1 - \mu_0)/2\sigma$ over h involves the following observations.

 \bullet Schwarz Inequality: For finite energy signals f and g define inner product

$$\langle f, g \rangle \stackrel{\text{def}}{=} \int f(t)g(t)dt$$

and norm $||f|| = \sqrt{\langle f, f \rangle}$. Then $|\langle f, g \rangle| \le ||f|| ||g||$. Furthermore, if ||g|| > 0 then equality holds in the inequality if and only if there exits a number λ such that $f(t) = \lambda g(t)$ for (almost) all t.

• With $s(t) \stackrel{\text{def}}{=} [s_1(t) - s_0(t)]/2$ and $s_{T_0}(t) \stackrel{\text{def}}{=} s(T_0 - t)$

$$\frac{\mu_1 - \mu_0}{2\sigma} = \sqrt{\frac{2\langle s_{T_0}, h \rangle^2}{N_0 \|h\|^2}} \le \sqrt{\frac{2\|s_{T_0}\|^2}{N_0}} = \sqrt{\frac{2\|s\|^2}{N_0}}$$

and equality holds (assuming s_1 and s_0 are not identically equal) if and only if h is chosen to be the matched filter

$$h(t) = \lambda s_{T_0}(t) = \lambda s(T_0 - t)$$

for an arbitrary non-zero constant λ .

• If the matched filter is used then

$$P_{e,m}^* = Q\left(\sqrt{\frac{2\|s\|^2}{N_0}}\right)$$

which does not depend on T_0 (a similar expression can be obtained for $P_{e,b}^{*}$).

• Sampling time T_0 is arbitrary so long as $h(t) = \lambda s(T_0 - t)$. Thus, T_0 is usually picked so that the matched filter is causal.

April 25, 2022 4

1.1.5 Signal Design

Assuming a matched filter and AWGN we can rewrite the expression for SNR in terms of the energy in each signal and the correlation between the two signals. It is a simple exercise to show

$$||s||^{2} = \frac{1}{4} [||s_{1}||^{2} + ||s_{0}||^{2} - 2\langle s_{0}, s_{1}\rangle]$$
$$= \frac{1}{2} \bar{\mathcal{E}}(1 - \rho)$$

where $\bar{\mathcal{E}} = (\|s_0\|^2 + \|s_1\|^2)/2$ and $\rho = \langle s_0, s_1 \rangle / \bar{\mathcal{E}}$. Then

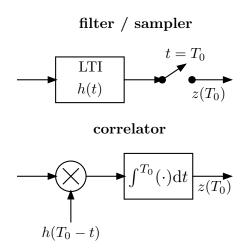
$$P_{e,m}^* = Q\left(\sqrt{\frac{\bar{\mathcal{E}}(1-\rho)}{N_0}}\right).$$

Note that $-1 \le \rho \le 1$. Two important cases are:

- orthogonal signals: $\rho = 0$.
- antipodal signals: $\rho = -1$.

1.1.6 MF/Sampler vs. Correlator

The following are equivalent implementations of the optimal receiver front end.



A Old Notes with Proofs

April 25, 2022 5

Baseband Transmission of Binary Data

Binary data trans. System: M=2 basic waveforms or pulses used to convey information from transmitter \rightarrow receiver $\phi_0(t)$ and $\phi_1(t)$

Baseband; most of the energy of these two signals is below some freq. W.

Let bo, b, be a sequence of N binary digits ie be $\{0,1\}$. Then if bits arrive @ rate / transmitter: $\{bk\}$ $\frac{1}{2}$ \frac

BTBD-2

For now assume both $\phi_0(t)$ and $\phi_1(t)$ are time limited to an interval of duration Tie

 $\begin{aligned} \varphi_i(t) &= 0 & \text{if } t < 0 \text{ or } t > T \\ \text{for } i &= 0,1. \end{aligned}$ Then for say $nT \leq t < (n+1)T$ have $x(t) = \varphi_{bn}(t-nT)$

- =) If receiver can distinguish between the waveforms $\phi_0(\cdot)$ and $\phi_1(\cdot)$, then the bit stream can be recovered.
- => However, receiver does not observe waveform x(+) only a corrupted version of it.

Simplest Example
$$\phi_0(t) \equiv 0$$
, $\phi_1(t) = \frac{1.0}{0.000}$

=) These two are actually orthogonal on the interval [0,T] since

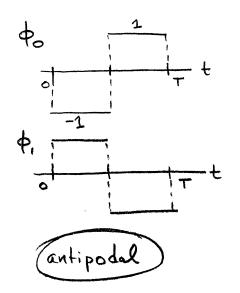
$$\int \phi_o(t) \phi_i(t) dt = 0$$

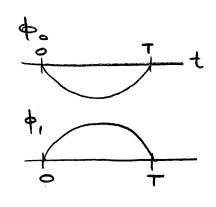
use $PT(t) = \int_{0}^{1.0} to represent generic rectangular$ pulse.

Another Example
$$\phi_0(t) = -P_T(t)$$
, $\phi_1(t) = P_T(t)$. An antipodal signal set

BTBD-4

Two More Examples





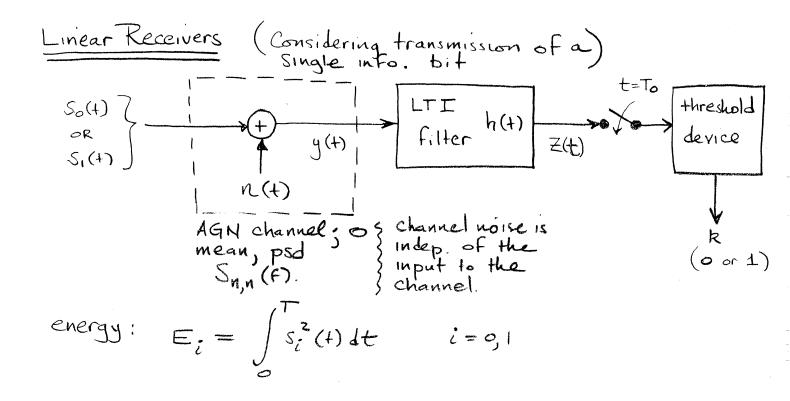
$$\phi_1(t) = \sin\left(\frac{\pi t}{T}\right) p_T(t)$$

281

autipodas

Finally note also that all of our signals have

| \display (t) dt < 00 in finite energy.



BTBD-6

$$y(t) = S_c(t) + n(t)$$
 Signal + voise

Filter is linear so that Z = h * y can be written $Z(t) = \hat{S}_i(t) + \hat{h}(t)$

$$\hat{S}_{i}(t) = \left[h * S_{i}\right](t) = \int h(t-z)S_{i}(z) dz$$

$$\hat{n}(t) = \left[h * n\right](t) = \int h(t-z)n(z) dz$$

$$\Rightarrow Also a WSS Gaussian process.$$
282

Since
$$\{\hat{n}(t)\}$$
 is WSS and Gaussian it is completely specified (in a statistical sense) by
$$\mu_{\hat{n}} = E\{\hat{n}(t)\} \quad R_{\hat{n}}(c) = E\{\hat{n}(t)\hat{n}(t+c)\}$$

$$= \sum_{k=0}^{\infty} (\text{Since } n(t) \text{ has } n(t) \text{ has } n(t) \text{ since } n(t) \text{ has } n(t) \text{ has } n(t) \text{ since } n(t) \text{ since } n(t) \text{ has } n(t) \text{ since } n(t) \text{ since } n(t) \text{ since } n(t) \text{ has } n(t) \text{ since } n($$

Output of sampler Z(To) a random variable

BLRD-8

We have chosen a particular structure for the receiver in this binary communication problem. Still need:

- 1) optimize over LTI filters h(.)
 2) " Sampling time To.
 3) " threshold Y.
- 4) pick correct form be the decision rule.
- =) If possible, justify the structure.

To optimize anything must have a performance 283 metric: prob. of error.

Pe,o; Pe,1

If signal
$$S_{i}(t)$$
 is sent \Longrightarrow $Z(t) = \hat{S}_{i}(t) + \hat{n}(t)$ \Longrightarrow wss process.

deterministic waveform

From basics of "random processes through LTI systs.":
$$\mu_{\hat{n}} = 0 \qquad R_{\hat{n}} = \tilde{h} * h * R_{n}$$
 where $\tilde{h}(t) \triangleq h(-t)$ Assuming real-valued here. For the psd:

 $\mathcal{S}^{\nu}(t) = |H(t)|_{\mathcal{S}^{\nu}(t)}$

BTBD-10

Important Special Case:
$$S_n(f) = \frac{N_0}{2}$$
 White

$$\Rightarrow S_n^{\circ}(f) = \frac{N_0}{2} |H(f)|^2$$
Define $f = \tilde{h} + h$ whence
$$R_n^{\circ}(\tau) = [f * R_n](\tau) = \int f(\tau - \lambda) \frac{N_0}{2} S(\lambda) d\lambda$$

$$= \frac{N_0}{2} f(\tau)$$
Note:
$$f(\tau) = \int \tilde{h}(\tau - \lambda) h(\lambda) d\lambda = \int h(\lambda - \tau) h(\lambda) d\lambda$$

$$= \int h(\lambda') h(\lambda' + \tau) d\lambda \qquad \text{the autocorrelation}$$

$$ef h(t)$$

Properties of the random variable
$$Z(T_0) = \hat{s}_i(T_0) + \hat{n}(T_0)$$

Clearly
$$Z(T_0)$$
 is a Gaussian random variable with

$$\begin{aligned}
& = \left\{ Z(T_0) \right\} = \hat{S}_{\mathcal{E}}(T_0) = \int h(T_0 - Z) S_{\mathcal{E}}(Z) dZ \\
& = \int h(T_0) = Var \left\{ \hat{n}(T_0) \right\} \\
& = R \hat{n}(0) \\
& = \int h(u+\lambda)h(u) du R_n(\lambda) d\lambda = \int |H(F)|^2 S_n(F) dF
\end{aligned}$$

BTBD-12

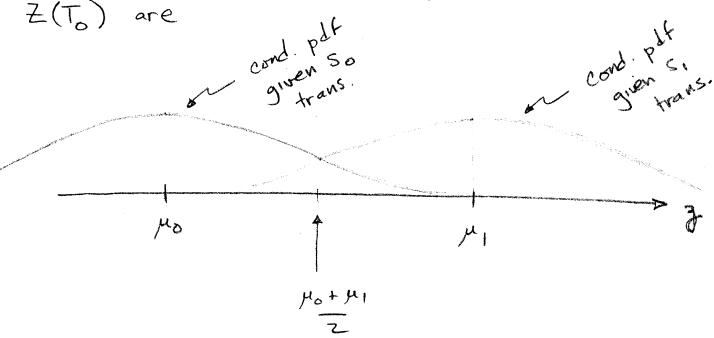
Important Observation

Var
$$\{Z(T_0)\}$$
 does not depend upon which signal was actually transmitted. Does not dep. on To either

 $\beta^2 \triangleq \int |H(f)|^2 S_n(f) df$
 $\mu_i^2 \triangleq \hat{S}_i(T_0)$

Given that
$$\left\{S_{0}(t)\right\}$$
 is transmitted the $Z(T_{0})$ is Gaussian $\left\{S_{1}(t)\right\}$ cond. dist. of with mean $\left\{P_{0}(t)\right\}$ and var $\left\{Z_{0}(t)\right\}$

Suppose (WLOG) $\mu_1 = \hat{S}_1(T_0) > \mu_0 = \hat{S}_0(T_0)$ then the two conditional pdfs of the output $Z(T_0)$ are



BTBD-14

The fact that these two pdfs are different is what enables the decision device to (Statistically) decide between bits 0 and 1.

Clear that for the case
$$\mu_1 > \mu_0$$

$$\begin{cases}
g_i(3) \triangleq \frac{1}{\sqrt{2\pi}}e^{-(3-\mu_i)^2} \\
\frac{1}{\sqrt{2\pi}}e^{-(3-\mu_i)^2}
\end{cases}$$

$$\begin{cases}
\frac{1}{\sqrt{2\pi}}e^{-(3-\mu_i)^2} \\
\frac{1}{\sqrt{2\pi}}e^{-(3-\mu_i)^2}
\end{cases}$$

decide 11011

$$P_{e,o} = P(Z(T_o) \ge Y \mid S_o \text{ trans}) = \int_{Y}^{\infty} g_o(y) dy$$

$$= 1 - G_o(y)$$

$$= \text{cdf corresp. to } g_o(y).$$

$$P_{e,i} = P(Z(T_o) < Y \mid S_i \text{ trans}) = \int_{-\infty}^{\infty} g_i(y) dy$$

$$= G_i(y).$$

BTBD-16

For ease of calculation, usually express Gaussian error probabilities in terms of standard normal dist. (in mean zero, variance one) $\Phi(x) \triangleq \int_{1/2\pi}^{x} e^{-\lambda^{2}/2} d\lambda \qquad Q(x) \triangleq 1 - \Phi(x)$

Say
$$Z_0 \sim N(\mu_0, \delta^2) \Longrightarrow P(Z_0 \geqslant \delta) = P(Z_0 - \mu_0) \geqslant \frac{\gamma - \mu_0}{\delta}$$

$$= Q(\frac{\gamma - \mu_0}{\delta})$$

$$= Q(\frac{\gamma - \mu_0}{\delta})$$

$$= P(Z_1 < \gamma) = P(Z_1 < \gamma - \mu_1)$$

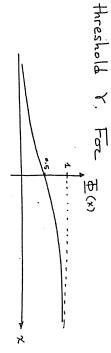
$$= \overline{P}(\frac{\gamma - \mu_1}{\delta})$$

Recall
$$P_{e,o} = Q(\frac{\delta - \mu_o}{\sigma^{-}}) = 1 - \overline{\Phi}(\frac{\delta - \mu_o}{\sigma^{-}})$$

$$= \overline{\Phi}(\frac{\mu_o - \nu}{\sigma^{-}})$$

$$P_{e_1} = \bigoplus \left(\frac{y - y_1}{y - y_1} \right)$$

Not clear from above how to optimize over the



.: To make 玉(x) small should make x small. (regative)

=> Conflicting requirements need something more to properly optimize over threshold.

Two possibilities !

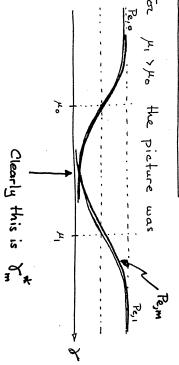
B) Average or
$$P_{e,b} \stackrel{\Delta}{=} \pi_{o}P_{e,o} + \pi_{i}P_{e,i}$$
 where $\pi_{e}+\pi_{i}=1$

$$\pi_i = a \text{ prior}$$
prob. that
 $S_i(+)$ is trans.

 $\pi_i = a_i priori$ prob. that $S_i(+)$ is trans.

= argmin

Convince yourself that answer does not change if we take opposite $(\mu_0 > \mu_1)$ assumption for picture drawing



and from the symmetry of the functions (sub. Hu find solution
$$\chi_{m}^{*} = \frac{\mu_{o} + \mu_{1}}{2} = \frac{\hat{S}_{1}(T_{o}) + \hat{S}_{o}(T_{o})}{2}$$

 $P_{e,m}^* = \min \text{ value of } P_{e,m} \text{ over } Y$ $\Rightarrow P_{e,m}^* = \Phi \left(\frac{\mu_0 - \mu_1}{2\sigma} \right) = Q \left(\frac{\mu_1 - \mu_0}{2\sigma} \right)$ $\text{for the case } \mu_1 > \mu_0$

Solution to Bayes Problem

=) Can see that Pe, b (8) is a differentiable function of 8. Thus may solve

dPe,b = 0 for 1/6

 \Rightarrow Note $\pm \left(\frac{\gamma-\mu_1}{\sigma}\right) = \mp \left(\gamma\right)$ where $\chi \sim \kappa(\mu_1, \sigma^2)$

 $\frac{1}{4} \pm \left(\frac{1}{4-1}\right) = \frac{1}{4} \pm \left(\frac{1}{4}\right)$

Also $\pm (\overset{\mu-\Gamma}{=}) = 1 - \pm (\overset{\Gamma-\mu_0}{=})$

 $\frac{dP_{e,b}}{d\chi} = -\pi_{0} \frac{1}{\sqrt{2\pi} d} e^{-(\chi - \mu_{0})^{2}/2d^{2}} + \pi_{1} \frac{1}{\sqrt{2\pi} d} e^{-(\chi - \mu_{1})^{2}/2d^{2}} + \pi_{1} \frac{1}{\sqrt{2\pi} d} e^{-(\chi - \mu_{1})^{2}/2d^{2}} = 0$ $= -(\chi - \mu_{0})^{2}/2d^{2} \left[-\pi_{0} + \pi_{1} \exp \left(\left(-\frac{(\chi - \mu_{1})^{2}}{2d^{2}} + \frac{(\chi - \mu_{1})^{2}/2d^{2}}{2d^{2}} + \frac{2d^{2}}{2d^{2}} \right) \right) \right] = 0$ = 0 $\frac{dP_{e,b}}{d\chi} = -\pi_{0} \frac{1}{\sqrt{2\pi} d} e^{-(\chi - \mu_{0})^{2}/2d^{2}} = 0$ = 0 $\frac{2(\mu_{1} - \mu_{0})\chi + \mu_{0} - \mu_{1}^{2}}{2d^{2}} = 0$

 $2(\mu_{1}-\mu_{0})Y + \mu_{0}^{2} - \mu_{1}^{2} = \log (\pi_{0}/\pi_{1})$ $X = \frac{\sigma^{2}}{\mu_{1}-\mu_{0}} \log (\pi_{0}/\pi_{1}) + \frac{\mu_{1}+\mu_{0}}{2}$ $X = \frac{\sigma^{2}}{\mu_{1}+\mu_{0}} \log (\pi_{0}/\pi_{1}) + \frac{\mu_{1}+\mu_{0}}{2}$

Still must optimize over filter impulse response h(·) and Sampling time To. For this need expressions for Pe,m and Pe,b as case may be.

Minimax (ase
$$r_m = r_i + r_o$$

$$P_{e,m} = P_{e,o} = P_{e,i} = \Phi\left(\frac{r_o - r_i}{2\sigma}\right)$$
of $P_{e,m} = 1 - \Phi\left(\frac{r_i - r_o}{2\sigma}\right) = \Phi\left(\frac{r_i - r_o}{2\sigma}\right)$

Clearly, the larger is $\frac{\mu_1 - \mu_2}{2-\alpha}$ the smaller is the error probabil: $\frac{1}{2}$;

$$\frac{\mu_1 - \mu_0}{2c} = \frac{\hat{s}_1(\tau_0) - \hat{s}_0(\tau_0)}{2\sqrt{\int |H(\varepsilon)|^2 S_n(\varepsilon) d\varepsilon}} d\varepsilon$$

$$= \frac{\int h(\tau_0 - \varepsilon) \left[s_1(\varepsilon) - s_0(\varepsilon) \right] d\varepsilon}{2\sqrt{\int |H(\varepsilon)|^2 S_n(\varepsilon) d\varepsilon}}$$

$$\frac{\lambda_{a}}{a} = \frac{\lambda_{a}}{a} =$$

$$\frac{\beta}{\alpha} = \frac{1}{\alpha} \frac{\alpha^2}{\mu_1 - \mu_0} \log \left(\frac{\pi_0}{\pi_1} \right) = \frac{\alpha}{\mu_1 - \mu_0} \log \left(\frac{\pi_0}{\pi_1} \right).$$

$$= \frac{\pi_0}{\pi_0} \left(\frac{\alpha}{\mu_1 - \mu_0} \log \left(\frac{\pi_0}{\pi_1} \right) + \frac{\mu_1 - \mu_0}{2\alpha} \right)$$

$$= \frac{\pi_0}{\pi_1} \left(\frac{\mu_1 - \mu_0}{2\alpha} \log \left(\frac{\pi_0}{\pi_1} \right) + \frac{\mu_1 - \mu_0}{2\alpha} \right)$$

$$= \frac{\alpha}{\pi_1} \left(\frac{\mu_1 - \mu_0}{2\alpha} \log \left(\frac{\pi_0}{\pi_1} \right) + \frac{\mu_1 - \mu_0}{2\alpha} \right)$$

32 -C18 18

Special Care: AWGN Channel

 $D_{\epsilon}f_{i, \epsilon} : S_{r_{\epsilon}}(+) = \frac{1}{2} \left[S_{\epsilon}(\tau_{\epsilon} - t) - S_{\epsilon}(\tau_{\epsilon} - t) \right]$ $S_n(f) = N_0/Z$ for all f

 $\langle f, g \rangle \triangleq \int f(t)g(t) dt$

Then for colculation of $\frac{\mu_1 - \mu_0}{2\sigma}$

 $\mu_1 - \mu_0 = \hat{s}_1(\tau_0) - \hat{s}_0(\tau_0) = \int h(\tau_0 - \epsilon) \left[s_1(\epsilon) - s_0(\epsilon) \right] d\epsilon$ = 2 < 5, 4> $= \int_{\mathbb{R}^{n}} h(\varepsilon) \left[s'(2^{n-\varepsilon}) - s''(2^{n-\varepsilon}) \right] d\varepsilon$

 $d^2 = \frac{1}{40} \left| |H(t)|^2 df = \frac{1}{40} \left| |H(t)|^2 dt$ - 12 || 11 || 2

> Claim V 2 || 1 | 1 | 1 | 2 V 2 No 114112 SNR

with equality if and only if SNR > / IIS IIP $h(+) = c s(\tau_0 - t)$ 5(+) = 5,(+)-5(4

(c is an arbitrary constant)

1

SCHWARZ INEQUALITY

FOR ANY FUNCTIONS of AND gon (a, b)

 $\left[\int_{a}^{b}f(u)g(u)du\right]^{2}\leq\int_{b}^{b}f(u)du\int_{a}^{b}g^{2}(v)dv.$

FURTHERMORE IF $\int_{a}^{b} q^{2}(v) dv > 0$ THEN EQUALITY HOLDS IN THE ABOVE

INEQUALITY IFF THERE IS A REAL NUMBER λ SWH THAT $f(u) = \lambda g(u)$

FOR (ALMOST) ALL U.

NOTATION: 1/h/1 = \(\int_6 h^2(u) du

 $(f,g) = \int_a^b f(u)g(u) du$

SCHWARZ INEQUALITY: (f,g)2= ||f||2/19/12
so |(f,g)| = ||f|| ||g||

THE FUNCTIONS & AND 9 MUST BE SOUARE INTEGRABLE; i.e.

\[\frac{t}{t}(u) du < \infty \int h^2(u) < \infty \]

GIVEN f: (a, b) → R,

WHAT DOES f(u) = 0
FOR ALMOST ALL U MEAN?

FOR OUR PURPOSES IT MEANS

$$\int_a^b \left[f(u) \right]^2 du = 0.$$

HENCE f = x g a.e.

OR $f(u) = \lambda g(u)$ FOR ALMOST

ILL U MEANS

 $\int_{a}^{b} [f(u) - \lambda g(u)]^{2} du = 0$

PROOF: FOR ANY REAL NUMBER X

THIS HOLDS FOR ANY CHOICE OF X Suppose $f \neq \lambda q$ a.e., THEN $0 < \|f - \lambda q\|^2 = \int_0^{\infty} [f(u) - \lambda g(u)]^2 du$ $= \int_0^{\infty} f^2(u) du - 2\lambda \int_0^{\infty} f(u) g(u) du$ (1) BECOME Suppose 119112 +0 (IF 119112=0 +46 FOR ALMOST ALL U (f=xg a.e.) BECAUSE (f,g) = O AND IIfII IIg II = 0) WITH EQUALITY IFF $f(\omega) = \lambda g(\omega)$ LET $\lambda = (\hat{\tau}, \beta) / \|g\|^2$ so THAT INEQUALITY IS TRIVIALLY TRU $\|f-\chi g\|_{2} = \int_{0}^{\infty} (f(m)-\chi g(m))^{2} du \geq 0$ $\Rightarrow \|f\|_{L^{2}} - \frac{(f,g)_{L^{2}}}{(g,g)_{L^{2}}} \Rightarrow \|f\|_{L^{2}}\|f\|_{L^{2}} < f(f,g)_{L^{2}}$ 0 < 119112 - 2 (f,2) (f,3) + (f,3)2 119112 = ||f||2-2x(f, g) + 2= ||g||2 $+\lambda^2\int_a^b g^2(u) du$

> AND IF IIgII = 0 IMPLIES (f,g) = < ||f||2119112 WE HAVE PROVED THAT 115112118 112 = 117 113112 = 15 118114 Now suppose $f = \chi g$ a.e., THEN $(f,g)^2 = \left[\int_a^b f(u) g(u) du \right]^2$ (f, g)2 < 11f11-11g11- ALL f, g f= 2g a.e. > (f,g)2 = 11f11211g112 f= 2g a.e. > (f,g)2 = 11f11211g112 = x2 [5 g2(w) dw]2 = x2 |19|14 $= \left[\int_{a}^{b} \lambda g(w) g(w) du \right]^{2}$ f t > g a.e. AND 11g 11>0

 $(SNR)^2 = \left(\frac{\int_{\infty}^{\infty} h(T_0 - z) s(z) dz}{-\infty}\right)^2$ ± No - 500 h2(t) dt

LET 4=T0-2 50

 $\left(\int_{-\infty}^{\infty} h(T_0 - \tau) s(\tau) d\tau\right)^2 = \left(\int_{-\infty}^{\infty} h(u) s(T_0 - u) du\right)^2$ $= \left(\int_{-\infty}^{\infty} h(u) S_{T_0}(u) du\right)^2$

 $S_{T_0}(u) = S(T_0 - u)$, $-\infty < u < \infty$

Notice Sh(w) 5, (w) du = (h, 57)

 $(SNR)^2 = \frac{(h, S_T)^2}{\frac{N}{2} ||h||^2}$

BUT, BY THE SCHWARZ INSQUALITY

NOTE $\|S_{t_0}^{\alpha}\|^2 = \int_0^{\infty} s(\tau_0 - u) du = \int_0^{\infty} s^2(\tau) d\tau$ $= \mathcal{E}_s \neq 0 \quad \text{FOR SIGNALS}$ of Interest (h, 5/,)2 = 11/112 ((5/01/2

HENCE (h, 570) = || h | 12 || 570 || 2

HT FOLLOWS THAT

(SUR)2 = 11/11/2/11/2 = 11/5/2/12

WITH EQUALITY IFF h(u) = \(\chi S(T_6-u)\)
FOR ALMOST ALL U

max SNR = √2 €s

min $P_{e_n} = \varphi(\max_h SNR)$

AND THE OPTIMUM FILTER IS

 $h(u) = \lambda s(T_0 - \omega)$

FOR ANY X + O

CALL WE MUST ALSO

FOR ANTIBODAL STOMALS THIS IS

EQUARLENT TO (S*h)(To)

295

IF THE MATCHED FILTER

USED

Pe = O(√28/No)

THE SAMPLING TIME TO. WHICH DOES NOT DEPEND ON

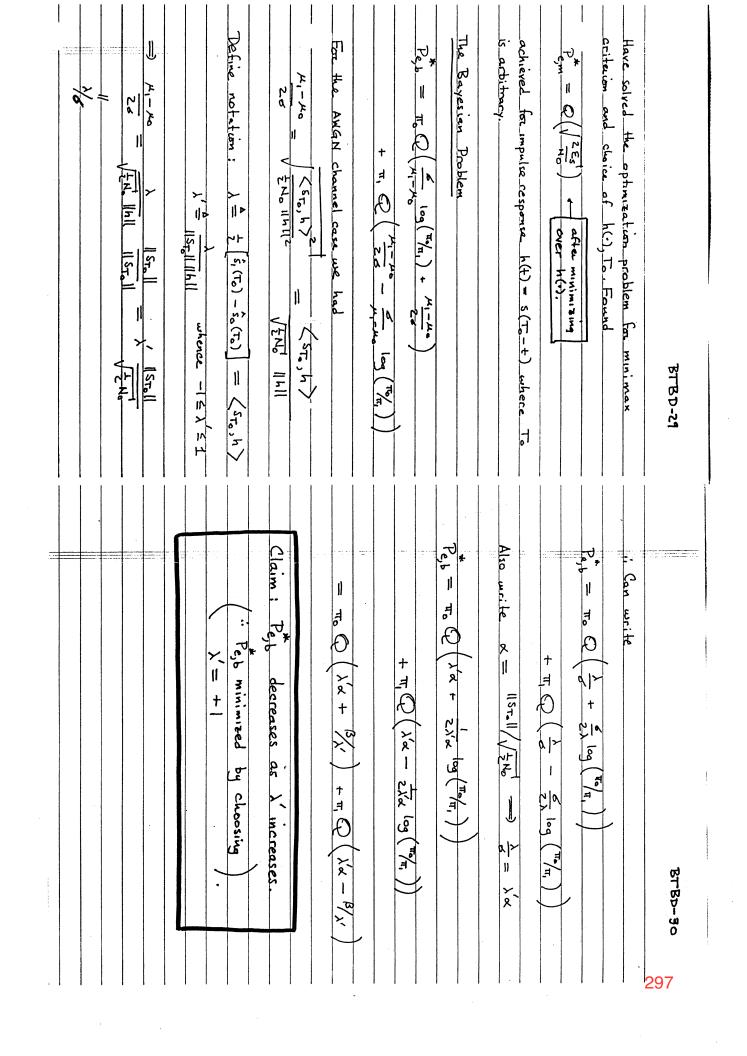
TO IS ARBITRARY AS LONG AS $h(t) = s(7_0 - t)$

το [0, T]; i.e, s(t)=0 for t<0 OR t>T. THEN h(t)=s(To-t)=0 SUPPOSE THE MATCHED FILTER IS CAUSAL \$>To or t<To-T. s(t) IS TIME-LIMITED

IF T_0 -T20 $(T_0 \ge T)$,
USUALLY LET $T_0 = T$

≯k(€)

so h(t)= s(T-t) = 0 t<0 or t>7



	+ 17, (4 + 3,2) 6 7
	<u> </u>
	$-\sqrt{\epsilon}\pi \frac{dP_{x,x}^*}{dx'} = e^{-(\lambda'\alpha)/2} e^{-(\lambda'x')/2} \sqrt{T_6(\alpha-\frac{\beta}{\lambda'^2})} e^{-\alpha\beta}$
= 2 x 1 15, 17, > 0 since x > 0.	12π / L ^ _ / 1
$= \sqrt{\pi_0 \pi_1} \left\{ \alpha - \frac{1}{2} (\lambda')^2 + \alpha + \frac{1}{2} (\lambda')^2 \right\}$	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$\frac{x + \frac{3}{(x')^2}}{\sqrt{1}}$	7 8 7
w/Ho	$Q(x) = 1 - \overline{\Phi}(x) \implies Q'(x) = -\overline{f_{211}} e^{-x} $
$=) e^{\alpha/3} = \sqrt{\pi_0/\pi_1} = e^{\alpha/3} = \sqrt{\pi_1/\pi_0}$	$\frac{d}{d\lambda}, \mathcal{Q}(\lambda'\alpha - \beta'\lambda') = \mathcal{Q}'(\lambda'\alpha - \beta'\lambda') \left[\alpha + \frac{\beta}{\lambda'^2}\right]$
γ - τι. (π,)	$\frac{d}{d\lambda'} Q(\lambda'\alpha + \beta/\lambda') = Q'(\lambda'\alpha + \beta/\lambda') \left[\alpha - \frac{\beta}{\lambda'^2}\right]$
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Tust need to show that dPe,b/dx < 0 for -15x'< 1
BT.	Proof of Claim!

E	
= 2 2 (1-1)	
1 ()	
$= \frac{1}{2} \left(\varepsilon_1 + \varepsilon_6 \right) \left\{ 1 - \frac{2}{2 + \varepsilon_6} \left\langle s_6, s_7 \right\rangle \right\}$	
= \frac{1}{4}\\ \xi_1 + \xi_0 - \xi \langle \xi_0, \xi_1 \rangle \}	
-2 <s, s,=""> }</s,>	regarding to still applies.
$= \frac{1}{4} \langle s_1 - s_0, s_1 - s_0 \rangle = \frac{1}{4} \langle s_1 ^2 + s_0 ^2$	ase of minimax. Same co
1 51 2 = 1 15,-50 2	= cs(T ₀ -t)
	tor some
$E_s = s_t ^2 = s ^2 = s_1(t)$	
where	
	1187. 11. 11.41
$\frac{F_1-F_0}{2} = \sqrt{2\epsilon_s}$	$B_{\mu} + \lambda' = \langle \zeta_{\tau_0}, h \rangle = +1$
	λ'=+
Channel and a matched filler,	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
197	taking \(\lambda\) as large as possible subject to
299	
BTBD-34	33 - 33 - 33 - 33 - 33 - 33 - 33 - 33

									ie antipodal signals are best.		Note that -1 & r & 1. Can minimize over	(A) (A)	$\frac{1}{2} \frac{P^*}{P} = \frac{P}{P} \left(\frac{E(1-r)}{E(1-r)} \right)$	2Es = 2 (1-r)	
kan da kan	- X	ordanos a s	ರಷ್ಟ ಇವಾಗು	s day of the C	otter r	. 75	SEN CMISS	-	n e letterad	 oos Landa sah	N T		E \$1 & 2000 \$	and the second	

B BPSK and QPSK

April 25, 2022 27 301