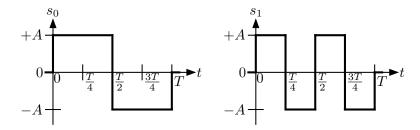
Problem 31: [Fall 1999 Final Exam] A binary baseband data transmission system uses the signal set $s_0(t) = -s(t)$ and $s_1(t) = s(t)$ where

$$s(t) = \begin{cases} 2At/T & 0 \le t < T/2 \\ A(2t-T)/T & T/2 \le t < T \\ 0 & \text{otherwise} \end{cases}.$$

The channel is an additive white Gaussian noise channel with psd height $N_0/2$. The minimax criterion is to be used.

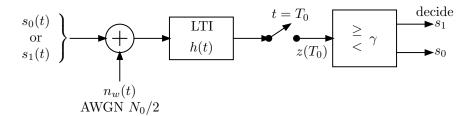
- (a) What is the minimum probability of error for this system? Give your answer in terms of A, T, N_0 , and the function $Q(\cdot)$.
- (b) Give the impulse response of the filter which achieves the minimum error probability (i.e., the matched filter). Simplify as much as possible.
- (c) Give the optimum sampling time and optimum (minimax) threshold for the receiver which uses the filter of part (b).
- (d) Suppose that the filter in the receiver is not the filter of part (b) but is instead a filter with impulse response $h(t) = p_T(t)$. Given an expression for the output $\hat{s}(t)$ when the input is s(t). Find the maximum value of $\hat{s}(t)$.
- (e) Find the degradation in SNR incurred by using the filter $p_T(t)$ instead of the matched filter.

Problem 32: [Spring 2010 Final Exam] A binary baseband data transmission system uses the signal set $s_0(t)$ and $s_1(t)$ shown below.



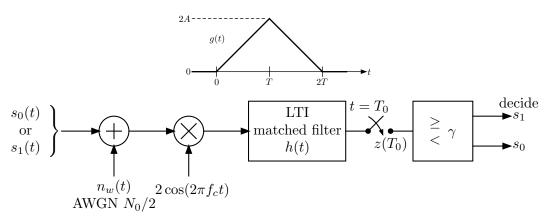
The channel is an additive white Gaussian noise channel with psd height $N_0/2$. The Bayes criterion is to be used with equally likely priors, i.e., $\pi_0 = \Pr[s_0 \text{ is trans.}] = \pi_1 = \Pr[s_1 \text{ is trans.}] = 0.5$. Find the average probability of error in terms of A, T, N_0 , and the function $Q(\cdot)$. Assume that the receiver has been optimally designed. Explain your work and show any calculations needed.

Problem 33: [Spring 2010 Final Exam] Consider again the scenario described in Problem 43. As discussed in class the optimal receiver has the architecture shown in the block diagram below.



- (a) Find and plot the impulse response of a filter h(t) which achieves the minimum average error probability (i.e., the matched filter). Simplify as much as possible and explain your work.
- (b) Find the optimum sampling time and optimum (Bayes) threshold for the receiver which uses the filter of part (a). Explain your work.

Problem 34: [Fall 2011 Final Exam] The purpose of this problem is step through the development of the optimal receiver for BPSK. The signals $s_0(t) = -g(t)\cos(2\pi f_c t)$, $s_1(t) = +g(t)\cos(2\pi f_c t)$, where g(t) is the triangularly shaped pulse:

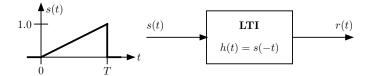


Assume that $f_c \gg 1/T$ (which will suggest a certain approximation simplifying the results below).

- (a) For the receiver shown above and the assumed signals $s_0(t)$ and $s_1(t)$ choose the impulse response h(t) of the matched filter and specify the sampling time T_0 . Note that the downconversion via multiplication by $2\cos(2\pi f_c t)$ occurs before the matched filter in this architecture.
- (b) Assuming that the transmitted signal is actually $s_0(t)$ find:
 - The message-related part of $z(T_0)$.
 - The noise-related part of $z(T_0)$: Specify its distribution and its mean and variance.
 - What is the distribution of the random variable $z(T_0)$ conditioned on $s_0(t)$ being transmitted?
- (c) Repeat part (b) assuming that $s_1(t)$ is transmitted. You can do this by inspection given your derivation from (b) if you give the proper justification.
- (d) Assuming that the prior probabilities of $s_0(t)$ and $s_1(t)$ are 1/2 choose the threshold γ for minimum average probability of error.
- (e) Find the average probability of error.

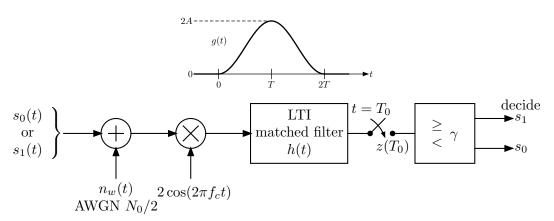
Problem 35: [Spring 2012 Final Exam] Consider the LTI system shown below where the impulse response is "matched" to the input as indicated. Find:

- (a1) The range of t for which the output r(t) is nonzero.
- (a2) The maximum value of the output r(t) and the time t_* where the maximum occurs.



Problem 36: [Spring 2012 Final Exam] The purpose of this problem is step through the development of the optimal receiver for ASK. The signals $s_0(t) = 0$, $s_1(t) = +g(t)\cos(2\pi f_c t)$, where g(t) is the time-domain raised cosine shaped pulse:

$$g(t) = \begin{cases} A(1 + \cos(\pi(t-T)/T) & 0 \le t \le 2T \\ 0 & \text{else} \end{cases}$$



Assume that $f_c \gg 1/T$ (which will suggest a certain approximation simplifying the results below).

- (a) For the receiver shown above and the assumed signals $s_0(t)$ and $s_1(t)$ choose the impulse response h(t) of the matched filter and specify the sampling time T_0 . Note that the downconversion via multiplication by $2\cos(2\pi f_c t)$ occurs before the matched filter in this architecture.
- (b) Assuming that the transmitted signal is actually $s_1(t)$ find:
 - (b1) The message-related part of $z(T_0)$.
 - (b2) The noise-related part of $z(T_0)$: Specify its distribution and its mean and variance.
 - (b3) What is the distribution of the random variable $z(T_0)$ conditioned on $s_1(t)$ being transmitted?
- (c) Repeat part (b) assuming that $s_0(t)$ is transmitted. You can do this by inspection given your derivation from (b) if you give the proper justification.
- (d) Assuming that the prior probabilities of $s_0(t)$ and $s_1(t)$ are 1/2 choose the threshold γ for minimum average probability of error.
- (e) Find the average probability of error.

Problem 37: [Spring 2010 Final Exam] Calculate the mean and variance of the random variable Z in the block diagram below and write down its pdf.

