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1  | INTRODUC TION

As one of the most common behaviors, people's daily intra- urban movement is the most direct manifestation 
of an interaction process between humans and a given city (Chen, Ma, Susilo, Liu, & Wang, 2016). Exploring 
people's mobility behavior is important for understanding their internal behavior mechanisms (Alessandretti, 
Aslak, & Lehmann, 2020), and the structural patterns within a city (Jiang, Yin, & Zhao, 2009). In recent years, 
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Abstract
While daily periodic movements of individuals have been 
widely studied, their collective dynamics are not under-
stood. To capture periodic collective dynamics, this article 
represents individual daily movements as a time series of 
directed weighted origin– destination (OD) networks, and 
proposes an approach to identify a sub- network called the 
“recurrent OD network”, which contains frequent edges 
appearing in each day. Taxi trajectory data over a period 
of 6 months in Wuhan, China are used for the case study. 
Here, we extracted the recurrent OD networks for each 2- h 
period on a given day, and compared them with the corre-
sponding “major OD network” defined by both frequent and 
infrequent edges. Results show that the recurrent OD net-
works coincidentally exhibit spatially localized community 
structures and distinctive patterns of inflow and outflow 
for each region within a day. Overall, both methodology and 
findings in this study might make significant contributions in 
a range of fields, such as urban planning, regional economic 
development, and infectious disease control.
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the widespread usage of location recording equipment and techniques has provided us a great opportunity to 
quantitatively characterize human mobility (Batabyal & Bhaumik, 2015), such as cell phone tower data (Louail 
et al., 2014), check- ins on social media sites (e.g., Twitter and Facebook) (Luo, Cao, Mulligan, & Li, 2016; Yang, 
Xiao, et al., 2019), public transportation smart card records (Hasan, Schneider, Ukkusuri, & Gonzalez, 2013), Wi- Fi 
connection records (Sapiezynski, Stopczynski, Gatej, & Lehmann, 2015), taxi GPS trajectory data (Zhang, Xu, Tu, 
& Ratti, 2018), and bike- sharing data (Shui & Szeto, 2020).

Mobility patterns are commonly studied at either the individual or the collective level (Peng, Jin, Wong, 
Shi, & Lio, 2012). At the individual level, people are regarded as relatively independent and the common mo-
bility patterns are studied (Jia, Jiang, Carling, Bolin, & Ban, 2012). At the collective level, similar individual 
movements are aggregated and represented as directed weighted origin– destination (OD) networks or graphs 
(Barthelemy, 2011), where nodes indicate intra- urban spatial regions (e.g., partition regions units (Osorio- Arjona 
& García- Palomares, 2019; Tang, Zhang, Chen, Liu, & Zou, 2018) or points of interest (Noulas, Shaw, Lambiotte, 
& Mascolo, 2015), and the weight of a directed edge from node A to node B implies the number of trips with A as 
the origin and B as the destination regardless of the specific paths traveled. The directed weighted edges are also 
often called “OD flows.” Thus, collective dynamics can represent human mobility from a macroscopic perspective 
and characterize the interaction strength between spatial regions in a straightforward manner.

Daily periodic movement is the prominent feature for individual human mobility (Huang, Cheng, & Weibel, 2019; 
Karamshuk, Boldrini, Conti, & Passarella, 2011). People travel in a city according to some specific schedule: leav-
ing for work, meeting with friends, eating in preferred restaurants, returning home, and so on. These behaviors 
happen on most days for individuals, and numerous studies have proved that individual movements are highly 
predictable (Cho, Myers, & Leskovec, 2011; Song, Qu, Blumm, & Barabási, 2010). This naturally raises a fundamen-
tal question: are there any daily periodic movements or patterns of human mobility at the collective level? More 
specifically, is there any OD flow that occurs periodically on most days? If so, what characteristics do they share?

Previous studies have found that OD flows are similar each day (Liu, Kang, Gao, Xiao, & Tian, 2012). OD flows 
could be influenced by the urban environment (Liu, Kang, Gong, & Liu, 2016). Since the urban environment is 
relatively stable, the overall OD flows are recurrent to some extent each day, despite the fact that each individ-
ual OD flow between two regions may be somewhat random. For example, round trips between residential and 
working regions are the most important activities in people's daily lives (Ekman, Keränen, Karvo, & Ott, 2008), 
and numerous interactions within or among popular working zones form part of the most important economic 
activities (Yang, Sun, Shang, Wang, & Zhu, 2019) happening every day. These daily regular mobilities also lead to 
the high similarity of the 24- h fluctuation of the volume of OD flows in each day (Barroso, Albuquerque- Oliveira, 
& Oliveira- Neto, 2020). Also, daily periodicity is often used as an important feature in the field of deep learning 
for OD- related problems (Wang, Fu, Zhang, Li, & Li, 2018). Therefore, the daily periodic phenomenon of OD flows 
has been directly or indirectly proven from many perspectives. However, how to directly extract the periodic OD 
flows from massive individual movement data and characterize the patterns are rarely studied.

In this study, we propose a concept of “recurrent OD network.” The directed weighted edges of this network 
are called “recurrent OD flows” to capture the day- to- day periodic OD flows from massive individual mobilities. 
To identify these, we need to construct three types of networks in sequence. Firstly, we construct an OD network 
with mobility data for each day, known as the dynamic OD network (Holme & Saramaki, 2012). This is fundamental 
for capturing day- to- day periodic OD flows. Secondly, to filter out random movements and capture the major OD 
flows, we apply a head/tail breaks rule (Jiang, 2013) to retain edges with relatively large weights in the dynamic 
OD network, forming a dynamic major OD sub- network. Finally, to capture the periodic OD flows, frequent edges 
in the dynamic major OD sub- network are further preserved to form a so- called recurrent OD network.

To highlight the patterns of a recurrent OD network, we compare it with the corresponding major OD network, 
which contains all the edges of the dynamic major OD sub- networks. As such, the major OD network contains 
both frequent and infrequent OD flows. The frequent ones are identified as recurrent OD flows, while the infre-
quent ones are called “non- recurrent OD flows.” A recurrent OD network can be regarded as the periodic part 
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of the corresponding major OD network. Thus, comparing the recurrent OD network based on the major OD 
network leads to a deeper understanding of the periodic pattern.

With recurrent OD networks identified, the perspectives of community structure and weight flux of each re-
gion are analyzed. On the one hand, the community structure of regions provides the mesoscopic properties (Yan, 
Jeub, Flammini, Radicchi, & Fortunato, 2018). It represents close interactions among city regions, and can be used 
to uncover the spatial structure of recurrent OD flows. On the other hand, the flux of each region gives insight into 
the microscopic characteristics. It indicates the number of total movements in a region. We use the net- flux ratio 
to analyze the pattern of recurrent OD flows at a node level. A case study is conducted with taxi trajectory data 
over a period of 6 months in Wuhan, China.

All in all, the main contributions of this work can be preliminarily summarized as follows. Firstly, to capture 
the periodic OD flows, we propose a novel framework to detect a network called the recurrent OD network. This 
framework incorporates daily dynamic OD networks, the head/tail breaks method and frequent edges. The identi-
fied recurrent OD network provides novel insights into the OD flows from both spatial and temporal perspectives. 
Secondly, we compare the community structures between the major and recurrent OD networks, and reveal the 
patterns of periodic and non- periodic interactions in regional interactions. Thirdly, this study introduces a novel 
measurement, the net- flux ratio, to analyze the patterns of regional flux, that is, the patterns of periodic and non- 
periodic OD at the node level.

The structure of this article is organized as follows. Section 2 introduces the related literature. Section 3 de-
scribes the concepts and methods proposed here. Section 4 describes the test data and analyzes the patterns. 
Section 5 discusses the potential contributions in some practical applications. Section 6 discusses future work 
and concludes.

2  | REL ATED WORK

In recent years a large number of high spatial- temporal resolution location- based data sets have recorded the 
movement behaviors of people in the city, providing an objective description for urban dynamics (Pappalardo 
et al., 2015). To reveal significant patterns of urban dynamics, individual movements are often mapped into spa-
tially embedded OD networks. There are generally two perspectives for understanding OD networks: static and 
dynamic (Li, Cao, Li, & Wu, 2020).

From the static perspective, all the movements are checked together without viewing the flows on each day. 
This concept of OD networks has been studied in geography for decades and has been applied to aspects ranging 
from economic research (Bronzini, Herendeen, Miller, & Womer, 1974) and population migration (Tobler, 1970) 
to transportation (Magnanti & Mirchandani, 1993). The long history of the spatial OD network is reviewed by 
Barthelemy (2011). One interesting work on OD networks within a city is by Chowell, Hyman, Eubank, and 
Castillo- Chavez (2003). Due to the limited observations at that time, they employed a pseudo- agent- based ap-
proach to mimic human mobilities in Portland, Oregon. In their work, the urban OD network was constructed 
by representing physical locations in the city as nodes, and simulating movements of agents to construct di-
rected weighted edges. With the emergence of empirical location- based data, more work on urban OD networks 
has been done. For example, the properties of node degree, weight, travel distance, and centrality have been 
verified by following the power law (Guidotti, Monreale, Rinzivillo, Pedreschi, & Giannotti, 2016; Shao, Sui, Yu, 
& Sun, 2019). Moreover, strong correlations between the degree and weight (Saberi, Ghamami, Gu, Shojaei, & 
Fishman, 2018; Saberi, Mahmassani, Brockmann, & Hosseini, 2017; Tang et al., 2016) and community structures 
(Hossmann, Spyropoulos, & Legendre, 2011; Yang, He, Song, Fu, & Wang, 2018; Yildirimoglu & Kim, 2018) were 
also observed in real data sets. Besides mining patterns, various models to generate static OD networks have 
also been proposed, such as gravity (Roy & Thill, 2004), maximum entropy (Xie, Kockelman, & Waller, 2011), ra-
diation (Simini, Gonzalez, Maritan, & Barabási, 2012), and matrix decomposition (Hamedmoghadam, Ramezani, & 
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Saberi, 2019; Louail et al., 2015; Qi et al., 2021). Therefore, the analysis of and models on static OD networks give 
insight into the laws of urban dynamics as a whole, and complex network theories are used extensively to reveal 
the patterns.

Different from static OD networks, dynamic OD networks are able to organize movements on a daily basis. 
These dynamic networks depict urban dynamics in a realistic way and have attracted the attention of many re-
searchers. For example, Ferreira, Poco, Vo, Freire, and Silva (2013) presented a new system for the exploration of 
dynamic OD trips by using a visual query model allowing quick selection data slices on each day. Kim and Chung 
(2018) used a Gaussian mixture model to model the travel time distribution within a given day and analyze the 
OD- based day- to- day travel time variability. Bimpou and Ferguson (2020) incorporated day- to- day travel time 
reliability to measure regions' accessibility. Recently, there has been work focusing on predicting dynamic urban 
OD flows, primarily by adopting deep learning methods to capture spatiotemporal features automatically. Toqué, 
Côme, El Mahrsi, and Oukhellou (2016) were among the first to use the long short- term memory (LSTM) neural 
network model to estimate future OD flows by using the historic OD flows as input. Since their work, more 
complex deep learning models have been proposed to estimate dynamic future flows, among them convolutional 
LSTM (Duan et al., 2019), contextualized spatial- temporal networks (Liu et al., 2019), dual- stage graph convolu-
tional recurrent neural networks (Hu, Yang, Guo, Jensen, & Xiong, 2020), spatial- temporal LSTM (Li et al., 2020), 
spatial- temporal encoder- decoder residual multi- graph convolutional networks (Ke et al., 2021), and dynamic 
node– edge attention networks (Zhang, Xiao, Shen, & Zhong, 2021). Therefore, dynamic OD networks provide a 
more comprehensive and detailed day- to- day description for urban dynamics and have become a powerful tool 
for understanding collective dynamics in recent years.

While many studies have been conducted using dynamic OD networks, less attention has been paid to pe-
riodic flows. The work of Andrienko, Andrienko, Fuchs, and Wood (2017) is the closest to our study. They pro-
posed a spatial- temporal clustering approach for identifying significant OD flows. Rather than analyzing the 
patterns, their work mainly focused on detecting periodic and long- term temporal patterns visually. However, 
our work proposes a simple and intuitive approach to directly detect frequent sub- networks (called “recurrent 
OD networks”) from dynamic OD networks. Also, complex network theories are introduced to characterize 
the patterns.

3  | METHODOLOGY

This section first introduces the framework for identifying the recurrent OD network from individual movement 
data. Then complex network analysis, including community detection and flux of each region, are applied to ex-
plore the network structural pattern and specific recurrent OD flows in each region.

3.1 | Algorithm for identifying the recurrent OD network

The key problem of our work is to identify OD flows happening frequently from daily movement data. The techni-
cal framework for identifying recurrent OD network is shown in Figure 1. Its detailed procedure is defined as the 
following three steps. 

1. Construct a dynamic OD network with daily movement data.
2. Identify large flows (i.e., edges with large weights) in each OD network from the dynamic OD network to pro-

duce a dynamic major OD sub- network.
3. Extract edges frequently appearing in the dynamic major OD sub- network and assign average weight through 

days to construct the recurrent OD network.
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Here, the frequent edges indicate that the edges exist in most networks of the dynamic major OD sub- network. The 
concept of the major OD network is also introduced, which contains all edges of the dynamic major OD sub- network. 
The recurrent OD network and major OD network will be used to highlight the characteristics of periodic OD flows.

3.1.1 | Dynamic OD network

In the first place, we intend to construct a time series of OD networks which describes OD movements on each 
day from the movement of individuals. This is fundamental for exploring day- to- day periodic OD flows in the 
subsequent research and analysis. A common way to obtain this time- dependent network is to construct the cor-
responding network over each period of time (Holme & Saramaki, 2012). As such, a time series of OD networks 
is extracted, which is also called “dynamic OD flows” (Duan et al., 2019) or “dynamic OD matrix” (Liu et al., 2019) 
in some of literature. In this study, we construct an OD network on each day for daily periodic pattern analysis.

Also, the geographical meaning of a node is required for the construction of the OD network. We use the most 
common uniform grid measuring 1 km × 1 km as the unit region (Nanni, Tortosa, Vicent, & Yeghikyan, 2020), while 
the scale size can be adapted according to the applications. Also, a non- uniform partition such as traffic analysis 
zones can be applied if the information is available (Yu, 2019).

Finally, we have the following definition.

Definition 1 (Dynamic OD Network) A dynamic OD network N = {Nt , 1 ≤ t ≤ n, t ∈ ℕ
+} is a time series of spatial 

directed weighted networks, where the OD network Nt = (VNt
, ENt

,WNt
) is a snapshot of day t, VNt

 is the 
set of nodes that represent 1 km × 1 km partition grids, ENt

 is the set of directed edges which represent the 
OD flows between each pair of spatial nodes, and WNt

 is the set of weights that indicate the number of trips 
occurring to each edge.

F I G U R E  1   The technical framework of defining recurrent OD networks and major OD networks. Black and 
purple edges in the dynamic OD network indicate edges with strong and weak connections, respectively. Blue 
and red edges in the recurrent OD network and major OD network denote the edges appearing frequently and 
infrequently in the dynamic major OD sub- network
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3.1.2 | Dynamic major OD sub- network

With the dynamic OD network constructed, we aim to produce the corresponding dynamic sub- network that 
only retains edges with large weights. For an OD network, the larger the weight of an edge, the stronger the con-
nections between the corresponding origin– destination pair. In this sense, edges with large weights can largely 
express the dominant structure of interactions in a specific OD network, while low weights are considered to 
be potentially caused by random behaviors (Serrano, Boguna, & Vespignani, 2009). Therefore, we try to keep 
the high- weighted edges to ensure that the subsequently extracted recurrent OD flows are core interactions.

This is done by setting a global weight threshold for a network, which is one of the most popular approaches 
in many practical applications, such as the brain (Lynall et al., 2010), airlines (Sawai, 2012), food webs (Bellingeri & 
Bodini, 2013), and biological networks (Allesina, Bodini, & Bondavalli, 2006). However, in practice, the selection of 
the threshold value is difficult (Yan et al., 2018). It often needs to be set by the user with the actual meaning and 
characteristics of the network itself. For the urban OD network on each day, it is still unknown how to select the 
threshold to capture the core interactions.

In this step, a data- driven head/tail breaks rule is introduced to guide the selection of the weight threshold for 
an OD network. This is because the weight distribution of an OD network is usually heavy- tailed, with the major-
ity having smaller values and the minority larger values (Barthelemy, 2011), and the head/tail breaks rule is widely 
applied to deal with this distribution of the data (Jiang, 2013). It divides data into head (above the mean) and tail 
(below the mean) parts by the geometric mean, and then the head part can be further partitioned in this way. 
Under this partition scheme, the underlying hierarchy of the data can be captured. We iteratively run this parti-
tion until the ratio of the total evolved weight in the head is less than .4, where this threshold is recommended 
by some works to distinguish the minority from the majority (Ma, Osaragi, Oki, & Jiang, 2020; Ma, Sandberg, & 
Jiang, 2015). Therefore, this corresponds to repeated partitioning by the geometric mean of the remaining edges' 
weights until the upper 40th percentile set of weights for inclusion in the major sub- network is reached.

Note that the above method is a little different from finding the upper 40% quantile of data directly. The 
head/tail breaks method splits the data into multiple levels according to the above iterative procedure, thus rep-
resenting a hierarchy of heavy- tailed distributed data (Li et al., 2016). Therefore, the above threshold selection 
method based on the head/tail breaks rule is equivalent to keeping the data exceeding the upper 40% quantile 
according to the level as the basic unit rather than the specific value of the data itself. See the specific example 
in Section 4.2.

To be specific, we define and construct a dynamic major OD sub- network as follows.

Definition 2 (Dynamic major OD sub- network) A dynamic major OD sub- network M = {Mt , 1 ≤ t ≤ n, t ∈ ℕ
+} is 

a time series of spatial directed weighted networks extracted from the dynamic OD network 
N = {Nt , 1 ≤ t ≤ n, t ∈ ℕ

+}. Mt =
(
VMt

, EMt
,WMt

)
⊆ Nt =

(
VNt

, ENt
,WNt

)
, where VNt

, ENt
,WNt

 are the corre-
sponding sets of nodes, edges, and weights of Nt, EMt

= {ei|wi ≥ wmin (t) , (ei ,wi) ∈ (ENt
,WNt

)}, VMt
, WMt

 are 
sets of corresponding involved nodes and weights. Mt ⊆ Nt indicates that for a weighted edge (
ei ,wi

)
∈ (EMt

,WMt
), it has 

(
ei ,wi

)
∈ (ENt

,WNt
), and Mt is called the sub- network of Nt. The threshold wmin(t) is 

calculated by iteratively applying the head/tail breaks procedure until the first time when ∑
wi∈WNt

wi�{wi≥wmin(t)}∕
∑

wi∈WNt

wi < . 4, where � is the indicator function.

3.1.3 | Recurrent OD network

The purpose of this step is to identify the edges appearing frequently in the time series of major OD sub- 
networks M = {Mt , 1 ≤ t ≤ n, t ∈ ℕ

+}. As such, “frequent” means the edges in most networks of the dynamic 
major OD sub- network. For an edge v representing the interaction from node a to node b, the number of oc-
currences of v in each Mt is at most 1 (with 0 meaning not present), although the weight may vary. Therefore, 
the number of an edge v in M = {Mt , 1 ≤ t ≤ n, t ∈ ℕ

+} represents the frequency of its appearance as a core 
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interaction on most days. After normalization according to the total number of days n, we keep the edge v if 
the corresponding ratio exceeds the parameter � ∈ [0, 1] and assign v with average weight in the study period. 
These retained weighted edges represent frequently occurring OD interactions on most days and form a spa-
tial directed weighted network (called a recurrent OD network), so they are suitable for describing periodic 
OD interactions.

In detail, a recurrent OD network could be defined as follows:

Definition 3 (Recurrent OD network)  Given a dynamic OD network N = {Nt =
(
VNt

, ENt
,WNt

)
, 1 ≤ t ≤ n, t ∈ ℕ

+} , 
the corresponding dynamic major OD sub- network M =

{
Mt = (VMt

, EMt
,WMt

)
, 1 ≤ t ≤ n, t ∈ ℕ

+} and the 
frequency parameter �, the recurrent OD network R =

{
VR, ER,WR

}
 is a spatial directed network with 

weighted edges, where ER = {ei�
∑

1≤t≤n�ei∈EMt

(ei) ≥ n�}, VR is the evolved nodes, and wi,R∈WR is calculated 
as:

3.1.4 | Major OD network

In this section we introduce the motivation to construct a spatial directed weighted network called a “major 
OD network”. With the above definitions, the recurrent OD network is defined by those frequent edges in the 
dynamic major OD network. This also implies that the dynamic major OD network contains both frequent and 
infrequent edges. Therefore, to highlight the characteristics of those frequent OD flows, we collect all edges from 
the dynamic major OD sub- network and compare the major OD network as a benchmark with the OD recurrent 
network.

In detail, the major OD network can be defined as follows.

Definition 4 (Major OD network) Given a dynamic OD network N = {Nt =
(
VNt

, ENt
,WNt

)
, 1 ≤ t ≤ n, t ∈ ℕ

+} and 
the corresponding dynamic major OD sub- network M =

{
Mt = (VMt

, EMt
,WMt

)
, 1 ≤ t ≤ n, t ∈ ℕ

+}, the major 
OD network M =

{
VM , EM ,WM

}
 is a spatial directed network with weighted edges, where VM = ∪1≤t≤nVMt

, 
EM = ∪1≤t≤nEMt

 and wi,M ∈WM is calculated as:

From the definitions above, mathematically we have ER ⊆ EM. In addition, for ei ∈ ER with weight wi,R, we 
have wi,R = wi,M, since they are all calculated by the average weights from WNt

 of the dynamic OD network 
N = {Nt =

(
VNt

, ENt
,WNt

)
, 1 ≤ t ≤ n, t ∈ ℕ

+}. Therefore, R is the subset of M, that is all the weighted edges in the 
recurrent OD network are all in the major OD network. We call the weighted edges of R “recurrent OD flows” to 
capture the periodic OD flows, and the weighted edges in M∕R (i.e., in M but not in R), are called “non- recurrent 
OD flows” to describe the non- periodic OD flows.

3.2 | Complex network analysis

This section first introduces the network community detection method used to analyze the network structure of 
the major OD network and the recurrent OD network. Then indices related to flux in each region are adopted to 
describe the detailed recurrent and non- recurrent OD flows at the node level.

(1)wi,R =
1

n

∑

wi,t ∈WNt
,1≤ t ≤ n

wi,t

(2)wi,M =
1

n

∑

wi,t ∈WNt
,1≤ t ≤ n

wi,t
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3.2.1 | Community detection

In a network, a community refers to a cluster of nodes in which most of the nodes are connected inter-
nally while the connections between clusters are sparse. Different from a spatial cluster [e.g., max- p- regions 
(Duque, Anselin, & Rey, 2012) and REDCAP (Guo, 2008)] which mainly focus on aggregating close spatial 
objects, the network community is detected based on the connections of weighted edges between nodes. As 
such, the network community structure directly characterizes the regions densely connected by recurrent OD 
flows as well as non- recurrent OD flows, which reveals the periodic and non- periodic interaction structures 
between regions.

The major OD network M and recurrent OD network R are directed weighted networks, thus, the popular Infomap 
(Rosvall & Bergstrom, 2008) method considering both the direction and weight is adopted to identify communities. 
It captures the structure of a network by depicting a random walker on the network in a two- level representation: 
between clusters and within a cluster. If it finds an efficient two- level representation, clusters are then naturally iden-
tified. Infomap proposes to give a unique Huffman codeword to each cluster but reuse Huffman codewords within 
each cluster, which is similar to the fact that different cities could have the same street name. Under this two- level 
representation, the efficiency of a cluster partition C (i.e., dividing n nodes to m clusters) is given by:

The first term describes the entropy of a random walk between clusters, and the second term is the summation 
of entropy of random walks within each cluster. Specifically, q↷ is the probability that a random walk moves among 
clusters, H () is the entropy of Huffman codeword of clusters, pi

↻
 is the probability that movements happen in the 

cluster i , H
(
 i
)
 is the entropy of the Huffman codeword within cluster i . Finally, the most efficient partition C is 

computed by minimizing L (C).

3.2.2 | Regional flux

The flux of a node (Saberi et al., 2018), also called “strength” (Zhong, Arisona, Huang, Batty, & Schmitt, 2014), re-
fers to the total weights of a region. The edge weight represents the number of movements between two regions. 
From the perspective of a region (or node), there are inflow-  and outflow- weighted OD flows, which means the 
flows ending or starting from the region. As such, the total inflow or outflow weights (called “influx” or “outflux”) 
measure the regional attractiveness, which can be used to capture the daily regular movement of urban dynam-
ics (Pan, Qi, Wu, Zhang, & Li, 2013; Qian, Liu, Tao, & Zhou, 2020; Zhou, Liu, Qian, Chen, & Tao, 2020). Therefore, 
analyzing the influx and outflux of recurrent and non- recurrent OD flows could provide the patterns of periodic 
and non- periodic urban dynamics at the node level.

In the following, we introduce the flux- related statistics with their forms in the major OD network M and the 
recurrent OD network R.

Influx and outflux
Mathematically, for a region vi, we have influx x (Fin) and outflux (Fout) defined as (Saberi et al., 2018):

(3)L (C) = q↷H () +

m∑

i=1

pi
↻
H
(
 i
)

(4)Fin
(
vi
)
=

∑

vj ∈ vin(vi)

w
(
vj , vi

)

(5)
Fout

(
vi
)
=

∑

vj ∈ vout(vi)

w
(
vi , vj

)
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where vin(vi) (vout(vi)) is a set of nodes that have directed edges pointing to (starting from) node i , and w
(
vj , vi

)
 is the 

weight from node vj to vi.
For our analysis here, since the major OD network M contains recurrent and non- recurrent OD flows, for a 

region vi ∈ VR ⊂ VM, the influx and outflux of the major OD network (FM
in

(
vi
)
 and FM

out

(
vi
)
) can be expressed as the 

form of flux resulting from recurrent and non- recurrent OD flows:

where vM
in
(vi), vRin(vi) and vM∕R

in
(vi) are the sets of nodes that have directed edges pointing to node i  in M, R (i.e., the re-

current OD flows) and M/R (i.e., the non- recurrent OD flows), and 
∑

vj∈v
M∕R

in
(vi )
w
�
vj , vi

�
 is recorded as FNR

in

(
vi
)
 for simpli-

fication. Similarly, we have:

Therefore, the decomposition form of flux allows us to explain the periodic and non- periodic patterns more 
clearly in the following research.

Net- flux ratio
To comprehensively measure the dominated type and degree of influx and outflux in a region, we introduce the 
net- flux ratio (NFR) as:

Since Fin
(
vi
)
 and Fout

(
vi
)
 are both greater than 0, the value of NFR

(
vi
)
∈
[
− 1, 1

]
. NFR

(
vi
)
> 0 indicates  

the region vi is dominated by influx and that the stronger dominated degree is larger. Specifically, NFR
(
vi
)
= 1 

means there is no outflux; and vice versa.
By applying NFR to the major OD network M (NFRM) and the recurrent OD network R (NFRR), we have the 

following form:

Ratio of three types of regions based on NFR
Furthermore, based on NFR

(
vi
)
, we can classify the vi into three classes: NFR(vi) belongs to [– 1, – 1/3) when vi is in 

the outflow region, to [– 1/3, 1/3] when vi is in the balance region, and to (1/3, 1] when vi is in the outflow region. 
And we calculate the ratio of the three classes as:

(6)FM
in

(
vi
)
=

∑

vj ∈ vM
in (vi)

w
(
vj , vi

)
=

∑

vj ∈ vR
in(vi)

w
(
vj , vi

)
+

∑

vj ∈ v
M∕R

in (vi)

w
(
vj , vi

)
≜ FR

in

(
vi
)
+ FNR

in

(
vi
)

(7)FM
out

(
vi
)
= FR

out

(
vi
)
+ FNR

out

(
vi
)

(8)NFR
(
vi
)
=

Fin
(
vi
)
− Fout

(
vi
)

Fin
(
vi
)
+ Fout

(
vi
)

(9)NFRM
(
vi
)
=

FM
in

(
vi
)
− FM

out

(
vi
)

FM
in

(
vi
)
+ FM

out

(
vi
) =

FR
in

(
vi
)
+ FNR

in

(
vi
)
− FR

out

(
vi
)
− FNR

out

(
vi
)

FR
in

(
vi
)
+ FNR

in

(
vi
)
+ FR

out

(
vi
)
+ FNR

out

(
vi
)

(10)NFRR
(
vi
)
=

FR
in

(
vi
)
− FR

out

(
vi
)

FR
in

(
vi
)
+ FR

out

(
vi
)

(11)routflow =
Noutflow

Noutflow + Nbalance + Ninflow

(12)
rbalance =

Nbalance

Noutflow + Nbalance + Ninflow
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where Noutflow, Nbalance, and Ninflow denote the number of vi classifying as outflow, balance, and inflow. Therefore, these 
three ratios describe the flux types of regions based on OD flows within a city, which can be applied to the major OD 
network and recurrent OD network to capture periodic and non- periodic urban dynamics.

4  | RESULTS

This section conducts a case study with the taxi trajectory data of Wuhan. Section 4.1 introduces the study area 
and data information in this study. In Section 4.2 we divide the day into 12 segments (2 h per slot), and identify 
the major OD network and recurrent OD network for each time- slot. Section 4.3 compares the two networks 
quantitatively from the perspectives of community structure and flux of each region.

4.1 | Study area and data

The study area is the central urban part of Wuhan city. It lies between 30.462oN and 30.659oN latitude (around 
22 km) and between 114.180oE and 114.409oE longitude (around 22 km); see Figure 2. Our study uses 1 km as the 
grid scale, which partitions the study area into 22 × 22 = 484 squares. Note that the study area is divided into east 
and west parts by the Yangtze River. Figure 2 also shows how the city area is partitioned into districts. The central 
business district (CBD) is located at the intersection of Qiaokou, Jianghan, and Jiangan near the riverbank; this is 
the political and economic center with the densest population in Wuhan.

(13)rinflow =
Ninflow

Noutflow + Nbalance + Ninflow

F I G U R E  2   Map of Wuhan central urban area
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The data used in this case study contains trajectories collected from 7,983 taxis in Wuhan from February 1 to 
August 10, 2015. Each record consists of the taxi ID, time, longitude, latitude and occupation status (“empty” and 
“occupied”). A sample record is shown in Table 1. The data are provided by the Wuhan Municipal Transportation 
Administration, and only audited research institutions can access the data. Specific information on the driver cor-
responding to the taxi ID is not available to users due to privacy considerations. Moreover, the data do not contain 
any passenger information, recording only the passenger occupation status of the taxi.

Generally, an origin– destination pair for a taxi trip is meaningful for representing an individual movement 
only if it carries one or more passengers. We therefore chose the effective flows by taking the start and end of 
each trajectory segment when the status was “occupied.” Note that the Chinese New Year (February 18– 25), 
also known as the Spring Festival, is included in this period. On considering the irregular population movements 
during this specific period, which might distort our conclusions, we thus removed all the records collected in this 
period. In addition, we excluded days with only a few trajectories based on suggestions from the data provider. 
This is because bad weather or other unknown reasons make the number of trajectories very small in these days. 
As such, we retain a data set of trajectories of up to 29,557,561 records in 173 days. Finally, since our study mainly 
focuses on the movements between different regions, the records with pick- up and drop- off points in the same 
grid square are removed, which leads to 28,625,700 records in 173 days.

4.2 | Identifying major and recurrent OD network

Since people's movement behaviors are different at different times of the day, the OD flows also show changing 
patterns. To capture the dynamic patterns of the recurrent OD network, we divide they day into 12 time periods 
on average.

We first show the results of using the head/tail partition method to extract the major OD sub- network with 
relatively higher weights. We take the OD network Nt =

(
VNt

, ENt
,WNt

)
 for 12:00– 14:00 on March 5 as an example. 

In Figure 3, the ratio of weight w0 is calculated as 
∑

wi∈WNt

wi�{wi=w0}∕
∑

wi∈WNt

wi, which describes the proportion of 

the number of trips with weight w0. The linear decreasing trend at the log- log scale shows that most of the edges 
have very low weights and only a small fraction of the edges have relatively higher weights. The geometric mean 
of all the weights wi ∈ WNt

 is 1.27, and the first partition filters out the edges with a weight smaller than 1.27, so 
that a weight ratio of 0.63 remains (Figure 3a). We use this partition rule again in the remaining head part, which 
leads to a threshold (i.e., the geometric mean of the remaining weights) of 2.92 with a remaining ratio of 0.44 
(Figure 3b). Then after the third partition, the geometric mean is 4.26. In this case, the data with weights 3 and 4 
are classified as being at the same level, and after filtering them out, the remaining ratio is 0.24 < 0.4, satisfying 
the stopping condition (Figure 3c). Although the remaining ratio is 0.32 < 0.4, satisfying the stopping condition by 
filtering out only the data with a weight of 3, the idea of the head/tail breaks method is to maintain the hierarchical 
structure by level, so in the end, we retain all the edges with a weight larger than or equal to 5 as part of the major 
OD sub- network.

TA B L E  1   An example of taxi record when carrying passengers

Taxi ID 100

Time February 12, 2015 14:03:38

Longitude 114.3234

Latitude 30.5521

Occupation status Occupied
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In this 2- h network example, there are a total of 10,799 edges (or interactions) with a total weight of 19,398. 
This shows that a total of 19,398 movements have occurred, but the number of different regional pairs involved is 
also very large (10,799). Therefore, at the scale of a 1 km grid, people's taxi travel behavior for 2 h a day is not so 
consistent. This may have a certain relationship with the high theoretical upper limit (233,772, see Appendix A in 
the online supporting Information) of interaction pairs in different regions at this scale. In addition, although the 
weight range is wide, from 1 to 19, all edges with a weight less than 4 account for 76% of the movement, which is 
close to the “80– 20 rule” (Newman, 2005).

Figure 4 counts the weight thresholds of edges identified by the head/tail breaks rule on each day of the 
study. We find that the largest remaining edge threshold is 5 during 10:00– 14:00 (when people mainly commute 
between business and recreation centers) and 20:00– 22:00 (the peak time for people to return home from enter-
tainment venues or workplaces). On the other hand, the weight threshold is mainly 2 at 2:00– 6:00. The possible 
reason for this relatively lower threshold is that there are fewer taxi trips in the city during this time period. As a 
result, the interaction of most OD flows is 1, and its weight ratio exceeds 0.4. Except for the above two situations, 
the threshold in other time periods is mainly 3, which is relatively stable (see more details in Appendix B).

F I G U R E  3   The head/tail partition result of the OD network for 12:00– 14:00 on March 5. (a) Weight ratio 
for all weighted edges, and its first partition result. (b) Weight ratio for the remaining weighted edges after the 
first partition (with weight greater than 1.4), and its second partition result. (c) Weight ratio or the remaining 
weighted edges after the first partition (with weight greater than 2.92), and its third partition result

F I G U R E  4   The weight threshold determined by head/tail partitioning in the different time periods. The 
solid line indicates the median value, and the shaded area corresponds to the 5%– 95% quantile range across the 
173 days. The value H on the x- axis indicates the time period between H − 2 and H
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After constructing the dynamic major OD sub- network, the parameter � (in Definition 3) is required to be 
pre- defined for identifying the recurrent OD network. It determines the minimum frequency at which a recurrent 
major edge should appear. Here, the major edges refer to the edges in the dynamic major OD network. We count 
the number of major edges (y) that appear for at least k days over the study period, which shows that y decays 
with k as y(k) ∝ 10�k (𝜃 < 0) (Figure 5). This exponential decay indicates that most of the major edges do not appear 
frequently, but are accidental on some days. Moreover, these curves decay at different speeds over different time- 
slots. This shows that the frequency of occurrence of a major edge is not consistent over time. In this study, we 
uniformly set the parameter � = 0.5 by experience, indicating that a major edge appeared in more than half of the 
days in the study period, and then we consider it as being recurrent.

Figure 6 shows the results of the major OD network M and the recurrent OD network R in different time- 
slots. It can be seen that the major OD network forms dense interconnections between most regions of Wuhan, 
showing that people's periodic and non- periodic movements are widespread among Wuhan regions. However, 
the recurrent OD network only involves a small number of regions, and the physical length between OD flows is 
relatively shorter (Appendix A), which results in some regions being separated and disconnected from each other. 
This indicates that the periodic movements in the Wuhan area mainly exist between a small number of regions 
close in space. In addition, we have observed major and recurrent OD network changes at different times. In par-
ticular, during the during 2:00– 6:00 when most people are resting at home, the number of recurrent OD flows is 
significantly reduced compared to other times. Therefore, periodic movement as a part of the hybrid movement 
(combination of periodic and non- periodic) shows some unique characteristics.

4.3 | Characterizing the recurrent OD network

In this section we compare the structure of OD interactions by identifying the community structure between the 
major OD network and the recurrent OD network. The evolution of flux within a day is then analyzed.

4.3.1 | Community structure

Community structure deconstructs the OD network by identifying the community which represents the densely 
connected regions. Previous studies have found that the community structure of an OD network in a city can 
be represented as multiple spatially connected blocks (Rinzivillo et al., 2012), which is largely due to the city's 

F I G U R E  5   The number of major edges that appear for at least k days. The value k on the x- axis indicates the 
number of days is k. The value y(k) in the y- axis indicates the number of major edges appearing on at least k days 
over the study period. The dashed line is fitted by y(k) ∝ 10�k. Graphs are plotted on the linear- log scale
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polycentral structure pattern and the tendency of people to move short distances. Furthermore, the observed 
spatially connected blocks sometimes showed a certain degree of expansion across official district boundaries 
(Zhou, Yue, Li, & Wang, 2016). While it has been observed that the recurrent OD network is a more spatially 
localized network at the base of the major OD network, it is natural to ask what is the relationship between the 
community structure of the two.

The Infomap approach is applied to identify the community of the network. Figure 7 displays the spatial dis-
tribution of the community in the major OD network and the recurrent OD network. It finds that the community 
structure of the major OD network is a large- scale spatial connection block restricted by the river (Figure 7a). The 
communities are distributed on both sides of the river, due to the fact that the river creates a natural barrier to 
people's movement, and people can only move between the east and west banks via a small number of bridges 
across the river. This makes the regional OD interactions between the two banks less intense than within each. 
Within each bank, the spatial connection block is formed. On the one hand, it may be due to the polycentric spatial 
structure of urban spatial planning (Gordon, Richardson, & Wong, 1986; McMillen & McDonald, 1997). There are 
many popular areas in the city, surrounding their respective regional centers, forming a large space including large 
shopping malls, entertainment venues, office buildings, and residential buildings. On the other hand, people tend 
to travel as close as possible in the city, which leads to local interaction clusters between nearby regions (Barrat, 
Barthelemy, & Vespignani, 2005). These two reasons make the communities with densely interactive regions in 

F I G U R E  6   Spatial distributions of (a) major OD network M and (b) recurrent OD network R. For visualization, 
the weight (w) of each edge is normalized by wnor = (maxwi∈WM

wi − w)∕(maxwi∈WM
wi −minwi∈WM

wi) within each 
time period
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the city appear as spatially connected blocks. However, these communities are relatively large- scale in space, 
and some communities cover or span several districts during most time periods of the day, such as the communi-
ties composed of OD interactions in Qiaokou, Jianghan, and Jiangan districts (above the west bank of the river), 
and the communities cross Wuchang and Hongshan districts (below the east bank of the river). This phenome-
non of cross- district expansion of the OD network community is consistent with that reported previously (Zhou 
et al., 2016). This may be due to the convenient transportation that allows people to move freely in a larger area, 
thus forming a densely interactive space block between districts.

On the other hand, we observe that the community of the recurrent OD network is more spatially localized at 
the base of the community of the major OD network M (Figure 7b). A community in the major OD network M may 
decompose into multiple smaller communities (e.g., those circled at 20:00– 22:00) or shrink into a spatially local-
ized community (e.g., the community around Qingshan district above the east bank of the river at 20:00– 22:00) 
of the recurrent OD network R. Figure 7b shows Hankou, the largest railway station, and the CBD area in Wuhan, 
which contains a large number of offices, entertainment, and high- end residences. We find that apart from the 
larger cross- district communities formed by the railway station and the CBD, other communities are affected by 
districts to a certain extent. Most of the connections in the community occur within one district, or a small amount 
of recurrent OD flows across two districts. Since urban spatial configurations are usually arranged by district, the 
spatial settings of the city may have a relatively strong influence on the periodic OD flows. Citizens may tend to 

F I G U R E  7   Spatial distributions of the community structure of: (a) the major OD network M; and (b) the 
recurrent OD network R. The red star indicates the largest railway station, Hankou. The brown circles in (b) 
20:00– 22:00 show some small communities of the R which belong to the same big community in M in the 
corresponding time period
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periodically move between typical regions of interest within the districts (see Appendix C in the online Supporting 
Information). Specifically, at 4:00– 6:00, there is only one community across the river, mainly connecting multiple 
railway stations and the CBD (see Appendix C). This may be due to the fact that there are fewer OD interactions 
during this time period.

To summarize, for most cases, we observe that the community structure of the major OD network is larger in 
space. Although it is restricted by the river, many cross- district connections are still formed in the communities 
on both sides of the respective rivers. On the other hand, the communities of the recurrent OD network are 
spatially shrunken or split from the communities of the major OD network, and are relatively strongly affected by 
the scheme of districts with relatively fewer OD interactions across multiple districts. This community structure 
relationship between the two OD networks illustrates that the dense connectivity pattern of regions within a 
community can be further represented as one or more spatially localized periodic OD flows, supplemented by 
many spatially global non- periodic connections. Thus, the periodic and non- periodic OD movements are the local 
and global characterizations of the interaction structure of the urban area.

4.3.2 | Pattern of regional flux

In this section to deepen understanding of the periodic and non- periodic OD movements' patterns, the regional 
flux (see Section 3.2.2) is further compared between the major OD network M and the recurrent OD network 
R . While the evolution of the relationship between influx and outflux within a day is strongly related to citizens' 
activities (Zhou et al., 2020), is the pattern of the flux formed by the recurrent OD network R the same as the flux 
formed by the major OD network M?

To answer this question, the net- flux ratio is introduced to comprehensively measure the flow type and dom-
inated degree of a region. Figure 8 displays the spatial distributions of NFRM

(
vi
)
 and NFRR

(
vi
)
, for vi ∈ VR ⊂ VM.  

Red (blue) color indicates that the inflow (outflow) dominates the regions, and the darker the color the higher 
the degree of dominance. While the flux is dynamic throughout the day, we surprisingly find that the regional 
flux of the recurrent OD network R has colors similar to but darker than that of the major OD network M in the 
corresponding time period (see Appendix D in the online Supporting Information). This implies that regions vi ∈ VR 
are dominated by similar types of recurrent OD flows and major OD flows (containing both recurrent and non- 
recurrent OD flows), but also the recurrent OD flows amplify the dominated degrees.

Under this amplification process of the recurrent OD network R, the dynamic travel patterns of people are 
highlighted. This is illustrated by checking the ratios of influx, balance, and outflux regions (defined in Section 3.2.2) 
according to the NFR throughout the day. If we consider the flux of the major OD network NFRM

(
vi
)
, the balance 

region dominates nearly all the time- slots (Figure 9a). This is because NFRM

(
vi
)
 is too close to 0 to be classified 

into the influx or outflux region. However, after amplification in the recurrent OD network R, the three kinds of 
ratios dominate in turn (Figure 9b), which is consistent with the travel activities of citizens. There are typically 
three periods.

1. 4:00– 10:00. The ratio of the outflow region is relatively high. People mainly go to work, starting the day's 
economic activity in the city. They tend to go to work via bus or train stations, which implies that people live in 
relatively dispersed areas but places for working activities are more concentrated within Wuhan.

2. 10:00– 20:00. The ratio of the balance region is the highest. This period reflects the relatively stable and 
balanced inflows and outflows of people in various regions, when most people are already located where they will 
need to be for the next 8– 10 h. There is no obvious tendency for people to go or leave for each region.

3. 20:00– 4:00. The ratio of the inflow region gradually increases and becomes the highest. This is because 
people mainly go home during this period.

Actually, the amplification phenomenon of the R net- flux ratio is mainly due to the relatively different intensity 
of the dominant flow exhibited by each of the recurrent and non- recurrent flows themselves. More specifically, for 
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a region vi dominated by inflows, the amplification phenomenon can be deduced as (see Appendix E in the online 
Supporting Information):

Therefore, the difference between in-  and out-  flux of the recurrent OD flows deserves more attention than 
that of non- recurrent OD flows. There are both recurrent and non- recurrent OD flows in the major OD network 
M, the recurrent dominant inflows are largely diluted by the non- recurrent OD flows. The situation is similar for a 
region vi dominated by outflows, and then we have:

To summarize, we use the net- flux ratio to measure the regional dominated flow type and degree. We observe 
the recurrent OD network having a similar dominated flow type but a stronger degree than the major OD network. 
Furthermore, by checking the ratios of the three types of regions defined by NFR, we found that daily dynamics 

(14)
FR
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(vi)
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out
(vi)

>
FNR
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(
vi
)

FNR
out

(
vi
)

(15)
FR
out
(vi)
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(vi)

>
FNR
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(
vi
)

FNR
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(
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)

F I G U R E  8   Spatial distributions of net- flux ratio for nodes of: (a) the major OD network M; and (b) the 
recurrent OD network R. We only present the nodes vi ∈ VR ⊂ VM for comparison



18  |     CHEN Et al.

described by the major OD network M are apparently more unordered than those by the corresponding recurrent 
OD network R. The dynamic changes in the ratios of R are more consistent with people's daily travel regulari-
ties in common sense. Furthermore, the dynamic travel patterns are highlighted with this amplification process. 
Therefore, the results illustrate that periodic OD flows can better characterize whether an area is dominated by 
inflow or outflow without being diluted by non- periodic OD flows. This periodic OD flow with more prominent 
regional in- /out-  flux characteristics can more clearly describe the attractiveness of a region at different time 
periods and better capture the temporally stable urban dynamic pattern from the whole.

5  | DISCUSSION

Our study proposes a method of identifying the recurrent OD network to capture the periodic OD flows between 
regions within a city. Compared with the major OD network containing both recurrent and non- recurrent OD 
networks, it finds that the recurrent OD network has a more spatially localized community structure and amplifies 
the regional dominated degree of in or out flows. These results show several potential contributions in practical 
applications related to spatial OD interactions.

One benefit is that they can provide city managers with better guidance on planning administrative districts. 
OD network community structure describes a space block with close interaction between regions objectively, 
which has been applied to help the design of the district boundary by many researchers (e.g., Rinzivillo et al., 2012; 
Zhou et al., 2016). In our study, the spatial localized community structure of the recurrent OD network describes 
those time- stable interactive structures. City managers can consider their spatial distribution to design district 
boundaries, thereby capturing the core structure from the perspective of time to better manage people's daily 
travels.

Second, the results may be conductive to developing some more targeted regional economic development 
strategies. The daily stable population flow between urban regions is one of the important driving factors to en-
sure the vitality of a regional economy (He, Zhang, & Xiu, 2019). The recurrent OD flows precisely describe this 
kind of strong interaction phenomenon that frequently occurs in daily life, and can provide some guidance for 
planning the economic development in the city. First, for those regions that form a community of the recurrent OD 
network, more roads and more rationally designed traffic lights can be built between the regions to ensure smooth 
movements. It can also support more urban facilities around their surrounding regions to drive the development 
of the surrounding economy. Moreover, the prominent characteristics of regional inflows or outflows can better 
define the attractiveness of a region at the different time periods of the day, so as to understand the time- stable 

F I G U R E  9   Ratios of outflow, balance, and inflow region of vi ∈ R ⊂ M in (a) M and (b) R. The value H on the 
x- axis indicates the time period between H − 2 to H
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role of a region in the regional economic interaction and make corresponding economic development strategy in 
different time periods of a day.

Third, they help to develop more effective infectious disease control strategies. The movements of the citizens 
are one of the important reasons for the spread of epidemics (Peixoto, Marcondes, Peixoto, & Oliva, 2020). The 
identified recurrent OD flows represent those day- to- day repeated interactions between different regions. In ad-
dition, recurrent OD flows show more prominent inflow and outflow characteristics in a region, which can better 
identify a region that is likely to spread epidemics to other regions or be infected. Therefore, in the early stages 
of the epidemic, when people's movements are still the same as before, focus on monitoring and interventions for 
movement between these regions may better interrupt the rapid spread of epidemics.

6  | CONCLUSIONS AND FUTURE WORK

To capture the daily periodic OD flows, our study proposed the extraction of recurrent OD networks based on 
the idea of frequent sub- networks. The algorithm first constructed the dynamic OD network by organizing the 
individual movements as an OD network on each day, then edges with large weights were retained by the head/
tail breaks method. Finally, the edges appearing on most days were identified to construct the recurrent OD net-
work. To highlight the patterns of the recurrent OD network, the major OD network containing both recurrent and 
non- recurrent OD flows was compared at different times of the day.

We compared the community structure and regional flux to characterize the network from both mesoscopic 
and microscopic pespectives. Firstly, we adopted the Infomap approach to analyze the community structure. 
Results confirmed that, in comparison with a major OD network M, the community structure of the correspond-
ing recurrent OD network R better illustrated both the periodic and non- periodic OD flows. Then the NFR was 
introduced to measure the dominant flow and degree of a region. By comparing the NFR heatmap, it was observed 
that the recurrent OD network was of a color similar to but darker than the major OD network. This showed that, 
the periodic OD flows of a region had similar but more significant in-  and out-  flow characteristics. Under this 
amplification process, the dynamic travel patterns of citizens measured by the net- flux ratio were clearer within 
the day. Finally, the potential benefits in terms of urban planning, regional economic development, and infectious 
disease control were discussed.

However, there remain some limitations and work to be done in the future. Firstly, the factors influencing the 
recurrent OD network need to be further studied. Through preliminary network map matching with semantic 
information on points of interest, we found that the basic setting of the city was a possible factor that affects the 
formation of recurrent OD flows between the two regions. A more comprehensive socioeconomic and human 
demographic information can be considered to quantitatively explore specific influencing factors.

Secondly, the analysis of spatio- temporal patterns of the community structure of the recurrent OD network 
is an important future direction. Future work can combine the degree distribution, centrality, connectivity, clus-
tering and other indicators of the network to further characterize the features of the community and examine its 
daily evolution. Moreover, regional socioeconomic and human demographic information can be incorporated to 
deepen the understanding of spatial patterns of evolution.

Thirdly, an interesting topic is to compare the recurrent OD flows to the subway network to determine whether 
taxis serve as a complement or as competition to the subway system in Wuhan. These day- to- day repeated move-
ments describe the stable demand for public transportation movement between regions. How many of the taxi 
trips are likely to start or end at a subway stop? How many taxi trips could have been replaced by passengers 
taking the subway instead? Future research can answer these questions and reveal the role of taxis and subways 
in the stable demand of cities by comparing taxi and subway data.

Finally, the influence of different thresholds on recurrent OD flows needs further analysis and discussion. The 
weight threshold and the frequency threshold determine the extracted recurrent and non- recurrent OD flows. 
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Comparisons and discussions between different thresholds are important for further understanding the periodic 
OD movements.
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