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Preface to ”Advances in Airborne Lidar Systems and

Data Processing”

Presented to audience as ”Airborne Laser Systems and Data Processing”, this book collects the

papers in the Remote Sensing special issue ”Airborne Laser Scanning” (November 2016) and several

other papers selected from recent, previous Remote Sensing issues.

We were approached by Remote Sensing late 2015 to edit a special issue on Lidar remote sensing.

After some literature review and careful thinking, we selected the theme for the special issue as

“Airborne Laser Scanning”. Having this focus in mind, we made a call for papers and spread it

well over Internet and social media. In the meantime, a number of leading experts in their fields

were reached out for contribution. The effort has led to the special issue (November 2016) with 15

papers. Beyond our expectation, the special issue was able to cover a variety of advanced, emerging

subjects which reflect not only leading edge technologies, but their experimental results for large

scale, real-world applications. Many of the contributions are either one of the first, comprehensive

and systematic, or new development for the state-of-the-art technology, all of which made us believe

this collection would be classical and durable. This motivates us to expand it to a printed book by

selecting an additional number of relevant and representative papers from recent, previous Remote

Sensing issues. It comprehends a wider spectrum of laser remote sensing techniques, while we also

expect it is self-contained.

The book consists of 23 papers in six subject areas: (1) single photon and Geiger-mode lidar;

(2) multispectral lidar; (3) waveform lidar; (4) registration of point clouds; (5) trees and terrain; and

(6) building extraction. It is our expectation that it will be a valuable resource for scientists, engineers,

developers, instructors, and graduate students interested in lidar systems and data processing. We

hope it will be a gateway to the future for advanced laser remote sensing and data processing.

Finally, we would like to thank the excellent Remote Sensing editorial team, without their

persistent effort and professional patience we would not be able to have the special issue and this

expanded, printed book. Our gratitude also goes to the authors who have generously agreed their

papers be included in this book.

Jie Shan, Juha Hyyppä

Special Issue Editor
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Article

Scanning, Multibeam, Single Photon Lidars for
Rapid, Large Scale, High Resolution, Topographic
and Bathymetric Mapping

John J. Degnan

Sigma Space Corporation, 4600 Forbes Blvd., Lanham, MD 20706, USA; john.degnan@sigmaspace.com;
Tel.: +1-301-552-6004

Academic Editors: Jie Shan, Juha Hyyppä, Guoqing Zhou and Prasad S. Thenkabail
Received: 29 July 2016; Accepted: 10 November 2016; Published: 18 November 2016

Abstract: Several scanning, single photon sensitive, 3D imaging lidars are herein described that
operate at aircraft above ground levels (AGLs) between 1 and 11 km, and speeds in excess of
200 knots. With 100 beamlets and laser fire rates up to 60 kHz, we, at the Sigma Space Corporation
(Lanham, MD, USA), have interrogated up to 6 million ground pixels per second, all of which can
record multiple returns from volumetric scatterers such as tree canopies. High range resolution has
been achieved through the use of subnanosecond laser pulsewidths, detectors and timing receivers.
The systems are presently being deployed on a variety of aircraft to demonstrate their utility in
multiple applications including large scale surveying, bathymetry, forestry, etc. Efficient noise filters,
suitable for near realtime imaging, have been shown to effectively eliminate the solar background
during daytime operations. Geolocation elevation errors measured to date are at the subdecimeter
level. Key differences between our Single Photon Lidars, and competing Geiger Mode lidars are
also discussed.

Keywords: airborne multibeam lidar; single photon lidar; 3D imaging; photon-counting; surveying;
forestry; bathymetry; cryosphere

1. Introduction

Conventional mapping lidars fall into two broad categories—discrete return lidars and digitized
waveform lidars. As can be seen from Figure 1, discrete return lidars provide one or more event times
(ranges) where the received intensity exceeds a common threshold but there is no other vertical spatial
information in between. Digitized waveform lidars, on the other hand, provide intensity information
over the entire vertical structure but each point in the profile represents the sum of the returns over
the transverse extent of the laser beam at a given range. Digitized waveform lidars typically require
hundreds of detected photons and are most useful when mapping areas where multiple vertical returns
are expected from complex semi-porous structures such as tree canopies, very rough terrain, or even
manmade structures. The earliest version of our Single Photon Lidar (SPL), the NASA “Microaltimeter”
described in Section 2.1, used a single beam with only 2 microjoules of energy per pulse and a multistop
timing receiver to record tree canopies and the underlying terrain from altitudes above ground level
(AGLs) as high as 7 km [1]. In effect, it was a degraded version of a digitized waveform lidar and,
if one were to repeat the low energy measurements many times and create histograms versus range,
one would expect to generate a profile comparable to that of the waveform digitizer. On the other
hand, individual photon returns originate at a specific scattering point within the canopy and, unlike
waveform lidars, are isolated from nearby returns which occur at the same range but originate from
other points within the transverse extent of the laser beam. Later SPL generations, to be described in
this article, take advantage of the receiver’s single photon sensitivity by splitting a single laser beam

Remote Sens. 2016, 8, 958 1 www.mdpi.com/journal/remotesensing
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into 100 beamlets, arranged in a 10 × 10 array. Each beamlet is then imaged onto a pixel in a matching
10 × 10 array detector which, in turn, is input to a timing channel able to record multiple stop events
per pixel with few picosecond accuracy. This alone increases the surface measurement rate by two
orders of magnitude relative to the laser fire rate. When the source laser is operating at tens of kHz,
surface measurement rates of several megapixels per second are achieved. Furthermore, our lidars are
designed to provide a mean of 3 photoelectrons per pixel for green vegetation (10% surface reflectance
at 532 nm) when operated at their design AGL. Thus, a tree canopy will result in approximately
300 photoelectrons being detected per pulse, a number not dissimilar to some Digitized Waveform
lidars, but with the added benefit that the transverse coordinates of the scattering points are identified
as well as the range, thereby providing more detailed 3D vs. 1D maps of the canopy. It must also
be mentioned that a competing single photon sensitive technique based on Geiger Mode Avalanche
Photodiode Arrays has also recently been introduced to the commercial market, by Harris Corporation
and their different characteristics will be discussed in Section 5.

Figure 1. A comparison of Single Photon Lidars with conventional Discrete Return and Digitized
Waveform lidars in interacting with a tree canopy (Courtesy of D. Harding, NASA GSFC).

Single photon sensitive 3D imaging lidars have multiple advantages relative to conventional
multiphoton lidars. They are the most efficient 3D imagers possible since each range measurement
requires only one detected photon as opposed to hundreds or even thousands in conventional laser
pulse time of flight (TOF) or waveform altimeters. Their high efficiency enables orders of magnitude
more imaging capability (e.g., higher spatial resolution, larger swaths and greater areal coverage).
In our Single Photon Lidars (SPLs), single photon sensitivity is combined with a 1.6 nanosecond
receiver recovery time (often referred to as “deadtime”), and is therefore capable of recording returns
from objects differing by only 24 cm in range. This enables our lidars to operate effectively in
daylight and to penetrate semi-porous obscurations such as vegetation, ground fog, thin clouds, etc.
Furthermore, unlike most lidars which operate at the fundamental Nd:YAG wavelength of 1064 nm
in the Near InfraRed (NIR), the SPL 532 nm operating wavelength is highly transmissive in water,
thereby permitting shallow water bathymetry and 3D underwater imaging. In order to enhance the
range resolution of SPLs, FWHM laser pulsewidths on the order of 100 to 700 picoseconds are used
whereas conventional lidars typically employ few nanosecond pulsewidths and rely on large photon
counts from the surface to improve the precision of the range measurement.

On the other hand, sensitivity to single photon surface returns also make SPLs sensitive to
background noise originating from: (1) dark counts from the sensitive detectors; (2) solar backscatter
from the surface being examined and the intervening atmosphere within the pixel field of view (FOV);
and (3) laser backscatter from the atmosphere within the selected range gate. Sources (1) and (3)
occur during both day and night mapping operations but are relatively inconsequential compared
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to the solar scatter encountered in daylight. Conventional lidars have multiphoton thresholds and
therefore do not record single photon solar or dark count events. The solar count rate per pixel is
proportional to the pixel FOV and the receive telescope aperture [2]. Thus, shrinking the pixel FOV
not only reduces the solar count rate in an SPL, but it also improves the horizontal spatial resolution of
the lidar. Furthermore, the single photon sensitivity of the receiver allows a substantial reduction in
receive aperture, thereby further reducing the number of noise events [2]. Finally, these sources have
been effectively mitigated through the use of highly effective noise filtering algorithms such as the
Differential Cell Count method [2]. For further insights into the characteristics and relative merits of
the various lidar types, the reader is referred to the book chapter by Harding [3].

In Section 2 of this paper, we present an overview of our multibeam scanning airborne SPLs to
date and the manner in which they have been adapted to operate at higher AGLs and cruise speeds
for faster areal coverage. In Section 3, we briefly discuss progress in developing fast and autonomous
data editing software for extracting surface data from the solar background during daylight operations
and the potential for near real time 3D image generation for cockpit display and/or transmission to
a ground station. Section 4 provides examples of different data types in order to demonstrate their
relevance to applications such as large scale surveying, Cryospheric studies, forestry, and shallow
water bathymetry. Section 5 discusses the relative advantages and disadvantages of SPL vs Geiger
Mode technology, which was developed over two decades by the US military but has recently been
introduced into the civilian market by Harris Corporation. Finally Section 6 provides some concluding
remarks about ongoing research and field activities to provide improved data products, including
the possibility of globally contiguous mapping of planets and moons from orbital altitudes between
100 and 500 km.

2. SPL Instrument Overview and Heritage

2.1. NASA “Microaltimeter”

NASA’s Microlaser Altimeter or “Microaltimeter” provided the first airborne demonstration
of a scanning Single Photon Lidar (SPL) in early 2001 [1]. Although several natural properties
(e.g., atmospheric transmission, natural surface reflectivity, solar background) favor use of the
fundamental Nd:YAG wavelength at 1064 nm, 532 nm was chosen as the operating wavelength
for technology reasons (e.g., higher efficiency COTS array detectors with nanosecond recovery times,
high transmission narrowband filters, etc.) [2]. A side benefit of the choice was the instrument’s
demonstrated ability to see the bottom of the Atlantic Ocean off the coast of Virginia to a depth of
about 3 m from an altitude of 4 km. The lidar also successfully penetrated tree canopies to see the
underlying surface. The 532 nm operating wavelength has been maintained through the successive
generations of lidar described here.

With less than 2 microjoules per pulse at a laser repetition rate of 3.8 kHz (~7.6 mW average
power), the single beam “Microaltimeter” produced high resolution 2D profiles or low resolution 3D
images over narrow swaths (~60 m) while operating mid-day at altitudes up to 6.7 km. Although
the passively Q-switched, microchip Nd:YAG laser was incredibly small (~2.3 mm in length) and
pumped by a single diode laser, the overall lidar was quite large and flew in the cabin of NASA’s
P-3 aircraft. Nevertheless, this 1st generation system demonstrated the feasibility of: (1) making
accurate surface measurements with single photon returns under conditions of full solar illumination;
and (2) developing high resolution spaceborne laser altimeters and imaging lidars operating from
orbital altitudes of several hundred km [2].

2.2. Second Generation SPL (“Leafcutter”)

From 2004 to 2007, Sigma developed its first multibeam Single Photon Lidar (SPL), dubbed
“Leafcutter” [4]. Leafcutter, shown in Figure 2, was designed to fit into the nose cone of an Aerostar
Mini-UAV and provide contiguous decimeter resolution images on a single overflight from AGLs
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between 1 and 2.5 km, depending on surface reflectance. The overall system, including GPS receiver
and Inertial Measurement Unit (IMU), consisted of two units (optical bench and electronics box),
weighed 33 kg, occupied a volume of less than 0.07 m3, and drew ~170 W of aircraft 28 VDC prime
power. In parallel to this activity, Sigma Space also provided hardware and technical support to
two other single photon systems, i.e., the University of Florida’s Coastal Area Tactical-Mapping
System or CATS [5,6] and NASA Goddard Space Flight Center’s Slope Imaging Multi-polarization
Photon-counting Lidar or SIMPL [7].

Figure 2. Leafcutter was the first Sigma Single Photon Lidar (SPL) to split the laser beam into
100 beamlets. In early mapping missions, the dual wedge scanner was used to generate either linear
raster scans at 45◦ to the flight line or a conical scan with cone half angles up to 13.5 degrees. At the
design AGL of 1 km, pixels on the ground were separated by 15 cm. Contiguous alongtrack and
crosstrack mapping on a single pass was achieved by ensuring: (1) that the distance traveled by the
aircraft during one scan cycle did not exceed the 1.5 m dimension of the single pulse array; and (2) that
ground array patterns from subsequent pulses overlapped along the full circumference of the conical
scan and the length of the linear scans.

A 10 × 10 square array of 100 beamlets was generated by passing the 140 mW COTS laser
transmitter beam through an 80% efficient Diffractive Optical Element (DOE). Each beamlet contained
approximately 1 mW of laser power in a 22 kHz stream of 700 ps FWHM, 50 nJ pulses. At the
design AGL of 1 km, the interbeam spacing between beamlets was 15 cm, and the ground images
of the beamlets were optically matched to a COTS 10 × 10 segmented anode, MicroChannel Plate
PhotoMultiplier Tube (MCP/PMT). The individual anode outputs were then input to an inhouse
multichannel timing receiver with an RMS timing/range precision of 23 ps/3.4 mm. Most importantly,
the detector/receiver subsystem can record the arrival times of multiple, closely-spaced photons per
channel with an event recovery time of only 1.6 ns. This made Leafcutter impervious to shut-down by
random solar events and also permitted multiple returns per channel from semi-porous volumetric
scatterers such as tree canopies. The solar noise per pixel was kept to a minimum through the use of a
0.3 nm FWHM spectral filter, a small receive telescope 7.5 cm in diameter, and a Field-of-View (FOV)
limited by the nominal 15 cm × 15 cm ground pixel dimension, which over a nominal 1 km range
amounts to a solid angle of only 2.2 × 10−8 steradians per pixel.

The use of the 10 × 10 beamlet array increased the surface measurement rate by two orders
of magnitude to 2.2 million multistop pixels per second. The array also allowed high resolution
contiguous maps of the underlying surface to be generated on a single overflight at relatively high
air speeds with modest scan speeds on the order of 20 Hz or less, which were easily achieved with
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the relatively small receive aperture. A further advantage is that, for each of the spatially separated
pixels, there is only one pulse in the air per measurement until the surface slant range exceeds 6.8 km.
This is in contrast to some commercial linear mode lidar designs which attempt to achieve higher
measurement rates using a single beam at very high repetition rates (~200 kHz). At these frequencies,
complications associated with multiple pulses in flight begin at surface slant ranges an order of
magnitude smaller (~700 m).

Leafcutter employs a dual wedge optical scanner, which is common to both the transmitter and
receiver. By adjusting the rotation direction and/or the rotational phase differences between the
two wedges, one can generate a wide variety of scan patterns including: (1) linear scans at arbitrary
orientations to the flight line (see Figure 2); (2) conical scans of varying radius; (3) spiral scans, etc.
Maximum angular offset from nadir when the two wedges are coaligned is 14 degrees, corresponding
to a maximum swath of about 0.5 km at a 1 km AGL (Altitude above Ground Level). During rooftop
testing, a “3D camera mode”, i.e., a rotating line scan, shown in Figure 2, was used to generate a
contiguous high resolution 3D image within a circular perimeter.

NASA funded several test flights to assess SPL capabilities in the areas of biomass (forest cover),
cryospheric, and bathymetric measurements. A collage of sample results from Leafcutter is presented
in Figure 3. A second similar unit, labeled “Icemapper”, was later delivered to the University of Texas
at Austin to participate in Antarctica ice-mapping missions. As can be seen in Figure 3, the 532 nm
operating wavelength allowed bathymetry to a depth of 15 m in glacier melt ponds and to about 4 m
depth in the more turbid waters of the Chesapeake Bay near Annapolis, MD, USA. Note also that the
surface of the melt pond is well defined even at a beam incidence angle of 14 degrees, indicating that
Lambertian scattering from water molecules at and just below the water surface, rather than specular
reflections, are creating the surface signal. Furthermore, what appears to be excess noise at the pond
bottom is in reality variations in the bottom elevation when the entire pond is viewed from the side.

Figure 3. A collage of daytime images created on a single overflight by the Leafcutter SPL. The images
in the left half were over low reflectance (10% to 15%) surfaces at above ground levels (AGLs) of 1 km
or less while those in the right half were high reflectance cryospheric measurements in Greenland and
Antarctica from AGLs up to 2.5 km. The images are color-coded according to the lidar-derived surface
elevation (blue = low, red = high). Note the bathymetry results in the bottom two images.
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2.3. NASA Mini-ATM

Subsequent to the highly successful cryospheric results obtained by Leafcutter, NASA funded
development of an even smaller 100 beamlet system, imaged onto 25 pixels (4 beamlets per pixel),
to potentially replace the highly successful, but much larger and heavier, P-3 based Airborne
Topographic Mapper (ATM), which had mapped the Greenland ice sheets for many years. “Mini-ATM”
reused most Leafcutter components and subsystems but was light-weighted and reconfigured to fit into
the payload bay of a Viking 300 Micro-UAV (see Figure 4). The current version of the multiphoton ATM
lidar has a nominal spacing between measurements of 2.5 m (0.16/m2 point density) which generally
met the needs of Cryospheric scientists tracking changes in ice sheet thickness in support of NASA
Global Climate Change programs. Thus, to maximize swath and thereby minimize the time required to
map large ice sheets, Mini-ATM features a 90◦ full conical holographic scanner. For the nominal Viking
300 velocity of 104 km/h and altitude ceiling of 3 km, the system is designed to autonomously map up
to 600 km2/h with a mean measurement point density in excess of 1.5/m2—a density about 10 times
higher than that achieved by the current man-assisted ATM. Including a dedicated IMU, Mini-ATM
has a cubic configuration (see Figure 4) with a volume of 0.03 m3, weighs 12.7 kg, and consumes
~168 W of 28 VDC prime power. Mini-ATM completed its first successful test flight in a manned
aircraft over California’s Mojave Desert in October 2010.

Figure 4. NASA Mini-ATM (Airborne Topographic Mapper) and its designated host aircraft, the Viking
300 micro-UAV.

2.4. High Resolution Quantum Lidar System (HRQLS 1 and 2)

Development of the moderate altitude High Resolution Quantum Lidar Systems, (HRQLS-1) and
its upgraded successor, HRQLS-2, were self-funded by Sigma and are shown in Figure 5. Both systems
follow the same design philosophy as “Leafcutter”, i.e., 100 beamlets in a 10 × 10 array, but the spacing
between pixels at the ground is increased to 50 cm at their nominal AGLs as described in Table 1.
The primary technical goal of HRQLS-1 was to map larger areas more quickly via a combination of
higher air speeds and wider swaths while still permitting the experimenter to tailor the measurement
point density to fit his or her individual needs. The wider swath is achieved by: (1) flying at a higher
altitude; (2) increasing the laser power to about 1.7 W to compensate for the larger 1/R2 signal loss
(where R is the slant range to the target); and (3) increasing the maximum half-cone angle of the
scanner to 20 degrees.

HRQLS-1 HRQLS-2

 King Air 

B200 Host 

Aircraft.

HRQLS-2

Figure 5. Moderate altitude HRQLS-1 and HRQLS-2 lidars and the King Air B200 host aircraft.
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Table 1. Summary table of design and performance properties for the current suite of Sigma scanning SPL lidars.

Low Altitude SPLs Medium Altitude SPLs High Altitude SPLs

Instrument Name USAF “Leafcutter” NASA Mini-ATM HRQLS-1 HRQLS-2 HAL

Prototype Completion Dates 2007 2010 2013 2016 2012

Units/Customers 2/USAF & Univ. of Texas 1/NASA 1/Sigma 6/Sigma 3/DoD

Primary Application Military Prototype &
Antarctic Cryosphere Greenland Cryosphere Civilian Surveying and mapping, Biomass

Measurement, Bathymetry, Military Surveillance Military Surveillance

Design Platform Aerostar Mini-UAV Viking 300 UAV King Air King Air Various

# beams/pixels, Np 100/100 100/25 100/100 100/100

Wavelength 532 nm 532 nm 532 nm

Laser Repetition Rate, fqs 22 kHz 25 kHz 60 kHz 32 kHz

Laser Pulse Width (FWHM) 0.7 ns 0.7 ns 0.5 ns 0.1 ns

Laser Output Power 0.14 W 1.7 W 5 W 15 W

Maximum Measurements/s 2,200,000 550,000 2,500,000 6,000,000 3,200,000

Multiple Return Capability Yes Yes Yes

Pixel Recovery Time 1.6 ns 1.6 ns 1.6 ns

RMS Range Precision 5 cm 5.7 cm 4.8 cm 3.6 cm

Telescope Diameter 7.5 cm 7.5 cm 14 cm 14 cm

# Scanner Wedges 2 DOE 2 1 Wedge or DOE 1 Wedge

Scan Width (FOV) Variable 0◦ to 28◦ Fixed 90◦ cone Variable 0◦ to 40◦ 20◦, 30◦, 40◦ or 60◦ Fixed 18◦

Nominal A/C Velocity, vg 161 km/h 104 km/h 370 km/h 370 km/h

Design AGL 1 km 2.5 km 2.3 km 3.4 km 7.6 km

Nominal AGL Range, h 1.0 to 2.5 km 0.55 to 3 km 2 to 3 km 3 to 5.5 km 6 to 11 km

Swath, S 0.0015 to 1.247 km 1.1 to 6 km 0.005 to 2.184 km 1.058 to 6.351 km 1.901 to 3.484 km

Areal Coverage, Svl 0.242 to 201 km2/h 114 to 624 km2/h 2 to 808 km2/h 391 to 2350 km2/h 703 to 1289 km2/h

Mean Measurement Attempts per m2 per pass, Dm 39 to 32,795/m2 3 to 17/m2 11 to 4865/m2 9 to 55/m2 9 to 16/m2

# of Modules 2 1 1 (rack-mounted) 1 (rack mounted)
1 (pod mounted)

Instrument Volume/Dimensions 0.071 m3 0.027 m3

Quasi-cube (0.3 m)
0.26 m3

48 × 64 × 84 cm3
0.139 m3

82.5 × 48.25 × 35 cm3
0.52 m3

49 × 64 × 163 cm3

Weight 33 kg 13 kg 57 kg 68 kg (sensor head)
22 kg (e-rack) 113 kg (est.)

Prime Power (28VDC) 266 W ~168 W 555 W 700 W <900 W (est)

Status 2 Delivered 1 Delivered 1 Operational 2 Operational, 4 in fab 2 Delivered, 1 in fab
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In order to accommodate a large range of measurement point densities, HRQLS-1 also features
an external dual wedge scanner at the output of the 7.5 cm diameter telescope, which allows a range
of full cone angles between 0 and 40 degrees, resulting in swath widths as small as 5 m and as large
as 1.66 km at the nominal 2.3 km AGL. This feature allows measurement point density (or spatial
resolution) to be traded off against swath and areal coverage. However, because of the longer pulse
times-of-flight (TOFs) and high scan speeds, the images of the beamlet array become displaced relative
to their assigned pixel centers unless one implements an optical TOF correction [7]. Thus, in HRQLS,
annular corrector wedges are attached to each of the main scanner wedges in order to bring the
transmitter and receiver FOVs into alignment at the nominal AGL. Maintaining alignment between
the transmitter and receiver FOVs at different AGLs is accomplished by adjusting the angular speed of
the scanner—faster for AGLs lower than nominal and slower for AGLs higher than nominal.

The upgraded HRQLS-2 was subsequently developed to allow high point density operation at
AGLs above 3.1 km where FAA regulations permit more flexibility on flight lines. Instead of a dual
wedge scanner, however, HRQLS-2 uses a variety of interchangeable single wedge or holographic
scanners with full cone angles ranging from 20 to 60 degrees.

2.5. High Altitude Lidar (HAL)

Two versions of Sigma’s High Altitude Lidar (HAL) currently exist to operate from either an
internal cabin or an external pod environment. HAL was designed to produce contiguous, few
decimeter resolution, topographic maps on a single pass from AGLs between 6.4 and 11 km. At these
high AGLs, the importance of using scanner corrector wedges to compensate for finite speed of light
effects is even more crucial since the overlap between transmit beamlet arrays and detector FOVs
can, under some operational scenarios, be reduced to zero with the result that no surface signals
are detected.

Depending on the operating AGL, there are either 2 or 3 pulses simultaneously in flight, and this
can be taken into account during data processing by simply pairing the proper start pulse with the
observed stop pulses. HAL can provide contiguous maps at aircraft speeds in excess of 407 km/h.
The single wedge scanner has a 9◦ half-cone angle. Thus, at a maximum AGL of 11 km, the swath is
3.48 km and the maximum rate of areal coverage is 1415 km2/h. The HAL images are comparable in
quality and resolution to the HRQLS images in Section 4 of this paper [8].

2.6. NASA’s Multiple Altimeter Beam Experimental Lidar (MABEL)

Sigma provided all of the electronics modules, including the multichannel timing receiver, as well
as key mechanical, thermal, integration, testing and flight operations support to NASA’s Multiple
Altimeter Beam Experimental Lidar (MABEL) instrument, which was developed as a precursor and
testbed for the Advanced Topographic Laser Altimeter System (ATLAS) SPL, scheduled to be launched
in 2017 into a 500 km orbit on NASA’s second generation Ice, Cloud, and land Elevation Satellite-2
(ICESat-2) mission [9]. MABEL is a nonscanning, 24 beam (8 @ 1064 nm, 16 @ 532 nm) pushbroom
lidar hosted on NASA’s ER-2 Research aircraft (see Figure 6). It has successfully demonstrated single
photon surface profiling at AGLs of 20 km in both California and Greenland [10].

2.7. Summary Table of Sigma Scanning Lidar Properties

Table 1 provides a summary of the physical (Size, Weight, and Power or SWaP) and performance
properties of the various scanning SPLs described in previous subsections. Dual wedge scanner systems
such as “Leafcutter” and HRQLS-1 can vary the cone angle from 0◦ to some maximum cone angle,
i.e., 28◦ for Leafcutter and 40◦ for HRQLS-1. HRQLS-2 is equipped to alternate between 4 distinct cone
angles while HAL currently only has one (18◦ full cone angle). All of the systems can operate effectively
over a range of AGLs about the “Design AGL”, which is defined as the AGL where, from Poisson
statistics, the expected pixel Photon Detection Efficiency (PDE) = 1 − exp(−np) = 95% (mean detected
photoelectrons per pixel np equals 3) at the largest scan cone angle over a 10% reflectance Lambertian
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surface (e.g., green vegetation at 532 nm operating wavelength). The per-pixel PDE is over 99% for
surface reflectances greater than 15% at 532 nm (e.g., soil and dry vegetation).

Figure 6. The NASA MABEL pushbroom lidar, jointly developed by NASA Goddard Space Flight
Center and Sigma Space Corporation, has successfully generated 2D surface profiles in Greenland from
an AGL of 20 km. The surface returns are highly spatially correlated and stand out against the dense
“salt-and-pepper” solar noise background resulting from the high reflectance (typically 80% to 96%) of
snow and ice at 532 nm.

By deviating from the design AGL, one can generate a greater density of measurements over a
smaller swath (lower AGL) or a lower density of measurements over a wider swath (higher AGL) for
faster areal coverage. When operating at the design AGL, the nominal pixel spacing at the ground is
50 cm for both HRQLS models and HAL The minimum swath in the table corresponds to the minimum
cone angle from the minimum AGL while the maximum swath is obtained by using the maximum
cone angle at the maximum AGL. At all AGLs at or below the design AGL, the percentage of returns
from a 10% reflectance Lambertian surface is greater than 95%. At AGLs higher than the design
AGL, the percentage of surface returns will decrease only slowly due to the fact that our systems are
designed to operate in the highly nonlinear portion of the Poisson probability curve.

The mean number of range measurement attempts per square meter made by the lidar can be
easily estimated by dividing the total number of measurement attempts by the total surface area
scanned during the same time interval, i.e.,
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Dm =
Np fqs

Svg
=

Np fqs

2hvgtanα
(1)

where Np = 100 is the number of beamlets/pixels per pulse, fqs is the pulse repetition rate of the laser,
S is the swath width, vg is the ground velocity of the aircraft, h is the operating AGL, and α is the
scanner cone half angle. As one can easily see from Table 1, all SPL lidar models listed can meet
USGS Quality Level 1 data densities (8 pts/m2) over some portion of their aircraft AGL and scan
angle ranges.

The RMS instrument range errors listed in the table are computed based on a convolution of the
RMS errors introduced by the laser, the detector, and the range receiver and do not include additional
RMS contributions due to non-zero incidence angles of the beamlets on the surface [2]. Since all of the
systems use virtually identical detectors and receivers, the small differences in RMS between systems
are due to differing laser pulse widths.

3. Data Editing

Unlike conventional multi-photon lidars that nullify solar noise by operating at high detection
thresholds, SPLs require a substantial amount of noise editing during daytime operations. Early in our
development program, data editing approaches were implemented only after the complete point cloud
(signal plus noise counts) was generated by inhouse software and viewed via a commercial program
such as QT-Modeler®. Early editing approaches often involved substantial human intervention to
generate acceptably “clean” images. However, we have developed and successfully tested highly
automated data editing software which acts on either the returns from a single pulse or alternatively a
sequence of consecutive pulses. This is made possible by the large number (~100) of simultaneous and
spatially correlated surface measurements within a single pulse. Furthermore, such an approach lends
itself well to real time editing, leading to substantial savings in onboard data storage capacity, data
download times, point cloud processing times, and near real time 3D image generation for cockpit
display and/or inflight transmission to a ground terminal.

The current denoising filter acts in two stages as illustrated in Figure 7. The raw/unfiltered
lidar data taken by HRQLS-1 over a residential community in Oakland, Maryland, contains a great
deal of solar noise which fills the nominal 4.6 microsecond (690 m) range gate. The 1st stage filter
breaks the range gate into 23 30-meter bins, searches through the entire range gate, and, based on
the Differential Cell Count (DCC) Algorithm [2], determines which bins are likely to contain surface
returns. The bin sizes are large to allow for tall tree canopies, buildings, etc. It then keeps the data in
those bins plus the two adjacent bins to yield a much smaller range interval (90 m) likely to contain all
of the surface returns and provides an estimate of the mean solar noise per range interval for use by
later filtering stages. Thus, for a typical 4.6 microsecond range gate, the 1st filter stage eliminates all but
90 m/690 m = 13% of the original solar noise. The first stage also allows for the presence of multiple
surfaces such as street level returns and rooftop returns within a single pulse or short sequence of
pulses. In the second stage, the surviving range intervals are divided into smaller range bins (~5 m)
which are then retained or discarded based on the number of observed counts per bin relative to
the estimated noise counts derived from the first stage. The second stage count threshold per bin
is chosen such that it typically eliminates well over 90% of the noise counts retained following the
first stage of filtering, leaving less than 1% of the original noise counts. Both stages are based on the
DCC algorithm [2] which is designed to maximize the probability of detecting the actual surface while
simultaneously minimizing the probability of detecting a false surface. Algorithms for a third stage
filter have been developed to eliminate the very small amount of residual solar or other noise lying in
close proximity to actual surfaces.
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Figure 7. The automated filtering of HRQLS-1 lidar data taken on a single overflight of a residential
community in Oakland, MD. The raw/unfiltered point cloud data is taken with a range gate of
4.6 microseconds corresponding to a total range interval of 690 m. The color scheme is deep blue to red
in order of increasing elevation, and it should be mentioned that the solar noise is equally dense below
the surface but does not show up as well in the raw unfiltered image because of the poor contrast
against the black background. The first stage filter isolates a 90 m interval that contains the surface data
as well as roughly 13% of the total noise, and the second stage filter uses narrower range bins (~5 m) to
eliminate the vast majority of the remaining noise.

4. Sample HRQLS-1 Data

4.1. Garrett County, MD

Test flights of HRQLS have been funded by several interested customers to assess its capabilities
for general surveying, tree height and biomass estimation, and bathymetry. For example, the
University of Maryland, under a NASA grant, recently funded the airborne survey of Garrett County in
Northwestern Maryland. The county—which is mountainous, heavily wooded, and has a total area of
about 1700 km2—was surveyed in approximately 12 h of flight time, which included a 50% overlap of
flight lines, four roundtrips from the host airport, and turns. Because of the low (10%) reflectance and
density of the dominant green vegetation, HRQLS was operated from a nominal altitude of 2.29 km
with a half-cone scanner angle of 17◦ (1.36 km swath) rather than the maximum value of 20◦ (1.62 km
swath). At an aircraft velocity of 278 km/h, the resulting areal coverage was 378 km2/h. The full
lidar data set for the county, color-coded from blue to red with increasing surface elevation, is shown
superimposed on a Google Earth map of Garrett County in Figure 8. All flights were conducted during
daylight hours.

Figure 8. This color-coded elevation map of Garrett County, occupying approximately 1700 km2 in
the state of Maryland, was generated by HRQLS-1 from an AGL of 2.3 km. Total flight duration was
approximately 12 h at an air speed of 278 km/h which included a 50% overlap between flight line,
ferries, and turn maneuvers. The scanner was operating with a cone half angle of 17◦ resulting in a
swath of 1.36 km and a mapping rate of 378 km2/h. Highest and lowest elevations are: red = 857 m,
blue = 551 m.
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One can get a sense of the surface spatial resolution by looking more closely at subsets of data
within the map. Figure 9 provides different lidar views of a Garrett County coal mine. Details of the
coal mining operation such as buildings, conveyor belts and coal piles can be clearly seen.

Figure 9. A Garrett County coal mine in which buildings, conveyor belts, and even black coal piles are
clearly visible. Elevation Scales: Top Left red = 803.4 m, blue = 759.8 m; Bottom Left and Bottom Right
red = 795.2 m, blue = 767.3 m.

Figure 10 demonstrates the ability of the HRQLS-1 lidar to see through heavy forest canopy to the
underlying surface and to distinguish between different canopy growth patterns [11].

Figure 10. HRQLS-1 SPL point cloud profiles showing different growth patterns within a 1 square
kilometer of forested area in Garrett County, MD. (a) Short even aged stand with little understory
vegetation; (b) Uneven aged stand composed of tall trees and dense midstory vegetation; (c) Even aged
stand with some mid and understory growth; (d) Tall open stand with distinct understory vegetation
(Courtesy of the University of Maryland [11]).
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4.2. Monterey/Pt. Lobos, California

Another set of test flights was conducted in the vicinity of the Naval Post Graduate School in
Monterey, California. Figure 11 provides a side-by-side view of the HRQLS-1 lidar data with a digital
photograph of the same area. When the lidar data is fused with the digital imagery, one can generate
color 3D images, as in Figure 12, or even fly-through movies of the area.

Figure 11. HRQLS-1 lidar image and digital color photograph of the area surrounding the Naval Post
Graduate School in Monterey, California.

Figure 12. “Fused” HRQLS-1 lidar-photographic 3D image of the Naval Post Graduate School in
Monterrey, California.

The Monterey flights also included topo-bathymetric experiments over the Pacific Ocean near
Pt. Lobos. HRQLS-1, still operating at 2.3 km above the ocean surface to preserve the high speed
contiguous mapping capability, was able to see the ocean bottom to an optical depth of roughly 18 m,
as illustrated in Figure 13 This corresponds to an actual physical depth of about 13.5 m when one
accounts for the refractive index of sea water. The low level of laser backscatter from the water and
the large depth of penetration suggests very low turbidity. Water refraction effects have not been
accounted for in the bottom image.
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Figure 13. Top: Colored HRQLS-1 lidar topo-bathymetric 3D pointcloud of a hilltop monastery and
the beach at Pt. Lobos near Monterey, CA; Bottom: The bottom image shows the 2D lidar profile along
the blue line in the top figure and extending from the monastery to the beach and into the Pacific Ocean
to an optical depth of 17.3 m or a physical depth of 13 m. Vertical grid size = 10 m, Horizontal grid
size = 50 m.

4.3. High Density Images

Two or more passes over the target area can produce extremely detailed images. In Figure 14,
we show an image of a cruise ship docked at Ft. Lauderdale, FL which was obtained in only two
HRQLS-1 passes and a multipass view of an electrical power line grid in North Carolina having a
mean measurement density greater than 40 points per square meter.

6,000 ft AGL

160 knots

Multiple Looks

40+ pts/m2

Two Looks

Figure 14. Top: Two passes of HRQLS-1 over a cruise ship docked at Ft. Lauderdale, Florida;
Bottom: Multiple HRQLS-1 passes over a power line grid in North Carolina yielding over 40 points
per square meter from an AGL of 1.83 km and an aircraft velocity of 296 km/h.
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5. Single Photon Lidar (SPL) vs. Geiger Mode (GM) Lidar

It should be mentioned that there is much interest within the lidar user community with regard
to the characteristics and relative merits of the SPL systems described here vs. competing Geiger Mode
Avalanche PhotoDiode (GMAPD) systems, which also utilize single photon detection. The earliest
airborne GM lidar, Jigsaw, was developed with DARPA funding at the Massachusetts Institute of
Technology/Lincoln Laboratories (MIT/LL) and was designed to image targets of military interest
under tree canopies from low altitudes [12]. Later generations included the medium altitude Airborne
Lidar Research Testbed (ALIRT), and the High Altitude Lidar Operations Experiment (HALOE) [13,14].
More recently, DARPA transferred GMAPD technology from MIT/LL to commercial entities, and
Harris Corporation has introduced the first commercial GM system, The IntelliEarth™ Geospatial
Solutions Geigermode Lidar Sensor [15].

5.1. Key Differences between SPL and GM Lidars

While both system types are capable of generating highly detailed 3D images, the following
three bullets describe important differences between these two emerging single photon sensitive
lidar technologies:

1. Laser Wavelength: Current GM systems utilize the fundamental Nd:YAG wavelength at 1064 nm
in the Near InfraRed (NIR) whereas Sigma SPLs use the frequency doubled green wavelength
of Nd:YAG at 532 nm. The 1064 nm wavelength is sometimes touted as having several
natural advantages including: (1) a factor of 3 lower solar background; (2) generally higher
reflectances from natural surfaces such as soil/dry vegetation (25% vs. 15%) and green vegetation
(65% vs. 10%); (3) slightly better atmospheric transmission; and (4) no frequency conversion losses
in laser power which are typically on the order of 40% to 50% [2,15]. The 532 nm wavelength
benefits from: (1) the availability of relatively mature and inexpensive, high efficiency array
detectors and narrowband spectral filters; (2) detector dark count contributions to background
noise are typically much lower in the visible spectrum; and (3) good transmission in water
columns which allows solid land topography and bathymetry to be performed by a single
instrument at a single wavelength as in Figure 13.

2. Detector Array Size: Sigma SPLs use relatively inexpensive and compact COTS segmented
anode microchannel plate photomultipliers which are currently available in 10 × 10 formats or
100 pixels per laser pulse. The Harris GM systems, on the other hand, currently utilize relatively
expensive InP/InGaAsP SPAD 128 × 32 arrays/cameras containing 4096 pixels with on-chip
readout rates in excess of 100 kHz [16]. In SPL systems, each pixel/anode essentially has a zero
recovery time since each 1.6 mm × 1.6 mm pixel contains tens of thousands of microchannels,
and therefore a single photon entering the photocathode activates a very small percentage of the
available microchannels in the immediate vicinity of the photon strike. Thus, photons entering
at slightly different spatial locations within the pixel experience the same amplification unless
the microchannels become saturated, which generally has not been the case in field operations
to date. In effect, a single SPL detector pixel behaves much like highly pixelated Geiger Mode
array with the exception that all of the microchannel outputs are tied to a common anode and
input to a common multistop timing channel capable of recording all of the photon events within
the range gate and the pixel FOV. This limits the ground horizontal resolution to the FOV of the
pixel which was 15 cm for Leafcutter and 50 cm square for the moderate to high altitude lidars.
The current Sigma SPL receiver design typically accepts ten surface and/or noise events per pixel
per pulse, but this is not a hard limitation. In effect, each SPL pixel acts as if it was a large array
of individual GM SPADs covering the same FOV but tied to a common anode so that the timing
of all photon events occurring within a given beamlet and pulse can be measured by a single, fast
recovery, timing channel.
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3. Receiver Recovery Times: As just discussed, the SPL pixel recovery time of 1.6 nanoseconds
(sometimes referred to as “deadtime” or “blanking loss” [15]) is limited not by the detector but
by the timing receiver, whereas current GMAPD recovery times are typically in the range of
50 to 1600 nanoseconds depending on whether the Single Photon Avalanche Diodes (SPADs)
making up the array are actively or passively quenched. This implies that SPLs can detect,
within the same pixel, objects which are separated by only 0.24 m in range. In contrast, detected
surfaces must be separated by 7.5 m or 240 m to be seen by an actively or passively quenched
GMAPD respectively. Furthermore, each GMAPD in the array, as currently implemented in
the Harris system, has only one measurement opportunity per imaging cycle although Harris
claims that future asynchronous readout integrated circuits (ROICs) will enable multiple Time of
Flight (TOF) measurements per APD per cycle [15]. While this would greatly enhance GM lidar
performance, the detection rates within the small FOV of a given APD will still be limited by the
longer quenching times.

We will now examine the impact of GMAPD recovery times for two very different daytime
mapping scenarios, i.e., one in which the path between the aircraft and the solid target surface is
unobstructed and one in which the target is obscured by a semi-porous obscurant (such as a tree
canopy or ground fog). Night operations are not an issue for GMAPD lidars.

5.2. Mapping Unobstructed Solid Surfaces in the Presence of Solar Noise

A theoretical model for the solar background rate, Λ, is given in [2]

Λ = N0
λ (∆λ)Ωr

ηcηr Ar

πhν

[
ρT1+secθz

0 cosψ+
1 − T1+secθz

0
4 (1 + secθz)

]
=

0.05δ2

cm2µsec
(2)

where the first and second terms respectively correspond to the background rates due to scattered solar
radiation from the surface under study and the intervening atmosphere respectively. In obtaining the
numerical value, we have ignored the atmospheric contribution and used numerical values pertinent
to the Harris GM lidar [17]. The quantity N0

λ = 0.67 W/m2/nm is the extraterrestrial solar irradiance
impinging on the Earth’s atmosphere at 1064 nm, ∆λ = 3 nm is the width of the best spectral bandpass
filter at 1064 nm based on a short web search, Ω = (δ/R)2 is the solid angle viewed by a single GMAPD
where R = 7.62 km is the range to the target and δ is the ground resolution, ηc = 0.3 is the Photon
Detection Efficiency (PDE) of the detector, ηr = 0.75 is an estimated optical throughput efficiency of
the receiver optics, Ar = 0.057 m2 is the area of the Harris receive telescope, ρ = 0.65 is the surface
reflectance of green vegetation at the laser wavelength, hν = 1.87 × 10−19 J is the laser photon energy,
T0~0.9 is the one-way atmospheric transmission at nadir from the aircraft, θz = 0 deg is the worst case
solar zenith angle, and ψ = 0 is the worst case subtended angle between the Sun and the surface normal.

In either system type (SPL or GM), the solar background counts during daylight operations can
be substantially reduced by installing narrowband spectral filters and minimizing the range gate,
the collecting area of the telescope and/or the pixel FOV. This is especially important for the single
stop GM system, however, since a noise count occurring within the range gate prior to the surface
return will result in the loss of that surface measurement for one full array mapping cycle.

For the SPL, a single timing event is generated by a solid surface, irregardless of the number of
photons received, since the subnanosecond laser pulsewidth is short compared to the pixel recovery
time of 1.6 ns. As a result, the amplitude of the SPL anode output will vary if the “simultaneous” surface
returns are spread over multiple microchannels and summed within the pixel/anode. Single photon
noise counts within the range window are recorded as separate random events displaced in range and
time from the surface returns and later eliminated via noise editing algorithms described previously.
Unlike individual GM/APDs, the detection of a solar photon in an SPL pixel does not prevent the
pixel from detecting the surface.
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For unobscured hard targets, the principal concern raised by the single stop limitation of current
GM sensors is the impact of the solar background on the surface probability of detection which, in
daylight operations, dominates other noise sources such as detector dark counts. There are only three
possible outcomes for a given GM pixel per imaging cycle: (1) a surface photon is detected; (2) no
photon is detected; or (3) a background count is detected. If the range gate is approximately centered
on the surface and Λ is the solar count rate observed by a single APD, the probability of detecting the
surface is given by

Ps(n, Λτg) = exp
(
−Λτg

2

)
Ps = exp

(
−Λτg

2

)
[1 − exp(−n)] (3)

where the first term is the probability that the APD is not triggered by solar noise in the first half of the
gate, and the second term is the Poisson probability that the surface return, consisting of n detected
photoelectrons, is detected by a receiver with a single photon threshold. Similarly, the probability that
zero counts are detected is given by

Pz(n, Λτg) = exp
(
−Λτg

2

) [
1 − Ps(n, Λτg)

]
exp

(
−Λτg

2

)
= exp(−Λτg)exp(−n) (4)

and, since the three probabilities must sum to 1, the probability that a solar background count is
detected is given by

Pb(n, Λτg) = 1 − Ps(n, Λτg)− Pz(n, Λτg) =

[
1 − exp

(
−Λτg

2

)] [
1 + exp

(
−Λτg

2

)
exp(−n)

]
(5)

The ratio of signal counts to solar counts is obtained by dividing (3) by (5) to yield

SNR =
Ps(n, Λτg)

Pb(n, Λτg)
=

1 − exp(−n)[
exp

(
Λτg

2

)
− 1

] [[
1 + exp

(
−Λτg

2

)
exp(−n)

]] (6)

Figure 15a shows plots of Equation (3) for the fraction of GMAPDs recording surface returns over
a range of surface signal strengths, n = 0.1 to 3, and the mean number of noise photons occurring in
the first half of the range gate, x = Λτg/2 = 0 to 1. Figure 15b, plotting Equation (6), shows the ratio of
signal to noise counts versus the same parameters. It is worthwhile to note that achieving even the
lowest value of n = 0.1 in all 4096 pixels (one detected surface photon per APD in 10 pulses) would
require a total signal strength of 410 photoelectrons (pe) detected across the array. This is comparable to
what many Digitizer Waveform lidars require and what the HAL lidar achieves from similar AGLs for
ground reflectances of 15%, or higher, i.e., 4 pe per pixel over 100 pixels, but the per pixel probability
of detection is close to 100% as compared to 10% or less as in Figure 15a. Nevertheless, the GM lidar
has the potential of recording surface returns from 4 times as many pixels provided the solar noise
counts can be adequately suppressed.

The plots in Figure 15a would suggest that we strive for a value of

x ≡ Λτg

2
=

0.05δ2τg

2cm2µsec
< 0.2 (7)

in order to avoid severely diminishing the probability of detecting a surface return. A typical range
gate in our high altitude flights is τg = 5 µs, which, from (7), would suggest a pixel dimension at the
ground of δ < 1.3 cm or a maximum array area FOV at the ground of AGM = 4096 (1.3 cm)2 = 0.7 m2.
The latter area is 36 times smaller than the HAL area for a single pulse and, while a 1.3 cm horizontal
spatial resolution would be outstanding, the effect on the rate of areal coverage would not.
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Figure 15. (a) Fraction of pixels recording surface returns as a function of surface signal strength, n,
and mean number of noise photons detected within a half range gate; (b) ratio of signal to noise counts
as a function of the same two parameters.

5.3. Viewing the Surface through Semi-Porous Obscurants Such as Tree Canopies

It has long been known from early experiments conducted with the Jigsaw GM system at
MIT/LL that, in order to detect military vehicles under dense tree canopies, one had to reduce
the pulse energy per pixel in order to reduce the probability that a photon from the canopy would
disable the pixel and prevent observation of the surface under the canopy. Therefore, since the tree
elements (leaves, branches, etc.) are opaque to laser light, a recognizable surface image could only be
generated by making many low energy measurements from a wide variety of aspect angles in order
to take advantage of any existing canopy “holes” between the aircraft and the surface. This can be
mathematically represented by multiplying the probability of detecting the surface by the probability
that the measurement is not disabled by a photon reflected off a tree element. From Poisson statistics,
the probability of detecting a target beneath a canopy (or fog bank) with one-way transmission Tc is
given by

PD(ns, γ) = exp
[
−γns

2

(
1 − T2

c

)] [
1 − exp

(
−T2

c ns

)]
(8)

where ns is the expected number of detected photoelectrons from the unobscured target,
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γ =
ρc

ρt
(9)

and ρc and ρt are the reflectances of the canopy and target respectively. The second term in the
equation gives the probability of detecting the surface signal with a single photon sensitive receiver
while the first term gives the probability of disabling the receiver due to the detection of a canopy
return. As mentioned previously, the Sigma SPL detector/receiver has a very short recovery time on
the order of 1.6 ns and therefore only the second term in the equation is relevant. Figure 16 shows the
surface detection probability for a tree canopy with a one way transmission Tc = 0.4 as a function of
the unobscured signal strength (Tc = 1). The black curve in the plot shows the probability of detecting
the unobscured target vs. the mean signal strength expressed in detected photoelectrons. The red
curve gives the same probability for a low deadtime single photon sensitive receiver in the presence
of a tree canopy with a one-way transmission of Tc = 0.4 (Tc

2 = 0.16). The remaining three curves
show the Geiger Mode probabilities for different values of γ. Note that, for each value of γ, there is an
optimum unobscured signal strength for detecting the underlying surface in qualitative agreement
with the early Jigsaw experiments. In all cases, the peak Geiger Mode detection probabilities fall
substantially below the SPL values, especially when the canopy has a higher reflectance than the final
target (γ > 1). The 6.5 times stronger reflectance of vegetation at 1064 nm vs. 532 nm (65% vs. 10%)
mentioned in Bullet 1 of Subsection 5.1 increases the value of γ substantially and further reduces
the probability of seeing the under-canopy surface. In addition, the higher tree reflectance creates a
6.5/3 = 2.2 times stronger solar background during daylight operations which was not included in the
plots of Figures 16 and 17.

The theoretical performance of SPL and GM lidars over a wide range of one-way tree canopy
transmissions (Tc = 0.1 to 1) is provided by Figure 17. The reduction in canopy transmission could be
due to more dense foliage or a longer slant range through a canopy with higher one-way transmission
when viewed from nadir. This is an important consideration since the key to under canopy observations
is finding “all the available” holes”. The curves in the top left of the figure demonstrate how the GM
probability of detecting the surface falls as the one-way canopy transmission decreases due to the
fact that the lidar cannot “power” its way through the canopy by increasing the unobscured signal
strength because of the one return per APD limitation. The curves in the bottom right of the figure
show the relative surface detection rate of the SPL and GM systems for the same range of tree canopy
transmissions where the SPL can, in fact, “power” its way through the canopy as in Figure 16.
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Figure 16. Surface detection probabilities for SPL and Geiger Mode (GM) lidars as a function of the
unobscured signal strength for a tree canopy having a one way transmission of 40%. Unlike the GM
lidar which has an unobscured signal strength that optimizes the surface detection probability, the SPL
lidar can “power” through the canopy by increasing the laser pulse energy.
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Figure 17. The relative performance of SPL and GM lidars over a wide range of one-way tree canopy
transmissions (Tc = 0.1 to 1) A value γ = 1 is assumed. The top left graph demonstrates that, as the tree
canopy transmission decreases, the optimum unobscured signal for maximum penetration decreases,
further reducing the detectability of the under canopy surface by the GM lidar. The bottom right graph
describes the increasing advantages of the SPL technique in detecting the under canopy surface as the
one way canopy transmission decreases.

5.4. Brief Summary of the Theoretical Results

While there are clearly no issues with night operations of GM lidars as indicated by a large
number of highly detailed 3D images posted on the Harris web site [17], the present analysis suggests
that the expected solar noise over high reflectance surfaces, such as green vegetation (ρ = 0.65) could
greatly reduce the PDE of individual GMAPD pixels having reasonably sized FOVs. This in turn
would greatly reduce the rate at which large areas can be mapped in daylight. It must be mentioned,
however, that Harris Corporation strongly claims an acceptable daylight capability on their web
site [17] and a limited amount of daytime data was included in a recent USGS study [18]. Furthermore,
the current analysis indicates that GM lidars would appear to be far inferior to SPLs when probing
dense tree canopies.

6. Summary

Imaging SPLs operating at the 532 nm wavelength can provide seamless topographic and
bathymetric maps from a single instrument. Single photon sensitivity allows a moderate power laser
beam to be split, by a passive holographic element, into a 10 × 10 array of individual beamlets, whose
images in the receiver plane fall onto a matching array of single photon sensitive, high bandwidth
pixels. In addition to increasing the surface measurement rate to several megapixels per second
for subnanosecond pulse lasers operating in the tens of kHz range, the arrays allow contiguous,
decimeter resolution, alongtrack and crosstrack mapping of the surface on a single overflight with
modest telescope and scanner apertures (7.5 cm to 15 cm) and scanner speeds on the order of 20 Hz
(1200 RPM). Higher transverse spatial resolutions can be achieved by reducing the swath width or
by making multiple overlapping passes over the site. The fast recovery times (1.6 ns) of the pixels
and their individual timing channels provide a multistop capability that allows the SPLs to operate
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effectively under conditions of strong solar illumination and to penetrate semiporous obscurants such
as tree canopies, ground fog, etc. The SPLSs are designed to have per pixel probabilities of detection
on the order of 95% for a 10% reflectance surface (mean of 3 pe per pixel from green vegetation) and
greater than 99% for reflectances greater than 15% (mean of 4 pe per pixel from soil or dry vegetation).
Thus, the mean 300 photoelectron returns from a tree canopy over the full array is comparable to that
of some conventional Digitized Waveform lidars but with the added advantage that the location of the
scattering source within the canopy is identified in all three dimensions as opposed to being lumped
together into a single dimension, range, thereby resulting in a more realistic image of the canopy.

As the SPLs have progressed to higher operational altitudes in order to provide wider swaths and
faster areal coverage, we have had to address new technical challenges such as the availability of COTS
laser/telescope/detector combinations to meet the higher link demands. Table 1 in Section 2.7 provides
a summary of the key subsystem parameters for the various SPLs flown to date. Solar background
has been minimized through the use of a 0.3 nm FWHM spectral filter and a small pixel Field of View,
typically defined by a 50 cm × 50 cm square on the ground. The vast majority of the detected noise is
eliminated via noise editing algorithms as described in Section 3. Also, at the higher AGLs, a corrector
wedge is added to the common transmit/receive optical scanner to reimage the transmit beamlet array
onto the detector array at the nominal AGL and scan speed. For alternative AGLs, the scan speed must
be adjusted from its nominal value to achieve maximum overlap of the transmit and receive FOVs.
In addition, angular biases, as well as atmospheric refraction and pulse group velocity effects, play a
bigger role in achieving the necessary geolocation accuracy due to the longer slant range distances.
As a result, we have developed algorithms and software to find and eliminate biases based on multiple
looks at distinct features in the overall point cloud such as the corners of buildings.

Lidar users in the mapping community are most concerned about geolocation errors and spatial
resolution. Geolocation is assessed by comparing lidar elevation products to surveyed ground control
points. The HAL system was flown over a 400 square kilometer area at an AGL of approximately
7.6 km. A total of 22 ground points were surveyed and compared to elevations derived from the point
cloud. After removing bias, an elevation RMS of 9 cm, meeting the highest USGS QL-1 requirement
of 10 cm, was obtained [8]. In an earlier flight experiment over Monterey CA, HRQLS-1 point cloud
results were compared to 21 points measured to 3 cm vertical accuracy by the Naval Postgraduate
School and resulted in a similar 9.3 cm RMS Standard deviation. In addition, both HAL and HRQLS-1
easily meet the USGS QL-1 requirements on measurement point densities (>8 pts/m2).

In 2015, Sigma’s HRQLS-1 SPL and Harris GM systems participated in a series of USGS-sponsored
field trials in the state of Connecticut in which the point clouds were analyzed by two independent and
highly experienced lidar analysis groups (Woolpert and Dewberry) and presented at the International
Laser Mapping Forum (ILMF2016) in Denver, Colorado. For recent field evaluations of the HRQLS-1
SPL and/or the Harris GM system over a wide variety of terrain types and opinions on their future
operational role with respect to conventional linear mode lidars, the reader is referred to the following
papers [19–21]. The current SPL and GM lidars are generally viewed as being highly competitive with
conventional lidars when it comes to large scale mapping missions over unobscured terrain. On the
other hand, as discussed in Section 5, the fast pixel recovery times would appear to give the SPL
approach a significant advantage over GM systems for daytime mapping missions requiring wide
range gates and/or the penetration of semi-porous obscurants such as tree canopies, ground fog, etc.
As mentioned previously, use of the green wavelength also permits topo-bathymetric measurements
to be carried out by a single, compact SPL instrument. Our newest moderate altitude SPL, HRQLS-2,
and presumably the latest version of the Harris Corporation GM lidar, are expected to participate in
a second set of USGS-sponsored experiments to be carried out over large areas in South Dakota in
late 2016.

Commercial users of conventional lidars also ask whether or not SPLs can generate intensity
information. In principle, aggregated single photon returns collected over a sufficient surface area
could be used to ascertain reflectance but our SPL systems are designed to collect as many surface
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measurements as possible per square meter by multiphoton surface returns. This provides little
discrimination between different surface reflectances since all surfaces over 10% reflectance provide
95 to 100 pixel returns per pulse. However, one Sigma colleague has developed an as yet unpublished
but highly successful procedure applicable to daytime operations [22] while a second is experimenting
with a second hardware approach applicable to both day and night missions [23].

In preparation for 3D imaging that can be viewed by the aircraft crew or transmitted to a ground
station in near real time, we are currently implementing inflight algorithms and onboard processors
that edit out solar and/or electronic noise and correct for atmospheric effects. Furthermore, analyses
conducted for NASA have shown that the scanning SPL technique can even be extended to orbital
altitudes for the globally contiguous mapping of extraterrestrial planets and moons [2,4,16] using
space-qualified transmitters and timing receivers being developed for NASA’s ATLAS SPL lidar on
the ICESat-2 mission scheduled to be launched in 2017 [9]. For example, the three moons of Jupiter of
most interest to NASA can each be globally mapped with 5 m horizontal resolution and decimeter
vertical resolution in as little as two months for the larger moons, Ganymede and Callisto, and one
month for Europa [24].
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Abstract: Airborne single-photon lidar (SPL) is a new technology that holds considerable potential for
forest structure and carbon monitoring at large spatial scales because it acquires 3D measurements of
vegetation faster and more efficiently than conventional lidar instruments. However, SPL instruments
use green wavelength (532 nm) lasers, which are sensitive to background solar noise, and therefore
SPL point clouds require more elaborate noise filtering than other lidar instruments to determine
canopy heights, particularly in daytime acquisitions. Histogram-based aggregation is a commonly
used approach for removing noise from photon counting lidar data, but it reduces the resolution
of the dataset. Here we present an alternate voxel-based spatial filtering method that filters noise
points efficiently while largely preserving the spatial integrity of SPL data. We develop and test
our algorithms on an experimental SPL dataset acquired over Garrett County in Maryland, USA.
We then compare canopy attributes retrieved using our new algorithm with those obtained from
the conventional histogram binning approach. Our results show that canopy heights derived using
the new algorithm have a strong agreement with field-measured heights (r2 = 0.69, bias = 0.42 m,
RMSE = 4.85 m) and discrete return lidar heights (r2 = 0.94, bias = 1.07 m, RMSE = 2.42 m). Results
are consistently better than height accuracies from the histogram method (field data: r2 = 0.59,
bias = 0.00 m, RMSE = 6.25 m; DRL: r2 = 0.78, bias = −0.06 m and RMSE = 4.88 m). Furthermore,
we find that the spatial-filtering method retains fine-scale canopy structure detail and has lower
errors over steep slopes. We therefore believe that automated spatial filtering algorithms such as the
one presented here can support large-scale, canopy structure mapping from airborne SPL data.

Keywords: single photon lidar; canopy height; noise removal

1. Introduction

Single photon lidar (SPL) is a new technology for rapid three-dimensional mapping of terrain and
forest structure over large areas at high resolution [1]. SPL requires only one detected photon at each
ranging measurement, instead of hundreds in the case of conventional sensors [2,3]. It therefore allows
enhanced 3D mapping with greater coverage, spatial resolution, and photon density, and reduced
acquisition time. Despite these advantages, SPL data includes more solar background noise than
conventional near-infrared lidar instruments because of its use of green wavelength lidar and high
photon detecting sensitivity [4–6]. This complicates the retrieval of terrain and canopy structural
information from SPL data. Algorithms for efficiently handling noise in photon counting data are only
beginning to be developed [7–9]. Existing methods largely rely on detecting maximum canopy height
through histogram-based filtering algorithms [4,8,10,11]. This is achieved by aggregating point clouds
into pseudo-waveforms at coarse spatial and vertical resolutions. Traditional waveform processing
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algorithms are then applied to the waveforms to derive canopy structure metrics including canopy
height and cover. Although these methods have proven effective in filtering solar noise [4,8,10,11], the
3D structural detail in the dataset is reduced. It means that these methods forfeit a key advantage of SPL
data over other systems—the ability to provide fine scale topographic and structural details. Applying
histogram based filtering methods to SPL data would therefore drastically reduce its usefulness for
applications such as high-quality topographic mapping [12], individual tree-level classification [13]
and high resolution carbon monitoring [14,15]. Furthermore, histogram based filtering methods could
potentially have errors over complex terrain because of the mixing between ground/canopy signals
and noise points. To overcome these hurdles, we develop a spatial filtering algorithm that filters noise
points using a variable 3D pixel (voxel) binning approach while retaining the spatial and vertical
fidelity of the dataset.

We first describe data collection and the development of the spatial filtering algorithm. Next,
we test it with airborne SPL data collected over Garrett County in Maryland [16] using an experimental
High-Resolution Quantum Lidar System (HRQLS) instrument. We then compare canopy height
metrics derived from SPL data, using both our algorithm and the conventional histogram filtering
method, with the reference dataset collected from field campaigns and discrete return lidar (DRL).
Lastly, we discuss the strengths and weaknesses of the two approaches and their applicability to
large-scale forest mapping.

2. Materials and Methods

2.1. HRQLS

The High-Resolution Quantum Lidar System (HRQLS) is a moderate altitude SPL instrument
with 10 × 10 laser beamlets and an operating wavelength of 532 nm. It is equipped with a dual wedge
scanner allowing a full conical observing angle from 0◦ to 40◦. HRQLS was flown over Garrett county
of Maryland, USA in early September of 2013 to support a NASA Carbon Monitoring System (CMS)
project over the state of Maryland [15,16]. The flight survey required less than 12 h to cover the entire
county (~1700 km2) with 50% overlap of flight lines. At a nominal above ground level (AGL) of 2.3 km,
HRQLS produced a swath of 1.62 km and a target spot of 5 × 5 m array on the ground, resulting in
a ground-pixel dimension of 0.5 m and a mean point density of 12 per m2 per conical scan (including
both signal and noise, see Figure 1). More details about the HRQLS data can be found in [2]

2.2. Reference Data

Field measurements were collected during the summer of 2013 with a main survey focus
on aboveground biomass estimates [15]. Field plots (fixed and variable radius) were selected
using a stratified random sampling based on distributions of land cover type and canopy height.
We measured diameter at breast height (DBH) of each individual tree to estimate plot level biomass.
Field heights were recorded using a vertex hypsometer with sonic transponder attached to dbh of
the largest tree within 71-forested plots. Non-forested plots were excluded because no field height
measurement was recorded.

Discrete return lidar (DRL) data were collected by USGS over Garrett County in 2005 as part of
their floodplain mapping efforts. These data were collected in leaf-off season, and the point clouds
included first returns only with an average density of 1 per m2. Both maximum canopy height (p100)
and mean plot-level slope were extracted over the 71 field plots. Studies have suggested that those
leaf-off lidar data sets can largely provide reliable canopy height measurements with accuracy similar
to leaf-on data [17,18]. The comparison between leaf-off DRL and leaf-on field data produced r2 = 0.63,
bias = −0.26 m and RMSE = 5.37 m despite ~10 year difference [1]. These data sets might not be an
optimal reference for assessing SPL-derived canopy heights at highest possible precession, but they
could still serve as a benchmark for comparison when used together.
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b) 

Figure 1. An overview of single photon lidar (SPL) data acquired from the High-Resolution Quantum
Lidar System (HRQLS): (a) The conical scanning mechanism of HRQLS with both forward and
backward scans; (b) An example of point clouds acquired in an individual scan; (c) An example
of cross sectional profile composited from multiple scans; (d) 3D point clouds including photons from
canopy, terrain and solar noise.

2.3. HRQLS Data Processing

2.3.1. Preprocessing

HRQLS data was collected and pre-processed using proprietary software by Sigma Space
Corporation (Lanham, MD, USA) [2]. A level 1 filter was applied to filter noise from the atmospheric
column extending up to flight AGL. The filter searched the entire ranging measurements using a 30 m
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histogram of photon density and identified the peak interval as ground surface range. The level 1
filtered SPL dataset was then produced using points extracted within one interval above and below the
peak to include signals from low terrain surfaces and tall canopies. It was essentially a 90 m vertical
range subset of raw HRQLS, and reduced the mean point density to about 22 per m2. The Level 1 filter
removed more than 90% of the solar noise from the entire vertical column [2] but considerable noise
points remained in the 90 m vertical range subset and required further filtering.

2.3.2. The Voxel-Based Spatial Filtering Method

A point density based spatial filter was developed to filter noise from the Level 1 SPL dataset
(Figure 2). This filter identified noise points by searching isolated points in 3D space based on
following assumptions: First, SPL points were treated as either signal or noise, and the majority of
noise points were randomly distributed in 3D space. Second, noise level over a given area of interest
was dependent on the incident laser energy indicated by the total amount of point clouds. For example,
an overlap of two flight lines would double the amount of both signal and noise. Third, the density
of signal point was significantly higher within the canopy-terrain layer than in the atmosphere. Last,
all points in a voxel would be classified as signals if their total number exceeding a certain threshold.
This voxel-based approach was similar to methods previously applied in processing airborne or
terrestrial lidar data [19–21]. A detailed implementation of the algorithm was described as follows:

1. Calculating the maximum-noise-level threshold as the mean volume point density (points per m3)
of the Level 1 SPL dataset at each 30 m × 30 m horizontal grid;

2. Splitting the area of interest into 3D cells at a given size;
3. Counting the number of points in each cell and its surrounding cells (a total of 27 cells);
4. Labeling the points as noise if the number was less than the pre-calculated noise threshold

multiplied by the volume of 27 cells.

 

Figure 2. A flowchart of deriving canopy height from SPL data using two independent methods:
the histogram based method and the spatial filtering method.
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We determined the optimal filter by experimenting with different voxel sizes. In each experimental
run, canopy heights were retrieved after noise filtering with different 3D voxel sizes and then compared
with reference data while keeping other conditions the same. A 3 × 3 × 0.2 m voxel resulted in the
lowest bias value of mean canopy height and was determined to be the optimal filter in this study.
The optimal filter was applied to the Garrett county SPL dataset to produce a relatively ‘noise-free’
dataset for further analyses [1]. We then classified the point clouds into ground and canopy and
calculated canopy height percentiles over the field plots. Ground points were identified based on
a progressive Triangular Irregular Network (TIN) densification method by iteratively selecting points
within lowest elevation values [22]. Canopy height percentile here was defined as the height below
which a specified percentage of total point clouds were located, and it was calculated from the
unclassified remaining points above the ground reference. For this study, canopy height percentiles
were calculated at every 5 percentage increment starting from ground to canopy top (e.g., p05,
p10, ..., p100), and at every 1 percentage increment starting from p96 to p100. The entire procedure
from de-noising to canopy metric calculations was automated by customizing scripts from (lasnoise,
lasground and lascanopy) the LAStools software [23].

2.3.3. The Histogram Based Method

Next, we applied the histogram method to calculate canopy height from the level 1 dataset
(Figure 2). The histogram method was a typical approach used to process photon counting lidar
in many recent studies [4,8,10,11]. In this approach, photon-counting data were converted into
pseudo-waveforms by aggregating lidar returns in user-defined elevation bins and footprint sizes.
Canopy height metrics were then calculated from the pseudo-waveform using conventional waveform
processing methods (e.g., identifying canopy top and ground elevation and height percentiles within
each waveform). Here we did not apply any correction method to adjust a possible slope-induced
error (e.g., usually requires DRL-derived slope map), because we aimed to compare their performances
using information readily available from SPL only (the spatial-filtering vs. the histogram method).

In this study, we created SPL histograms over 71 field plots using a 0.15 m vertical resolution and
a footprint radius of 15 m. The applied resolution and scale was identical to both field survey and
previous studies [4,8,10,11]. We first normalized each histogram between 0 and 1 to compensate for
spatial difference in photon density. We then subtracted the mean value from the normalized histogram
and smoothed it using a Hann function with a window size of 8 (Hann function is a typical smoothing
window method applied in signal processing) [24]. Bins with negative values in the smoothed
histogram were identified as noise and were flattened to zero for further analysis. The subtraction
and smoothing procedure separated signal ranges (ground and canopy) from noise ranges using the
assumption that photons at ground and canopy range had a significantly higher density.

We then detected elevations of ground peak and canopy top using waveform lidar processing
methods. Mean ground elevation was identified as the lowest mode of local maximum values in the
smoothed histogram. Canopy top elevation was detected using a cut-off threshold value, calculated
as the greater number between 0.01 and the maximum value within the highest 10 histogram bins.
Finally, plot level canopy height was calculated as the difference between mean ground and canopy
top elevations. In addition, we calculated canopy height percentiles by aggregating the histogram bins
between ground and canopy top.

2.4. Canopy Height Comparison

We compared canopy heights calculated from the two methods using field measurements and
discrete return lidar (DRL) as references. This was because of the lack of a ground reference for
differentiating and validating noise/signal points. For both two methods above, we chose the p99
metric, rather than p100, to represent the true canopy height derived from SPL data. This was because
p99 was a better indicator of canopy top height, particularly when anomalous laser returns may be
present (e.g., birds or thin clouds for conventional lidar, and unfiltered noise points in this case) [25–28].
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Comparisons were made using the following statistical variables: coefficient of determination (r2),
bias (mean difference between SPL height and reference data) and root mean square error (RMSE).
The height differences between SPL and reference data were analyzed as a function of the topographic
slope using an ordinary least square (OLS) linear regression method. We also assessed potential
impacts of using different voxels sizes on the performance of the spatial filtering method.

3. Results

Canopy height percentiles (p96 to p100) derived from the spatial-filtering method showed strong
agreement with field and DRL data as demonstrated by the r2, bias, and RMSE values. Most of the
height percentiles, except for the p100, achieved r2 > 0.7 in comparison with field measured canopy
heights and r2 > 0.9 when compared with DRL derived heights (Table 1). The r2 between the 100th
height percentile (i.e., p100) and reference heights was much lower than those between the other canopy
height percentiles (p96~99) and reference data. Additionally, the p100 metric presented positive bias
with values greater than ~3 m against the field height. Such high bias values were not observed in
the other percentiles (p96~99), all of which presented consistently better agreements with reference
data than p100. For example, the 98th percentile height showed the highest agreement with field data
r2 = 0.70, bias = −0.12 m and RMSE = 4.77 m, while p97 had the lowest bias of 0.07 when compared
with DRL heights.

Table 1. Comparisons between reference heights (from field data and discrete return lidar) and canopy
height percentiles derived from the spatial-filtering method and the histogram method.

Spatial-Filtering SPL—Field Height SPL—DRL Height

Method r2 Bias RMSE r2 Bias RMSE

p100 0.54 2.88 6.99 0.83 3.77 5.46
p99 0.69 0.42 4.85 0.94 1.07 2.42
p98 0.70 −0.12 4.77 0.94 0.49 2.28
p97 0.70 −0.52 4.78 0.93 0.07 2.35
p96 0.70 −0.88 4.82 0.92 −0.31 2.52

Histogram SPL—Field Height SPL—DRL Height

Method r2 Bias RMSE r2 Bias RMSE

p100 0.59 0.77 6.41 0.78 0.68 5.05
p99 0.59 0.00 6.25 0.78 −0.06 4.88
p98 0.60 −0.52 6.24 0.78 −0.55 4.89
p97 0.60 −0.93 6.22 0.78 −0.93 4.92
p96 0.60 −1.31 6.25 0.78 −1.29 4.99

Correspondingly, canopy height percentiles derived from the histogram method also achieved
good agreements with the reference data. All height percentiles (including p100) showed highly similar
results in their comparisons with reference data (r2 = 0.60 and RMSE ≈ 6.3 m for field heights, and
r2 = 0.78 and RMSE ≈ 4.9 m for DRL respectively). The r2 values were 10%–15% lower than those from
the filtering method, and the RMSE values were almost doubled in comparisons with DRL (Table 1).
Unlike the filtering method, p100 values derived using the histogram approach had a smaller bias
(~0.7 m) than the reference data and other height percentiles (p96~p99).

Canopy heights (the p99) derived from the spatial-filtering method (Hfilter) achieved consistently
better agreements with reference data than those derived from the histogram method (Hhist) (Figures 3
and 4, and Table 1). We found no significant impact on height measurement error among different forest
types (all p > 0.1 using Welch’s t-test). However, canopy height differences (∆H) between Hhist and the
reference data were positively correlated with the topographic slope based on the OLS linear regression
analysis (red-dotted line in Figures 3b and 4b). The relationship was ∆H = 0.43 × Slope − 4.05 with
r2 = 0.28 (p < 0.01) when compared to field data, and ∆H = 0.21 × Slope − 1.88 with r2 = 0.11
(p < 0.01) for DRL comparisons. In contrast, Hfilter showed a mild correlation with slope in field height
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comparisons: ∆H = 0.26 × Slope − 2.07 with r2 = 0.18 (p < 0.01); and there was no significant effect
of slope spotted on the height difference between DRL and the Hfilter (p = 0.77). To better illustrate
the effects of slope, we analyzed the point cloud in one of the field plots as an example (Figure 5).
This plot was located on a steep slope of approximately 30◦, canopy height measured in the field
was 30.3 m and that from DRL data was 33.87 m. We found no discernible topographical effect on
characterizing canopy structure using the spatial-filtering method with a Hfilter value of 35.46 m.
Instead, the slope had a pronounced effect on the Hhist derived from the histogram method, leading to
a highly overestimated value of 42.3 m.

Figure 3. (a) Comparisons between field heights and canopy heights (p99) derived from SPL
data (using both histogram method and the spatial-filtering method); and (b) height differences
between field data and SPL as a function of averaged slope value at each plot. For the histogram
method ∆H = 0.43 × Slope − 4.05 with r2 = 0.28 (p < 0.01), and for the spatial-filtering method
∆H = 0.26 × Slope − 2.07 with r2 = 0.18 (p < 0.01). Symbols of different color and shape stand for
different processing methods (red: histogram method, and blue: spatial-filtering method) over different
types of forests (dbf: deciduous broadleaf forests, conif: coniferous forests, and mix: mixed forests).

Figure 4. (a) Comparisons between canopy heights derived from discrete return lidar (DRL) and
SPL data (using both histogram method and the spatial-filtering method); and (b) height differences
between DRL and SPL as a function of averaged slope value at each plot. For the histogram method
∆H = 0.21 × Slope − 1.88 with r2 = 0.11 (p < 0.01). There was no significant relationship between ∆H
and slope for the spatial-filtering method (p = 0.77). Same legend as Figure 3.
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Even on low-slope plots, the spatial-filtering method outperformed the histogram method, as seen
from our analysis after excluding the plots of slope greater than 10◦. Accuracies of the Hfilter did
not change drastically, with r2 = 0.74, bias = −0.65 m and RMSE = 4.48 m against field heights and
r2 = 0.95, bias = 0.79 m and RMSE = 1.95 m against DRL heights. The agreement between Hhist and DRL
heights had a very slight improvement with r2 = 0.79, bias = −1.22 m and RMSE = 4.43 m, whereas the
comparison between Hhist and field heights was greatly improved with r2 = 0.68, bias = −1.79 m and
RMSE = 5.37 m.

Figure 5. A comparison example of plot-level canopy height products derived from SPL data using
both histogram method and the spatial-filtering method. The plot is on a slope of about 30◦ with a DRL
measured canopy height of 33.87 m and a field measured height of 30.3 m. The left part shows the raw
level 1 HRQLS data over the plot with noises distributed both above and below the canopy-terrain
layer. The center shows the pseudo-waveform generated from the histogram method, with identified
canopy top (616.15 m), ground peak (574.35 m) and canopy height (42.3 m) in dash lines. The right
part shows the noise-removal and point-classification results of HRQLS data using the spatial-filtering
method. The ground points are in blue, and canopy points are in red with an estimated canopy height
(p99) of 35.46 m.

The use of different voxel sizes in the spatial-filtering method had no pronounced impact on
height retrieval performance at the plot level (Table 2). Comparison results with field measurements
were similar among all voxel sizes except for the ultra-fine ones (e.g., a 1 × 1 × 0.1 m voxel). However,
it may affect retrieval results at the individual tree level (Figure 6). Note that the vertical size of a voxel
is not equivalent to vertical resolution, because voxels were only applied to remove noise photons (not
for height extraction), and the remaining signal photons still have a continuous spatial distribution
with a varying vertical distance (can be narrower or wider than the vertical voxel size [20].
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Table 2. Performance of the spatial-filtering methods across different cell sizes when compared with
field heights. The columns stand for different vertical resolutions (unit: m) and the rows are different
horizontal resolutions (unit: m). Each cell describes the lowest RMSE achieved at a certain voxel size
(optimal radius, r2, bias, RMSE).

z = 0.1 z = 0.2 z = 0.3 z = 0.4

xy = 1 (11, 0.67, −1.17, 5.09) (9, 0.74, −1.02, 4.44) (7, 0.75, −0.67, 4.44) (9, 0.73, 0.01, 4.50)
xy = 2 (11, 0.71, −0.71, 4.65) (8, 0.77, −0.75, 4.17) (8, 0.76, −0.62, 4.22) (8, 0.75, −0.48, 4.37)
xy = 3 (8, 0.77, −0.83, 4.22) (8, 0.76, −0.64, 4.22) (9, 0.75, −0.32, 4.28) (9, 0.75, −0.33, 4.35)
xy = 4 (8, 0.76, −0.60, 4.23) (9, 0.75, −0.30, 4.35) (9, 0.75, −0.29, 4.30) (9, 0.75, −0.26, 4.30)
xy = 5 (9, 0.74, −0.26, 4.41) (9, 0.74, −0.30, 4.44) (9, 0.75, −0.29, 4.38) (9, 0.74, −0.25, 4.39)

Figure 6. An illustrative example of the impact of different voxel sizes on noise removal at the
individual tree level. The voxel sizes are expressed as combinations of different horizontal resolutions
(xy, unit: m) and vertical resolutions (z, unit: m) in (a–c). All the three voxels of different sizes can
identify the majority of noise photons (green points) both above canopy and below ground. However,
an extra-fine resolution voxel may fail to capture the top of individual trees (a), and an extra-coarse
horizontal resolution voxel may miss the entire small tree in open space (c).

4. Discussion

There is considerable interest in developing effective algorithms to obtain accurate canopy height
measurements from daytime SPL data. This is important yet challenging for automated mapping
over large areas because of the presence of solar noise [6]. The spatial filtering method developed in
this study overcomes some of the drawbacks of conventional histogram binning [4,8,10,11], offering
an alternative for processing large scale airborne SPL datasets.

Comparisons between SPL-derived canopy heights and reference data suggested that the two
methods were able to derive canopy height data with reasonable accuracy. Both methods achieved
good agreements with most r2 values greater than 0.6 and RMSE values less than 6 m. No significant
bias was found either (<1 m). Our comparisons further indicated that the new method developed in
this study could be more effective than histogram based methods, particularly for high point density
SPL data, for several reasons:

First, the spatial-filtering method resulted in consistently better canopy height accuracies (higher
r2, lower RMSE and low bias) than the histogram method as noted in comparisons with field and DRL
data. The primary reason for this was that the spatial filtering method identified and filtered noise
on an individual point basis, while the histogram-based method did not identify noise, per se, but
rather eliminated it by identifying the highest mode at the canopy top and first mode at the bottom
of the waveform. Because of this, it was expected to have errors over steep terrain where the ground
was difficult to identify in the waveform. Second, canopy heights derived from the spatial-filtering
method were only slightly impacted by the slope, a major contributor to errors in canopy height
measurements using waveform lidar. Steep topography was known to affect ground detection and
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led to overestimated canopy heights [29–31]. It can also lead to an underestimation when having
a higher noise threshold for a given waveform [32]. Potential correction methods (e.g., slope estimates
from high-resolution DEM or waveform leading and trailing extent metrics) may help improve the
waveform-based processing techniques [30]; however, their performance would largely depend on
the availability of high-quality topography maps that were mostly derived from DRL. Such maps
or robust correction approaches are not available nationally or globally. We noted that comparisons
between Hfilter and field data were slightly affected by slope but believe it was more likely because
of slope-induced errors in field height measurements (i.e., vertex method could be less accurate with
large viewing angle) rather than in the spatial-filtering method. This was further confirmed in height
comparisons between Hfilter and DRL. Comparisons with DRL proved that SPL heights derived using
the spatial filtering method were clearly not affected by slope (Figures 4 and 5). This could be because
there was no aggregation in the spatial-filtering method and therefore fine-scale terrain variability did
not affect it as strongly as in the case of the histogram approach. Third, the spatial filtering method
did not transform the point cloud and retained its original 3D structure for downstream point cloud
analyses, similar to conventional DRL data. This was critical in fine-scale analysis, such as crown
delineation and individual tree identification [13,33], which may not be possible after histogram based
filtering. This is because the transforming process of photon point clouds can lead to substantial loss
of detailed spatial information (e.g., small scale topography variation), which cannot be retrieved
back regardless of any further data processing method applied (e.g., the histogram method here).
It also allowed fast batch process and direct visualization with no further requirement for format
transformation (all files were stored in ASPRS las 1.2 format).

Interestingly, the histogram method was better at identifying canopy top, especially over low-slope
plots, while the spatial-filtering method had errors (as noted from the lower accuracies of p100
heights). This was probably because canopies were more clustered and resulted in a strong peak in the
pseudo-waveform at plot level. On the other hand, clustering at the canopy–atmosphere boundary
made it difficult to separate signal from noise in the spatial-filtering method and even a few wrongly
identified noise points could lead to large errors in the 100th percentile height. This was because
the spatial filtering method was designed to remove noise at voxel level which had a higher spatial
variation of photon density than the plot level. When the signal photon density was extremely low and
had a similar level to the noise (e.g., from individual small tree), either a coarse horizontal resolution
voxel or an extra-fine resolution one might fail to identify part of the crown (e.g., Figure 6). Overcoming
this problem would require more research and improvements in the algorithm, but an effective and
widely used solution was to use lower (p99 or p98) heights to represent canopy top and moderate
voxel size as we did in this study [25–28].

Ultimately, the choice of processing method depends on the point density, quality, and extent of
SPL data, particularly when SPL technology is still in the experimental stage. The histogram method
is useful for a rapid analysis with moderate accuracy but will result in loss of spatial resolution
and integrity. It can be mostly aimed at process datasets with low photon density (e.g., ICESat-2),
which requires aggregation of points over transects to determine the profile of the canopy surface
and the underlying topography. For applications involving airborne SPL, the spatial-filtering method
is clearly a better choice. It can largely retain the 3D details with a much higher measurement
accuracy, and is thus extremely valuable in fine-scale analysis. As an example, this method has been
successfully implemented over the entire county of Garrett in Maryland, demonstrating its usefulness
for large-scale terrain and canopy structure mapping [1]. However, this method may not be fully
applicable to a dataset with extremely low point density because it violates the basic assumptions
in the spatial-filtering method (see Section 2.3.2). Future studies would explore improvements in
the density-dependent algorithm, particularly at the canopy-atmosphere boundary and over highly
reflective urban targets. It would allow the process of ever-increasing SPL datasets from different
platforms, and can extract canopy structure information efficiently over broad geographical areas.
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When fully developed, the coupling of low acquisition cost and high processing efficiency together
can revolutionize the use of airborne SPL in routinely forest monitoring. It will then serve as a relatively
low cost and high efficient alternative to current airborne DRL systems, especially for large-area
forest mapping [1]. For example, the area coverage rates of current HRQLS (~224 km2/h) [2] are
more than three times higher than a DRL system, typically varying from about 50 to 80 km2/h in
a bathymetry survey [34]. The density of lidar point clouds per scan is also much higher in a SPL
data set (e.g., ~ 100 for HRQLS vs. < 5 for DRL). However, a direct cost-effective comparison between
airborne SPL and DRL surveys is complicated because of both high variety in their platforms and
sensor-related characteristics and the desired accuracy and density of lidar point clouds as well [35].
Considering the SPL system is still under fast development aiming to improve the quality and
capacity of large-area mapping, we envision that there will be more large-scale high point density
SPL data available in the near future [36,37]. These data sets, in together with existing high-quality
DRL data [38,39], can allow large-scale analysis of ecosystem dynamics and carbon flux at high
spatial resolution.

5. Conclusions

In this study, we have shown how high background solar noise in SPL can be efficiently filtered
using voxel-based spatial filtering. The algorithm presented here can help derive standardized lidar
products (e.g., canopy height model) under both high accuracy and great efficiency. This method
could be applied to other photon-counting lidar acquisitions with high photon density as well. Further
development of this can support fully automated processing of high point density SPL data over broad
geographical areas, and facilitate routine monitoring of forest structure dynamics.
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Abstract: Data acquired by Harris Corporation’s (Melbourne, FL, USA) Geiger-mode IntelliEarth™
sensor and Sigma Space Corporation’s (Lanham-Seabrook, MD, USA) Single Photon HRQLS sensor
were evaluated and compared to accepted 3D Elevation Program (3DEP) data and survey ground
control to assess the suitability of these new technologies for the 3DEP. While not able to collect data
currently to meet USGS lidar base specification, this is partially due to the fact that the specification
was written for linear-mode systems specifically. With little effort on part of the manufacturers of the
new lidar systems and the USGS Lidar specifications team, data from these systems could soon serve
the 3DEP program and its users. Many of the shortcomings noted in this study have been reported to
have been corrected or improved upon in the next generation sensors.

Keywords: lidar; Geiger-mode; single photon

1. Introduction

While not new in terms of technology, the commercialization of two new types of lidar instruments,
Geiger-mode Lidar (GML) and Single Photon Lidar (SPL) offer the promise of utilizing high-altitude
lidar collections for large area mapping across the United States for the 3D Elevation Program (3DEP).
The 3D Elevation Program is accelerating the rate of three-dimensional (3D) elevation data collection
in response to a call for action to address a wide range of urgent needs nationwide [1]. With constantly
changing lidar technology, the 3DEP needs to keep up with emerging trends and instruments that
could fulfill the goals of the program at a reduced cost to the taxpayer. Currently, the 3DEP relies on
the mature discrete multiple-return lidar systems for data collection; for the purposes of this paper,
we will refer to these as “linear-mode lidar” (LML) systems.

Both GML and SPL utilize focal plane array detectors, where the returned pulse is recorded using
an array of receivers instead of single receiver as is the case in LML systems. The transmitted laser
pulses for both GML and SPL are low energy. These low energy pulses are detected by receivers that
are sensitive to individual photons; thereby enabling the added advantage of higher flying altitudes.

Over the past 15 years, the Massachusetts Institute of Technology, Lincoln Laboratory (MIT/LL),
Defense Advanced Research Projects Agency (DARPA) and private industry have been developing
airborne lidar systems based on arrays of Geiger-mode Avalanche Photodiode (GmAPD) detectors
capable of detecting a single photon [2,3]. The extreme sensitivity of GmAPD detectors allows operation
of lidar sensors from very high altitudes and acquisition efficiency rates in excess of 1000 km2/h.
Up until now the primary emphasis of this technology has been limited to defense applications,
despite the significant benefits of applying this technology to non-military uses such as mapping,
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monitoring critical infrastructure and disaster relief. The first commercial Geiger-mode lidar system,
the IntelliEarth™ system by Harris Corporation, began advertising its capability in early 2015.

Photon-counting lidar systems were in development shortly after some of the first commercially
available linear-mode systems began operating [4]. The first successful photon-counting airborne
laser altimeter was demonstrated in 2001 under NASA’s Instrument Incubator Program (IIP) [5].
This instrument was flown from altitudes up to 6700 m above ground level (AGL), operated at
a wavelength of 532 nm, and imaged terrestrial and shallow water bathymetry to depths of a few
meters over the Atlantic Ocean and Assawoman Bay off the Virginia coast. This SPL system modeled
the solar noise background and developed simple algorithms, based on post-detection Poisson filtering
(PDPF) to optimally extract the weak altimeter signal from a high noise background during daytime
operations [6]. The theoretical results are reinforced by data from an airborne microlaser altimeter,
developed under NASA’s Instrument Incubator Program. This instrument was designed primarily to
produce, over a mission life of three years, a globally contiguous map of the Martian surface, with 5 m
horizontal resolution and decimeter vertical accuracy, from an altitude of 300 km. This type of SPL
instrument is planned to replace the Geoscience Laser Altimeter System (GLAS) on the ICESAT-II
mission, slated for launch in 2017 [7–9]. Currently, the only commercially available SPL system is the
High-Resolution Quantum Lidar System (HRQLS) by Sigma Space Corporation.

While there are numerous potential benefits of these newly commercialized systems to collect
data for 3DEP, such as increased flying height and higher point density, there are documented issues
of concern for these types of systems as well. Williams Jr. [10] demonstrated through physics-based
Monte Carlo simulations of avalanche photodiode (APD) lidar receivers that under typical operating
scenarios, GmAPD with array-based receivers may often be ineffective in detecting partially occluded
targets, such as bare earth under vegetation. Due to their ability to detect only one photon per laser
pulse, the target detection efficiency of GmAPD receivers was shown to respond nonlinearly to the
specific conditions including range, laser power, detector efficiency, and target occlusion, which caused
the GmAPD target detection capabilities to vary unpredictably over standard mission conditions. In the
detection of partially occluded targets, Williams Jr. [10] found that GmAPD lidar receivers performed
optimally within only a narrow operating window of range, detector efficiency, and laser power;
outside this window performance degraded sharply. He concluded that the inability of the GmAPD
to detect target signal present at the receiver’s aperture may lead to a loss of operational capability,
may have undesired implications for the equivalent optical aperture, laser power, and/or system
complexity, and may incur other costs that can affect operational efficacy.

Past history of using GmAPD detectors suggest an issue specifically in their ability to penetrate
foliage [11]. Most APDs operating in Geiger-mode report only one range measurement per transmitted
laser pulse. If a GmAPD makes a foliage range measurement, it cannot make a range measurement to
a target concealed by the foliage. When too much laser energy is received, the vast majority of range
measurements are from the foliage and only a small percentage are from the target.

Given the ability of these detectors to measure a single photon, minimizing solar background is
an important consideration during the design of the system. There is a general concern by traditional
LML users that these data are too noisy for commercial use, especially during daylight operations.
The choice of system wavelength also has a significant impact on the solar background level and
overall system efficiency. Other effective methods of reducing solar background is minimizing the
system aperture, installation of a narrow bandpass filter in the receive path, reducing the detector
instantaneous field of view, minimizing the range gate duration, or by simply operating at night.
By designing and operating the system such that solar background is minimized significantly increases
data quality while increasing the operating range of the sensor and reducing or eliminating the need
for noise filtering.

Lower energy also translates into fewer photons reaching the receiver, and as a result these
systems do not have full waveform digitization capability. Current LML technology relies on a flux
of photons (500 to 1000 photons) to record the returned signal. This energy is much larger than the
one needed for the GML and SPL technologies. Such large fluxes of energy make it possible to
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digitize the full waveform and to produce an intensity image with reasonable radiometric resolution
to represent a black and white image at the lidar wavelength. This is not the case with the GML and
SPL systems. To overcome such problem while capitalizing on the high density of its point cloud,
the GML system in particular produce what is called a “reflectivity image” or “relative reflectivity
image”, by computing the ratio of the numbers of incident photons to the returned photons.

Currently, there are only two companies with instruments that are commercially available that
claim they can collect data that meets 3DEP’s requirements in terms of data quality and utility. These are
the SPL High-Resolution Quantum Lidar System (HRQLS) system by Sigma Space Corporation, and the
Harris IntelliEarth™ GML lidar. While both instruments are unique as described above, both claim
that they can provide data that meets the requirements for the 3D Elevation Program. This paper will
evaluate these particular sensors as they relate to the 3D Elevation Program, and are not necessarily
reflective of the potential of both GML and SPL in general.

1.1. Sigma Space Single Photon Technology

Sigma Space utilized its single photon sensor, HRQLS, to collect the data for the study [12]. HRQLS
has a 10 × 10 array of 100 beamlets, generated by a passive diffractive optical element (DOE) in front of
a 25 kHz laser. The returned 100 beamlets are imaged into 10 × 10 micro-channel plate photomultiplier
detectors with low jitter and very fast recovery time. The fast 1.6 nanosecond/24 centimeter recovery
time/range of the combined detector and timing receiver allow the systems to view multiple photon
events per pixel per pulse, making them capable of daylight operation. They also can penetrate
semi-porous volumetric scatterers, such as tree canopies, turbid water bodies, thin clouds or fog.
In addition, the 10 × 10 beamlet array, combined with a proper choice of aircraft velocity and altitude,
allows the generation of contiguous few decimeter resolution maps on a single overflight while
operating at altitudes up to 9000 m AGL and at speeds up to 250 knots yielding an aerial coverage of
1340 km2/h. Due to the finite speed of light and the high ground speed of the conical scanner, initially
co-aligned transmit and received field of views (FOVs) become increasingly displaced at the higher
altitudes. As a result, the scanner optical design and scan speed must compensate for the displacement
over a wide range of potential operating altitudes. As an added benefit, the surface returns and receiver
range gates are automatically paired with the correct laser start pulse even when multiple laser pulses
are simultaneously in flight. Table 1 lists the technical specifications for the HRQLS sensor used by
Sigma Space Corporation to collect the data.

Table 1. Technical specifications for the HRQLS sensor.

Parameter Specification

Number of beams 100
Wavelength 532 nm

Laser Repetition Rate 25 kHz
Laser Pulsewidth 700 ps

Laser Output Power 1.5 W
Pixels/s 2.5 Million

Eye Safety Eye safe by FAA standards
Multiple Return Capability Yes

Pixel Recovery Time 1.6 ns
RMS Range precision ±5 cm

Scan Patterns Linear, conical
Scan Width 0 to 40 degrees (selectable)

Operational Altitude Range 6500–10,000 ft
Swath vs. AGL (at maximum scan angle) 1.3 to 2 km

Area Coverage versus AGL
(at maximum scan angle and 200 knots) 400 to 640 km2/h single pass

Mean Point Density 12 to 8 per square meter, single pass with 15% reflectivity
Size 19 W × 25 D × 33 H inches

Weight 50 lbs
Prime Power 555 W
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1.2. Harris IntelliEarth™ Technology

The Harris IntelliEarth™ Geospatial Solutions Geiger-mode lidar sensor is the first commercial
airborne lidar system that takes advantage of the single photon capabilities of the Geiger-mode
avalanche photodiode [3]. Harris’ system uses an array of 32 × 128 detectors. This concept of pulse
splitting results in a much higher point density as compared to the current linear lidar, where the pulse
may have few returns in vegetated areas as a best case scenario.

The primary components of the system include:

• 128 × 32 InP/InGaAsP Geiger-mode camera capable of readout rates in excess of 100 kHz.
• Compact Nd:YAG diode pumped solid state laser.
• 270 mm Holographic Optical Element (HOE) scanner with 15◦ scan half angle capable of rotational

speeds in excess of 2000 rotations per minute. (US Patent US 2015/0029571 A1 29 January 2015).
• Real time transmit line of sight adjustment which compensates for scanner motion during pulse

round trip time.
• High efficiency narrow bandpass filter that reduces solar background noise.
• Transmit beam shaping optics that optimizes illumination pattern on the ground.
• Nadir looking Ritchey—Chrétien telescope for collection of returned light.
• Inertial navigation system including an inertial measurement unit.
• High speed flash detector for precision laser pulse timing.
• Data acquisition electronics.
• Sensor controller.

The Harris Geiger-mode lidar sensor uses a conical Palmer scan pattern produced by a direct
drive, hub driven HOE scanner. HOE scanners have been used in the past [13] but this particular
implementation has several advantages over previous designs. When flown with 50 percent overlap,
the scan pattern provides four looks from four different directions. With a scan half angle of 15◦,
the sides as well as roofs of structures are sampled, which significantly increases the potential for
interpretability of the point-cloud data.

There have been very few studies comparing the performance of these new sensors to LML
or ground survey measurements [12,14], and this study is the first of its kind to evaluate the
performance of LML to GML and SPL systems as they relate to collecting data that is adequate
for the 3D Elevation Program. We evaluated both commercial instruments: the SPL HRQLS system
by Sigma Space Corporation, and the Harris IntelliEarth™ GML. Comparing data collected by these
instruments over an area in Northern Connecticut with both existing and new LML and good
survey ground measurements helped determine the current capability of these instruments to meet
3DEP’s requirements.

2. Data Sets

We designed a 500 mi2 project area for this evaluation study that overlapped the northern third of
Connecticut Sandy QL2 Lidar collected for the 3DEP, which was flown in April/May 2014 by Dewberry.
This coverage included all desired land cover and terrain variability, portions of Hartford including the
main airport, and rivers and lakes to test hydroflattening in select areas. Three sub-areas were selected
within the main project area—Urban, Mixed Use, and Forested (Figure 1). For all three sub-areas,
two independent teams (Woolpert and Dewberry) processed the data acquired by Sigma Space and
Harris using their own internal proprietary methods to create final deliverables that were intended
to meet the United States Geological Survey (USGS) v1.2 specifications [15], including classified LAS
v1.4 point cloud data, 1-m hydroflattened DEMs, intensity images (where applicable) and associated
reports and metadata.

40



Remote Sens. 2016, 8, 767

 

Figure 1. Areas of interest used for processing and assessing bare earth.

Data processing and analysis was done independently by Dewberry and Woolpert.
Woolpert acquired leaf-on data in a small (~77 km2) area in the Forested sub-area for this study
around the same time as the HRQLS and IntelliEarth™ data acquisition. Woolpert acquired lidar data
according to the USGS QL2 specifications over an area densely covered by vegetation. The purpose of
this data acquisition was to have QL2 data during leaf-on condition close in time to the IntelliEarth™
and HRQLS data acquisition. Woolpert used a Leica ALS70 500 kHz Multiple Pulses in Air lidar
sensor system.

Sigma Space and Harris Corporation acquired data in the project area during leaf-on conditions
in August/September 2015. Calibrated, unclassified LAS data and supporting acquisition reports
were delivered for this evaluation study. Harris acquired IntelliEarth™ data in the project area during
nighttime conditions at 7950 m above ground; as requested, they provided data acquired in daytime
conditions along two overlapping swaths in the Urban sub-area albeit acquired at a lower altitude
(2293 m above ground) (Figure 2). Sigma Space acquired HRQLS data in nighttime and daytime
conditions at 2293 m above ground, and delivered one set of LAS v1.2 data for the entire project area.
In the Forested sub-area, there were some areas acquired in the early morning where fog was present.
As a result, these areas were not considered for the evaluation. Table 2 lists all the data sets used in this
evaluation study; the abbreviated names for each dataset are used throughout this paper.
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Figure 2. Location of leaf-on linear mode collection (LMWptLO15), IntelliEarth™ daytime collection
(GMHarLO15_7.5kDT), and IntelliEarth™ sensor 2 leaf-off collection (GMHarLF15_26k).

Table 2. List of datasets and their attributes that were used in this study.

Abbreviation Data Type Acquired By Type of Collect
Date/Year
Collected

Collection
Altitude (AGL)

LMDewLF14 Linear Mode Dewberry Leaf-Off April/May 2014 917 m
LMWptLO15 Linear Mode Woolpert Leaf-On September 2015 2140 m

GMHarLO15_26k Geiger Mode Harris Leaf-On September 2015 7950 m
GMHarLO15_7.5kDT Geiger Mode Harris Leaf-On, Day Time September 2015 2293 m

SPSigLO15_7.5k Single Photon Sigma Space Leaf-On August 2015 2293 m
GMHarLF15_26k Geiger Mode Harris Leaf-Off December 2015 7950 m

Harris Corporation acquired IntelliEarth™ data on 2 September and 16 September 2015 during
leaf-on conditions. The primary evaluation data were collected using the Harris IntelliEarth™ sensor 1
from an altitude of 7950 m above ground. This dataset is referred to as GMHarLO15_26k (Table 2).
The flights were conducted at night and with an overlap of approximately 55%. It should be noted,
however, that while the IntelliEarth™ sensor collects data in swaths, it processes all swaths together
for a final solution, and as a result Harris states it is not possible to identify the swaths within the final
point cloud. In addition to the high altitude collection, Harris also collected a low altitude dataset
during the day for a small overlapping area. These data were collected at 2293 m above ground in the
Urban sub-area (Figure 2) and referred to as GMHarLO15_7.5kDT (Table 2). These data were tested
for improved foliage penetration and differences between day and night collections. The unclassified
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data were received on 1 November 2015 for this evaluation study. The following data/reports were
delivered by Harris for this study:

• Control Points and Report for Control
• Intensity Imagery
• Acquisition and Processing Report
• SBET files
• Raw Tiled LAS v1.4

The IntelliEarth™ data were processed to a LAS point-cloud and calibrated using a photogrammetric
bundle adjustment method.

In addition to the leaf-on data acquired in September 2015, Harris also acquired IntelliEarth™
data in leaf-off conditions at 7950 m on 6 December 2015 within a small sample forested area using their
new IntelliEarth™ Geiger-mode sensor 2. The first sensor (serial number 1), had a slight optical blur
which defocuses the returning light into roughly a 3 × 3 pixel area. This blur made it more difficult for
the system to match returning photons from the multiple looks in to a final XYZ point solution. It also
reduced the spatial resolving power for data reflecting off of natural objects, buildings, and other
man-made structures. Sensor 2 used a new Holographic Optical Element (HOE) that focused the light
correctly onto 1 pixel and thereby significantly improving canopy penetration. Although this leaf-off
dataset, referred to as GMHarLF15_26k (Table 2) was not part of the original scope, we evaluated the
sample data for canopy penetration.

Data Classification and Editing

The data were processed by using Global Mapper (v16.2.7), GeoCue (v14.1.21.2),
TerraScan (v15.031), TerraModeler (v15.007), and Microstation (v8i v08.02.04) software utilizing
independent proprietary methods by both Dewberry and Woolpert. The acquired 3D laser point
clouds, in LAS binary format, were imported and tiled according to the project tile grid. Once tiled,
the points were classified using proprietary routines. These routines classify any obvious low outliers
in the dataset to class 7 and high outliers in the dataset to class 18. After points that could adversely
affect the ability to derive a ground model were removed from class 1, the ground layer was extracted
from this remaining point cloud. The ground extraction process built an iterative surface model.
For this evaluation study, it was important to maintain consistency between the ground models in
order to ensure the comparisons were not skewed by incorrect classification. As a result, the classified
ground points from the Dewberry 2014 lidar collection were used as a starting point in the macro and
classified points that were within 20 cm to an initial ground class. This step minimized the amount of
manual editing required. It was noted that for the IntelliEarth™ dataset, the density of points actually
penetrating through the foliage was minimal and a traditional macro would have difficulty discerning
ground and non-ground points with such low density. By using the 2014 data, we were able to retain
valid ground points within the forested area with reduced manual effort.

Each tile was then imported into proprietary software and surface models were created to examine
the ground classification. Analysts visually reviewed the ground surface models and corrected errors
in the ground classification such as vegetation, buildings, bridges, and noise caused by random photon
events that were present after the automated classification. 3D visualization techniques were employed
to view the point-cloud data at multiple angles and in profile/transect mode to ensure that non-ground
points were removed from the ground classification. After the ground classification corrections were
completed, the dataset was processed through a water classification routine that utilized breaklines
compiled to automatically classify hydro features. The water classification routines selected ground
points within the breakline polygons and automatically classified them as class 9 (water). During these
water classification routines, points that were within 1 × nominal point spacing (NPS) or less of the
hydrographic features were moved to class 10 (ignored ground) due to breakline proximity. The lidar
tiles were classified to the following classification schema:
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• Class 1 = Unclassified, used for all other features that do not fit into the Classes 2, 7, 9,
or 10 including vegetation, buildings, etc.

• Class 2 = Bare − Earth Ground
• Class 7 = Low Noise
• Class 9 = Water, points located within collected breaklines
• Class 10 = Ignored Ground due to breakline proximity

After manual classification, the LAS tiles were peer reviewed and then underwent a final QA/QC.
After the final QA/QC and corrections, the LAS files were then converted from LAS v1.2 to LAS v1.4.
All headers, appropriate point data records, and variable length records, including spatial reference
information, were updated and verified using proprietary Dewberry and Woolpert tools.

All three sets of lidar data (IntelliEarth™, HRQLS and linear mode) derived products were
processed using Woolpert’s and Dewberry’s individual workflows and production procedures
and processes.

Once all hydro-flattened data was imported, surveyed ground control data was imported and
calculated for positional accuracy assessments. As a quality control measure, Woolpert and Dewberry
have developed routines to generate accuracy statistical reports by comparisons against the points and
the DEMs using surveyed checkpoints of higher accuracy.

3. Methods

In total 83 ground checkpoints were acquired: Thirty-four were acquired in 2014 during the
leaf-off survey and 49 additional checkpoints were acquired in 2015 to support this study (Figure 3).

 

Figure 3. Location of checkpoints used for Vertical Accuracy Assessments. Plus signs are NVA
checkpoints. Triangles are VVA checkpoints.

Data from both the HRQLS and IntelliEarth™ systems were checked to determine if they complied
with requirements in the USGS Lidar Base Specification v1.2 [15]. Assessments included testing
attributes contained the required values, determining if the point density met USGS base specification
QL2 levels (at least two points per meter squared), if relative accuracies were sufficient, and if absolute
accuracies were within specification. Other qualitative tests included an assessment of day versus night
data quality, quality of reflectance images (for IntelliEarth™ only), and the amount of noise points
inherent in the data. The Non-vegetative Vertical Accuracy (NVA) and Vegetated Vertical Accuracy
(VVA) of the data were evaluated according to the guidelines and the recommendations of the “ASPRS
Positional Accuracy Standards for Digital Geospatial Data” using all the available checkpoints [16].
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As the primary derivative product for the 3DEP is a bare earth DEM, an assessment of the
differences between an accepted QL2 bare earth DEM versus derived bare earth DEMs were also
performed independently by both Dewberry and Woolpert, and then results of those determinations
were checked by USGS to make sure that both assessments and processing of bare earth DEMs were
truly independent.

4. Results and Discussion

4.1. Attributes Required to Meet USGS Lidar Base Specification 1.2

Data from both the HRQLS and IntelliEarth™ systems were checked to determine if they complied
with requirements in the USGS Lidar Base Specification v1.2 [15]. While compliant in many categories,
there were several requirements that neither dataset met (Table 3).

Table 3. Compliance to USGS Lidar Base Spec v1.2.

Requirement IntelliEarth HRQLS Comments

LAS Version 1.4 LAS v1.4 LAS v1.2 Both data sets LAS v1.4 compatible
Point Data Format Compliant Compliant

Coordinate Reference System Compliant Compliant
Global Encoder bit Compliant Compliant

Time Stamp Compliant Not Compliant IntelliEarth—unique but not based on acquired swaths.
HRQLS—none provided.

System ID Compliant Compliant

Multiple Returns Not Compliant Not Compliant Both systems do not produce multiple returns.

Point Source ID Not Compliant Compliant IntelliEarth—No flight swaths.

Intensity Reflectance Not Compliant IntelliEarth—similar to linear-mode
HRQLS—no intensity data

Overlap and withheld Not Compliant Compliant IntelliEarth—No flight swaths.

Scan Angle Not Compliant Not Compliant Spec not compatible with these sensors.
XYZ Coordinates Compliant Compliant

4.2. Data Density

Both IntelliEarth™ and HRQLS datasets had Aggregate Nominal Pulse Spacings (ANPS) that
greatly exceeded USGS QL1 requirements. The IntelliEarth™ data acquired at 7540 m above ground
produced 25 points per square meter (ppsm), and the HRQLS data acquired at 2293 m above ground
produced 23 ppsm. Although both these systems produced data analogous to a “single return only”
linear mode sensor, the data density was much higher at these high altitudes than typical linear mode
sensors currently being used for the 3DEP program. Current state-of-the-art linear mode sensors will
produce data at 2–4 ppsm at a flying altitude of 2100 m above ground or lower.

4.3. Data Smoothness/Relative Accuracy

Both sensors used different processing and calibration procedures that are based on detecting
individual photons using an array-based detector to determine the range to a target. LML sensors
determine the range to the target by detecting the return signal from the entire transmitted pulse.
As a result, the typically used swath-based relative accuracy method was not used for this evaluation
study. Instead, the entire dataset was treated as a single swath, and the relative accuracy QL1/QL2
requirement of 6 cm was verified in a sample area. The IntelliEarth™ data easily met the 6 cm
requirements in flat and gently sloping terrain and there was very little variability within the test
areas (except over bright reflective targets summarized below). The HRQLS data displayed greater
variability over flat terrain with significant low noise points. Since there were no timestamps in the
LAS data, there was no way to differentiate each swath after the data were merged to a tile grid.
Furthermore, while the single swath accuracy requirement was more stringent than the accuracy
assessment between swaths, this method was chosen to ensure that the data could easily be compared
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with the IntelliEarth™ evaluation. The smooth surface repeatability test require the data to meet 6 cm
relative accuracy for QL1 or QL2 data. This test was performed by computing the maximum difference
within a 0.5 m cell. Because the validation is only relevant on smooth surfaces with little to no slope,
a 0.5 m cell size was sufficient to determine the repeatability on those surfaces. This included open
terrain, roads, and flat roof tops. Based on the overall evaluation, the single photon data tended to
contain slightly more noise within the swath than would be typically seen in a linear mode system.
On average the differences were between 5 and 7 cm within areas where the slope was less than
10 degrees. The HRQLS data required more manual editing to remove outliers and some of this
variability in the data. There was significant variability over highly reflective flat targets with the
HRQLS data as summarized below. The variability in the HRQLS data exceeded the relative accuracy
of 6 cm in these locations.

The IntelliEarth™ and HRQLS data were examined to determine effects of range walk over
highly reflective surfaces such as roadway markings and runway paint stripes (Figure 4). Range walk
occurs when highly reflective targets appear higher than the surrounding less reflective targets.
In traditional LML sensors, range is calculated by measuring the time of flight of laser pulses reflected
from a target. The timing of the return is typically calculated by first converting the returning photon
pulse into a proportional current and then precisely measuring some position along the rise of the
current pulse, for example by simple power threshold, finding the Full Wave at Half Maximum of the
strongest reflected pulses, or through various cross correlation techniques. When techniques such as
level thresholding are used to determine range, reflections from extremely bright surfaces will cause
current pulses rise above that threshold much sooner than for typical surfaces in the scene, leading to
significant timing difference. As a result, those very bright surfaces appear to rise or “walk” above the
surrounding surface area. Range walk is a very common source of range errors in linear mode sensors,
and sensor manufacturers and production groups have various methods for adjusting their data.

The HRQLS and IntelliEarth™ data along Runway 33 at Bradley International Airport in Windsor
Locks, CT in the “Mixed Use” sub-area were analyzed for range errors (Figure 4). The SPSigLO15_7.5k
data showed a 50–60 cm offset across the paint stripes and lots of low noise points at the two ends and
in the middle of the runway. There were also high noise points in the HRQLS data along the transect.
The GMHarLO15_26k data showed some variation (~15 cm) due to range walk, but was able to define
the shape of the runway along the transect. The LML dataset had a lower point density but clearly
showed the shape of the runway without any range walk effects.

 

Figure 4. Example of range walk.
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4.4. Absolute Accuracy Assessment

Two types of accuracy assessments were performed. First, we performed an assessment against
point clouds. Secondly, we performed an assessment against derived bare earth DEMs (Table 4).
For the point cloud data assessment, Vegetated Vertical Accuracy (VVA) were assessed only in areas
that were processed to final classified point-cloud and where a valid lidar point was within 20 m of the
checkpoint (Test 1). The accuracy assessment made against DEMs included interpolated areas as well
(Test 2).

Table 4. Absolute accuracy tests using points and DEMs (* leaf on data).

Dataset/Sensor
Test #1—Points Test #2—DEM

NVA VVA NVA VVA

HRQLS (2293 m AGL) * 17.2 cm 17.4 cm 14.1 cm 40.6 cm
IntelliEarth (7950 m AGL) * 17.0 cm 25.6 cm 15.2 cm 92.0 cm

Existing, accepted 3DEP QL2 data (917 m AGL) 12.3 cm 19.8 cm 14.6 cm 25.0 cm

Both sensors met the absolute accuracy requirements for Non-vegetated Vertical Accuracy (NVA)
and VVA for QL1/QL2 data in both tests. For IntelliEarth™ data, the NVA based on 32 checkpoints
was 0.17 m and VVA based on 15 checkpoints was 0.256 m using the point clouds only. For HRQLS
data, the NVA based on 31 checkpoints was 0.172 m and VVA based on 17 checkpoints was 0.174 m.
The minimum requirements for QL1/QL2 accuracy are 0.196 m for NVA and 0.296 m for VVA.
Using Test 2 shows that both HRQLS and IntelliEarth™ data are meeting the NVA of 19.6 cm at the
95 percent confidence level as required. However, both HRQLS and IntelliEarth™ datasets failed to
meet the VVA requirements of 29.4 cm. The poor foliage penetration especially in the IntelliEarth™
data, and therefore the poor capability in delineating the ground under dense trees during leaf-on
conditions compromised the quality of filtered DEM in vegetated areas.

4.5. Canopy Penetration

To understand canopy penetration, we analyzed the data that were collected by the IntelliEarth™
Sensor #1 at 7950 m above ground in leaf-on conditions (GMHar15LO15_26k) and the data
acquired by the HRQLS sensor at 2293 m above ground in leaf-on conditions (SPSig15LO15_7.5k).
These two datasets were compared with the linear-mode data acquired by Dewberry in 2014 leaf-off
conditions (LMDewLF14) as well as the linear-mode data acquired by Woolpert in 2015 in leaf-on
conditions (LMWptLO15) around the same time as the IntelliEarth™ and HRQLS collects (Figure 5).

Canopy penetration in the IntelliEarth™ data acquired using sensor 1 was very poor. The system
was able to mostly capture only the top of the tree canopy in a vegetated terrain, with little or no returns
from the canopy structure/understory or the ground. Although the acquisition was during leaf-on
conditions, which can greatly reduce canopy penetration compared to a leaf-off collect, the canopy
penetration was much poorer than the HRQLS and linear-mode collect during the same leaf-on season
over the same area. Canopy penetration in the IntelliEarth™ data acquired using sensor 2 based on
the sample data acquired in December 2015 and provided later was very good. The dataset produced
by sensor 2 had an ANPS of over 107 ppsm that generated a bare earth (ground) density of 14 ppsm.
The sensor 2 was able to generate returns from the canopy structure as well as the ground. It was
unknown if canopy penetration improvement was due to the new sensor or the fact that data were
collected during leaf-off conditions. It was hypothesized that it was both. Canopy penetration in
the data acquired using the HRQLS sensor was qualitatively adequate and resembled the type of
penetration expected from a LML dataset in leaf-on conditions; however, the HRQLS sensor did not
pass the VVA assessment of bare earth DEMs, suggesting an influence from noisier points and larger
than desired voids under vegetation.
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Figure 5. Cross section used for comparisons, overlaid on imagery (image top). Sample profiles of
HRQLS, leaf on (top profile); linear-mode lidar, leaf-on (middle-top profile); linear-mode lidar, leaf-off;
(middle-bottom profile); and IntelliEarth™ lidar, leaf on (bottom profile).

4.6. Derivative Products

4.6.1. Evaluation of Intensity Imagery

Intensity values were not collected with the HRQLS system. The lack of intensity was not
a significant issue for the processing of data to ground/non-ground, however it did present challenges
in collection of breaklines for hydro features as discussed in the section below.

The IntelliEarth™ system stored intensity data as a 16-bit unsigned value and was created
from multiple aggregated measurements. These measurements were scaled over the 16-bit range
via the number of returns observed for a given reflectance. In the IntelliEarth™ system intensity
was referred to as “Reflectance” and exhibited similar grayscale characteristics as linear mode
systems. We reviewed the reflectance data acquired by IntelliEarth™ to determine its usability and
applicability. This evaluation focused on using the images for the extraction of feature data such as
hydrographic features, roads, and buildings. In each case, the reflectance image produced by the
IntelliEarth™ sensor offered the same type of capabilities as an intensity image and could be used
as such. We did not identify any areas where the reflectance imagery would be less useful than
a standard LML intensity image. Figure 6 shows an example of the reflectance imagery produced from
the GMHar15LO_26k data.
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Similar to linear mode intensity images, the IntelliEarth™ images have variability in the intensity
values from the same or similar targets within each data set. The linear mode intensity images typically
have variability across different swaths. For IntelliEarth™, the reflectance images tended to have
a gridded appearance, which is based on the aggregation of points during processing of the data.

 

Figure 6. Example of an intensity image from: a linear-mode system (top); and the IntelliEarth™
system (bottom).

4.6.2. Evaluation of Breakline Development

The lack of intensity imagery from the HRQLS system primarily impacted the collection of
breaklines required to develop products that meet USGS/NGP Base Specifications v1.2. Typically,
the breaklines are derived using a combination of intensity imagery and the elevation data.
The intensity imagery allows the users to reliably determine if features are water bodies or not.
Without the use of the intensity imagery the analyst acquiring the breaklines will have to rely more
heavily on the elevation values and ancillary imagery sources that were not collected coincidentally
with the lidar. The result is that areas of marsh may lean more heavily toward being collected as
water or temporal changes between ancillary imagery and the lidar collection could result in incorrect
classification of water. For this exercise, a few sample features were collected using only the data
available from the HRQLS collect. Since the HRQLS system uses the green wavelength (532 nm) as its
laser source, the data may include bathymetry in water bodies. The presence of bathymetric data can
cause greater error in collecting breaklines for hydro features. Some of the differences may also be
temporal in nature and represent the variation in the water levels between collections.

4.6.3. Evaluation of Day/Night Collection

We performed an evaluation of the differences between the night and day collections provided
by IntelliEarth™ (GMHarLO15_26k and GMHarLO15_7.5kDT). Harris collected an overlapping area
within the Urban sub-area for this evaluation. The daytime dataset (GMHarLO15_7.5kDT) were
acquired at 2293 m above ground compared to the 7950 m above ground of the nighttime collection.
Based on a review of the overlapping area acquired in the night and day, we did not identify any
major differences in canopy penetration or excessive noise due to solar radiance. The point density
was higher on the daytime collection, but that difference is likely due to the difference in flying height
and processing and is not a result of additional solar noise in the data. There was very little difference
in the canopy structure or penetration of the data to the ground. There also did not appear to be any
additional noise points in the daytime dataset.

49



Remote Sens. 2016, 8, 767

4.7. Comparing Independent Evaluations

Both Woolpert and Dewberry independently bare earth processed the IntelliEarth™ and HRQLS
data, and created bare earth DEMs from these points using internal proprietary methods. These DEMs
were then differenced from the accepted QL2 Sandy 1m DEMs to determine differences between
accepted DEMs and these test DEMs. We then tested the correlations between four difference grids to
determine if they were truly created independently. Correlations between HRQLS DEM differences and
IntelliEarth™ DEM differences were r = 0.74 and 0.55, respectively (Figure 7). These low correlations
suggest that the derived bare earth DEMs developed by each group were created independently.

Figure 7. Correlations between Dewberry’s and Woolpert’s IntelliEarth™ DEM differences (top);
and HRQLS DEM differences (bottom) from accepted 3DEP lidar. r = 0.74 and 0.55, respectively.
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5. Conclusions

Elevation data are essential to a broad range of applications, including flood risk management,
natural resource management, forest resources management, agriculture and precision farming,
wildlife and habitat management, national security, recreation, and many others. The 3DEP is a national
partnership program managed by the USGS to acquire high-resolution elevation data for the United
States. The initiative is backed by a comprehensive assessment of requirements conducted by Dewberry
in 2011 and is in the early stages of implementation. As part of the 3DEP program, we evaluated
two new technologies that have the potential for rapid data collection rates with improved data
densities and accuracy. These high-altitude airborne lidar sensors can acquire high-density data at
much higher collection rates, thereby providing the possibility of QL1 data of 8 ppsm or higher at
considerably lower costs.

Data acquired by Harris Corporation’s IntelliEarth™ sensor and Sigma Space Corporation’s
HRQLS sensor were evaluated to assess the suitability of these new technologies for the 3D Elevation
Program. While not able to collect data currently to meet USGS lidar base specification, some of this
has to do with the fact that the specification was written for linear-mode systems specifically, and the
next major version of the USGS lidar base specification will become more flexible to allow these
instruments to be included. With little effort on part of the manufacturers of the new lidar systems
and the USGS lidar specifications team, data from these systems could soon collect data that meets
3DEP requirements and serve the 3DEP program and its users. Many of the shortcomings noted in
this study have been reported to have been corrected or improved upon by both companies in their
next generation sensors.
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Abstract: The combination of LiDAR and optical remotely sensed data provides unique information
about ecosystem structure and function. Here, we describe the development, validation and
application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral
and thermal components in a compact, lightweight and portable system. Goddard’s LiDAR,
Hyperspectral and Thermal (G LiHT) airborne imager is a unique system that permits simultaneous
measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial
resolution (~1 m) on a wide range of airborne platforms. The complementary nature of LiDAR,
optical and thermal data provide an analytical framework for the development of new algorithms
to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks,
and plant growth. In addition, G LiHT data enhance our ability to validate data from existing
satellite missions and support NASA Earth Science research. G LiHT’s data processing and
distribution system is designed to give scientists open access to both low and high level data
products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of
synergistic data fusion algorithms. G LiHT has been used to collect more than 6,500 km2 of data for
NASA sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper,
we document G LiHT design considerations, physical specifications, instrument performance and
calibration and acquisition parameters. In addition, we describe the data processing system and
higher level data products that are freely distributed under NASA’s Data and Information policy.

Keywords: remote sensing; airborne scanning LiDAR; imaging spectroscopy; surface temperature;
sensor fusion; data fusion; ecosystem structure; forest disturbance; forest health; primary
production

1. Introduction

LiDAR, hyperspectral and thermal remote sensing are core areas of current and planned NASA
remote sensing capability (e.g., Landsat Enhanced Thematic Mapper Plus, ETM+, and Operational
Land Imager, OLI; Earth Observing 1, Hyperion; Earth Observing System’s Advanced Spaceborne
Thermal Emission and Reflection Radiometer, ASTER, Multi angle Imaging SpectroRadiometer,
MISR, and Moderate Resolution Imaging Spectroradiometer, MODIS; Suomi National Polar orbiting
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Partnership Visible Infrared Imaging Radiometer Suite, NPP VIIRS; Ice, Cloud, and Land Elevation
Satellite 2 Advanced Topographic Laser Altimeter System, ICESat 2; and Hyperspectral Infrared
Imager, HyspIRI), and fusion of complementary data from different sensors offers the potential for
improved global remote sensing of terrestrial ecosystems. Formation flyingmissions, such asNASA’s
A Train satellite constellation, offer near simultaneous coverage from a number of Earth observing
systems; however, the spatial resolution of the current generation of NASA sensors limits some
terrestrial ecology applications. Furthermore, efforts to merge 3D structure information from LiDAR
with imaging spectrometer and thermal data is currently hindered by the absence of a LiDAR
designed for vegetation in space [1] and an EO 1 satellite that is approaching the end of its useful life.

Airborne platforms are more flexible than satellite missions for developing and testing data
fusion at fine spatial (1 to 10 m) and spectral resolutions, which have prompted a new generation of
LiDAR and imaging spectrometer instrument packages [2–4]. Airborne platforms offer specific
advantages for the study of terrestrial ecosystem, including targeted acquisitions of seasonal and
diurnal processes (e.g., wetland inundation, plant phenology, drought and fire impacts) and
coordinated field and remote sensing data collection needed to scale process level understanding to
the scale of airborne and satellite remote sensing observations [5]. Furthermore, the addition of
coincident thermal data to LiDAR and imaging spectrometer data broadens the range of potential
terrestrial ecology applications to include research on evapotranspiration, hydrology, forest health
and urban applications [6,7].

Here, we describe the development of a unique multi sensor instrument, Goddard’s LiDAR,
Hyperspectral and Thermal (G LiHT) airborne imager, which advances previous concepts for data
fusion by integrating LiDAR, hyperspectral and thermal sensors in a lightweight and portable system
for worldwide research applications. G LiHT’s single solution GPS INS (Global Positioning System
and Inertial Navigation System) avoids multi dimensional data effects that are introducedwhen data
is collected at different time and observational scales [2]. Imaging spectroscopy provides quantitative
information on vegetation cover, species composition and biophysical and chemical properties that
can be derived from measurements of reflected sunlight in the visible through shortwave infrared
wavelengths [8–12]. Light detection and ranging provides quantitative, 3D information on terrain
and vegetation cover, height and distribution of canopy elements, which can be used to characterize
biodiversity and habitat [13] and estimate light interception in plant photosynthesis and production
models [14]. Land surface temperature provides data needed to estimate evapotranspiration and
other surface energy fluxes [6], and can be an indicator of soil or vegetation moisture status [15].
By using commercial off the shelf instrumentation and general aviation aircraft, G LiHT also reduces
development and operational costs. Low cost deployment of the G LiHT system opens a wide range
of applications for targeted, airborne remote sensing, including diurnal and seasonal processes in
terrestrial ecosystems at ~1 m spatial resolution (Figure 1).

The goal of this multi sensor and data fusion effort is to characterize ecosystem form and
function using remote sensing data, with a particular emphasis on the data products needed to
develop a new generation of high resolution ecosystem and radiative transfer models. Analysis of G
LiHT data will be used to:

provide new insight into photosynthetic functionality and vegetation productivity, including
new, spatially explicit remote sensing indicators of key dynamic biological processes;
characterize fine scale spatial and temporal heterogeneity in ecosystem structure and function
under diverse environmental and climate conditions; and
create new methods for data fusion to monitor ecosystem health and the effects of climate and
human induced changes on these ecosystems.
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Figure 1. First coincident acquisition of passive optical, thermal and LiDAR data with G LiHT
(14 July 2011; 37.1839°N 76.5291°W) and keymeasurement characteristics of the instruments. Spectral
and structural differences between a forest, river, golf course and buildings demonstrate the
synergistic potential of data fusion for airborne remote sensing of ecosystem composition, structure,
function and health. FOV, field of view; NETD, Noise Equivalent Temperature Difference.

2. G LiHT Design and Instrumentation

2.1. Scientific Objectives and Design Considerations

G LiHT was designed as a relatively inexpensive, robust and portable research tool for
evaluating the potential benefits of data fusion for studies of terrestrial ecosystems. Table 1 lists the
objectives and related measurement requirements for G LiHT. One of the major obstacles to the
development of science based data fusion algorithms is the availability of accurately co registered
data of similar grain size for different information types. This is often the case when instruments are
flown on different platforms and acquired on different dates. We believe that “instrument fusion” is a
prerequisite to “data fusion” and conceived G LiHT as a multi sensor airborne imaging system that
would simultaneously map the composition, structure and function of terrestrial ecosystems.

In addition, G LiHT was designed to simplify worldwide deployment and minimize collection
and data processing costs. As a result, G LiHT features eye safe lasers, a portable, low power payload
(37 kg; 30 × 30 × 60 cm; 210 W), a single solution GPS INS, compatibility with common, civilian use
aircraft (e.g., Cessna, Piper, Twin Otter; 12/28 VDC compatibility) using a standard camera port or
customwing mounted pod and commercial off the shelf (COTS) instruments that are easy to replace
and not regulated by ITAR (International Traffic in Arms Regulation). Both G LiHT science and
deployment objectives are traced to instrument and design requirements in Table 1.
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Table 1. Traceability of Goddard’s LiDAR, Hyperspectral and Thermal (G LiHT) science and
deployment objectives. VNIR, Visible and Near Infrared; PALS, Portable Airborne Laser System;
VDC, Volts Direct Current; GPS INS, Georeferenced Positioning System and Inertial Navigation
System.

Objective Requirement

Direct computation of at sensor reflectance
and record of solar illumination conditions

downwelling irradiance spectrometer (VNIR)
clear sky solar irradiance model

Mapping species composition and variations
in biophysical variables (e.g., photosynthetic
pigments, nutrient content)

VNIR imaging spectrometer

Mapping forest health and photosynthetic
responses to environmental conditions

spectral resolution 5 nm

Tree Scale measurements with minimal
atmospheric interference

low and slow data acquisition (~335 m AGL, 110
kts)

Indicator of evapotranspiration and stress surface temperature observations
Mapping terrain, canopy height, and
structural attributes (i.e., spatial distribution
of canopy elements)

scanning airborne lidar

Continuous canopy height profile profiling lidar
Continuity with PALS [16] Reigl range finder with 905 nm laser

High technology readiness and reliability
Commercial Off The Shelf (COTS)

instrumentation
Portable (ship or hand carry) mass <50 kg; volume <0.2 m3
Suitable for international campaigns non ITAR components

Ease of installation and flight certification

ability to mount over camera port or in wing
mounted pod

low power (<250 W; 12 and 28 VDC capability)
FAA compliant design and materials
eye safe lasers

Accurate co registration

single solution GPS INS and data acquisition
computer

GPS time server and image time stamps
boresight alignment

Ability to collect large data volumes at high
data acquisition rates

removable solid state hard disks with eSATA
interface

dedicated video capture card
gigabit Ethernet communication
on board processing of lidar waveforms

Radiometrically calibrated data laboratory and vicarious calibration
Ability to operate under range of cloud
conditions

low altitude (<500 m AGL) data acquisition

Low acquisition and processing costs

COTS instrumentation and acquisition software
compatibility with general aviation aircraft
automated data processing system
internet data distribution system

G LiHT instruments were physically arranged to fit in a rigid, compact package (Figure 2), with
the scanning LiDAR, imaging spectrometer, hyperspectral and thermal camera aligned along an
optical axis parallel to the flight path. Wire rope isolators (WR4 200 10, Endine Inc., Orchard Park,
NY, USA) are used to mount the instrument package to the aircraft and reduce the impact of high
frequency aircraft vibrations. The system is weather resistant and can be mounted either internally
to the aircraft over an appropriately sized view port or externally attached to aircraft using a custom
fabricated pod. A custom pod was designed and fabricated by NASA for any Cessna 206, using
mounting points that are standard on this platform (Figure 3).
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Figure 2. End and top views of G LiHT instrument package, showing the (a) scanning LiDAR; (b)
data acquisition computer; (c) GPS INS; (d) irradiance spectrometer; (e) imaging spectrometer; (f)
thermal infrared camera; (g) GPS time server; and (h) profiling LiDAR.

Figure 3. (a) G LiHT installed on NASA’s Cessna 206; (b) wing mounted pod showing mounting
points common to all Cessna 206s; (c) view ports on bottom of custom pod.

Specifications of the individual G LiHT instruments are provided in the sections below.

2.2. GPS and Inertial Navigation System (INS)

A single solution GPS INS (RT 4041, Oxford Technical Solutions, Oxfordshire, UK) is used to
obtain high precision position and attitude measurements for all G LiHT sensors. The unit is directly
attached to the airborne laser scanning (ALS), which shares the same mounting plate as the optical
breadboard for the imaging spectrometer and thermal camera (Figure 2). The GPS INS incorporates
a six axis inertial navigation system (three gyroscopes and three servo grade accelerometers) and an
L1/L2 GPS (Global Positioning System) and GLONASS (Global Navigation Satellite System) receiver
with an OmniStar decoder to deliver 10 cm positioning, 0.1° heading and 0.03° roll and pitch
accuracies.Measurements are acquired at 250 Hz, which is required to geolocate data from the optical
imagers (25 to 50 Hz) and ALS (300 kHz laser). The real time internal processing includes strap down
algorithms, a WGS 84 and EGM96 (Earth Gravitational Model 1996) Earth model, Kalman filtering
and in flight alignment algorithms. The Kalman filter and in flight algorithms monitor the
performance of the system and update the measurements to correct for inertial sensor errors and
maintain high positional accuracy.

2.3. Airborne Scanning LiDAR

The VQ 480 (Riegl USA, Orlando, FL, USA) airborne laser scanning (ALS) instrument was
selected for use with G LiHT, because it was affordable, compact, provided evenly distributed pulses
on the ground and offered near turnkey operation. The VQ 480 uses a high performance laser
rangefinder and a rotating polygon mirror with three facets to deflect a 1,550 nm Class 1 laser beam
onto the ground. A user selectable pulse repetition rate up to 300 kHz provides an effective
measurement rate of up to 150 kHz along a 60° swath perpendicular to the flight direction (Figure 3).
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A laser beam divergence of 0.3 mrad produces a 10 cm diameter footprint at the nominal operating
altitude of 335 m. The small footprint laser beam allows detection of small gaps in the canopy and
the ability to characterize fine scale disturbances, which are difficult to deconvolve from large
footprint LiDAR waveforms (Figure 4, [17]). The mirror speed is set to a maximum of 100 rotations
s 1 during G LiHT acquisitions, whose points are spaced 0.23 m apart within a line perpendicular to
the flight direction and 0.57 m between lines with a nominal aircraft speed of 110 knots. For each laser
shot, the return waveform is digitized, and online processing algorithms are used to provide ranging
data for multiple targets. Up to eight discrete ranging returns may be identified and recorded for a
given pulse. Each return target is time tagged and accurately synchronized with the GPS INS using
a 1 Hz Transistor Transistor Logic (TTL) pulse. Riegl’s software, RiACQUIRE, provides a graphical
user interface for scanner control and near real time monitoring of scanning LiDAR and GPS INS
data.

Figure 4. Canopy height model from (a) small footprint (10 cm) G LiHT LiDAR during June 2012; and
(b) large footprint (25 m) Land, Vegetation and Ice Sensor (LVIS) LiDAR during August 2009 [17], for
a commercial forest near Howland, ME, USA (45.2220°N 68.7423°W). Discrete returns from small
footprint LiDAR are able to detect small gaps and characterize fine scale disturbance (i.e., strip
harvesting), which are challenging to deconvolve from large footprint LiDAR waveforms.

2.4. Profiling LiDAR

G LiHT’s profiling LiDAR is an LD321 A40 (Riegl USA, Orlando, FL, USA), multi purpose laser
distance meter that is similar to the LD90 3800 VHS used in the Portable Airborne Laser System
(PALS) [16]. The LD321 A40 provides a continuous profile of canopy height measurements, which,
from a regional sampling perspective, provides data similar to other space based profilers that have
been flown (Ice, Cloud, and Land Elevation Satellite Geoscience Laser Altimeter System, ICESat
GLAS), proposed for flight (Deformation, Ecosystem Structure and Dynamics of Ice, DESDynI) or
which may be flown in the near future (ICESat 2 ATLAS). In addition, profiling data is important for
studying horizontal landscape patch structure [13] and ensuring continuity between ALS and PALS
datasets that have been collected worldwide. Real time digital echo signal processing with the
LD321 A40 enables precise distance measurement for complex multi target situations, resolving up
to five target distances per pulse. Distance measurements parallel to the flight line are used to
continuously measure vegetation height and structure along a sampling transect. A Class 1M laser
diode emits a 905 nm beam with a divergence of 1.5 mrad to produce a 50 cm diameter footprint at
the nominal operating altitude of 335 m.
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2.5. Irradiance Spectrometer

Downwelling irradiance is measured with an Ocean Optics (Dunedin, FL, USA) USB4000 VIS
NIR spectrometer. Light energy is transmitted to the spectrometer through an upward looking
opaline glass cosine diffuser with a 180° field of view (FOV). The cosine diffuser is mounted on top
of the aircraft, where there is an unobstructed view of the sky. A custommount was designed for the
leading edge of the Cessna 206 (Figure 5), which integrates both the GPS antenna and cosine diffuser.
A 3 m long, 100 m diameter optical fiber delivers the light energy through a 25 m entrance slit and
amulti bandpass order sorting filter, where it is dispersedwith a fixed grating across a 3,648 element
Toshiba linear Charge Coupled Device (CCD) array. The spectrometer covers the spectral range from
350 to 1,100 nmwith a native optical resolution to ~1.5 nm (full width half maximum, FWHM). Power
and communications are transferred through aUSB 2.0 connection to the computer. The downwelling
radiometer is operated continuously during flight with a 33 ms integration time, a 30 scan average
and 3× spectral binning, which is equivalent to a 1 Hz data acquisition rate. The unit is cross
calibrated with the imaging spectrometer to enable atmospheric characterization of downwelling
irradiance, which is used to compute the at sensor reflectance product.

Figure 5. Irradiance cosine diffuser (a) and GPS antenna (b) attached to the leading edge of a Cessna
206 wing with a custom mounting device. The wing mounted pod containing the G LiHT instrument
package is seen below (c).

2.6. Imaging Spectrometer

The Hyperspec imaging spectrometer (Headwall Photonics, Fitchburg, MA, USA) enables high
spectral and spatial resolution imaging by using f/2.0 telecentric optics and a high efficiency
aberration corrected convex holographic diffraction grating, providing an optical dispersion of 100
nm per mm over a 7.4 mm spatial by 6.0 mm spectral focal plane. The imaging spectrometer is based
on the Offner form and is designed to operate in the 400–1,000 nm spectral region with a 50° full field
of view. The Hyperspec imaging spectrometer accepts a C mount objective lens (Cinegon f/1.4 8 mm,
Schneider Optics, Hauppauge, NY, USA) with high optical performance using ultralow dispersion
glass and broadband anti reflection coating designed for the visible to near IR spectrum. Coupled to
the spectrometer is the RA1000 m/D high speed rugged megapixel focal plane array that allows
50 progressive frames per second to be acquired through an EPIX (Buffalo Grove, IL, USA) PIXCI
ECB1 PCI Express CameraLink interface. The camera uses a 1,004 × 1,004 pixel 2/3 inch format
interline CCD with 7.4 m square pixels and 12 bit radiometric resolution. Other camera features
include a digital fine gain for adjustable camera sensitivity over a 60 dB dynamic range, electronic
shuttering and low smear characteristics. The camera is controlled with the serial communication
channel of the CameraLink interface. Each image frame is coded with a computer timestamp
synchronized with a Time Tools (Dudley, UK) LC2750 GPS Timing Receiver for post processing
geolocation using data from the GPS INS detailed in Section 2.2 (Figure 6).
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Figure 6. (a) True color quick look data product (Keyhole Markup Language (KML) format) viewed
in Google Earth, illustrating image georegistration in a turbulent atmosphere near Plymouth, NC, USA
(28 July 2011; 35.8437°N 76.6994°W); (b) Coincident downwelling solar irradiance and upwelling
radiance spectra over a forested area in the swath; (c) reflectance spectra for bare soil and forest targets
in (a).

2.7. Thermal Imaging

G LiHT’s thermal remote sensing capability originates from the Gobi 384 thermal imaging
camera (Xenics, Leuven, Belgium). The instrument measures long wave infrared (LWIR) radiation
over a broad spectral range (8 to 14 m) using an uncooled amorphous silica (ASi) microbolometer
detector with 384 cross track pixels and a 30° FOV. This compact camera (72 × 60 × 50 mm) uses a
Gigabit Ethernet TCP/IP (Transmission Control Protocol and the Internet Protocol) interface to
deliver 16 bit radiometrically calibrated thermal imaging data at a 25 Hz frame rate to the computer
running Xenics’s Xeneth infrared camera software. Each image frame is coded with a computer
timestamp synchronized to a GPS Timing Receiver (see Section 2.6).

3. Calibration

3.1. Boresight Alignment

Georeferenced LiDAR returns and optical observations are computed as a function of lever arm
offsets, boresight angles and optical measurements. Bias in any of these parameters and GPS INS
errors will result in offset point clouds and distorted images. Boresight biases are computed using
data collected over buildings with peaked roofs, where overlapping data are collected with different
headings. Boresight corrections are computed between campaigns and consistently result in an
accuracy of ~10 cm (1 ).

3.2. Radiometric Calibration

The absolute spectral response (ASR) of G LiHT’s imaging spectrometer was calculated using
measurements made with a portable version of the US National Institute of Standards and
Technology’s (NIST) Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform
Sources (SIRCUS) [18], which is currently housed at NASA Goddard Space Flight Center (GSFC).
SIRCUS uses continuously tunable lasers coupled to an integrating sphere as a radiance source for the
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calibration of detectors operating in the solar reflective spectrum. SIRCUS and appropriately
characterized transfer radiometers allow absolute radiometric calibration with uncertainties of 0.5%
and traceability to national standards [19]. The availability of lasers determines the spectral coverage
on SIRCUS, and the uncertainties achievable are determined by the quality of the transfer radiometers
and measurement technique. The high power and wavelength stability of the laser based sources
enable large aperture instruments to be characterized and calibrated. All irradiance and radiance
responsivity calibrations are traceable to NIST’s Primary Optical Watt Radiometer (POWR) through
regularly characterized transfer radiometers. The short calibration chain from NIST’s Primary Optical
Watt Radiometer (POWR) to the transfer radiometer and imaging spectrometer minimizes the
uncertainty of the Spectral Radiometer Facility (SRF). Spectral radiance calibrations at power levels
typical of solar irradiance values allowed for quantitative measurements of the spectral response
functions and under flight like conditions over the focal plane from 415 to 1,020 nm. In addition to
providing spectral and radiometric calibration, the combination of full field, full aperture and near
monochromaticmethod of radiometric calibration used here allows the unique capability of assessing
and correcting for the total system stray light of the imaging spectrometer, not possible with
traditional broadband calibration sources.

3.3. Wavelength and Radiometric Stability

Both the downwelling irradiance and upwelling imaging spectrometer are monitored for
radiometric and wavelength stability. A portable, 10 cm Teflon integrating sphere with a Hg and Ar
pen lamp illumination sources produce nine pronounced emission lines (Figure 7) that are used
periodically to verify the spectral channel towavelength relationship over the detector spectral rangewith
sub nanometer precision. A large aperture, 1 m integrating sphere and an NIST traceable uniform
source is used to monitor the radiometric stability and performance of the spectrometers between
campaigns.

Figure 7. (a) Hg and Ar lamp emission lines as viewed through G LiHT’s imaging spectrometer; (b)
relationship between band number and band center wavelength using Gaussian iterative curve
fitting.

3.4. Thermal Radiometric Calibration

G LiHT’s thermal imaging camera has factory radiometric calibration for surface temperatures
between 20 °C and 120 °C, with a Noise Equivalent Temperature Difference (NETD) >50 mK. This
wide dynamic range allows for airborne operations of the thermal image over a diverse range of
surface temperatures. Thermal calibration stability as a function of a microbolometer operating
temperature range of 25 °C to 50 °C was verified against a GSFC Calibration Facilities blackbody for
stable operation over the target temperature range of 5 °C to 85 °C (Figure 8).
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Figure 8. Radiometric response of the for the Xenics Gobi 384 long wave infrared (LWIR) thermal
imaging camera as a function of instrument body temperature.

4. Flight Planning and Data Acquisition

Flight plans are made with X TRACK Flight Management Software Suite (Track’Air Aerial
Survey Systems, Oldenzaal, The Netherlands), using a nominal flight altitude of 335 mAGL, 60° FOV
and 30% swath overlap. This configuration results in a LiDAR, spectrometer and thermal swath of
387, 310 and 173 m. The pixel size of the pushbroom imaging spectrometer is ~1 m and is limited by
the aircraft speed and frame acquisition rate. The instantaneous per pixel resolution of the thermal
camera is approximately 3 times coarser than the imaging spectrometer, but oversampling with the
2D detector allows us to create a product of equal resolution (Section 5.2.4).

Flight lines are uploaded onto a 696 GPS (Garmin International, Inc., Olathe, KS, USA) for pilot
navigation and onto the instrument operator’s computer, which is using Reigl’s RiAcquire
acquisition software. Each instrument is separately controlled and triggered to collect data using
vendor supplied software. Ejectable, solid state hard drives provide fast input/output and quick
retrieval upon conclusion of the flight.

5. Data Products, Processing and Distribution

5.1. Data Products

NASA’s Earth Science Data Systems program references data products based on their level of
processing, ranging from Level 0 to Level 4 [20]. Level 0 (L0) data products include unprocessed
instrument data; Level 1 (L1) products are time referenced data that have been processed to at sensor
radiometric units; Level 2 (L2) products are geophysical variables derived from L1 products; and
Level 3 (L3) products are geophysical variables mapped on a space time grid scale. G LiHT data
products (L1 through L3) are listed in Table 2 for each of the instruments. Many of these products
will help end users create additional higher order products (e.g., solar and view angles are needed
for computing bidirectional corrected reflectance; terrain and canopy heights are needed for
orthorectification) and facilitate scientific data analysis (e.g., cloudiness and solar illumination
conditions affect canopy photosynthesis) [21].
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Table 2. G LiHT data products for public distribution. FWHM, full width half maximum; PAR,
Photosythetically Active Radiation; DTM, Digital Terrain Model; CHM, Canopy Height Model.

Instrument L1 L2 L3

Oxford RT 4041 GPS

INS

250 Hz measurement rate

Trajectory data
(coordinates, roll,
pitch, yaw)

�Aircraft elevation
�Aircraft altitude AGL
�Geographic Look Up Table
(GLT)

�Aircraft elevation
�Aircraft altitude AGL
�View angle
�View azimuth

Riegl VQ 480 Scanning

Lidar

1550 nm laser
discrete returns ( 8
pulse 1)
150 kHz measurement
rate

Return data
(coordinates, scan
angle, return
number,
apparent
reflectance)

�Classified return data
(ground, non ground)
�AGL heights

�LiDAR returns (“point
clouds”)
�DTM
�CHM
�LiDAR metrics

Headwall Hyperspec

Imaging Spectrometer

417 to 1,007 nm
402 bands, 5 nm FWHM
1,004 pixels per line
50 Hz measurement rate

At sensor
radiance spectra
(W m 2 sr 1 nm 1)

�At sensor reflectance
computed with observed
irradiance
�Surface reflectance
computed with atmospheric
correction
�Fluorescence
[experimental]

�At sensor reflectance
computed w/observed
irradiance
�Surface reflectance
computed w/atmospheric
correction
�Common vegetation
indices
�Fluorescence
[experimental]

Ocean Optics USB 4000

Irradiance Spectrometer

cosine diffuser
346 to 1,041 nm
1.5 nm FWHM
1 Hz measurement rate

Solar irradiance
spectra
(W m 2 sr 1 nm 1)

�Incoming PAR
�Cloudiness index
�Modeled solar zenith angle
�Modeled solar azimuth
angle

�Incoming PAR
�Cloudiness Index
�Modeled solar zenith
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�Modeled solar azimuth
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Xenics Gobi 384 Thermal

Camera

8 to 14 m
25 Hz measurement rate

Temperature data
(°C)

�Atmospherically corrected
surface temperature

�Atmospherically
corrected surface
temperature

5.2. Data Processing System

An automated data processing system is key to releasing standardized products in a timely
manner. Data processing begins with the GPS INS and scanning LiDAR data, since some of the
products are used in processing the imaging spectrometer and thermal data. Workflows for the
scanning LiDAR and spectrometer data have been developed as illustrated in Figures 9 and 10.
Manual pre processing of L0 data with vendor supplied software is the first step in the workflows,
followed by automated data processing algorithms that have been custom coded in the IDL ENVI
(Interactive Data Language and Environment for Visualizing Images) scientific programing language
(Exelis Visual Information Solutions, Boulder, CO, USA). The following sections describe the specific
data processing steps.

5.2.1. GPS and Inertial Data

GPS INS data is stored on internal memory in a raw, unprocessed format. Lever arm and other
offset coefficients are applied to the L0 data with Oxford’s RT Post Process software, which converts
the proprietary binary data to an ASCII format. During this step, the inertial data is processed
forwards and backwards in time to minimize the effects of GPS data drift. During data acquisition,
OmniStar HP differential correction service provides a real time positioning error of <15 cm in
extended periods of open sky. Increased precision can be achieved where base station GPS data is
available.
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Figure 9. Data processing workflow for GPS INS and airborne laser scanning (ALS) data. KLM,
Keyhole Markup Language; ASCII, American Standard Code for Information Interchange.

Figure 10. Data processing workflow for downwelling irradiance and upwelling image spectroscopy
data. GLT, Geometric Look up Table; BIL, Band Interleaved by Line.

5.2.2. Scanning LiDAR Data

Riegl’s RiPROCESS software is used for managing, processing, analyzing and visualizing data
acquired with the ALS system. RiPROCESS ingests raw laser scanner data and pre processed GPS
INS data, applies calibration information, transforms the scan data into geographic coordinates and
exports return data in LAS file format [22]. For mapping projects, individual swaths are co aligned
for small differences (typically <0.5 m) in elevation due to differences in position uncertainty, which
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is typically an effect of different satellite configurations and atmospheric conditions. A cross track
swath is typically collected at the conclusion of a mapping project to serve as a reference point for
swath co alignment.

LiDAR returns are resampled and processed as smaller data volumes (~1 km tiles for mapping
and ~7 km segments for sampling transects) for efficient processing. Tiles are buffered to prevent
edge artifacts during ground classification and creation of the Digital Terrain Model (DTM).
Classification of ground returns is performed with a progressive morphological filter [23]. Delaunay
triangulation is used to create a Triangulated Irregular Network (TIN) of ground hits, and the TIN is
used to linearly interpolate DTM elevations on a 1 m raster grid. Additionally, the TIN is used to
interpolate the base elevation of every non ground return, and vegetation heights are computed by
difference. A Canopy Height Model (CHM) is created by selecting the greatest return height in every
1 m grid cell, using these points to create a TIN and interpolating canopy heights on a 1 m raster grid.
An example of the DTM and CHM models are shown in Figure 11. For mapped areas, tiles are
mosaicked, and terrain slope and aspect, canopy rugosity (standard deviation of height) and common
LiDAR metrics [24,25] are derived from the resulting data at the scale of a US Forest Service Forest
Inventory and Analysis (FIA) field subplot (7.32 m radius).

Figure 11. (a) Digital Terrain Model (DTM) and (b) Canopy Height Model (CHM) products for a
9 × 14 km study area in the Chequamegon Nicollet National Forest, Park Falls District, WI, USA
(5 June 2012; 45.9447°N 90.2519°W). The DTM shows lakes, rivers and landforms formed by glacial
scouring and transported deposits during theWisconsin glaciation, and variations in the CHM reflect
a diversity of ecosystems and land use management practices.

5.2.3. Imaging Spectrometer Data

Pre processing of the image spectrometer data requires the use of XCAP software (EPIX, Inc.,
Buffalo Grove, IL, USA) to convert L0 data in a proprietary VIF format to ASCII time stamps and an
image cube in standard Band Interleaved by Line (BIL) format. Calibration coefficients (see below)
are applied to both the downwelling irradiance data and upwelling imaging spectrometer data to
compute at sensor radiance (Figure 6). Prior to computing at sensor reflectance, irradiance spectra
are resampled spectrally to match the imaging spectrometer. Two reflectance products are computed
as part of the workflow: at sensor reflectance is computed as the fraction of irradiance detected by
the imaging spectrometer, and surface reflectance is computed using the radiometric data and an
atmospheric correction algorithm. Following the reflectance calculations, data are aggregated from
the 1.5 nm native sampling interval using a Gaussian based spectral resampling procedure to
generate a distribution product with uniform 5 nm FWHM band spacing. This is a finer sampling
and spectral resolution than is reported for NASA’s Next Generation Airborne Visible/Infrared
Imaging Spectrometer (AVIRISng) [26] and may be useful for measuring fine spectral features, such
as solar induced fluorescence [27]. From the reflectance data, common vegetation indices for
greenness (e.g., Normalized Difference Vegetation Index, (NDVI); Enhanced Vegetation Index,
(EVI); red edge), light use efficiency (e.g., Photochemical Reflectance Index) and leaf pigments
(e.g., carotenoid, anthocyanin) are computed.

Each pixel in the image cube is georeferenced using Geo Correction for Airborne Platforms
(GCAP) [28], a software package developed at NASA Goddard Space Flight Center that provides the
user the capability to georeference a raster image using the image time stamps and GPS INS data.
Pixel coordinates are used to build a geographic lookup table in ENVI that is distributed with the
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radiance data cube and is used to create georeferenced layers for the reflectance data, vegetation
indices and ancillary data products.

Ancillary data products include valuable information for each pixel of the image cube, including:
acquisition time, solar zenith angle, solar azimuth, incoming PAR, cloudiness index [21], aircraft
elevation, aircraft altitude AGL, view angle and view azimuth. These time space variables are
computed from the LiDAR derived DTM and a clear sky irradiance model [29]. The products will
help end users create additional higher order products (e.g., solar and view angles are needed for
computing bidirectional corrected reflectance; terrain and canopy heights are needed for
orthorectification) and facilitate scientific data analysis (e.g., cloudiness and solar illumination
conditions affect canopy photosynthesis).

Future development will focus on improved co registration through automated control points
and implementing orthorectification and atmospheric correction algorithms specifically designed for
low altitude, wide FOV airborne imagers [30].

5.2.4. Thermal Data

By selecting a single line of cross track pixels from the thermal image array, the thermal data can
be treated as a line imager in the same manner as the imaging spectrometer. However, the number
of cross track pixels in a single line and frame rate limits the product to a coarse spatial resolution
(~3 m) using this method. Since the field of view of the full array is much greater than the spacing
between images, we can use spatial oversampling techniques to create a smoothed, fine resolution (1 m)
temperature product. We might also use additional information from the LiDAR and imaging
spectrometer (e.g., land cover) to resolve non linear edge effects, such as abrupt land cover boundaries
[31]. Both of these methods for deriving fine resolution surface temperature products are currently
under development.

5.2.5. Profiling LiDAR Data

Level 0 profiling LiDAR data is captured in ASCII format through a 10/100 Mbit TCP/IP port,
and can be processed in the same manner as PALS data [16].

5.3. G LiHT Data Distribution

NASA’s Earth Science Program promotes the full and open sharing of data with all users in
accordance with NASA’s Data and Information Policy [32], and this includes G LiHT data products.
Every effort is taken by the G LiHT instrument team to ensure that accurate, well calibrated data is
released in a timelymanner, and data is distributed in common, readily usable file formats. Classified
LiDAR returns and feature heights are made available in ASPRS LAS file format (American Society
for Photogrammetry and Remote Sensing, LASer file format), a non proprietary, binary file industry
standard [22]. This open data file format allows for the raw data and information specific to data
collection to be recorded (e.g., scan angle, return number, classification, AGL height). Gridded LiDAR
products are made available as GeoTIFF files that conform to established Tagged Image File Format
(TIFF) interchange format for georeferenced raster imagery [33]. GeoTIFF files include geographic
metadata formally, using compliant TIFF tags and structures. Multiband products from the imaging
spectrometer will be distributed in standard Band Interleaved by Line (BIL) format. In addition to
the data files, quick look images of key spatial variables (e.g., aircraft trajectory, DTM, CHM, true
color image) created in Keyhole Markup Language (KML) [34] for visualization in Google Earth.

The data archive for G LiHT products can be accessed through the G LiHT webpage,
http://gliht.gsfc.nasa.gov or by directly connecting to the anonymous ftp site, fusionftp.gsfc.nasa.gov/
G LiHT. The G LiHT website contains additional instrument specifications, a description of various
airborne campaigns, software tools and links to open source data analysis and visualization software.
G LiHT has been used to collect more than 6,500 km2 of data for NASA sponsored studies across a
broad range of ecoregions in the USA during 2011–2012 (Figure 12, [35–37]), with plans to collect data
in Mexico and interior Alaska in 2013–2014. Our automated data processing and distribution
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system is designed to give scientists open access to both low and high level data products
(http://gliht.gsfc.nasa.gov), which will stimulate community development of synergistic data
fusion algorithms.

Figure 12.G LiHT coverage (show as red lines) as of September 2012 (a). Long transects are coincident
G LiHT data along ICESat GLAS LiDAR tracks, enlarged in (b), which capture fine scale
heterogeneity in large, space base LiDAR footprints (65 m diameter). Other collections in the USA
include Forest Inventory and Analysis (FIA) plots and intensive study sites. The green color in (a)
represents percent forest cover [35,36]; dark gray lines indicate country borders, and light gray lines
delineate terrestrial ecoregions [37].

6. Conclusions

Goddard’s LiDAR, Hyperspectral and Thermal (G LiHT) Airborne Imager is a unique system
that permits simultaneous measurements of vegetation structure, foliar spectra and surface
temperatures at very high spatial resolution (~1 m). The complementary nature of LiDAR, optical
and thermal data provide an analytical framework for the development of new algorithms to map
plant species composition, plant functional types, biodiversity, biomass and carbon stocks and plant
growth. G LiHT data will enhance our ability to validate data from existing satellite missions, design
new missions and produce data products related to biodiversity and climate change.

The scientific rationale and motivation for G LiHT is similar to other multi sensor systems
(e.g., Carnegie Airborne Observatory, CAO, Alpha and Beta Systems [3]; CAO Airborne Taxonomic
Mapping System, AToMS [2]; National Ecological Observatory’s Airborne Observation Platform,
NEON AOP [4]), and differences largely exist due to specific mission objectives. G LiHT was
specifically designed to simplify worldwide deployment and minimize collection and data
processing costs by using commercial off the shelf instruments and local general aviation aircraft.
In contrast, NEON AOP is an operational observatory that will acquire annual acquisitions over
selected NEON sites in the US and additional in country flights requested by the scientific
community. CAO systems have largely focused on sustainable forest management and habitat
conservation in global tropical forests, but unlike G LiHT and NEON, the data is not openly
distributed. Other differences between these systems include choice of instrumentation. NEON and
CAO systems use a custom built, high fidelity visible to shortwave infrared spectrometer (380 to 2,510
nm) that covers a wider range of the electromagnetic spectrum and has a greater signal to noise ratio
than the G LiHT spectrometer (400 to 1,000 nm), but the instrument cost is one hundred fold greater,
and a more capable aircraft is needed to accommodate the greater size, mass and power
requirements. Additionally, G LiHT is the only system that currently acquires downwelling
irradiance and surface temperature measurements. Comparisons are currently under way at
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locations where both NEON and G LiHT data have been collected to evaluate the performance and
cross calibrate the LiDAR and spectrometer data products.

Additional G LiHT instrument specifications, campaign information and access to more than
6,500 km2 of data can be obtained from the through the G LiHT webpage, http://gliht.gsfc.nasa.gov.
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Abstract: In this paper we present a description of a new multispectral airborne mapping light
detection and ranging (lidar) along with performance results obtained from two years of data
collection and test campaigns. The Titan multiwave lidar is manufactured by Teledyne Optech
Inc. (Toronto, ON, Canada) and emits laser pulses in the 1550, 1064 and 532 nm wavelengths
simultaneously through a single oscillating mirror scanner at pulse repetition frequencies (PRF)
that range from 50 to 300 kHz per wavelength (max combined PRF of 900 kHz). The Titan system
can perform simultaneous mapping in terrestrial and very shallow water environments and its
multispectral capability enables new applications, such as the production of false color active imagery
derived from the lidar return intensities and the automated classification of target and land covers.
Field tests and mapping projects performed over the past two years demonstrate capabilities to
classify five land covers in urban environments with an accuracy of 90%, map bathymetry under
more than 15 m of water, and map thick vegetation canopies at sub-meter vertical resolutions.
In addition to its multispectral and performance characteristics, the Titan system is designed with
several redundancies and diversity schemes that have proven to be beneficial for both operations and
the improvement of data quality.

Keywords: airborne laser scanning; mapping lidar; multispectral lidar; lidar bathymetry; lidar
accuracy; lidar range resolution; active imagery

1. Introduction

Over the past two decades airborne mapping light detection and ranging (lidar), also known
as airborne laser scanning (ALS), has become one of the prime remote sensing technologies for
sampling the Earth’s surface and land cover in three dimensions (3D), especially in areas covered by
vegetation canopies [1]. In addition to the range (spatial) information derived from time-of-flight (ToF)
measurements, pulsed airborne lidar sensors deliver an arbitrarily scaled measure of the strength
of the optical backscattered signal that is proportional to the radiance incident on the detector,
typically referred to as intensity. Intensity is correlated with a target’s reflectance at the given
laser wavelength, making it useful in the interpretation of the lidar spatial information [2] or as
a standalone data source for identifying the characteristics of the likely backscattering surface for
each return [3]. The intensity also depends on other target characteristics such as roughness and the
lidar cross-section and on sensor-target geometry parameters including range and incidence angle.
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Currently the general practice is to digitally scale the “intensity” signal to normalize it to a given range.
However, the quality of intensity information can be improved through geometric and radiometric
corrections for other factors such as incidence angle, and atmospheric attenuation [4–6]. Taken a step
further, radiometric calibration methods transform intensities to physical quantities such as target
reflectance [7], allowing interpretation with respect to known material spectra.

In the past, intensity information has been used for various applications, including land cover
classification [3,5]; enhancement of lidar ground return classification [8,9]; fusion with multispectral
and hyperspectral data to enable a better characterization of terrain or land cover [10]; derivation
of forest parameters and tree species mapping [11–13]; and production of greyscale stereo-pair
imagery to generate breaklines traditionally used in photogrammetry through a technique named
lidargrammetry [14]. However, the usefulness of lidar intensity information has been fundamentally
limited because it provides a measure of backscatter at a single, narrow laser wavelength band.
This is usually a near-infrared (NIR) wavelength (1064 or 1550 nm) for topographic lidar systems
and a green-blue wavelength [15] for bathymetric lidar systems. Currently, the second harmonic
of neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers, 532 nm, is a common choice for
bathymetric lidars [16]. This single wavelength spectral limitation has been previously recognized and
several experiments have attempted to mitigate it by combining data obtained from individual sensors
that operate at different laser wavelengths [17,18] or by observations from prototype multispectral
lidar systems [19–21]. These multispectral lidar experiments are testament to the potential of this
newly developing remote sensing technique, and as with any other technology, the potential is
coupled with challenges. Some of these challenges are related to physical principles (atmospheric
transparency, background solar radiation, etc.) and hardware limitations (available laser wavelengths,
eye safety) [22], while other limitations are related to software and algorithms (e.g., radiometric
calibration of the raw lidar intensities) [17].

This paper presents a general overview of the design and performance of the first operational
multispectral airborne laser scanner that collects range, intensity and optionally full waveform return
data at three different laser wavelengths (1550, 1064, 532 nm) through a single scanning mechanism.
This airborne multispectral lidar scanner is the Teledyne Optech Titan MW (multi-wavelength)
which was developed based on the specifications and technical requirements of the National Science
Foundation (NSF) National Center for Airborne Laser Mapping (NCALM). The system was delivered
to the University of Houston (UH) in October of 2014. Since then, the sensor has undergone significant
testing, improvement and fine tuning in a wide range of environments [23].

This paper is intended to highlight the flexibility of the Titan to perform 3D and active
multispectral mapping for different applications (bathymetry, urban mapping, ground cover
classification, forestry, archeology, etc.) without delving too deeply into one specific application.
Individual papers that provide more details for specific applications are currently in preparation.
The basic research question addressed in this paper relates to the performance of the Titan system,
which, given its operational flexibility, has to be assessed using a variety of metrics that vary according
to the application. The performance metrics discussed within this work are: (a) the accuracy of
experimental ground cover classification based on un-calibrated multispectral lidar return intensity
and structural metrics in an urban environment (Houston, TX, USA); (b) maximum water penetration,
and (c) accuracy of the measured water depths under ideal bathymetric mapping conditions (Destin, FL,
USA, and San Salvador Island, Bahamas); (d) canopy penetration; (e) range resolution in tropical
rain forests (Guatemala, Belize and Mexico); and (f) precision and accuracy of topographically
derived elevations.

It is important to clarify that since the delivery of NCALM’s original Titan system,
the manufacturer has produced other Titan sensors; however, not all units have the same engineering
specifications or system design. The design of the sensor is flexible, allowing the exact configuration
and performance of the unit to be adapted to the specific needs of a customer. The discussion presented
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below is specific to the design and performance of the NCALM unit and may not be applicable or
reproducible for other Titan units, even though they carry the same make and model designation.

This paper is structured as follows: Section 2 presents a high-level description of the Titan system
design and operational characteristics; Section 3 presents the results and discussion of performance
tests related to (a) ground cover classification based on multispectral intensity; (b) bathymetric
capabilities; (c) canopy penetration and characterization; (d) redundancy and diversity design schemes;
and (e) vertical positional precision and accuracy; finally, conclusions are presented in Section 4.

2. Titan Instrument Description

The first Titan MW lidar sensor (Serial number 14SEN/CON340) was developed to meet
operational specifications and requirements established by NCALM. The specifications called for
a multipurpose integrated multichannel/multispectral airborne mapping lidar unit, with an integrated
high resolution digital camera that could seamlessly map terrain and shallow water bathymetry
environments from flying heights between 300 and 2000 m above ground level (AGL). NCALM’s
operational experience with airborne lidar units operating at 1064 and 532 nm wavelengths, and the
requirement to perform simultaneous terrestrial and bathymetry mapping, determined two of the three
laser wavelengths. There were several laser wavelengths considered for the third channel, including
950 and 1550 nm; however, the 1550 nm option was selected because of the ease in complying with
eye safety regulations, the proven reliability of the laser sources, and because it results in nearly
equally spaced (500 nm) spectral sampling wavelengths when combined with the 1064 and 532 nm
wavelengths (Figure 1).

Figure 1. The Titan’s operational wavelengths with reference to reflectance spectra of different land
cover features and the Landsat 8 Operational Land Imager (OLI) passive imaging bands.

NCALM’s Titan has two fiber laser sources. The first source “Laser A” has a primary output at
1064 nm. Part of the 1064 nm output is directly used as channel two for the lidar and another part of the
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output is passed through a frequency-doubling crystal to obtain 532 nm wavelength pulses for channel
three of the lidar unit. The second laser source, “Laser B”, has its output at the 1550 nm wavelength and
is used as the source for lidar channel one. Both lasers are synchronized and can produce pulse rates
between 50 and 300 kHz, programmable at 25 kHz intervals. The laser output of the Titan corresponds
to Class IV as per United States Food and Drug Administration, 21 Code of Federal Regulations
1040.10 and 1040.11; International Electrotechnical Commission 60825-1. The characteristics of the
individual laser sources as well as other characteristics of each lidar channel required for assessing
system behavior and performance are presented in Table 1.

Table 1. Performance specifications of each of the Titan’s channels.

Channel 1 Channel 2 Channel 3

Laser Wavelength (nm) 1550 1064 532
Look angle (degrees) 3.5 forward nadir 7.0 forward

Pulse Repetion Frequency (kHz) 50–300 50–300 50–300
Beam Divergence (mRad) ~0.36 ~0.3 ~1.0

Pulse Energy (µJ) 50–20 ~15 ~30
Pulse Width (ns) ~2.7 3–4 ~3.7

Other equipment providers offer single-pass multispectral lidar systems by mounting, either in
tandem or side by side, individual sensor heads operating at different wavelengths [22]. However,
for the Titan system, we required the operation of the different wavelengths’ lasers through a
single scanning mechanism to provide near-identical swaths from the three wavelength channels.
The channels are arranged such that the 1064 nm channel points at the nadir, and the 1550 and 532 nm
channels are pointed 3.5◦ and 7◦ forward of the nadir, respectively. The primary reason for this
configuration was to minimize returns from the water surface and maximize the probability of water
penetration for the 532 nm pulses. A secondary reason was to maximize correlation with legacy lidar
datasets collected with a 1064 channel pointing to the nadir. The Titan scanner has a ±30◦ field of scan
and a maximum scanner product (half scan angle × scan frequency) of 800 degrees-Hertz. The beam
divergence values are close to 0.3 milliradians for the 1064 and 1550 nm channels and one milliradian
for the 532 nm channel (see Table 1). Boresight parameters for each channel are currently determined
independently, and combined with the sensor model in the manufacturer’s proprietary software to
obtain a geometrically correct and consistent point cloud. Individual point cloud files are generated
for each flight line and channel.

The laser return signal is analyzed in real time through an analogue constant fraction discriminator
(CFD) [24,25] which detects and records discrete laser returns (range and intensities) at all pulse
repetition frequencies. While the system can detect a large number of returns per pulse, it only records
up to four returns for each outgoing laser pulse (first, second, third and last). In addition to the
analogue CFD, the outgoing and return waveforms of all the channels can optionally be digitized at a
12 bit amplitude quantization resolution and at a rate of 1 gigasample/s. Currently, this digitization can
only be done for each outgoing pulse and return waveforms at a maximum PRF of 100 kHz; for higher
PRFs, full waveform digitization is only performed for a decimated subset of the emitted pulses.

The Titan is capable of ranging beyond the single pulse-in-the-air limit (range ambiguity), meaning
that it is able to obtain accurate ranges at high PRFs when there are several laser pulses from each
channel in the air simultaneously before a return from the first emitted pulse is obtained [26,27].
The Titan is capable of measuring in a fixed multi-pulse mode, which means that the sensor needs to
be aware of how many pulses are planned to simultaneously be in the air in order to compute accurate
ranges. This is done in the planning phase of the data collection. If, for some reason, the actual number
of pulses-in-the-air (PIA) is different than the planned value, the system will produce erroneous range
values. This fixed multi-pulse capability has certain combinations of ranges and PRFs where the
sensor is not able to resolve the range ambiguities and which the manufacturer calls “blind zones”.
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The PRFs and range regions where the Titan can work without suffering range ambiguity for a given
PRF are displayed in Figure 2 as the white regions between the colored bands and labeled according
the number of pulses-in-the-air (PIA) at a given time.

 

Figure 2. Pulse repetition frequency (PRF) versus range operation regions for NCALM’s Titan sensor.
The graph shows both regions of operation (white) as well as range ambiguity regions depicted as the
solid colored bands.

Technically, the range ambiguity only occurs at a specific range or multiples of this range value.
However, due to the wide scan angle and the forward-looking channels on the Titan (channel 1 and
channel 3), the specific range at which the ambiguity occurs turns into a band of range values as it
applies to the entire sensor. These blind zones, or, more accurately, ambiguity zones, are depicted as
the solid color bands in Figure 2. Figure 2 also illustrates that as the PRF increases, the different PIA
regions of operation get smaller. Another way of visualizing these regions of operation is to relate
them to how much range variation the sensor can experience within a single flight line as the result of
terrain variation or elevation of manmade structures. The higher the PRF, the less terrain relief can be
tolerated by the sensor without entering into the range ambiguity regions depicted in the figure.

The laser shot densities obtainable with the Titan are mainly a function of instrument parameters
(laser PRF, scan angle, scan frequency), and flying parameters (ground speed and flying height
above terrain). However, eye safety regulations and range ambiguity also limit the maximum
measurement density obtainable for a specific flying height. Figure 3 illustrates the laser shot density
operational envelope of the Titan as a function of the flying height for a single channel and single
pass (i.e., no swath overlap). The figure is for reference only and is based on the specific assumptions
described below; density values outside the envelope can be obtained under specific circumstances
but are not considered to be normal mapping operations.

75



Remote Sens. 2016, 8, 936

Figure 3. Laser shot density envelope for a single pass and single channel of the Titan sensor.

In Figure 3, the lower limit of the envelope is obtained by assuming the lowest PRF of 50 kHz,
a ground speed of 150 knots and a scanner operating at 25 Hz at the maximum field of view (±30◦).
At lower flight heights the maximum density is limited by eye safety considerations. Each laser PRF
has a nominal ocular hazardous distance (NOHD) that increases as the PRF increases. While it is
technically possible to operate at higher PRFs at low altitudes, this does not comply with applicable eye
safety regulations and thus it is necessary to use the maximum PRF that ensures exceeding the NOHD
at ground level (see Figure 3). The upper limit of the envelope is obtained by assuming the highest
possible PRF for a given flying height (taking into account the range ambiguity regions), a ground
speed of 150 knots and a scanner operating at 70 Hz and a very narrow field of view (±10◦). The peaks
and valleys in the upper envelope limit are caused by the range ambiguity regions (Figure 2) given
that for specific flying heights the Titan’s maximum operation PRF of 300 kHz per channel falls within
a range ambiguity region and thus the PRF has to be reduced to measure unambiguous ranges.

The digital camera integrated into the Titan sensor is a DIMAC Ultralight (also known as D-8900).
The D-8900 is based on a charged coupled device (CCD) with 60 megapixels, each with a dimension of
6 µm × 6 µm. The pixels are arranged in an array of 8984 pixels oriented perpendicular to the flight
direction and 6732 pixels along the flight direction, which translates to a CCD physical frame size of
5.39 cm × 4.04 cm. The image is formed on the focal plane through a compound lens with a nominal
focal length of 70 mm. The combination of the lens and CCD array yields a total field-of-view (FOV) of
42.1 × 32.2 and a ground sample distance (GSD) of 0.0000825 × flying height. The position of the CCD
is adjusted during flight by a piezo actuator to compensate for the motion of the aircraft during an
exposure, reducing the pixel smear at very small GSDs. The digital camera can be triggered in a variety
of modes (time interval, position) from the Titan control software, or independently through its own
control software. In addition to its integrated camera, the Titan system can interface with other imaging
sensors; for example, NCALM has integrated the Titan with an ITRES CASI-1500 hyperspectral camera.

Physically, the Titan consists of a sensor head and sensor control rack. The sensor rack in
its base configuration consists of an electrical power unit and a control computer. Depending on
what components are being operated in conjunction with the lidar sensor, the control rack can also
incorporate up to three additional control computers for the waveform digitizers (one per channel)
and the control computer for the digital camera. The sensor head is basically a cylinder with a box
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on the top; the cylinder houses the optical components (scanner, camera, lasers) and the system
inertial measurement unit (IMU), and the box on top encloses the electronic components of the sensor.
The cylinder has an approximate diameter of 45 cm and a height 55.5 cm. The sensor control rack is
enclosed in an Edak transit case with a standard 19-in-wide rack and a footprint of 2600 cm2. Figure 4
shows photos of the Titan sensor integrated on a DHC-6 Twin Otter airplane.

Figure 4. The Titan multspectral lidar sensor integrated into a DHC-6 Twin Otter aircraft: (a) Overview
of installation layout from the port side of sensor head; (b) View from front looking aft, sensor control
rack is in the foreground, sensor head in the background; (c) View of the sensor head through the
mapping port of the aircraft. The laser output window is the rectangular window on the right, and the
DIMAC camera lens is behind the circular window.

3. Field Testing of Capabilities

Since the delivery of the Titan sensor to NCALM in October 2014, the sensor has been used
to collect data for more than 30 projects across the United States and in remote locations such as
Antarctica and the Petén jungle in Guatemala. With over 140 h of laser-on operation, the Titan sensor
has been tested in a wide variety of environments, for diverse applications and throughout its design
operational envelope. Table 2 presents details of the mapping and test projects acquired with the
Titan sensor. In addition to project data collection, NCALM has also performed tests to assess the
performance of the sensor under different operational conditions. This paper presents results from
some of these performance tests focused on ground cover classification based on multispectral lidar
intensity and structural metrics in urban environments, bathymetry (maximum detectable depth and
accuracy of bathymetric elevations), the ability to penetrate thick tropical forest canopies, the ability
to finely resolve the vertical structure of vegetated environments (range resolution), and its vertical
positional accuracy.
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Table 2. Summary of projects and test collections to date with the Titan system.

Project/Test Location
Collection Year and

Day of Year
Primary Application

Laser on Time
(H)

Baytown, TX, USA
2014: 289, 300
2015: 47, 222

2016: 127–129
System test

Houston, TX, USA 2014: 289 System test 0.4
Jordan, MT, USA 2014: 291 Geomorphology 0.7

Hebgen Lake, MT, USA 2014: 292 Tectonics 1.1
Big Creek River, ID, USA 2014: 293 River bathymetry 1.0

Greys River, WY, USA 2014: 295 River bathymetry 1.3
Bishop, CA, USA 2014: 296 Geomorphology 0.7

Wheeler Ridge, CA, USA 2014: 296 Geomorphology 0.8
Yucaipa, CA, USA 2014: 297 Forestry 0.9
Beaver, UT, USA 2014: 299 River morphology 0.7

McMurdo Dry Valleys, Antractica 2014: 338 to 2015: 19 Geomorphology 47.5
El Ceibal, Peten, Guatemala 2015: 77–82 Archaeology 5.5
Zacapu, Michoacan, Mexico 2015: 88 Archaeology 0.7

Angamuco, Michoacan, Mexico 2015: 88 Archaeology 0.8
Teotihuacan, Mexico 2015: 91–92 Archaeology 1.69

Laser Servicing
Trinity River, TX, USA 2015: 219–222 River morphology 4.8

NASA JSC Clear Lake, TX, USA 2015: 223–227 Climate change resiliency 5.1
Barataria Bay, LA, USA 2015: 228–230 Marsh response to oil spill 6.8
Destin Inlet, FL, USA 2015: 231 Bathymetry test 1.5

Apalachicola, FL 2015: 232–233 Aquatic ecosystem 1.6
Redfish Bay, TX 2015: 235 Bathymetry test 0.8

Texas Gulf Coast, USA 2015: 235 Coastal morphology 0.5
Reynolds Creek, ID, USA 2015: 289, 294 Ecology 2.6

Santa Clara River, CA, USA 2015: 291–293 River morphology 3.4
Calhoun Creek, SC, USA 2016: 057 Ecology 2.2

Laser Servicing
Campeche, Mexico 2016: 138–141 Archaeology 7.6

Lake Peak Fault, CA, USA 2016: 155 Tectonics 1
Inyo Domes, CA, USA 2016: 158 Geomorphology 0.5

Monterey, CA, USA 2016: 157, 159 Urban spectral classification 0.7
Bastrop, TX, USA 2016: 161 Orthophotos 0.3

NorthWestern Belize 2016: 184–186 Archaeology, Geomorphology 5.0
San Salvador, Bahamas 2016: 189–191 Island hydrology 7.0

Mayan Biosphere Reserve, Peten, Guatemala 2016: 197–207 Archeaology, Ecology 23.7

3.1. Multispectral Capabilities

The Titan senor was designed as a flexible multi-purpose and multi-application system;
therefore, it may not outperform systems that were designed exclusively for bathymetry or for
topographic mapping from high altitudes. However, one application for which it can excel is
providing high resolution active multispectral data derived from lidar intensity. In theory and in
practice, multispectral lidar intensity can be used for many applications, including return/target
classification [28,29]; individual tree identification, parameterization and classification [30]; water/land
interface identification; and archaeological feature detection [31], among many others. Several years
will go by before scientists in each of the above-mentioned fields will have an opportunity to assess the
utility of the Titan multispectral lidar datasets as compared to what has been theorized or experimented
so far. For brevity, this paper will only briefly describe the use of Titan multispectral data to generate
active lidar intensity images, describe the advantages and limitations of these intensity products and
provide an example of ground cover classification using Titan data.

It does not take much imagination to realize that the simplest way to use multispectral lidar
intensity is to enhance the visualization of lidar data, just as single-wavelength intensity values
have been used in the past. As such, the most basic way of utilizing the multispectral intensity is
for rendering false colored point clouds, where the intensity of each return is used to assign hue
saturation and brightness values. In this application, the hue and saturation are assigned based on the
laser wavelength and the lidar return intensity value determines or modulates the brightness value.
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The advantage of this approach is that the renderings can retain the precise and complex 3D spatial
nature of the lidar data despite the return locations being irregularly spaced.

Multispectral lidar intensity can also be used to generate two-dimensional (2D) active intensity
images by combining the spatial and spectral information of each laser return. There are several
approaches to produce intensity imagery from irregularly spaced lidar point cloud data. The first and
simpler method consists of assigning a greyscale value corresponding to the lidar intensity to each
return and then rendering the point cloud in two dimensions to create a top-view intensity image.
A second approach, which is more elaborate and provides more control over the spatial integrity of
the image, consists of interpolating the intensity values into a regular two-dimensional horizontal
array (grid) using methods such as triangulation with linear interpolation, kriging, or inverse distance
weighting, etc. This method is particularly useful when the horizontal distribution of the lidar returns
is sparse as compared to the desired grid (raster) resolution.

When the return density is high enough to provide several laser returns per raster cell, it is possible
to use a third approach. This approach consists of deriving a single intensity value for each raster cell
from the intensity values of all the returns within the given raster cell. The resultant intensity raster
can be produced by averaging intensity values using simple or weighted methods or determining
minimum, maximum, standard deviation or any other statistical metric to characterize the returns’
intensity within the raster [32]. Herein, we refer to this approach as “binning”. One advantage of
binning, especially when it uses some sort of averaging mechanism, is that it reduces the variability
of intensity values due to factors that are difficult to account for, such as irregular incidence angles
and varying surface roughness. However, the greatest advantage of this method is that it enables the
generation of false color imagery from multi-wavelength lidar intensities even when the centers of
the footprints at the different wavelengths may not be exactly collocated, which is the case for the
Titan sensor.

Figure 5a–c show intensity images generated using the binning method for data collected with the
Titan sensor over the campus of the University of Houston. When intensity information is available
for three or more independent wavelengths, it is possible to generate false color RGB imagery. In the
case of the Titan, with three different wavelengths, it is possible to combine the intensity images in
six different arrangements. Figure 5d shows a false color RGB combination using the intensity from
the 1550 nm wavelength as the red channel and the 1064 and 532 nm wavelengths’ intensities for the
green and blue image channels, respectively. By combining independent intensity images into a false
color RGB image, it is possible to access the multidimensionality of the color space which can highlight
features that perhaps are not easily identified in a single-wavelength grayscale intensity image.

In addition to using binning to generate intensity rasters, the same technique can be applied
to the elevation values of the returns within a bin to generate what in this paper are referred to as
“structural” images (Figure 5e–g), as they provide information on the vertical structure of the targets
within a raster cell. Similar to the way the intensity images are produced, the structural images are
produced by assigning a single value to the raster based on some statistical measure derived from the
elevations of the returns within a cell. These structural rasters can be generated from either absolute
geodetic elevations (ellipsoidal or orthometric) or relative elevations such as height above local ground.
For land cover classification purposes, statistical dispersion metrics such as elevation spread and
standard deviation can be computed from either absolute or relative elevation values. However,
for averaged elevation metrics to be of any use for classification, they need to be computed from
relative elevation above local ground values. These structural images have great potential for assisting
land cover classification tasks because different kinds of targets (buildings, roads, trees, power lines,
etc.) have very distinct elevation signatures. Other structural metrics can be derived not only from
elevation values but from return statistics such as the number of returns detected from a given raster
cell (return density) and the ratio of returns to laser shots (Figure 5g). These return metrics images can
be used to segregate impervious (roads, ground, building roofs) and diffuse targets (vegetation and
water). Structural metrics from different lidar wavelengths can also aid in land cover classification.
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For example, a difference in mean elevation between structural images based on the 532 nm and either
of the NIR wavelengths, for a given set of pixels, will indicate a potential water body, because the
532 nm wavelength may produce multiple returns from the water surface, the water column and
the benthic layer, while the NIR wavelengths will detect returns only from the water surface or no
returns at all.

 

Figure 5. Intensity and structural images generated from the Titan multispectral data. (a) Intensity
image generated from the 1550 nm channel; (b) intensity image for the 1064 nm channel; (c) intensity
image for the 532 nm channel; (d) false color multispectral intensity image generated by using the
1550 nm intensity for the red channel and the 1064 and 532 nm intensities for the green and blue
channels; (e) structural image based on the spread of the returns height; (f) structural image based on
the height above ground; (g) structural image based on the number of returns per pulse; (h) ground
cloud classification results map.

Active intensity and structural images have some advantages over traditional passive images;
specifically they: (a) eliminate the dependency on solar illumination (imagery can be collected
at night or below the cloud ceiling); (b) greatly reduce the effects of shadowing and occlusions
caused by buildings and topography; (c) provide good knowledge of the illumination source
(wavelength, amplitude, phase, polarization, etc.) which, in principle, should allow for easier
calibration to remotely obtain target physical properties; and (d) provide images that are almost
perfectly orthorectified, only limited by the positional accuracy of the lidar returns. However, there are
also limitations or disadvantages of active intensity imagery, including: (a) the limited number
of available laser wavelengths defined by the energy level transitions of the lasing materials and
processes; (b) atmospheric attenuation of laser energy in the visible and near-infrared wavelengths
by low altitude (below sensor flying level) atmospheric phenomena such as clouds, haze and fog;
and (c) the target surface is only partially illuminated (spatial sampling) by the lidar beams rather than
fully illuminated as in the case of passive imagery where almost the entire area (with the exception of
areas with shadows) is illuminated by the sun. The active lidar intensity and structural images can
be analyzed with the same techniques that are used to analyze images derived from passive optical
sensors, for example to generate land cover classification maps (Figure 5h).
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3.1.1. Land Cover Classification Based on Active Spectral and Structural Data

To illustrate the multispectral capabilities of the Titan sensor, this section presents and discusses
results from an experiment conducted with the goal of assessing the value of lidar multispectral
intensities for the purpose of ground cover classification. Data for this experiment was collected with
the Titan sensor on 16 October 2014 over the campus of the University of Houston located in Houston,
Texas. The collection was performed from 500 m AGL with the scanner running at full scan angle
(±30◦) and a PRF of 250 kHz per channel; the swaths had a lateral overlap of 50% (edge of swath over
the centerline of the adjacent swath).

For this experiment, the raw intensities obtained by the sensor were only normalized by range and
no further geometric or radiometric calibration or correction was performed. The intensity information
from each of the Titan channels was binned into 2 m resolution images by averaging the intensity of
all the returns within the bin. The raw images were then rescaled to a range of 0–255, assigning the
99th percentile of the intensity values a digital number of 255 (Figure 5a–c). In addition, five structural
images with a 2 m resolution were generated by binning height values of the returns (Figure 5e–g).
These structural images are based on the average height of returns above ground, the spread of the
returns’ height (max height–min height), the number of returns per pulse, the number of first returns
and the number of total returns. All of these structural metrics were generated from Titan channel
1 data.

Five ground cover classes were targeted for classification: grass/lawn, road/parking, trees and
short vegetation, commercial buildings and residential buildings. The training and validation samples
used to run and assess the accuracy of the classification were selected from the training and validation
datasets originally prepared for use in the 2013 Institute of Electrical and Electronics Engineers (IEEE)
Geoscience and Remote Sensing Society (GRSS) data fusion contest [33]. The contest dataset was
developed based on the analysis of high resolution imagery and ground verification collected in 2012,
and contains samples from 15 ground cover classes. For the experiments presented here, the 15 ground
classes were merged into the five classes previously described. Because of the temporal difference
between the collection of the validation and the test data, some areas in the test data were masked
due to the significant changes that occurred in the interim time period. Table 3 presents the number of
pixels used for training and validation for each of the target classification classes.

Table 3. Detail of the number of training and validation samples used for each ground cover class.

Class Training Validation

Grass 169 1269
Tree 123 771

Residential 24 412
Commercial 172 1089

Road 520 1203

Eight different image stacks were generated, based on the combination of different spectral and
structural images (refer to Table 4). The contents of these image stacks were varied and included
stacks that contained: (a) only the five structural bands (what was available from the first-generation
lidar systems without intensity measurements); (b) five structural bands plus one intensity band
(what was available from the early generation of lidar systems); (c) five structural and the three
intensity images (what is available with the Titan system); and (d) only the spectral information from
the three Titan channels. The purpose of generating these sets of images that contained progressively
more information was to assess how the quality of classification improves as more spectral information
is made available, representing the technological progression of lidar systems.

Two supervised parametric classification methods were selected for the analysis: the Mahalanobis
distance and the maximum likelihood classifiers. The Mahalanobis distance is the most rigorous of the
minimum-distance-to-means supervised classifiers that do not consider training sample variance, while
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the maximum likelihood classifier not only considers the distance between training sample means
but also considers the sample variance [34]. Using two different classification approaches allows an
assessment of trends in the classification accuracy analysis. The results for the classification experiments
are presented in Table 4. The results are consistent with initial expectations: having more independent
spectral and structural data sources enables higher-accuracy classification results. With only structural
information, the classification accuracy is only at 55%–65%; once spectral information from one
intensity channel is added, the accuracy rises to 90% (for the maximum likelihood classifier and the
image stack that contains the 1064 nm intensity). The results indicated that the intensity band that
provides the most separability between the selected classes is 1064 nm. If only spectral information
from the three different channels is utilized, the classification accuracy ranges between 74% and 78%.
It is interesting to note that the best classification accuracy obtained (90.22%) was from an image stack
that contained all structural images and only two of the intensity images (1064 and 532 nm). The best
classification accuracy based on the image stack that contained all the spectral and structural images
was 88.15%, which is just marginally below the overall best result.

The reason behind this reduction in the classification accuracy, when going from two to three
intensity bands, has to do with the role of the intensity bands in training the classification algorithms
for the residential and commercial building classes. These two classes are very similar in structural
bands (most of the difference is from the height above ground band). With more intensity bands,
the within-class variance of the commercial buildings increases drastically (given the wide variety
of materials used in constructing or covering of the rooftops). This in turn increases the correlation
between commercial and residential building classes and results in misclassification of residential
buildings into the commercial buildings class and, therefore, a higher omission error for the residential
buildings class and a higher commission error for the commercial buildings class.

Table 4. Accuracy assessment results from ground cover classification experiments.

Image Stack

Mahalanobis Distance Maximum Likelihood

Overall
Accuracy (%)

Kappa
Coefficient

Overall
Accuracy (%)

Kappa
Coefficient

1550, 1064, 532 nm + 5 st 80.59 0.75 88.15 0.85
1550, 1064 nm + 5 st 76.94 0.7 87.27 0.83
1064, 532 nm + 5 st 82.33 0.77 90.22 0.87

1550 nm + 5 st 63.41 0.53 67.96 0.58
1064 nm + 5 st 77.16 0.71 89.89 0.87
532 nm + 5 st 60.15 0.5 80.31 0.74

5 st (only structural) 55.63 0.45 63.12 0.52
1550, 1064 and 532 nm 74.18 0.67 78.64 0.72

This classification experiment is relatively basic; however, it does showcase the usefulness and
promising future of active intensity images and multispectral lidar even when the intensity values
have not been calibrated or corrected to reflectance estimates. Performing more complex intensity
corrections and ground cover classification experiments is outside of the scope of this paper. However,
it is worth mentioning that other research groups are performing such experiments based on Titan data
with very promising results [29,35], while others have been actively working on the field of radiometric
calibration of single and multispectral lidar intensities [4,6,7,17,36].

3.1.2. Qualitative Multispectral Observations

Besides the analytical classification results described in Section 3.1.1, it is also possible to combine
the false color active multispectral images with other structurally derived products to produce
data visualizations that exploit the complementary nature of the three-dimensional spatial and
three-wavelength spectral information of the Titan data. Figure 6c illustrates the combination of
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spectral and spatial information obtained with the Titan sensor for the Mesoamerican archaeological
site of Teotihuacan in central Mexico. Figure 6c was generated by overlaying a false color image derived
from the Titan’s multispectral intensity (Figure 6a) over a 3D surface model derived from the lidar
spatial data (Figure 6b). Figure 6a is the 2D active multispectral image where the information for the red,
green and blue image channels was derived from the 1550, 532 and 1064 nm intensities, respectively.

 

Figure 6. Spectral and spatial data products derived with the Titan sensor of the archaeological site of
Teotihuacan in central Mexico. (a) False color multispectral lidar intensity image generated by using
the 1550 nm intensity for the red channel and the 532 and 1064 nm intensities for the green and blue
channels; (b) digital surface model (DSM) derived from the lidar spatial data; (c) perspective view
generated by overlaying the false color multispectral intensity image over a 3D surface model based on
the lidar DSM.

Renderings like the one presented in Figure 6c enable researchers to visualize the relationship
between topography and spectral features in a single hybrid domain. In this case, because the
archaeological site is only sparsely covered with vegetation, it is possible to visually discriminate
among a multitude of surface differences. Areas with short shrubs and grasses appear in
yellowish-brown tones, areas with loose gravel or bare compacted soil that are used for pedestrian
traffic appear in greenish tones, and areas that are used for parking lots appear as bright red-pinkish
areas. It is even possible to discriminate between vegetated areas that appear to be under different
levels of water stress. One such area is the quasi-circular feature characterized by a reddish-brownish
tone marked with a black arrow in Figure 6a. This type of combined height relief and spectral data
and visualization are very promising for the field of archaeology, especially in deserts and sparsely
vegetated areas, as illustrated here and by a previous experiment in a Roman cultural setting and
European landscape [37]. As more multispectral lidar data is made available to the research community,
its utility for identifying archaeological features will become more apparent.

Similar discrimination capabilities based solely on lidar intensity have been observed in other
datasets. For instance, in data collected at the US McMurdo Antarctic Station it was possible to
discriminate between snow that was mechanically compacted to make ice roads from snow that was not
disturbed. Figure 7 illustrates this differentiation between compacted and loose snow. Figure 7c,d are
active intensity images generated from channels 1 (1550 nm) and 2 (1064 nm), respectively, where the
ice roads have been marked with the aid of yellow arrows. These roads are also evident in Figure 7b
which is a perspective view of a 3D digital surface model that has been overlaid with a false color
multispectral lidar image.
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Figure 7. Potential spectral separability of loose and compacted snow, roads with compacted ice and
snow are marked with yellow arrows in the figures. (a) Aerial oblique image of McMurdo Station
at the time of lidar data collection; (b) Perspective view of a 3D surface model overlaid with a false
color lidar intensity image; (c) Active intensity image generated from the 1550 nm channel; (d) Active
intensity image generated from the 1064 nm channel.

Other spectral characteristic that will prove very useful in the future, specifically for automatic
bathymetric processing, will be the ability to automatically delineate the water-land interface based
solely on multispectral intensity. Several studies have already been conducted into this water-land
interface delineation with single-wavelength lidar sensors [38,39], but the improvement based on
multispectral intensity still needs to be investigated.

3.2. Bathymetric Capabilities

A principal design criterion for the Titan was the ability to perform seamless high resolution
bathymetric and topographic mapping in areas where the terrestrial and aquatic domains overlap
(marshes, rivers, lakes, coastal and estuarine). This criteria was meant to improve upon the capabilities
obtained with the single-wavelength Aquarius lidar bathymetric sensor described in [16]. The Titan
bathymetric channel is designed based on a performance specification of 1.5/Kd considering a
flying height of 400 m above water and a benthic reflectivity of 20%. Kd is the diffuse attenuation
coefficient [40] for water at the 532 nm wavelength and can be conceptually simplified as a measure of
the “transparency” of the water. The 1.5/Kd performance specification establishes a theoretical limit
for the water penetration capabilities of the Titan for a given benthic reflectivity and flying height.
For example, if the Kd of the water body is 0.5 m−1, then the maximum water penetration would be
1.5/0.5 = 3 m. If the Kd is 0.1 m−1, the maximum depths that could be mapped would be around 15 m,
assuming the same bottom reflectivity and flying height.

Bathymetric projects have been performed in river, coastal and ocean environments (see Table 2).
The results presented below are from experiments performed near Destin, Florida, USA,
more specifically over the East Pass, which is the entrance to Choctawhatchee Bay from the Gulf
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of Mexico, and it is located to the west of Destin (Figure 8). The East Pass is protected from the shifting
sands of the Gulf of Mexico by twin channel jetties, which were constructed by the U.S. Army Corps of
Engineers (USACE). The East Pass channel is regularly dredged to maintain the mean channel depth.
This is a good location for testing the bathymetric performance of the system under close to ideal
conditions, meaning very clear water and a very reflective benthic layer. The East Pass is also a good
test location because within a relatively small geographic area the water depth changes dramatically
from very shallow to depths of more than 15 m. In addition, the constant flow of water moving in and
out of the inlet produces complex sand features which are ideal for elevation accuracy assessment,
and the subaquatic environment contains areas of bare sand and areas covered by sea grass which
provide variation in the benthic reflectance.

The red line on Figure 8 represents the flight line track that was flown for the tests, with one end on
the Gulf side of the inlet and the other on the bay side. Bathymetric testing in this area was conducted
twice, the first time on 19 August 2015 and the second time on 11 May 2016. This double collection
was due to the fact that, during the first data collection, it was discovered that the energy output
of the 532 nm channel, which is the one responsible for the bathymetry measurement, was severely
degraded. The laser source for the 1064 and 532 nm channels was eventually replaced and the test
repeated. The results from the water penetration test come from the data collected in May 2016 and
the data for the accuracy assessment of measured water depths comes from the August 2015 collection.
It is important to note that the results presented in the sections below are derived from the discrete
output of the bathymetric channel. Full waveform data were also collected during these bathymetric
tests; however, processing and analysis of the waveform data is outside the scope of this paper.

Figure 8. Illustration of the bathymetric test area: the East Pass near Destin, FL, USA. The solid red
line represents the test line that was flown multiple times with different configurations. The white
solid line represents the track of the validation samples obtained with an acoustic Doppler current
profiler. The yellow rectangle represents the coverage of one the acquired test lines, and the bathymetric
elevations derived from that test line dataset are presented as a color map that is offset to the east of
the pass.
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3.2.1. Maximum Water Penetration

For the water penetration tests, the flight line was acquired a total of six times from two different
altitudes above the water level (300 and 500 m). These altitudes represent the upper and lower
limits of the recommended bathymetric operational envelope for the Titan. Each time the line was
flown, the system PRF was varied between 75 and 200 kHz. These configurations of altitudes and
PRFs allow for an assessment of the bathymetric performance of the Titan across the bathymetric
PRF-altitude envelope.

The results summarized in Table 5 indicate a fairly uniform performance across the PRF
operational spectrum, which is a considerable improvement with respect to the Aquarius system,
which displayed better penetration performance for lower PRFs [16] due to the higher energy per pulse
at lower PRFs. As expected, there was a small decrease in the penetration performance as the flying
height was increased from 300 to 500 m above the water. The maximum mapped depths obtained
from the Titan are comparable to the ones obtained with the Aquarius sensor at its highest PRF of
70 kHz. Some deeper measurements were obtained by the Aquarius on the bay side of the pass at its
lowest PRF of 33 KHz [16]. However, the Titan performance is superior to the Aquarius with respect to
bathymetric return densities, doubling the Aquarius densities even when the Titan returns are spread
over a wider swath. The penetration depths are lower on the bay side of the pass mainly for two
reasons: (a) the Kd parameter value is higher on the bay side due to organic and other suspended
solids; and (b) the presence of sea grass reduces the reflectivity of the benthic layer.

As previously discussed, the maximum detectable depth of the sensor is extremely dependent
on both the water transparency and bottom reflectance. The 10.4 m obtained for the Destin test are
by no means the deepest that the Titan sensor can map. On a mapping project on the island of San
Salvador, Bahamas, depths greater than 15 m were detected from a flying height of 500 m and a
PRF of 175 kHz for the bathymetric channel. Figure 9 presents a small sample of the bathymetric
results obtained in the Bahamas. Figure 9a is a rendering of the first return point cloud for the
Titan bathymetric channel, colored by flight line and intensity. This point cloud rendering illustrates
segments of three overlapping flight lines. Figure 9b is an image map generated from the topographic
and first-order-corrected bathymetric DEM. The map is color-coded by elevation from the water surface
at the time of collection. Figure 9a illustrates that laser pulses were fired and produced water surface
returns for the entire length of the flight line segment. However, bathymetric returns (Figure 9b) were
only detected for a subsection of each of the swaths lengths. The bathymetric detection cutoff runs at
an azimuth of about 35◦ east of north and it occurs at an acute angle with respect to the orientation of
the flight swaths which have an azimuth of 10◦ east of north (Figure 9a). This bathymetric detection
cutoff aligns with the San Salvador Island shelf, and the maximum detected depth along the cutoff
boundary for this section of the project area was 16.8 m.

Table 5. Results from the water penetration tests under almost ideal bathymetric conditions near
Destin, FL, USA.

Flying Height PRF Depth Cutoff (m) Return Density (m)
(m) (kHz) Bay Gulf Bay Gulf

300 75 5.9 10 2.8 3
300 150 5.7 10.1 5.8 6
300 200 6.0 10.4 7.5 8
500 75 5.8 9.1 2 2.1
500 150 5.8 9.6 4 4.1
500 175 5.7 9.0 4.6 5

Additional experiments that require complementary measurements, such as water turbidity,
Kd values, Secchi depths and bathymetric reflectance and elevations, are necessary to rigorously
determine if the Titan performs to the 1.5/Kd specification. However, the initial results from tests and
mapping flights are very promising both in terms of depth penetration and bathymetric density.
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Figure 9. Small sample of a bathymetric survey surrounding the Green Cay, Bahamas: (a) Rendering
of the point cloud of the first returns of the bathymetric channel colored by flight line and intensity;
(b) Topographic and bathymetric color map showing water depths and island elevations.

3.2.2. Accuracy Assessment of Measured Water Depths and Bathymetric Elevations

The maximum lidar bathymetric mapping depth is just one of the important bathymetry
performance metrics; another critical factor is the accuracy of the measured water depths and
bathymetric elevations. The accuracy of the determined water depth is of importance, because the
position of the bathymetric returns needs to be corrected for the refraction of the laser path in proportion
to the distance the laser beam traveled through the water. To perform an independent water depth
accuracy assessment, validation data were collected with a SonTek acoustic Doppler current profiler
(ADCP) (San Diego, CA, USA) during the August 2015 bathymetric tests near Destin, FL, USA.
The ADCP was mounted on a small catamaran that was towed with a pontoon boat. A geodetic-grade
dual frequency marine antenna (Ashtech 700700; Sunnyvale, CA, USA) was mounted over the ADCP
electronics box and connected to a Trimble NetR9 receiver to provide precise post-processed differential
GPS positions using a GPS reference station no more than 10 km away (see Figure 10a). The ADCP
sensor head has three transducers and takes depth and water flow measurements every 5 s. A total of
2489 measurements were collected along the boat track, the white trajectory in Figure 8. SonTek reports
a depth resolution of 0.001 m and a best scenario accuracy of 1% over the range from 0.2 to 15 m.

The ADCP data were collected on 20 August 2015, while the lidar data were collected the previous
day (19 August) around the same time of day, making the tidal difference negligible. The water height
at the time of the airborne survey was determined based on the information from Titan channels 1 and 2.
Water depths were determined by applying a 1.33 [41] first-order refraction correction (correction just
for the vertical component) to the differences between the infrared channels and channel 3 (532 nm)
elevations. A geographic subset contained within the main section of the East Pass was considered
for the accuracy assessment. A total of 423 ADC samples and coincident lidar-derived depths were
utilized. Figure 10b shows a dispersion plot of the validation and lidar depth samples; the agreement
between these data sets is good with an R2 of 0.92 and an root mean square error (RMSE) of 0.26 m.
This RMSE value is consistent with other various bathymetric depth or elevation accuracy values
reported for the Aquarius bathymetric Lidar system [16,42,43], and for the Experimental Advanced
Airborne Research Lidar-B (EAARL-B) system [44].
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(a) (b)

Figure 10. Bathymetric depth accuracy assessment equipment and results. (a) Photo of the
SonTek acoustic Doppler current profiler (ADCP) and GPS antenna mounted on a small catamaran;
(b) Dispersion plot showing results from the bathymetric depth accuracy assessment.

From Figure 10b it should be noted that there is a higher dispersion between the lidar-derived
water depths and the reference ADCP data at larger depths. This is due to several factors which
include the selection of the 1.33 refraction correction factor and only applying a refraction correction to
the vertical component of the benthic return. The vertical component correction is a simplification that
allows for a faster computation of the benthic elevations without introducing a significant vertical error
for very shallow water depths. For the Destin project site, which has a gentle bathymetric slope that,
on average, is less than 0.1 m/m, the maximum modeled vertical error induced by not considering the
horizontal refraction correction is 0.08 m at a water depth of 10 m.

3.3. Canopy Penetration and Canopy Characterization Capabilities

ALS or airborne mapping lidar has become the de facto standard remote sensing technique
to obtain ground surface elevations underneath forest and vegetation canopies and it has enabled
multiple scientific applications in fields that range from archaeology to tectonics [1]. It has also been
used extensively for forestry studies over both large scales [45] and for individual tree detection
and biophysical parameter estimation [46,47]. Two important capabilities of ALS systems related
to forested environments concern both the ability of the laser signal to penetrate the canopy to
produce accurate and dense ground returns and the ability to finely and precisely define the vertical
structure of the canopy (related to range resolution). The following sections will present and discuss
experimental results aimed at characterizing the performance of the Titan sensor with respect to canopy
penetration and laser range resolution in vegetated environments. The tests for these characteristics
were performed in the tropical rain forests of Central America and Mexico. The complex and thick
canopies of these forests represent the most challenging and, thus, the ideal location to perform these
assessments. It is important to note that the data used for the following analyses comes from the
analogue discrete detector of the Titan. In theory, if similar analyses were performed from data derived
from the analysis of full waveform returns, the performance of the system could be better. However,
the analyses using the waveform data are outside the scope of this paper.

3.3.1. Canopy Penetration

There have been several experiments aimed at understanding the influence of sensor configuration
and forest physical parameters on the canopy penetration performance for lidar systems [48–52]. All of
these experiments have produced interesting and promising results; however, these studies have
been limited in several aspects: (a) they analyze canopy penetration by isolating one system or flight
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parameter at a time without considering the tradeoff between different parameters (altitude, PRF,
divergence, etc.); (b) they have been performed for a single homogenous study area; (c) while they
provide metrics on the detection of ground returns as a ratio of ground returns to total returns,
these metrics do not account for how much of the target area was illuminated or how the energy per
pulse varies as a function of the system PRF; (d) finally, they analyze data collected from single sensors
that are from older technological generation(s) and are not representative of the current state-of-the-art.

NCALM has conducted similar experiments aimed at understanding how to optimize the
configuration of lidar systems to maximize the detection of ground returns through canopies in
different types of forests [53]. Besides conducting canopy penetration experiments in different
kinds of forested environments, NCALM experiments are unique because emphasis has been placed
on understanding the pulse energy characteristics of the laser source as a function of the pulse
repetition frequency. Previously reported experiments [53] were performed with legacy lidar systems
(Optech 3100, Gemini and Aquarius). These systems were powered by Q-switched solid-state laser
sources. An operational characteristic of such laser sources is that the output laser energy of each
laser pulse decreases when the PRF is increased [53]. Based on this characteristic, maximizing canopy
penetration with these older systems is achieved by a tradeoff between illuminating as much of the
target area as possible, which is directly proportional to the PRF while maintaining enough energy per
pulse to ensure the round trip of the laser pulse through the canopy and back to the sensor (which is
inversely proportional to the PRF). Of course, both of these factors are also affected by the flying height
of the system. An advantage of the Titan fiber laser sources is that the energy per pulse does not
degrade significantly as the PRF increases (Table 1).

The experiments conducted to date with the Titan, the results of which are presented in Table 6
below, reinforce the importance of the energy budget for canopy penetration. However, the energy
characteristics of the Titan laser sources allow for good canopy penetration even at high PRFs. Similar to
the bathymetric performance tests, these canopy penetration tests are conducted by flying the same
flight line over a densely vegetated area several times with varying PRFs and/or flying heights.
These experiments have been performed in the tropical forest near the archeological sites of Calakmul
in Campeche, Mexico (test area 280,020 m2), Lamanai in central Belize (test area 640,726 m2) and El
Ceibal in el Petén, Guatemala (test area 407,694 m2). Once the point cloud data were produced for each
of the test flight strips, data samples common to all of the test strips were cropped to produce identical
areas that were then processed to obtain shot and return statistics including ground return statistics.
The returns are processed to obtain ground returns using the Axelsson algorithm [54] implemented
in the Terrasolid Terrascan software. For consistency, all the above described test areas have been
processed using the same classification parameters (maximum building size 30 m, maximum terrain
angle 88◦, maximum iteration angle 12◦, maximum iteration distance 3 m). The statistical results
recorded for these experiments include: the number of laser shots fired, the number of first, second,
third and last returns obtained, the number of returns per fired shot, the number of ground returns
detected, the fraction of shots that produced secondary, tertiary, last and ground returns, as well as
the associated densities. All of these metrics were analyzed, but for brevity only a subset of these are
summarized in Table 6.

As previously stated, to ensure good canopy penetration and good ground sampling, it is
important that there is enough energy per laser pulse to ensure two-way travel from the sensor
to the ground and back. In a complex multi-story canopy this also translates into the ability of the
sensor to detect multiple returns as the laser pulse propagates through the canopy. This is why Table 6
includes information related to the average number of returns produced per laser pulse. The higher
the number of returns per pulse, the higher the probability that a fraction of those returns will be
from the ground. The table also presents the number of returns that were classified as ground by the
Axelsson algorithm as well as a fraction of returns for which ground returns were detected; it also
summarizes the shot and ground return densities.
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Table 6. Detailed results from the canopy penetration experiments conducted in tropical rain forests.

Configuration Laser Shots Shots/m2 Returns/Shot Ground Returns Shots W Grnd Grnd/m2

Calakmul

125 kHz·W 500 m 1,732,770 6.19 1.54 162,860 9.4% 0.58
100 kHz·W 500 m 1,018,028 3.64 1.71 163,024 16.0% 0.58
70 kHz·W 500 m 725,078 2.59 1.98 195,382 26.9% 0.70
100 kHz 500 C1 591,352 2.11 2.58 395,748 66.9% 1.41
100 kHz 500 C2 596,128 2.13 3.04 448,277 75.2% 1.6
100 kHz 500 C3 587,335 2.10 2.18 350,696 59.7% 1.25

Lamanai

300 kHz 650 m C1 3,291,439 5.14 1.34 160,239 4.9% 0.25
300 kHz 650 m C2 3,314,884 5.17 1.85 234,873 7.1% 0.37
300 kHz 650 m C3 3,282,482 5.12 1.69 140,492 4.3% 0.22
175 kHz 550 m C1 2,709,159 4.23 1.57 198,713 7.3% 0.31
175 kHz 550 m C2 2,715,926 4.24 1.97 242,570 8.9% 0.37
175 kHz 550 m C3 2,708,299 4.23 1.79 147,443 5.4% 0.23
75 kHz 550 m C1 1,026,081 1.60 1.68 98,613 9.6% 0.15
75 kHz 550 m C2 1,035,340 1.62 2.00 107,097 10.3% 0.17
75 kHz 550 m C3 1,019,546 1.59 1.76 61,154 6.0% 0.10

El Ceibal

100 kHz 700 m C1 933,915 2.29 1.78 59,417 6.4% 0.15
100 kHz 700 m C2 933,550 2.29 1.75 40,572 4.3% 0.10
100 kHz 700 m C3 905,700 2.22 1.36 19,643 2.2% 0.05
150 kHz 700 m C1 1,382,953 3.39 1.71 76,700 5.5% 0.19
150 kHz 700 m C2 1,383,895 3.39 1.77 57,607 4.2% 0.14
150 kHz 700 m C3 1,333,620 3.27 1.33 26,178 2.0% 0.06
150 kHz 600 m C1 1,558,967 3.82 1.81 93,086 6.0% 0.22
150 kHz 600 m C2 1,557,677 3.82 1.91 74,269 4.8% 0.18
150 kHz 600 m C3 1,545,070 3.79 1.51 37,294 2.4% 0.09
150 kHz 400 m C1 2,978,301 7.31 2.11 188,587 6.3% 0.46
150 kHz 400 m C2 2,969,762 7.28 2.31 174,980 5.9% 0.42
150 kHz 400 m C3 2,958,431 7.26 2.17 125,777 4.3% 0.31

The first seven rows in Table 6 present results from tests performed in Calakmul and compare
results obtained with the Optech Gemini (rows two to four) and Titan lidar sensors (rows five to
seven). The Gemini data were collected on 23–24 May 2014 and the Titan data were collected on
18 May 2016. All data were collected from a flying height of 500 m above ground level. The results
for the Gemini data are meant to illustrate how the canopy penetration performance for that sensor
degraded as the system PRF was increased while all other parameters remained constant. The results
indicate a reduction of 22% in the number of returns produced per laser shot when the PRF is increased
from 70 kHz to 125 kHz. Perhaps more important was a reduction of 65% in the number of shots
that produced ground returns which varied from 26.9% of shots at 70 kHz to only 9.4% of shots at
125 kHz. Another interesting comparison is that despite a shot density that was more than double for
the 125 kHz (as compared to 70 kHz), the ground return density was 20% higher for the 70 kHz test
line. This last comparison illustrates that for canopy penetration and ground return detection, it is not
the quantity of fired laser shots that matters but, more importantly, the quality of the shots, which is
determined by the energy contained in each laser pulse.

The Titan data for the Calakmul test area is not directly comparable to the Gemini data due to
the temporal separation between the collections, which was compounded by a severe drought that
hit the region after 2014. However, it is worth highlighting certain key points in the comparison of
the Titan and Gemini data for Calakmul. First, despite the thinner canopy during the Titan collection
as a result of the drought, the number of returns per laser pulse obtained in all of the channels of the
Titan sensor is higher than the comparable results obtained with the Gemini at the same system PRF of
100 kHz, and for that matter, to all tested Gemini PRFs (70, 100 and 125 kHz). Second, the results from
the Titan data are separated by channel. This is important because (a) each channel has different beam
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divergences and pulse energy values, which modify the energy density of their resultant footprint;
and (b) each channel has different look angles, as previously described. Even if energy or power density
were the same for all channels, the imaging geometry of the channel pointing at the nadir enables better
canopy penetration performance as compared to the channels that look forward of the nadir. This factor
can be observed in the test results summarized in Table 6 where, for a given test, the statistics for
ground returns per laser shot and ground return density for channel 2 (C2, which points to the nadir)
are higher than the results for the other channels. Note that this is true for the results presented for the
Calkamul and the Lamanai test sites, but it is not the case for the El Ceibal test site due to technical
malfunctions that will be expanded below.

The Lamani test was conducted to characterize the canopy penetration performance of the Titan
as a function of the system PRF and to determine the optimal configuration (height and PRF) that
maximized the detection of ground returns. The same test line was flown three different times at
PRFs that are representative of the operational envelope of the Titan: 75 kHz, 175 kHz and 300 kHz.
Because of the range ambiguity region, the 300 kHz test flight had to be collected at 650 m above
ground which is considerably higher than the 550 m that was used for the test collections at 75 and
175 kHz. However, these combinations of PRF and height are close to the normal operational conditions
that would be used in a survey project. The first conclusion from analyzing the Lamanai test results
is that the number of returns produced per laser shot does not vary as much for the Titan as they
did for the earlier-generation Gemini sensor. This is mostly true for channels 2 and 3, for which the
energy per pulse characteristics do not vary much with the increasing PRF. The number of returns per
pulse varied by only about 7.5% for channel 2 (1064 nm) and 4% for channel 3 (532 nm). The energy
pulse characteristics of the laser source for channel 1 (1550 nm) do degrade by a small amount with
increasing pulse repetition rates but not as widely as the solid-state source that powered the Gemini
lidar. The variation in the number of returns produced per pulse for channel 1 only varied by 20%
from 75 kHz all the way to 300 kHz (225 kHz), which is close to the 22% variation observed for the
Gemini sensor for a 55 kHz variation of PRF.

A second lesson derived from the Lamanai results is that the fraction of laser shots that produce
detectable ground returns is significantly affected by the lower energy per pulse and the need to
fly at higher altitudes at the higher end of the PRF operational range (300 kHz) when compared to
the fraction of laser shots obtained at the lower PRFs. For channel 1, for which the pulse energy
characteristics are the most affected with increased PRF, the variation in the fraction of pulses with
detectable ground returns was 49.3% between the test line flown at 650 m and 300 kHz and the line
flown at 550 m and 75 kHz. For channels 2 and 3, the variation in the results for the same metric
of the fraction of shots with ground returns and for the same configurations listed above was close
of 31.5% and 28.6%, respectively. The same conclusion can be reached by analyzing the return and
ground return density metrics. While the line flown at 300 kHz produces much higher shot densities,
the highest ground return densities were obtained from the line flown at 175 kHz and at lower elevation.
This demonstrates again that it is not the quantity of the shots that produce the higher number of
ground returns but the quality of the shots, which is determined by the energy budget (energy per
pulse and ranging distance).

The El Ceibal test was conducted to characterize the canopy penetration performance of the Titan
sensor at varying flying heights above the ground. As mentioned earlier, when this test was performed,
the optical energy output of the laser source that powers channels 2 and 3 was starting to degrade.
The laser source was repaired by the laser manufacturer after the completion of the Guatemala and
Mexico mapping campaign (see Table 1). In addition, the receiver optics of channel 2 were out of
alignment (this issue was also corrected after the laser source was replaced), which also caused a
degraded canopy penetration performance. The results from this test, while not representative in
absolute terms of nominal sensor performance, do provide comparative performance metrics and
important insights into canopy penetration. This test was conducted by flying the same line at different
heights above the ground while maintaining the system PRF at 150 kHz. A pair of lines was also flown
at the maximum test height of 700 m above the terrain but at two different PRFs (100 and 150 kHz).
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By comparing the results of the test lines flown at 100 and 150 kHz from 700 m above ground
level, a few of the previous conclusions are reinforced. Based on the returns per shot and shots that
produced ground return metrics, it can be noted that while the performances for channels 2 and 3
do not vary significantly between PRF settings, the performance of channel 1 does vary slightly with
better performance at the lower PRF. The lines flown at 700, 600 and 400 m confirm the expected
trend: the metrics of returns per laser pulse and pulses with detected ground returns increase as the
flying height decreases. This is due to the spreading of the laser energy during its two-way trip from
the sensor to the ground and back, as a function of the range to the fourth power (R4) as defined
by the lidar equation [1]. These results from the El Ceibal test serve to reinforce the conclusion that
canopy penetration for the production of ground returns is mostly dominated by energy considerations.
There has to be enough energy within each pulse to withstand the two-way attenuation caused by its
normal propagation through the atmosphere and by the scattering of the forest canopies. When trying
to maximize ground detection (maximize ground return density), it is important to optimize the
tradeoff between surface illumination, which is related to shot density (determined by system PRFs
and flying height), and the laser energy budget, which is affected by the laser source pulse energy
characteristics and by the flying height.

It is important to note that a research group in Canada has used Titan data and other multi-sensor
lidar data to assess the impact of multispectral lidar data on forestry studies [35]. They have observed
similar return ratio differences among the Titan channels as the ones presented in this section. However,
they conclude that these differences are mainly due to the wavelength-dependent characteristics of
penetration, absorption and reflection of the forest canopies. While the spectral dependence of the
light and matter interactions are definitely a factor, the researchers neglect the hardware characteristics
such as energy per pulse, beam divergence, power density and look angles that vary from channel to
channel, and which also have a significant impact on the system’s ability to map the forest canopies.

3.3.2. Range Resolution/Canopy Characterization

Another important operational performance characteristic of a lidar is the system range resolution,
which is defined as the ability of a sensor to separate targets along the range direction within a single
lidar footprint. This assumes that the targets are illuminated by the same laser pulse/footprint and
that the first target(s) do not completely occlude the laser footprint. As a proxy, because of the narrow
birds-eye-view scanning geometry of airborne lidar systems, the range resolution can be simplified
to be approximately equivalent to the vertical resolution capability of the lidar. This characteristic is
important for applications in forestry or ecology where researchers are interested in describing the
canopy structure accurately to model habitats [55] or to assess biomass [56]. It is also important when
trying to obtain reliable ground returns in areas covered by vegetation. It is well known that the range
resolution of a sensor is mainly determined by the laser pulse width [57]; however, it also depends
on other factors including the electronic characteristics of the detector sub-systems. While some
laboratory experiments have been conducted to assess the range resolution of lidar systems [58], a field
experimental approach was taken to assess the Titan’s range resolution and ability to finely characterize
forest canopies. This field approach consisted of computing the range separation between successive
returns for the same laser pulse generated by tropical forest canopies. The same test data that were
used to characterize canopy penetration obtained from the forest canopies near Calakmul, Lamanai
and El Ceibal were used for this purpose. Data from all of the test flights were analyzed; however,
for brevity, only some returns are presented and discussed in the following paragraphs.

First, the discrete return data were segregated and classified depending on the number of returns
produced per pulse. Because of its four-stop recording capability, the Titan data can be segregated into
four groups: pulses with single returns, pulses with only two returns, pulses with three returns and
pulses with more than three returns. For this analysis, the groups of pulses with two returns and the
pulses with more than three returns were selected as representing the extreme cases. The pulses that
produced more than three returns were the ones that traveled through a significant cross-section of
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canopy, while the ones with only two returns and that have a relatively short inter-return separation
(case analyzed here) likely did not interact much with the canopy structure. It is important to note that
in this type of field experiment, the actual distribution of the separation between returns is determined
by the canopy structure. However, the lowest percentile values for the separation between returns are
determined by the system capabilities. In essence, this analysis is aimed at determining the minimum
separations that were detected by the sensor.

Tables 7 and 8 summarize results from the analysis of the data collected near Calakmul and
Lamani for different test configurations and for the different Titan channels. These tables present
statistics for the number of shots that produced two, three and more than three returns. They also
present the values for the minimum as well as the one and three percentile distribution values for
the detected return separations for the two cases (shots with only two returns and shots with more
than three returns). For the case of shots that produced more than three returns, the minimum and
percentile values are presented for the separation between the first and second returns, the second
and third returns, and the third and last returns. The last returns are not necessarily a fourth return;
it could have been a fifth, sixth, seventh or even higher return. The Titan can detect multiple returns
within its range gate, but only records the first three and the last return.

Table 7 presents results from the Calakmul test and also compares the range resolution of the Titan
with respect to the older-generation Gemini sensor. The results summarized in the Table 7 show some
significant trends. First, the values for the minimum separation between returns, while consistent with
the theoretical minimum range resolution value (equivalent to half of the laser pulse width) can be
outliers and have to be treated with caution. For this reason, first and third percentile measurements
are reported. Second, irrespective of the minimum values, the separation between returns for the
Gemini sensor increase as the PRF increases. These results are expected as the laser source for that
system produces pulses with increasing width as the PRF is increased. Finally, from the last three
columns that correspond to the results obtained from Titan data, it can be observed that while there is
a small variation in the range resolution between the different channels, this variation is usually less
than 10 cm in most cases and the range resolutions for channel 1 and channel 3 are almost the same.

Table 7. Comparative results from minimum separation between returns test obtained from the Gemini
and Titan lidar systems near the Calakmul Mayan site in Campeche, Mexico. Range separation results
are given in meters.

2014 Gemini 2016 Titan @ 100 kHz

125 kHz 100 kHz 70 kHz C1 C2 C3

Number of Shots 694,825 381,483 262,265 226,802 229,250 223,838
Shots with 2 Returns 214,904 129,270 92,123 67,336 47,747 82,178
Shots with 3 Returns 78,030 64,087 61,024 67,980 64,078 57,482
Shots with >3 Returns 8289 10,712 17,607 46,092 93,873 20,073
Only 2 Returns
Min 1.535 1.577 1.502 0.678 0.666 0.662
1% 2.782 2.606 2.434 0.989 0.888 0.928
3% 3.217 3.015 2.828 1.208 1.044 1.103
1st–2nd
Min 1.495 1.475 1.321 0.665 0.663 0.675
1% 2.122 2.031 1.894 0.832 0.789 0.83
3% 2.452 2.342 2.19 0.965 0.883 0.937
2nd–3rd
Min 1.51 1.652 1.55 0.659 0.662 0.7
1% 2.43 2.247 2.084 0.863 0.774 0.848
3% 2.746 2.553 2.379 1.002 0.891 0.971
3rd–Last
Min 1.683 1.73 1.582 0.691 0.653 0.71
1% 2.386 2.278 2.112 1.06 0.986 1.03
3% 2.73 2.555 2.36 1.241 1.197 1.256
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Table 8 summarizes the results from the range resolution experiments conducted near Lamanai,
Belize, which were aimed at assessing performance differences related to changing PRF values.
Because results for all channels and all PRFs tested would not fit in the table below, only the results
for channels 1 and 2 are presented, given that the range resolutions results for channel 1 and 3 have
already been shown to be comparable (Table 7). The most important conclusion that can be drawn
from the data presented in Table 8 is that the range resolution for the Titan system is not significantly
affected by the selection of system PRF, which is different from the result for the Gemini sensor. Also,
as noted from the data of the previous table, the variation between Titan channels is less than 10 cm in
most cases.

Table 8. Comparative results from minimum separation between returns test obtained from the Titan
sensor running at different PRFs near the Lamani Mayan site in Belize. Range separation results are
given in meters.

300 kHz 650 m 175 kHz 550 m 75 kHz 550 m
C1 C2 C1 C2 C1 C2

Number of Shots 3,292,063 3,315,493 2,709,669 2,716,424 1,026,408 1,035,563
Shots with 2 Returns 827,019 1,118,222 819,056 894,329 320,157 338,856
Shots with 3 Returns 133,990 544,008 272,968 501,007 128,830 196,336
Shots with >3 Returns 8973 208,025 62,132 250,047 38,421 102,401
Only 2 Returns
Min 0.667 0.662 0.669 0.661 0.666 0.662
1% 0.907 0.804 0.896 0.81 0.898 0.808
3% 1.044 0.942 1.064 0.953 1.076 0.949
1st–2nd
Min 0.705 0.658 0.668 0.663 0.673 0.666
1% 0.837 0.769 0.824 0.77 0.809 0.767
3% 0.936 0.881 0.952 0.885 0.953 0.883
2nd–3rd
Min 0.67 0.664 0.643 0.648 0.661 0.659
1% 0.872 0.784 0.842 0.777 0.848 0.778
3% 0.968 0.896 0.976 0.894 0.981 0.894
3rd–Last
Min 0.684 0.638 0.678 0.653 0.675 0.66
1% 0.879 0.803 0.89 0.804 0.879 0.804
3% 0.978 0.933 1.023 0.943 1.023 0.943

A final crucial observation that can be made based on the results presented in both Tables 7 and 8,
particularly from the range resolution results of those pulses that produce more than three returns,
is that as the system detects returns from deeper within the canopy, the range resolution is degraded.
This would perhaps indicate that the ability to detect and discriminate closely spaced pulses is a
function of the received signal strength.

3.4. Special Operational Capabilities

Besides the multispectral, bathymetric and canopy penetrating/mapping capabilities that
have already been discussed, it is important to briefly highlight other operational advantages or
capabilities that are enabled by the sensor’s unique multispectral and multichannel design. The first
advantage is significantly higher target surface illumination in a single instrument pass. Until recently,
lidar systems have only sparsely sampled the mapped surface. A few returns per square meter has been
considered sufficient to derive topographic maps for certain engineering or scientific applications [59].
However, certain applications, such as small target detection or archaeology, benefit from sampling or
illuminating 100% or more of the surface of interest [59–61]. The combination of three different look
angles (nadir, 3.5◦ and 7◦ forward of the nadir) for the different channels, the varied beam divergence
and the larger scan product (product of scan angle and scan frequency) allow for almost full surface
illumination in a single pass (Figure 11a). Figure 11b shows a detailed view of a graph that plots both
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the position and footprint of the laser returns for the Titan’s three channels sampled from the central
portion of a test flight swath from Figure 11a.

Figure 11. Illustration of Titan’s footprints and surface illumination from a single pass of the sensor.
(a) Intensity rendering of a test swath generated from Titan channel 1; (b) Graph that plots the position
and footprints of returns from all of Titan’s channels for the red square sample of the test swath.
This graphs illustrated how much of the target surface is illuminated by the laser beams.

This test flight swath was collected by Teledyne Optech during the first test flight of the Titan
system. The system was configured with a PRF of 200 kHz per channel (600 kHz combined), a scan
angle of ±25◦ and a scan frequency of 32 Hz (scan product of 800 degrees-Hertz) and flown at an
altitude of 1000 m above ground level. In Figure 11b, the footprints for each of the returns for the three
Titan channels are plotted at a proper scale. The footprints of the returns from channel 1 (1550 nm)
are depicted in blue, while the footprints for channels 2 and 3 are represented with red and green,
respectively. The sample square that was cropped from the swath has an area of 1033 m2, and the
number of shots and the area illuminated by the laser footprints (not counting the overlap between
footprints of the same channel) are summarized in Table 9. Due to the larger divergence of channel
3 (532 nm), the footprints from the laser shots illuminate 83.3% of the sample area, while a single
infrared channel (channel 1) illuminates 25% of the sample area. When combining the footprints of the
three channels, and not counting the area overlap, the fraction of the surface area that is illuminated
by the main portion of the laser beams totals 88.2%. Of course, the surface illumination can be
increased significantly by utilizing a 50% lateral overlap or by flying lines in an orthogonal fashion.
This near-full-surface illumination is critical for other capabilities of the Titan sensor, for example
canopy penetration, small target detection and active intensity image generation.

Table 9. Shot densities and fraction of surface illuminated in a single pass of the Titan sensor.

Channel Number of Shots Shot Density 1/m2 Illuminated Surface m2 % of Surface Illuminated

C1 2666 2.58 257.76 25.0%
C2 2650 2.56 186.37 18.0%
C3 2699 2.61 861.09 83.3%

All Channels 8015 7.75 910.73 88.2%

Some might characterize the multichannel and multi-laser source design of the Titan as being
redundant, and while this is true, perhaps a better engineering descriptor for the Titan design would be
“diversity”. In telecommunications, a diversity scheme is a design feature that improves the reliability
of a system by using two or more channels with different technical or physical characteristics [62,63].
There is equipment diversity when two or more radios are used to transmit the same information;
there is frequency diversity where different radios will transmit the same information over two
different frequency channels; and there is spatial diversity where multiple antennas are used to
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transmit the same signal. The Titan sensor has several diversity schemes built into its design. The way
the different channels interrogate the target at different angles represents a diversity of look angles,
the three different laser wavelengths represent spectral diversity and the two laser sources constitute
equipment diversity.

The look angle diversity brings several operational advantages: as mentioned previously,
it provides for a more complete and uniform surface illumination even in a single pass, it provides
multiple points of view to pierce through vegetation covers, and it allows for a better mapping of
vertical structures. Having equipment diversity or laser source redundancy ensures an operational
sensor even if one of the laser sources fails. The sensor will continue to collect data, at two-thirds or
one-third of the maximum desired measurement rate. Collecting a decimated data set is better than no
data at all, and therefore, having this redundancy is valuable when mapping in remote areas where
having manufacturer technical support might not be an option or for time-critical collections that
cannot wait a couple of days for a repair. The spectral diversity provides some operational advantages
besides providing the spectrally rich data sets described through this paper. The Titan will be able to detect
relatively strong returns over a large variety of land covers and throughout its operational envelope for at
least one of it channels, something that single-wavelength systems may have a hard time doing.

An example of how the diversity of equipment and the spectral diversity of the Titan system
proved to be advantageous for the successful completion of a project comes from NCALM’s experience
mapping the McMurdo Dry Valleys in Antarctica [23]. The Dry Valleys are perhaps one of the most
challenging places to map with airborne lidar systems. Besides its remoteness and harsh temperature
conditions, the terrain relief can vary more than 1000 m in just a few kilometers which make it
challenging to fly (see Figure 12a). The ground cover also alternates between frozen soil, snow and
ice. A single-wavelength lidar system that operates in the 1550 nm wavelength would have a hard
time obtaining strong returns from the snow and ice at safe flying heights (~2000 m AGL) because
of the low reflectance of snow and ice at the 1550 nm wavelength (see Figure 1). Figure 12b shows
a density map of lidar returns detected from the Titan system from one of these valleys; despite a
uniform number of flight lines through the areas of interest, it is obvious that the return density varies
significantly through the valleys. The lower-density areas are due to dropouts (laser shots with no
return detected) that result from the combination of flying height and the low reflectance of ice and
snow that cover the area. These lower-density areas would have been voids if not for the spectral
diversity of the Titan system.

Figure 12. Image maps for the Taylor and Pearse valleys in Antarctica. (a) Image map showing the
topographic relief of the valleys based on the lidar DEM; (b) Image map showing the laser return
density obtained from the valleys.
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3.5. Precision and Accuracy Assessments of Topographic Elevations

As a final performance analysis of the Titan system, this section examines the positional precision
and accuracy of the lidar returns. It is important to note that while precision (also known as
repeatability or internal accuracy) is an intrinsic performance characteristic of a lidar system, accuracy
is extrinsic because it depends on several factors external to the system. Among these factors are the
geometrical strength of the GNSS constellation at the time of collection, the distance from the aircraft
to the reference base stations, the performance of the integrated navigation system (INS), the aircraft
dynamics, and the INS data processing algorithms, among many others [64]. As such, it is important to
note that the accuracy values presented below should be considered as representative values; the actual
accuracy of a dataset will be dependent on the specific conditions particular to each project’s collection
and processing. It is also important to note that the positional accuracy of airborne lidar returns can be
broken down into vertical and horizontal components. The accuracy results presented below relate
only to the vertical component.

The airborne data for this analysis were collected in October 2014 (medium altitude) and August
2016 (low altitude) and consist of repeat passes of a flight line perpendicular to the runway at the
Baytown airport (KHPY) located in Baytown, Texas. The test line was flown six times for three different
PRFs and at flight heights in the middle and lower end of the Titan operational envelope and within
the PIA regions of operation allowable for each PRF (see Figure 2). The precision (repeatability) of the
datasets was computed by selecting planar surfaces within the dataset (the test surface had an area of
420 m2), fitting a plane based on the XYZ coordinates of the returns that define the plane and then
computing the distance between individual returns and the fitted plane. Dispersion statistics of the
distances between returns and the fitted plane define the precision of the dataset.

To conduct an absolute vertical accuracy assessment of the airborne test data validation, elevations
were collected by installing a geodetic grade dual frequency GPS antenna (Trimble Zephyr Model 2)
and a Trimble NetR9 receiver on a vehicle and performing a kinematic survey along the runway and
taxiways of the Baytown airport. A reference ground station was located at the airport during the time
of the survey and its coordinates were determined through the online positioning user service (OPUS)
of the US National Geodetic Survey (NGS). The distance between the rover and the reference station
was less than 2 km at any time. The Novatel software GrafNav (Calgary, AB, Canada) was used to
obtain dual-frequency carrier-based solutions for the rover GPS antenna trajectory that was then used
as the validation data. An algorithm was used to perform a nearest neighbor search for airborne lidar
returns that are located within a preset distance (30–50 cm) to the kinematic survey reference points.
Once the pairs of lidar returns and reference measurements are identified, the vertical separations
between these datasets were computed and RMSE values were reported. Table 10 presents vertical
precision and accuracy results for these experiments for each of the different combinations of PRFs and
flying heights, segregated by channel (C1, C2, C3) as well with all three channels combined (C123).

The results presented in Table 10 are within the expected limits, with precision values better than
2 cm and height accuracy values better than 10 cm. Some higher values were obtained from channel 2
with respect to the other channels. This was the result of the misalignment of the receiver optics for
that channel. The results also indicate no significant variation in the precision or accuracy performance
of the sensor for the different tested PRFs or flying heights. It can be seen that the precision and
accuracy do degrade when data from all channels is considered for the assessment (column C123)
as compared to analyzing a single channel at a time. These results are expected and are the product
of the complexity of a multichannel system where the scanning geometries of each channel are so
varied. However, these combined channel precision and accuracy metrics indicate that the channel by
channel calibration parameters and the sensor geometric model are adequate and produce consistent
and accurate data within very good limits exceeding the USGS lidar base specification quality level
1 (QL1) [65].
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Table 10. Results from a precision and accuracy assessment of height values for different system PRFs
at the middle of the sensor operational flying height envelope.

PRF Range Number of Samples Height RMSE (m)
(kHz) (m) C1 C2 C3 C1 C2 C3 C123

Precision

100 900 658 - 667 0.02 - 0.018 0.030
200 900 1411 93 1542 0.018 0.028 0.018 0.020
300 800 2535 756 4766 0.019 0.026 0.017 0.048
100 500 1038 1061 1060 0.019 0.018 0.021 0.045
200 500 2208 2280 2255 0.020 0.018 0.021 0.022
300 350 7476 7218 7380 0.017 0.016 0.016 0.027

Accuracy

100 900 207 - 179 0.051 - 0.082 0.048
200 900 347 27 324 0.055 0.037 0.060 0.044
300 800 420 82 465 0.073 0.044 0.059 0.0649
100 500 219 236 242 0.022 0.037 0.022 0.042
200 500 434 487 500 0.018 0.035 0.020 0.030
300 350 917 895 914 0.019 0.033 0.021 0.026

One of the limitations of the experimental data presented in Table 10 is that it is based on
single-swath data and not data from overlapping swaths that may cause degradation in data precision
and accuracy. As also mentioned earlier, the accuracy of a lidar system is to subject to many external
factors. Therefore, in order to provide some additional data points related to the Titan’s accuracy,
results from height accuracy assessment measurements performed for mapping projects executed
with different system configurations are presented in Table 11. These accuracy assessment exercises
follow the same procedures described above related to the collection and processing of the height
validation data and the computations of vertical difference between the airborne and validation data.
However, some differences include: (a) the assessment of data originating from different flight swaths;
(b) processing of DGPS validation data with the Ashtech office suite (AOS) software instead of GrafNav;
and (c) larger rover and reference station separations that may have extended to distances of up to
10 km. The results presented in Table 11 are similar to the results in Table 10, indicating good levels of
height accuracy, which again exceed the quality level 1 (QL1) of the USGS lidar base specifications.

Table 11. Results from height accuracy assessments performed as part of mapping projects with
different sensor PRFs and flying heights.

Location Configuration Number of Test Points RMSE (m)

Teotihuacan, Mexico 250 × 3 kHz, 900 m 581 0.041
University of Houston, Texas 250 × 3 kHz, 500 m 1018 0.035

Orange Walk, Belize 175 × 3 kHz, 550 m 2238 0.044
NASA JSC, Texas 150 × 3 kHz, 750 m 2923 0.049

Calhoun Creek, South Carolina 100 × 3 kHz, 700 m 6314 0.033
Monterey, California 100 × 3 kHz, 700 m 1086 0.037

4. Conclusions

This paper presents an overview of the design and performance of the Teledyne Optech Titan
multispectral lidar system based on almost two years of operational experience in varied conditions,
landscapes and environments. The paper is intended to provide a wide overview of the capabilities
and applications enabled by the unique multipurpose design of the Titan sensor in a way that is useful
to researchers that work with data from this sensor and for lidar technology specialists. This paper
describes and discusses experiments and results aimed at quantifying the performance of the Titan
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system as it applies to ground cover classification, bathymetry, forestry, ground return detection,
and geometrical accuracy, among others. Because of brevity and scope considerations, this paper is not
intended to explore in detail certain aspects of specific applications such as radiometric calibration
of multispectral lidar intensity or three-dimensional refraction correction of bathymetric returns.
Topics such as these merit research papers on their own and it is our hope that future papers on such
topics will draw upon the general description presented here.

The Titan sensor has proven to be extremely flexible and reliable due to the equipment,
spectral and view/scan geometry diversity scheme incorporated in it design. Its multispectral
capabilities provide spectrally rich and consistent datasets that were not available before.
The multispectral capabilities enable applications that include: land cover and target classification
based on both spectral and 3D spatial information, and high resolution seamless topographic and
very shallow water bathymetry. Ground cover classification accuracies of 90% have been achieved
with simple methodologies and with intensity data that has not been corrected to represent reflectance
values. It is expected that classifications with a larger number of classes and higher levels of accuracy
can be obtained with more advanced methods and algorithms. Other researchers have written about
the challenges of achieving good multispectral intensity radiometric calibration; while this was not
explored in this work, it is definitely a challenge and future avenue to be investigated.

The bathymetric performance in terms of detected depths and accuracy of derived water
depths and bathymetric elevations is within the performance expectations of a low-optical-power
1.5/Kd bathymetric lidar. The accuracy of benthic elevations can be improved with more rigorous
three-dimensional refraction correction of the returns; this, however, is mainly limited by the ability to
obtain a good representation of the water surface at the exact place where the 532 nm beam penetrates
the water. The first-order approximation that corrects only for the vertical component of the returns
is good for water depths less than 5 m, but it can introduce vertical bathymetric errors larger than a
decimeter in deeper water (>10 m).

The combination of varied look angles, full surface illumination, almost-uniform pulse energy
versus PRF characteristics of the laser sources, and short pulse widths enables characterizing and
penetrating forest canopies at spatial resolutions and performance levels at least twice as effective
as were possible with previous-generation airborne lidar mapping systems. The three-channel,
three-wavelength and three-look angle design also provides redundancy and diversity which is
beneficial not only from a technical/operational point of view but also reduces operational costs.
One disadvantage of the design when compared to a single-channel system has to do with the
complexity of achieving a good inter-channel calibration. While achieving this is not impossible,
it has taken considerably more effort and attention to detail than what was required with older,
single-channel systems. However, the precision and accuracy assessment experiments conducted
for this study indicate that despite these challenges, good and accurate geometric calibrations have
yielded point clouds that are better than USGS lidar base specifications quality level 1 (QL1). Visual and
analytical inspection of shaded relief maps based on digital elevation models produced over the past
two-year period have identified very little inter-channel or intra-channel elevation artifacts.

The capability to provide two independent streams of range/intensity data for each channel
through both its analogue discrete return detector and the full waveform recording capabilities will
enable a proper comparison of the advantages and disadvantages of both of these data processing and
return detection approaches. Despite its advantages, the Titan system does have a few limitations.
The 2 km operation range limit as well as the fixed multiple pulse mechanism limit the performance
and applicability of the system in regions with extreme topographic variability. The analogue detection
is also limited by only recording up to four returns, as the sensor has enough energy budget and
range resolution to detect more than four returns in thick vegetation canopies. While this limitation
is overcome by using the waveform digitizers, they unfortunately are currently limited to recording
waveforms at PRF rates of values of only 100 kHz. It is clear that future iterations of the sensor will
attempt to overcome these limitations.
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Over the next few years the research community will develop new applications and new scientific
approaches based on the unique capabilities and design characteristics of the Titan senor. However,
there is no need to wait for the results of those new applications or approaches to be published to
realize that the Titan sensor represents a significant leap forward in the evolution of airborne mapping
lidar systems.
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Abstract: This study demonstrated the potential of using dual wavelength airborne light detection
and ranging (LiDAR) data to classify land cover. Dual wavelength LiDAR data were acquired from
two airborne LiDAR systems that emitted pulses of light in near infrared (NIR) andmiddle infrared
(MIR) lasers. The major features of the LiDAR data, such as surface height, echo width, and dual
wavelength amplitude, were used to represent the characteristics of land cover. Based on the major
features of land cover, a support vector machine was used to classify six types of suburban land
cover: road and gravel, bare soil, low vegetation, high vegetation, roofs, and water bodies. Results
show that using dual wavelength LiDAR derived information (e.g., amplitudes at NIR and MIR
wavelengths) could compensate for the limitations of using single wavelength LiDAR information
(i.e., poor discrimination of low vegetation) when classifying land cover.

Keywords: dual wavelength; LiDAR; land cover classification; support vector machine (SVM)

1. Introduction

Airborne light detection and ranging (LiDAR), whichmeasures distance by illuminating a target
with a laser, is used for the rapid collection of geolocated elevation data from the surface of the earth.
The positions of the targets can be obtained based on a positioning and orientation system. Increasing
numbers of researchers have used airborne LiDAR data in landscape mapping [1,2]. LiDAR data
typically contain 3D spatial point clouds and the intensity of returns (echoes), and its penetration
capabilities make it a better system for identifying vegetation compared with photogrammetry.
LiDAR systems can automatically classify land cover from geometric properties [1,3].
Moreover, multispectral image and LiDAR data can provide a large amount of spectral and
geometric information for land cover classification. The combination of LiDAR data with either
multispectral [4–6] or hyperspectral [7] imagery has been demonstrated to improve land cover
classification.

Recently, LiDAR technology has been developed into a full waveform LiDAR system, which
can record the complete waveform of a backscattered signal echo [8]. The full waveform LiDAR
collects a continuous signal for each pulse, whereas the discrete return LiDAR only collects four to
five discrete points. Previous studies [8–10] have indicated that waveform LiDAR data record
more physical characteristics than discrete return LiDAR data. These physical characteristics
affect the shape of waveforms and potentially benefit the land cover classification. For example, the
waveform of an echo is wider on the canopy or ploughed fields than that on the roads [8]. Each
waveform is commonly represented by a mixed Gaussian model that is produced using a Gaussian
decomposition process [11]. Each return echo is represented by aGaussian function, and the Gaussian
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parameters can be used to characterize the physical features of the echoes. For example, the echo
width (Gaussian standard deviation) obtained from full waveform data after decomposition, which
is unavailable to discrete return LiDAR data, has proven useful for land cover classification [12–14].
The signal processing step extracts various features from the waveforms, such as echo width [14,15],
amplitude [15], intensity [15], rise/ fall time [9] and Fourier coefficients [10,16], which are used to
classify land cover and identify tree species. Given these useful features, the application of waveform
LiDAR data in land cover classification has been demonstrated.

Althoughmost commercial airborne LiDAR systems emit laser radiation at a single wavelength,
multi spectral LiDAR (MSL) systems that emit laser radiation at various wavelengths have been
recently developed. Given that the return laser intensities at various wavelengths are combined in
the MSL data, these data can then be used to obtain several MSL indices, such as the normalized
difference vegetation index (NDVI) [17] and tree structure segmentation [3], which cannot be
obtained using single wavelength LiDAR data [18,19]. Thus, multiple potential applications of MSL
systems have been demonstrated. Chlorophyll content retrieval with hyperspectral LiDAR was
reported by [20], and NDVI with multispectral LiDAR was studied by [21,22]. Morsdorf et al. [23]
simulated an MSL waveform system to demonstrate its ability in capturing a vertical profile of leaf
level physiology. A dual wavelength LiDAR can separate the canopy from ground returns [24]. The
dual wavelength LiDAR system, a current MSL system, has been used for specific applications, such
as measuring coastal water depths by using green and near infrared (NIR) bathymetric LiDARs [25],
measuring NDVI by using red NIR wavelength LiDARs [26] and measuring the moisture content of
vegetation by using NIR and middle infrared (MIR) wavelength LiDARs [27]. However, most dual
wavelength orMSL systems are commonly used for benchmounted test instruments or experimental
terrestrial operations. MSL has not yet been used to measure the land from airborne platforms, as it
is still at an experimental stage.

The classification of land cover in regional areas using remote sensing is essential. In this study,
airborne dual wavelength LiDAR data were obtained by combining two commercial airborne LiDAR
systems that emit NIR and MIR laser pulses. The results demonstrated the potential of using dual
wavelength airborne LiDAR data to investigate land cover types. The dual wavelength amplitude
information and waveform features were used to classify land cover. A progressive classification test
was conducted to demonstrate that using dual wavelength LiDAR data resulted in more accurate
land cover classification than using single wavelength LiDAR data.

2. Methodology

2.1. Study Area and Remote Sensing Data

Figure 1a shows the study area, Namasha (Namaxia), which is located on a hillside in southern
Taiwan. Namasha, which is a famous source of precious wood, is a suburban district in the
northeastern part of Kaohsiung City, located upstream of the Kao ping river watershed (Figure 1a).
This area was severely damaged by Typhoon Morakot in 2009. The study area is 0.95 km2, with an
average elevation and slope of approximately 722 m and 18°, respectively. Table 1 shows the dual
wavelength data configuration in the two LiDAR systems. LiDAR data were acquired using the
Optech ALTM Pegasus HD400 and the Riegl LMS Q680i systems. The Optech system emits NIR laser
pulses at a wavelength of 1,064 nm [28], whereas the Riegl system emits MIR laser pulses at a
wavelength of 1,550 nm [29]. The proposed dual wavelength LiDARwas obtained by integrating two
LiDAR systems, because no airborne, dual wavelength (e.g., NIR MIR) LiDAR system was currently
available. In the experimental period, most land cover did not change in study area. The radiometric
correction for each LiDAR system has been determined [30]. Further correction of dual wavelength
LiDAR systems will be considered for advanced usage [31]. The accuracy of the collected LiDAR data
can be verified by comparing with independently surveyed ground control points. Both systems
yielded horizontal accuracy of less than 0.40 m and vertical accuracy of less than 0.10 m.
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Table 1. Configuration of dual wavelength data in the two light detection and ranging (LiDAR)
systems. .

Optech ALTM Pegasus HD400 Riegl LMS Q680i

Laser wavelength (nm) 1,064 1,550
Pulse width (FWHM, full width at half
maximum) (ns)

7 4

Beam divergence (mrad) 0.20 0.50
Field of view (degree) 40 60
Footprint size (m) 0.2 at 1 km 0.5 at 1 km
Pulse rate (kHZ) 150 220
Range accuracy (cm) 1 2
Date of survey 7 October 2011 8 January 2012
Flying height (m) 2,000 1,900
Point density (pts/m2) 1.81 2.07

Figure 1. (a) Location of the study area; (b) location of the reference data for classification.

An IGI DigiCAM was used in the Riegl LMS Q680i system to produce an orthoimage.
To develop a reference dataset for validating the classification results, we identified six classes of land
cover based on this orthoimage. The classes were selected based on the landscape of the test area:
road and gravel (R&G), bare soil (SOIL), low vegetation (LV), high vegetation (HV), roofs (ROOF)
and water bodies (WATER). R&G comprised the asphalt and gravel along the western side of the
river and on the south side of the study area. LV comprised grass, low crops and other vegetation
shorter than 2m. HV comprised vegetation taller than 2m, such as broadleaf evergreen forests.Water
absorbs most of the incoming radiation [32]. This could result in the low intensity of LiDAR return
points or few return points fromwater bodies. In this study, low intensity points were returned from
water bodies in the Optech system, whereas few return points from water bodies were observed in
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the Riegl system. Studies have applied the LiDAR data from water bodies to delineate the river
boundaries [33].

Figure 1b shows the locations of the reference samples used for training and tests. Various
classes of land cover within a small area are often mixed. For example, when LV is not dense, SOIL
and LV may mix and become difficult to separate. Thus, two rules were used to assess the reference
samples. First, the pixels must be clearly recognizable on the reference samples. Second, the reference
samples must be pure, containing no more than one class of land cover. For example, an area
containing a mixture of grass (LV) and trees (HV) would not be considered a reference sample.

2.2. Data Processing

Figure 2 shows the processes used in the classification model, namely, data processing, data
integration, feature selection and classification. Both the Optech and Riegl LiDAR systems can
provide waveform data, recording an intensity signal that represents the interactions between the
emitted laser and the illuminated objects along the laser path. Multi return echoes are recorded in
the laser waveform information, and the waveform data can be decomposed into individual
components to characterize the original waveform and echoes [34]. In the Gaussian decomposition
method, which has been widely applied [11,13,14,35], a Gaussian function is used to represent a
decomposed component; this method was used in this study to decompose a waveform into
individual echo components. After decomposition, a Gaussian mixture representing a waveform
with multiple distinct components was obtained. These components were described using three
Gaussian parameters, namely, mean, amplitude and standard deviation. The Gaussian mean of each
component was combined with the attitude information of the system when the laser was fired to
map the 3D coordinates of each object. The echo amplitude and standard deviation were then
attached to each 3D component as the attributes of the LiDAR points. The amplitude and standard
deviation of the first LiDAR echo are termed “amplitude” and “echo width” hereafter.

Figure 2. Flowchart of the approach. DSM, digital surface model; DEM, digital elevation model; SVM,
support vector machine; HV, high vegetation; LV, low vegetation; SOIL, bare soil; ROOF, roofs; R&G,
road and gravel.
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2.3. Data Integration and Feature Selection

Most land covers contain one major echo, except trees and building roofs. Only the first return
(echo) extracted from each full waveform was selected to analyze the land cover. To integrate the
LiDAR data, the sample points from the two LiDAR systems were interpolated into gridded images
at 1 m resolution and integrated for subsequent processing. The moving average in a circle with a
2 m radius was applied for the interpolation. Based on the LiDAR data characteristics, the following
features were captured: (1) amplitude; (2) echo width; and (3) surface height from the Riegl and
Optech systems. Surface height is the height of the land cover from the ground elevation and the
digital surface model (DSM). The ground elevation was obtained from the digital elevation models
(DEMs) that were, in turn, obtained by processing the point clouds by using TerraScan (TerraSolid
software) and manual procedures. First, the TerraScan was applied to filter out non ground points
automatically. Manual inspection and editing were subsequently conducted to ensure the quality of
the ground data points.

Major features were selected using the Bhattacharyya distance (separability) [36], which is
widely used in feature selection and extraction studies. For feature selection, the Bhattacharyya
distance, , has been used as a class separability measurement between two land cover types based
on the assumption of multivariate normality, and is expressed as follows:

(1)

where and are the mean vector and covariance matrices of class i, respectively. The lower
values of Bhattacharyya distance represent less separable classes and higher classification errors.
Based on the relation between the Bhattacharyya distance and classification error in the graph of [36],
the criterion for the Bhattacharyya distance is 1 if the classification error is less than 10%.

2.4. Classification

The support vector machine (SVM), a supervised classification algorithm, is an effective
classification method. SVM is capable of mixing data from diverse sources, responding robustly to
dimensionality, and effectively functioning non linearly in remote sensing applications [37]. The
kernel of SVM used in this study was the Gaussian radial basis function. The SVM algorithm is
implemented by using the functions fromMATLAB (R2012a). Six classes (R&G, SOIL, LV, HV, ROOF
and WATER) were chosen as the land cover categories. Amplitude, surface height and echo width
from Riegl and Optech systems were used as the major features for classification. From the reference
(sampling) data, 1% of samples in each class was selected as the training data in the SVM classifier.
After the SVM classifier was trained, all reference data, except the training data, were treated as
validation data. The various LiDAR feature sets were used for the progressive classification test. The
confusion matrices for each feature set were calculated to assess the classification results.

3. Results and Discussion

3.1. Analysis of Features

Figure 3 shows the distribution of the amplitude, surface height and echo width of the image
pixel elements from the six classes in the reference data. The amplitude values from the Riegl system
allowed three groups, namely, WATER, {R&G, LV, HV} and {SOIL, ROOF}, to be distinguished. The
amplitude feature from the Optech system improved the separation of WATER, R&G and the
remaining classes. The merits of using both amplitudes for classifying land cover are reflected in the
accuracy of the preliminary classification. The surface height from the Riegl and Optech systems
provided information for separating {R&G, SOIL, LV, WATER} from {HV, ROOF}. The echo width
information from the Riegl system indicated two groups, namely WATER, and {R&G, SOIL, LV,
HV, ROOF}.
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In summary (Figure 3), WATER can be readily classified using most of the features. R&G can be
classified using amplitude information from the Optech system. SOIL can be separated from other
classes by combining data on amplitude and surface height from the Riegl system. HV can be
classified by combining amplitude and surface height information from the Riegl system, and ROOF
can be classified by combining all features.

Figure 3. Frequency distribution of (a) the amplitude from the Riegl system, (b) the amplitude from the
Optech system, (c) the surface height from the Riegl system, (d) the surface height from the Optech
system, (e) the echo width from the Riegl system and (f) the echo width from the Optech system.

3.2. Feature Selection Using Bhattacharyya Distance

Table 2 lists the Bhattacharyya distances among the classes for different feature sets. The
performances of the Riegl and Optech surface height and echo width were consistent. The Riegl
surface height and echo width were eventually considered as the major features in the study based
on the comparison of Bhattacharyya distance matrix determinants. The matrix determinants of the
Riegl surface height and echo width were larger than those of the Optech ones. When the model
considered the Riegl surface height information, the classes such asHV and ROOF could be separated
from other classes. When the model considered the Riegl echo width information, the Bhattacharyya
distances between HV and SOIL and between HV and R&G were 0.85 and 0.83, respectively. The
Riegl and Optech systems provided complementary amplitude information for land cover
discrimination. When the Optech amplitude information was used, the separability between LV and
R&G was 1.68, and 0.21 between LV and SOIL. When the Riegl amplitude information was used, the
separability between LV and R&G was 0.44, and 1.98 between LV and SOIL. The same situation in
complementary amplitude information occurred between HV and R&G and between HV and SOIL.
Compared with the separability values obtained using the Riegl amplitude information, those
obtained using the Optech amplitude information were higher for HV and R&G but lower for HV
and SOIL. However, when the model considered both sets of amplitude information, the separability
between LV and R&G and between LV and SOIL increased. When the model considered both the
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Riegl and Optech amplitude information, all land cover became separable, except between ROOF
and SOIL and between ROOF and LV.

A feature is more critical if the separability among all land cover types is higher. Moreover,
feature separability is highly related to classification accuracy. Amplitude is a dominant feature that
varies based on the radiometric and geometric properties of the targets [38]. When classifying land
cover, the measured amplitudes are high for bare soil and grass and low for water and roads.
However, the amplitude varies for high vegetation and roofs of buildings depending on thematerials
and sensors. LiDAR based features, such as laser intensity, amplitude, surface height, and
topographic data, are primarily used to classify land cover [39]. The feature information of LiDAR
data is critical to increase the discriminability of LV and HV classes because the information contains
similar spectral signatures [40]. Numerous applications described in the introduction
(e.g., chlorophyll or NDVI) are available from dual wavelength LiDAR data. Future studies should
examine the potential of dual wavelength LiDAR data for extracting the details of vegetation species.
When the commercial MSL becomes available for airborne platforms in the future, the MSL
instruments will contain many more wavelengths to improve separability. Key information, such as
the chlorophyll, NDVI and moisture content, about the vegetation can be derived from MSL data.
The applications for vegetation species recognition and forest ecosystem estimation would be
expected to benefit from the information.

Table 2. Bhattacharyya distance between land cover classes with different feature combinations.

Bhattacharyya Distance Using h *

R&G SOIL LV HV ROOF WATER

R&G 0 0.28 (0.25) 0.00 (0.16) 3.21 (2.52) 2.27 (1.30) 19.52 (0.24)
SOIL 0 0.29 (0.02) 3.79 (3.10) 2.87 (1.94) 18.98 (0.11)
LV 0 3.20 (2.98) 2.26 (1.82) 19.54 (0.15)
HV 0 0.76 (0.92) 23.07 (3.41)

ROOF 0 22.16 (2.31)
WATER 0

Bhattacharyya Distance Using *

R&G SOIL LV HV ROOF WATER

R&G 0 0.74 (0.70) 0.48 (0.31) 0.83 (0.56) 0.12 (0.05) 80.07 (0.28)
SOIL 0 0.30 (0.12) 0.85 (0.11) 0.30 (0.60) 301.67 (1.68)
LV 0 0.27 (0.20) 0.11 (0.23) 51.78 (1.06)
HV 0 0.47 (0.54) 28.45 (1.02)

ROOF 0 51.23 (0.53)
WATER 0

Bhattacharyya Distance Using AOptech **

R&G SOIL LV HV ROOF WATER

R&G 0 5.44 1.68 1.06 1.92 2.58
SOIL 0 0.21 0.63 0.14 7.66
LV 0 0.09 0.01 2.88
HV 0 0.14 2.12

ROOF 0 3.15
WATER 0

Bhattacharyya Distance Using ARiegl **

R&G SOIL LV HV ROOF WATER

R&G 0 5.34 0.44 0.29 1.42 28.47
SOIL 0 1.98 7.29 0.18 38.63
LV 0 1.06 0.68 26.63
HV 0 1.81 25.36

ROOF 0 24.70
WATER 0
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Table 2. Cont.

Bhattacharyya Distance Using ARiegl, AOptech

R&G SOIL LV HV ROOF WATER

R&G 0 8.94 1.69 1.55 2.17 29.98
SOIL 0 2.09 7.36 0.05 40.48
LV 0 1.17 0.48 26.10
HV 0 1.58 25.00

ROOF 0 24.95
WATER 0

Bhattacharyya Distance Using ARiegl, AOptech, h,

R&G SOIL LV HV ROOF WATER

R&G 0 9.52 2.34 7.53 4.66 111.44
SOIL 0 2.91 13.79 4.03 376.15
LV 0 5.47 4.42 103.44
HV 0 5.21 56.45

ROOF 0 112.30
WATER 0

Bhattacharyya Distance Using ARiegl, AOptech, h

R&G SOIL LV HV ROOF WATER

R&G 0 8.23 1.70 5.45 3.82 107.14
SOIL 0 2.55 12.07 3.58 60.54
LV 0 4.97 3.39 98.71
HV 0 3.22 46.58

ROOF 0 44.97
WATER 0

* The surface height (h) and echo width ( ) are from the Riegl system; the number in parentheses
represents those from the Optech system. ** AOptech, ARiegl: the Optech and Riegl amplitude
information.

3.3. Classification Accuracies

Table 3 shows the confusion matrices of the classification results using various feature sets.
Based on the feature set, 1, which comprised the surface height and echo width, the overall accuracy
of the classification reached 84.29%. However, the level of producer accuracy was extremely low for
LV, and many LV pixels were misclassified into R&G and SOIL. Thus, the user accuracy was poor
for R&G and SOIL. For the other classes (R&G, SOIL, HV, ROOF and WATER), the feature set, 1,
provided sufficient information for classification. Based on the feature set, 2, including additional
Optech LiDAR amplitude information, the overall accuracy reached 90.00%. By considering Riegl
amplitude features, surface height and echo width in the feature set, 3, the overall accuracy reached
91.63%. LV was misclassified as R&G more frequently using Riegl amplitude information compared
with using Optech amplitude information. However, SOIL was misclassified less using the Riegl
amplitude than it was using the Optech amplitude (Table 3). User accuracy in separating SOIL and
ROOF was higher using the Riegl amplitude than it was using the Optech amplitude, whereas user
accuracy for R&G and LV was higher using the Optech amplitude information compared with using
the Riegl amplitude information.

When the feature set, 4 (surface height, echo width and dual wavelength amplitude), was used,
the overall classification accuracy substantially increased comparedwith using a single system.When

4 was used, the producer accuracy for LV increased to 88.3% from 44.82% and 51.90% for single
systems, and both the overall producer and user accuracies exceeded 90%, except the LV producer
accuracy. The overall accuracy (97.4%) and Kappa (0.966) values were highest when features
including the dual wavelength amplitude were used. Without considering the echo width in 5

(surface height and dual wavelength amplitude), the overall accuracy decreased to 96.8% and the
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Kappa value decreased to 0.959. Thus, the echo width could be discarded because of its low effect on
the classification. Figure 4 shows the land cover classification results based on various datasets. Most
land covers were classified more accurately. These results indicate the effectiveness of using dual
wavelength airborne LiDAR data to classify land cover (Figure 4). Given that the reflectance of land
cover objects varies based on wavelength, land cover objects (e.g., LV and HV, SOIL and LV) cannot
be readily distinguished when amplitude information is used at a single wavelength. The features of
dual wavelength data are primarily responsible for the improvement in land cover classification
demonstrated in this study.

Table 3. Confusion matrices between the reference and SVM classification using various feature sets.
The feature sets are 1: {h, }, 2: {AOptech, h, }, 3: {ARiegl, h, }, 4:{ARiegl, AOptech, h, } and 5:{ARiegl, AOptech,
h}, respectively. The user’s, producer’s and overall accuracies and the Kappa of the classifications are
shown. ARiegl, AOptech, h, .

Feature

Set

Reference

Pixels

Classified Pixels Producer’s

Accuracy (%)R&G SOIL LV HV ROOF WATER

R&G 21,231 1,731 70 0 23 3 92.07
SOIL 508 9,758 59 0 2 0 94.49

1

LV 3,029 5,174 2,602 3 0 0 24.07
HV 22 0 166 29,402 1,473 60 94.47

ROOF 233 0 21 1,001 8,664 8 87.28
WATER 0 0 0 0 0 1,254 100.00
User’s

accuracy (%)
84.85 58.56 89.17 96.70 85.26 94.64

Overall
accuracy (%)

84.29

Kappa 0.804
R&G 22,790 14 208 1 4 41 98.84
SOIL 0 10,275 50 0 2 0 99.50
LV 409 5,540 4,844 13 0 2 44.82

2
HV 19 1 119 30,001 946 37 96.39

ROOF 193 39 40 974 8,680 1 87.44
WATER 0 0 0 0 0 1,254 100.00
User’s

accuracy (%)
97.35 64.75 92.07 96.81 90.12 93.93

Overall
accuracy (%)

90.00

Kappa 0.872
R&G 22,173 259 526 0 91 9 96.16
SOIL 83 10,230 13 0 1 0 99.06
LV 3,893 1,301 5,609 2 0 3 51.90

3
HV 49 0 228 30,624 192 30 98.40

ROOF 351 3 10 196 9,365 2 94.34
WATER 0 0 0 0 0 1,254 100.00
User’s

accuracy (%)
83.52 86.75 87.83 99.36 97.06 96.61

Overall
accuracy (%)

91.63

Kappa 0.892
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Table 3. Cont.

Feature

Set

Reference

Pixels
Classified Pixels

Producer’s

Accuracy (%)

R&G SOIL LV HV ROOF WATER

R&G 22,924 12 93 0 8 21 99.42
SOIL 0 10,283 43 0 1 0 99.57

4

LV 309 943 9,543 6 0 7 88.30
HV 30 0 249 30,767 54 23 98.86

ROOF 360 19 55 14 9,477 2 95.47
WATER 0 0 0 0 0 1,254 100.00
User’s

accuracy (%)
97.04 91.35 95.59 99.93 99.34 95.94

Overall
accuracy (%)

97.40

Kappa 0.966
R&G 22,942 24 73 1 1 17 99.50
SOIL 0 10,289 38 0 0 0 99.63
LV 307 869 9,631 0 0 1 89.11

5
HV 8 0 251 30,702 131 31 98.65

ROOF 658 79 41 204 8,944 1 90.10
WATER 0 0 0 0 0 1,254 100.00
User’s

accuracy (%)
95.93 91.37 95.98 99.34 98.55 96.17

Overall
accuracy (%)

96.84

Kappa 0.959

Figure 4. Cont.
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Figure 4. Results of the classifications using the five feature sets: (a) Riegl surface height, echo width
(set 1); (b) Optech amplitude, Riegl surface height, echo width (set 2); (c) Riegl amplitude, Riegl
surface height, echo width (set 3); (d) Riegl amplitude, Optech amplitude, Riegl surface height, echo
width (set 4); (e) Riegl amplitude, Optech amplitude, Riegl surface height (set 5); and (f) the
orthoimage.

The use of dual wavelength LiDAR data offers effective geometry information to classify land
cover. First, LiDAR data can provide 3D information. Thus, the DSM, DEM, and surface height can
be directly obtained. Second, LiDAR data can record multiple returns in forest areas. The canopy
reflectance information in spectral images is considerably influenced by the objects under the canopy.
Dual wavelength LiDAR amplitude and geometric information for the canopy, understory
vegetation, soil, and other land cover types precisely represent the features of these covers. By
contrast, based on the spectral image, the canopy signal cannot be readily separated from that of the
understory vegetation and soil. Thus, the LiDAR data are potentially useful in classifying 3D tree
species. Third, current LiDAR systems can record waveform data that allow physical features to be
extracted, such as the echo width used in this study. These features cannot be obtained from discrete
return LiDAR. All these features, including dual wavelength amplitude features, facilitate land cover
classification, as clearly demonstrated by the current findings. Therefore, this study revealed the
potential of dual wavelength LiDAR applications, which can be developed when airborne LiDAR
systems become available. From a practical perspective, the combination of LiDAR andmulti spectral
images will be useful for land cover classification.

4. Conclusion

In this study, two airborne LiDAR systems were used to obtain dual wavelength LiDAR data
(i.e., amplitudes at NIR and MIR wavelengths) and classify land cover. The proposed processes
involved waveform data processing, data integration, feature selection, and land cover classification.
The findings show that using dual wavelength airborne LiDAR systems could substantially improve
land cover classification in large areas compared with using single wavelength LiDAR. The dual
wavelength amplitude features facilitated the identification of vegetation, particularly LV, more
accurately compared with using single wavelength amplitude.

Based on the major features of LiDAR data, land cover was effectively classified in the absence
of auxiliary remote sensing data, and the overall classification accuracy reached 97.4%. Additional
applications can be designed for this method in the future until airborne dual wavelength LiDAR
systems are developed.
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Abstract: This paper investigated the potential of multispectral airborne laser scanning (ALS) data
for individual tree detection and tree species classification. The aim was to develop a single-sensor
solution for forest mapping that is capable of providing species-specific information, required
for forest management and planning purposes. Experiments were conducted using 1903 ground
measured trees from 22 sample plots and multispectral ALS data, acquired with an Optech Titan
scanner over a boreal forest, mainly consisting of Scots pine (Pinus Sylvestris), Norway spruce
(Picea Abies), and birch (Betula sp.), in southern Finland. ALS-features used as predictors for tree
species were extracted from segmented tree objects and used in random forest classification. Different
combinations of features, including point cloud features, and intensity features of single and multiple
channels, were tested. Among the field-measured trees, 61.3% were correctly detected. The best
overall accuracy (OA) of tree species classification achieved for correctly-detected trees was 85.9%
(Kappa = 0.75), using a point cloud and single-channel intensity features combination, which was
not significantly different from the ones that were obtained either using all features (OA = 85.6%,
Kappa = 0.75), or single-channel intensity features alone (OA = 85.4%, Kappa = 0.75). Point cloud
features alone achieved the lowest accuracy, with an OA of 76.0%. Field-measured trees were also
divided into four categories. An examination of the classification accuracy for four categories of
trees showed that isolated and dominant trees can be detected with a detection rate of 91.9%, and
classified with a high overall accuracy of 90.5%. The corresponding detection rate and accuracy were
81.5% and 89.8% for a group of trees, 26.4% and 79.1% for trees next to a larger tree, and 7.2% and
53.9% for trees situated under a larger tree, respectively. The results suggest that Channel 2 (1064 nm)
contains more information for separating pine, spruce, and birch, followed by channel 1 (1550 nm)
and channel 3 (532 nm) with an overall accuracy of 81.9%, 78.3%, and 69.1%, respectively. Our results
indicate that the use of multispectral ALS data has great potential to lead to a single-sensor solution
for forest mapping.

Keywords: multispectral laser scanning; ALS; individual tree detection; tree species classification;
random forest

1. Introduction

Knowledge of tree species plays an important role in forest management and planning.
The optimum output, requested by forest companies from the forest mapping process, is the
species-specific size distribution of the trees. The traditional method, based on field inventory
work for tree species identification, is labor intensive, time consuming, and limited by spatial extent.
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Therefore, remote sensing techniques were introduced, such as the interpretation of large-scale aerial
color or infra-red images [1,2]. Although remotely-sensed data have been widely used for forest
applications, traditional optical remote sensing techniques suffer from a lack of the ability to capture
three-dimensional forest structures, particularly in unevenly-aged, mixed species forests with multiple
canopy layers [3]. Recent developments in active remote sensing, particularly laser scanning techniques,
have shown potential in forest mapping and other applications because of the capability to capture
three-dimensional (3D) information of forests [4–11].

Airborne laser scanning (ALS) is a useful tool for retrieving biophysical variables and for updating
forest inventory maps. The successful use of ALS data has been demonstrated for a variety of
applications. For example, ALS has been used to estimate tree height [6,7], identify tree species [8–10],
and estimate tree volume, biomass [11–13], and growth [14,15]. Tree species information at an
individual tree level is particularly useful in growth and yield estimates, and has been primarily
studied for forest applications, such as updating forest inventories. Tree species classification using
ALS has not been intensively studied, when compared with studies on the successful use of ALS for
other forest attribute mapping, because of the lack of spectral information. Brandtberg [9] classified
three leaf-off individual deciduous tree species (oaks, red maple, and yellow poplar) in West Virginia,
USA, using high density laser data, and reported 64% total accuracy. Holmgren and Persson [8]
classified Norway spruce and Scots pine in Remningstorp, Sweden, using ALS-derived point and
intensity features, and achieved an accuracy of 95%. Ørka et al. [16] classified three species (spruce,
birch and aspen) at the Ostmarka natural forest in southern Norway. Suratno et al. [17] classified
ponderosa pine, Douglas-fir, western larch, and lodgepole pine, in a western North American montane
forest using low density ALS data, and achieved a classification accuracy of 95% at the dominant
species level, and 68% for individual trees.

Intensity was also demonstrated to be useful information for tree species identification.
Ørka et al. [18] reported an accuracy of 73% when classifying conifers and deciduous trees, solely
based on intensity information. Korpela et al. [19] classified Scots pine, Norway spruce, and birch,
by using intensity variables at Hyytiälä in southern Finland, and showed that intensity features can
contribute to a classification accuracy of 88% among the three species. With full-waveform (FWF)
lasers, the total received power corresponding to the backscattering cross-section can be calculated,
which provides information on the objects, from the intensity waveform.

Previous studies have demonstrated that FWF data and the derived metrics can be used to improve
the performance of tree species classification. For example, Yao et al. [20] demonstrated the usefulness
of waveform features for the classification of deciduous and coniferous trees. Heinzel and Koch [21]
analyzed a set of waveform features and identified the most predictive features for classifying up to six
tree species. Cao et al. [22] demonstrated that full-waveform data and derived metrics have significant
potential for tree species classification in the subtropical forests, and results demonstrated that all tree
species were classified with relatively high accuracy (68.6% for six classes, 75.8% for four main species,
and 86.2% for conifers and broadleaved trees).

Previous studies have also revealed that combining multispectral information with 3D ALS
data can lead to improvement in the accuracy of tree extraction and tree species classification, as
we can take advantage of both datasets. For example, Naidoo et al. [23] concluded that the use of
ALS and hyperspectral data yielded the highest classification accuracy and prediction success for
the eight savanna tree species, with an overall classification accuracy of 87.68%. Zhou et al. [24]
demonstrated that the ALS intensity data can contribute to the classification of shaded areas in an
urban environment where high resolution digital aerial imagery alone did not produce good results.
The fusion of high resolution (satellite or aerial) remote sensing and ALS data can achieve mutual
benefits for compensating the lack of 3D structure from imagery and multi-spectral information from
ALS data. With respect to the success of these case studies, multi-sensor data fusion seems to be a
feasible solution, especially for the mapping of land cover over large areas.
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However, there are challenging factors that limit the effective operational use of the fused
datasets [25,26]. For example, geometric and radiometric registration between two datasets is
demanding, because of the fact that data are normally acquired at different times, using different
sensors. It is also costly to make measurements with two sensors, particularly in the boreal forest zone
where the measurements can seldom be carried out during a single flight, because ALS measurements
can be taken two to four times longer than aerial/hyperspectral measurements during a day, since ALS
does not depend on sun light illumination. Furthermore, in contrast to passive imagery, laser scanning
always views the targets at the zero degree phase angle in a narrow off-nadir viewing geometry and
the transmitted energy is also controllable, thus the interpretation of the laser intensity is less complex
than in the case of passive airborne images [27]. The recently developed multispectral laser scanning
technique is therefore becoming an attractive option for forest mapping, because it can provide not only
a dense point cloud, but also spectral information which can simplify data processing and facilitate
the interpretation of data. There are a couple of studies that have demonstrated the potential of
multispectral ALS for classifying tree species [28,29]. In Lindberg et al [28], multispectral data were
acquired with separate instruments and from different flights—an analogue to Titan multispectral
data. The study described the characterization of tree species from ALS data, using three wavelengths:
1064 nm, 1550 nm, and 532 nm, and a point density over 20 point/m2. However, classification accuracy
was not reported. In St-Onge and Budei [29], values for the mean and standard deviation of the
intensity in three channels of Titan multispectral ALS, were used in the classification of broadleave vs.
needleleaf trees (level 1), and eight genera (level 2) in a suburb of the city of Toronto, Canada. Random
forest classification produced a classification error of 4.59% in the case of the level 1 classification
(broadleave vs. needleleaf trees), and of 24.29% in the case of the level 2 classification. The point
density of the data used was 10.6 first returns/m2 per channel. Currently, the cost of data acquisition
of multispectral ALS is relatively higher than that of aerial images and ALS data, if they are acquired
from the same flight. However, it is expected that this cost will decrease in the future, as the technology
advances. Therefore, it is worth investigating the potential of multispectral laser scanning for forest
inventories, particularly for tree species classification. The objectives of this study are to evaluate the
feasibility of multispectral ALS data for tree species classification with intensive field measurements,
and to investigate the information content of features derived from both point cloud and intensity.
The study was conducted in a boreal forest using 1903 trees in 22 plots.

2. Study Area and Materials

2.1. Test Site

The 5 km × 5 km study area, located in Evo, southern Finland (61.19◦N, 25.11◦E), belongs to
the southern Boreal Forest Zone. It contains approximately 2000 ha of managed boreal forest, having
an average stand size of slightly less than 1 ha. The area comprises a broad mixture of forest stands,
varying from natural to intensively managed forests. The elevation of the area varies from 125 m to
185 m above sea level. Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) are the dominant
tree species in the study area, and contribute 40% and 35% of the total volume, respectively, whereas
the share of deciduous trees (mainly birches, Betula sp.) constitutes only 24% of the total volume.

2.2. Field Measurements

Field measurements were undertaken in the summer of 2014 and consisted of individual tree
measurements for 91 plots in Evo. Sample plots, with dimensions of 32 m × 32 m, were selected, based
on the prestratification of ALS data to distribute plots over various stand height and density classes.
Sample plot locations were determined using the geographic coordinates of the plot center and its four
corners. Plot center positions were measured using a total station (Trimble 5602), which was oriented
to the local coordinate system using ground control points measured with VRS-GNSS (Trimble R8) in
open areas, close to the plot. Terrestrial laser scanning was also used to assist tree mapping in the field.
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After field measurements had been made, the tree map was further verified by comparing it with ALS
data. If there was a discrepancy between the two data, the plot was manually corrected to match the
ALS data, ensuring a positional accuracy of 0.5 m. Detailed information on the establishment of the
sample plots can be found in Yu et al. [30].

From the sample plots, all trees with a diameter at beast height (DBH) exceeding 5 cm, were
tallied with steel calipers from two directions perpendicular to each other, and a mean was taken as the
value for the DBH. Tree height was measured using an electronic hypsometer. Height measurement
accuracy is expected to be approximately 0.5 m. Tree species was also recorded. Among 91 sample
plots, 22 plots were fully covered by the airborne laser scanning data and used in this study (Figure 1).
The descriptive statistics of 22 sample plots, and the sample trees by species, are summarized in
Tables 1 and 2, respectively.

Figure 1. Study area, airborne laser scanning coverage, and sample plots.

Table 1. The descriptive statistics of Lorey’s height (Hg), basal area weighted mean diameter (Dg),
basal area (G), stem volume (VOL), aboveground biomass (AGB), and trees per hectare (TPH) in the
22 sample plots.

Minimum Maximum Mean Standard Deviation

Hg (m) 10.02 31.09 21.09 4.41
Dg (cm) 13.92 46.42 25.78 7.50
G (m2/ha) 6.60 43.17 26.79 7.83
VOL (m3/ha) 34.46 518.39 270.14 110.04
AGB (Mg/ha) 19.06 230.63 134.49 48.33
TPH (trees/ha) 342 3057 940 554

Table 2. The descriptive statistics of sample trees by tree species.

Minimum Maximum Mean Standard Deviation Number of Trees

Pine Tree height (m) 2.30 28.20 17.29 4.76 839
DBH (cm) 5.00 39.80 19.37 6.92

Spruce Tree height (m) 2.20 35.30 14.32 8.94 630
DBH (cm) 5.00 57.90 16.27 11.75

Birch Tree height (m) 2.00 30.20 16.89 4.80 434
DBH (cm) 5.10 55.80 14.61 6.42
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2.3. Airborne Laser Scanning Data

Airborne laser scanning data were acquired on the 21st of August 2015, using an Optech Titan
multispectral system, operating at a pulse rate of 300 kHz per channel. Optech Titan is the first
commercial airborne laser scanner which operates with three channels. The spectral channels are
two infrared ones, of 1550 nm (channel 1) and 1064 nm (channel 2), and a green channel of 532 nm
(channel 3). The three channels are oriented in different directions, so that the 1064 nm channel is
pointing nadir, the 1550 nm channel is positioned 3.5 degrees forward, and the 532 nm channel is
positioned 7 degrees forward. As a result, laser pulses are not registered from exactly the same location
in each channel. The data in this study were collected from an altitude of 400 m above sea level,
resulting in an average pulse density of approximately 3 × 21 pulses per m2, and the footprint sizes
in diameter were 14 cm in channel 1 and 2, and 28 cm in channel 3 (beam divergence of 0.35 mrad in
channel 1 and 2, and 0.7 mrad in channel 3). The system was configured to record up to five echoes per
pulse, and intensities were also recorded for each return and channel.

3. Methods

3.1. Preprocessing of Multispectral ALS data

Recorded intensity is the amount of energy reflected back (i.e., backscattered) to the laser sensor,
which is a function of several variables, such as target surface characteristics (reflectance, wetness and
roughness), environmental effects (atmospheric transmittance, moisture), and acquisition parameters
and instruments [31,32]. It is therefore necessary to calibrate intensity values for compensating the
impact of these factors and achieving better classification accuracy. In this study, a simplified model
was used for the return intensity calibration, in order to correct for range according to the Equation (1)
with an exponential factor of 2.5 [27] for forest area, since the environmental factors can be considered
stable, and the same acquisition parameters and instruments were maintained during the survey.

Ic = I ∗
(

R

Rs

)2.5
(1)

where Ic is the normalized intensity, I is the raw intensity, R is the sensor to target range, and Rs is the
reference range or average flying height (in this study Rs = 400 m). The physical explanation for the
exponential factor of 2.5 is that the laser beam is affected by the mixture of targets illuminated by the
laser beam, such as leaves, dense needle groups (exponential factor close to 2), and the branches and
needles (exponential factor close to 3). Correction was separately completed for each channel.

Strip matching between flight lines and between channels was performed by the data provider.
Afterwards, the ALS point clouds were processed to separate ground returns from vegetation
returns, using the progressive triangulated irregular network (TIN) densification method proposed
by Axelsson [33]. Point cloud of channel 2 was used in this process, in order to reduce the amount
of data provided that ground returns were dense enough to represent the variation of the terrain.
The ALS data from the three channels were then normalised by removing ground elevation from the
laser height measurements based on the digital terrain model created from classified ground points.
The normalized point cloud was further processed for individual tree detection.

3.2. Individual Tree Detection

Individual trees were detected using a minimum curvature-based algorithm [34], which started
with the creation of canopy height model (CHM). The method has two major steps: firstly, the tree
tops were found by a local maximum filtering algorithm. Secondly, tree crowns were delineated
using a watershed algorithm. CHM was created by taking the maximum value of normalized laser
points within a grid cell of size 0.5 m. In the first step, CHM was smoothed by Gaussian filtering
and stretched by minimum curvature, and then local maxima were detected from processed CHM.
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These local maxima were considered as tree tops and used as seeds in the following step, where crown
was delineated by a marker-controlled watershed algorithm, with a background mask of a 2 m height
threshold, i.e., if the CHM value was less than 2 m, the pixel was classified as “background”. During the
segmentation processes, the tree crown shape and location of individual trees were determined, based
on the segment outline and the location of maximum hit within the segment. In this study, points of
first returns from all three channels were used to create CHM.

Detected trees were then linked with the trees measured in the field by an automatic matching
algorithm based on the Hausdorff distance [14]. In the matching procedure, the distance in 3D
space between the detected tree and the field-measured tree was used as a matching criterion. If a
field-measured tree and a detected tree were the closest to each other, and the distance between
them was less than a threshold, the tree was considered as correctly detected. Given the possible
difference in tree location measurements from ALS data (at tree top), and in the field (at tree root) and
tree height underestimation by laser scanning, a 5 m threshold distance was used to reject a match.
The field-measured trees without any link to a tree segment were considered as non-detectable trees,
resulting in an omission error, and a tree segment without a link to a reference tree resulted in a
commission error.

3.3. Features Derivation from Multispectral ALS Data

In order to classify and characterize the object properly, we can use geometry (from point
clouds) and spectral information. For each extracted tree segment, several features were derived
from multispectral ALS data and used in tree species classification. They can be grouped into three
categories: point cloud features, single-channel intensity (SCI) features and multi-channel intensity
(MCI) features. For point cloud features, points falling within each individual tree segment were
extracted from all returns, and the normalized heights of these points were used for deriving the tree
features. The features were calculated based on points over a height threshold of 2 m above ground
from all channels, including maximum height (Hmax), mean height (Hmean), standard deviation of
height (Hstd), range of the height (Hrange) represented by the difference between the lowest and
highest points, penetration rate as the ratio of points below 2 m to the total number of points, crown
area (CA) and volume (CV) estimated by a 2D and 3D convex hull of the points, and crown diameter
(CD). In addition, height percentiles (HP10 to HP90) from 10% to 90%, with an increment of 10%, were
calculated. Furthermore, density-related features were calculated by dividing the height into 10 equal
intervals, and calculating the ratio of points within each interval to the total number of points (D1 to
D10). As SCI features, we calculated the minimum, maximum, mean, standard deviation, skewness,
kurtosis of the intensity, and percentiles of intensity at 5%, and from 10% to 90%, with a 10% increment
for each channel. MCI features included the intensity ratio between each channel and the sum of all
channels, and the subtraction of channel 2 and 3, divided by the sum of channel 2 and 3. In total,
145 tree features were generated and used in the analysis. More detailed definitions and explanations
are given in Table 3.

Table 3. Tree features derived from normalized point data and spectral information. (superscript i = 1,
2, and 3 for channel 1, 2, and 3)

Feature Definition

Point cloud features

Hmax Maximum of the normalized heights of all points
Hmean Arithmetic mean of normalized height of all points above 2 m threshold
Hstd Standard deviation of normalized height of all points above 2 m threshold
Hrange Range of normalized height of all points above 2 m threshold
P Penetration as a ratio between number of returns below 2 m and total returns
CA Crown area as the area of convex hull in 2D
CV Crown volume as the convex hull in 3D
CD Crown diameter calculated from crown area considering crown as a circle.
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Table 3. Cont.

Feature Definition

HP10 to HP90
10% to 90% percentiles of normalized height of all points above 2 m threshold
with a 10% increment

D1 to D10

Di = Ni/Ntotal, where i = 1 to 10, Ni is the number of points within ith layer
when tree height was divided into 10 intervals starting from 2 m, Ntotal is the
number of all points.

Single-channel Intensity features

Ii
min Minimum of intensity

Ii
max Maximum of intensity

Ii
m Mean of intensity

Ii
std Standard deviation of intensity

Ii
sk Skewness of intensity

Ii
range Range of intensity

Ii
kut Kurtosis of intensity

Ii
5,10 to 90 Percentiles of intensity at 5% and from 10% to 90% with 10% increment.

Multi-channel intensity features

Ri
F = Ii

F/(I1
F + I2

F + I3
F) Ratios of intensity features, F refers to different single-channel intensity features.

NF = (I2
F − I3

F)/(I2
F + I3

F) Index of intensity features

3.4. Feature Selection and Tree Species Classification

Introduced by Breiman [35], random forests (RF) is a technique which consists of an ensemble of
decision trees, using a majority vote for the final prediction. RF has shown successful performances
in many applications, such as in the classification of urban scenes [36] and forest attribute
prediction [34,37]. In this study, tree species were estimated based on prediction models by RF using
tree features as predictors and tree species as a response for correctly detected trees. Although RF is
able to deal with high dimensional data [38], the results of classification can be significantly improved
if only the most important features are used [39]. Considering the number of observations and the
correlation between the features in this study, it was necessary to reduce the feature dimension to avoid
overfitting. The RF built-in measure of feature importance was used to search for a subset of predictors
that optimally model responses, subject to constraints which minimize the correlation among the
features. In this study, 15 of the most important features were selected for each experimental setting
by measuring how influential the predictor was at predicting the response. The parameter settings
for RF in each classification were as follows: 200 decision trees were built, with four predictors being
randomly selected for the best splitting at the nodes, when decision trees were built.

3.5. Evaluation of Accuracy

The accuracy of tree species classification was evaluated by comparing the classified tree species
with the reference tree species recorded in the field for correctly detected trees. The result of the
comparison can be represented by an error matrix. Four widely-used measures, i.e., producer’s
accuracy, user’s accuracy, overall accuracy (OA), and Kappa coefficient, were computed for evaluating
the performance of the classification. To avoid overfitting of the classification model, independent
validation was conducted by equally dividing available data into two sets: one for training the
classification model, and the other for testing the performance.

We evaluated different combinations of extracted features for their predictive power as follows:
(i) point cloud features as predictors, (ii) SCI features as predictors, (iii) MCI features as predictors,
(iv) point cloud and SCI features as predictors, and (v) all features as predictors. The McNemar test was
used to determine whether there are statistically significant differences between pairs of classifications,
with the different predictor settings mentioned above (e.g., point cloud features vs. SCI features, SCI
vs. MCI features vs. all features, and so on).
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We also classified four categories of trees, to analyze how crown positioning affected classification
accuracy. Thus, the field-measured trees were divided into four categories, based on the distance and
height difference of neighbor trees as follows:

• Isolated or dominant trees that are well separated from other trees (distance to neighbor trees is
greater than 3 m or tree height is greater than neighbor tree by 2 m) (referred to as C1).

• Group of trees: trees are growing closely to each other (distance less than 3 m) and have a similar
height (height difference is less than 2 m) (referred to as C2).

• Tree next to a larger tree: the distance of a tree to a neighbor tree is greater than 1.5 m and the
height is smaller than the height of neighbor tree by at least 2 m (referred to as C3).

• Tree under a larger tree: the distance of a tree to a neighbor tree is less than 1.5 m and the height
is smaller than the height of neighbor tree by at least 2 m (referred to as C4).

The number of trees in each category was 580 in C1, 552 in C2, 590 in C3, and 181 in C4.

4. Results

4.1. Accuracy of Individual Tree Detection

The accuracy of individual tree detection was evaluated by comparing tree segments with
field reference data. Overall, out of 1903 trees, 61.3% of trees were correctly detected. Most of
the undetectable specimens were understory trees and trees that were near to a larger tree. At plot
level, the detection rate varied between 50% and 98%. In the dense plots, the tree detection rate was
lower than that in the sparse plots. The detection rate was also affected when the plot was located
near the boundary of the data coverage, where the point distribution was not optimum, i.e., the
points in one direction were denser than in a perpendicular direction. When considering the different
categories of trees, the detection rate was 91.9% for C1, and 81.5%, 26.4%, and 7.2%, for C2, C3, and C4,
respectively. A higher detection rate was expected for trees in C1, because the crown boundary was
well defined. For trees in C2, there was a tendency to merge trees into one segment if they were close
to each other, whereas in C3, trees were more likely to merge with neighbor trees, leading to a low
detection rate. In C4, trees were often not detectable because individual tree detection was based on a
CHM where taller trees overtopped the tree underneath. An example of individual tree detection is
shown in Figure 2.

(a) (b) 

Figure 2. Result of individual tree detection for one plot. (a) top view, (b) 3D view.
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4.2. Classification with Different Combinations of Features

The confusion matrix of classification and the result of accuracy evaluation are presented in
Tables 4–8 for the species classification based on the different combination of features, i.e., point cloud
features alone (Table 4), SCI features (Table 5), MCI features (Table 6), point cloud and SCI features
(Table 7), and all features combined (Table 8). The highest level of accuracy (85.9%) was obtained
with a combination of point cloud and SCI features. Point cloud features alone produced the lowest
overall accuracy of 76.0%, while single-channel intensity features produced an overall accuracy of
85.4%. A McNemar test indicated no significant difference between classifications based on SCI and all
features, at a 5% significant level (p = 0.69). Additionally, there was no difference between classifications
based on SCI features, and the combination of point cloud and SCI features (p = 0.58). This suggested
that point cloud features did not provide more information for classification. McNemar tests showed
that the difference between classifications based on other pairs of features, were all significant at a
5% significant level (Table 9). Classification accuracy also varied between species. The best accuracies
were obtained for pine trees with a 97.5% producer’s accuracy using point cloud and SCI features, and
for spruce trees with a 78.2% producer’s accuracy using SCI features, followed by birch trees with a
71.8% producer’s accuracy using all features. SCI features produced slightly better results than MCI
features (p = 0.03). The results suggested that MCI features do not provide more information than
SCI features.

Table 4. Confusion matrix and accuracy evaluation of classification with 15 selected point cloud features
and test data.

Predicted
Producer (%)

Pine Spruce Birch

Reference Pine 294 10 22 90.18
Spruce 24 84 11 70.59
Birch 54 17 60 45.80

User (%) 79.03 75.68 64.52 OA = 76.04%, Kappa = 0.57

Table 5. Confusion matrix and accuracy evaluation of classification with 15 selected single-channel
intensity features and test data.

Predicted
Producer (%)

Pine Spruce Birch

Reference Pine 306 8 12 93.87
Spruce 15 93 11 78.15
Birch 24 14 93 70.99

User (%) 88.70 80.87 80.17 OA = 85.42%, Kappa = 0.75

Table 6. Confusion matrix and accuracy evaluation of classification with 15 selected multi-channel
intensity features and test data.

Predicted
Producer (%)

Pine Spruce Birch

Reference Pine 299 9 17 92.00
Spruce 19 85 16 70.83
Birch 23 22 86 65.65

User (%) 87.68 73.28 72.27 OA = 81.60%, Kappa = 0.68
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Table 7. Confusion matrix and accuracy evaluation of classification with 15 selected point cloud and
single-channel intensity feature combination and test data.

Predicted
Producer (%)

Pine Spruce Birch

Reference Pine 317 3 5 97.54
Spruce 18 85 17 70.83
Birch 29 9 93 70.99

User (%) 87.09 87.63 80.87 OA = 85.94%, Kappa = 0.75

Table 8. Confusion matrix and accuracy evaluation of classification with 15 selected features among all
features and test data.

Predicted
Producer (%)

Pine Spruce Birch

Reference Pine 306 8 11 94.15
Spruce 13 93 14 77.50
Birch 28 9 94 71.76

User (%) 88.18 84.55 78.99 OA = 85.59%, Kappa = 0.75

Table 9. McNemar tests on pairs of the classifications using different combination of features.
The number in the table is p value. The number with a superscript * indicated that the difference
between classifications is significant at a 5% significant level.

Feature Point Cloud SCI MCI Point Cloud + SCI

SCI 1.4 × 10−7 *
MCI 2.4 × 10−4 * 0.03 *
Point cloud + SCI 1.3 × 10−11 * 0.58 0.01 *
All 7.2 × 10−8 * 0.69 0.02 * 0.66

4.3. Classifications for Four Defined Categories of Trees

We also examined classification accuracy for four categories of trees based on the 15 best features
among point cloud and SCI features, because the use of all features does not improve the accuracy.
A 10-fold cross-validation strategy was applied in this case because the number of trees in C3 and C4
was low. The obtained accuracies varied widely. For isolated and dominant trees, an overall accuracy
of 90.47% was achieved (Table 10). The corresponding accuracy was 89.80% for trees in C2 (Table 11),
79.09% for trees in C3 (Table 12), and 53.85% for trees in C4 (Table 13). As can be seen, very high
accuracy was achieved for isolated and dominant trees, and for groups of trees. The accuracy was about
36 percentage points lower for suppressed trees. For dominant trees, both pine and spruce achieved a
high accuracy of over 90%, because of their well identified conical shape. For birch, moderate accuracy
was obtained. Overall, pines are classified with higher accuracy and less misclassifications, while
birches tend to be misclassified as pine for all four categories of trees, resulting in a low user’s accuracy
for pine. Spruces are more likely to be mixed with both pine and birch.
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Table 10. Confusion matrix of classification with point cloud and single-channel intensity features for
isolated and dominant trees (C1).

Predicted
Producer (%)

Pine Spruce Birch

Reference
Pine 299 0 6 98.03
Spruce 10 128 4 90.14
Birch 20 11 57 64.77

User (%) 90.88 92.09 85.07 OA = 90.47%, Kappa = 0.83

Table 11. Confusion matrix of classification with point cloud and intensity features for group of trees (C2).

Predicted
Producer (%)

Pine Spruce Birch

Reference
Pine 268 6 2 98.41
Spruce 4 34 10 67.57
Birch 19 5 103 77.59

User (%) 92.10 75.56 89.57 OA = 89.80%, Kappa = 0.80

Table 12. Confusion matrix of classification with point cloud and intensity features for trees next to a
larger tree (C3).

Predicted
Producer (%)

Pine Spruce Birch

Reference
Pine 63 1 2 95.45
Spruce 6 30 8 68.18
Birch 10 5 28 65.12

User (%) 79.75 83.33 73.68 OA = 79.09%, Kappa = 0.67

Table 13. Confusion matrix of classification with point cloud and intensity features for trees under a
larger tree (C4).

Predicted
Producer (%)

Pine Spruce Birch

Reference
Pine 4 0 0 100
Spruce 1 2 2 40.0
Birch 2 1 1 25.0

User (%) 57.14 66.67 33.33 OA = 53.85%, Kappa = 0.32

4.4. Feature Importance

We also investigated which input features and channels are most relevant for tree species
classification based on the measure provided by the RF algorithm for assessing feature importance.
If a feature is influential in the prediction, then permuting its values should affect the model error. If a
feature is not influential, then permuting its values should have little or no effect on the model error.
Table 14 lists the top five features in the classifications based on different combinations of the features.
In the classification based on point cloud features, the most important features were penetration and
higher level percentiles. Two density-related features at higher and middle layers were also scored as
important as higher percentiles. For the case of classification based on the SCI features, the wavelength
of 1064nm (Channel 2) seems to contain more information for separating pine, spruce, and birch,
followed by wavelengths of 1550nm (channel 1), and 532nm (channel 3). The classification based
on the features of the three separate channels also confirmed analysis with an overall accuracy of
81.9%, 78.3%, and 69.1%, for channel 2, 1, and 3, respectively. The difference between the pairs of
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classification is significant at a 5% significant level based on McNemar tests. Minimum values and
the 90% percentile of intensity are two of the most powerful predictors for all channels in such cases.
In MCI-based classification, ratios at higher percentiles for the three channels were among the most
important features. Overall, when all features were considered, the minimum intensity of channel 2
and 3, the ratio at 90% percentile for channel 2 and 3, and one point cloud features (P), are among the
top five most importance features.

Table 14. The features have the most predictive power in different classification scenarios. A detailed
explanation of the features can be found in Table 3. The number in parentheses is the score for the
feature. The higher the score, the more important the feature.

Cases Top 5 features

Point cloud features P (3.8), D9 (1.6), Hmax (1.5), D5 (1.4), HP90 (1.3)
SCI features I2

min (1.9), I2
p90 (1.6), I1

sk (1.4), I1
p90 (1.5), I3

p90 (1.5)
MCI features R3

p90 (1.7), R2
p90 (1.4), R2

range (1.4), R1
p80 (1.3), Np90 (1.3)

Point cloud and SCI features I2
min (2.0), Hmax (1.5), I2

p90 (1.5), I3
p90 (1.8), P (1.6)

All features I2
min (1.8), R3

p90 (1.7), P (1.5), I3
min (1.4), R2

p90 (1.2)

5. Discussion

In this study, we explored the potential of multispectral ALS data in tree species classification of
a boreal forest. Results showed that multispectral ALS data can be used to separate three main tree
species, i.e., pine, spruce, and birch, with a high overall accuracy of 85.9% in the best case scenario,
which was based on the combined use of point cloud and SCI features. Overall, the results indicated
that the intensity of the three channels contains more information for tree species classification than
point cloud data. When using the intensity of the three channels, both the producer’s and user’s
accuracies for single tree species were improved, as well as the overall accuracy compared with the
results obtained from point cloud data. However, different types of features are more influential on
certain tree species. For example, intensity features are more powerful in separating birch from pine
and spruce (produce’s accuracy improved from 45.8% to 71%, and user’s accuracy from 64.5% to 80.2%,
when compared with those using point cloud features). With the inclusion of point cloud features,
the classification accuracy of intensity features was improved by only 0.5 percentage point, while the
corresponding value was 10 percentage points when adding intensity features to point cloud features.

The individual tree-detection rate was not very high in this study. Two factors influenced this.
Firstly, individual tree detection was based on CHM, so most of the understory trees were not detectable
and 3D information of the dense point cloud was not fully utilized. Secondly, distribution of the
point cloud was not optimal, as it was denser in scanning direction than flight direction. The uneven
distribution of points affected the results of individual tree detection, as the detection rate tended to
decrease when the plot was located near the boundary of data coverage where uneven distribution
was more severe. In order to improve individual tree detection, we recommend developing methods
which can fully utilize the 3D information provided by point cloud. Multispectral information could
also be useful for improving the accuracy of individual tree detection. When point cloud and spectral
information are used in tree detection, a simultaneous classification is possible, such that the knowledge
relevant to each can aid in the analysis of the other. Ultimately, this could lead to the improvement of
accuracy of individual tree detection and classification, as well as computational advantages.

A large variance in feature values can be found, due to the irregular geometry of the canopy
surface and varying degrees of penetration. There were more points penetrated, thus reaching the
ground, in channels 1 and 3, than in channel 2. One potential factor that contributed to this was the
forward viewing geometry for channels 1 and 3. There were also more returns in channels 2 and 3,
than in channel 1. For the same point cloud features, the values in channel 3 were higher than those
in channels 1 and 2, while channels 1 and 2 produced similar values. This trend was observed for all
three species and could be one reason why the point cloud features did not significantly improve the
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classification, when used with SCI features. SCI features also overlapped between species. However,
the degree of overlap varied among the features and channels. In general, higher percentiles of the
intensity distribution and minimum intensity value were more separated than the lower percentiles.
For example, the maximum intensity was smaller for pine than spruce in both channel 1 and channel 2,
while similar values were observed for pine and spruce in channel 3. There were more overlapping
values and variations at lower percentiles of intensity distribution, among tree species in all channels.

MCI features have been used to reduce the radiometric effects on multispectral images and
improvements in classification have been reported. In this study, the use of similar ratios and indices
did not improve the classification. The reason for this could be that the laser scanner is an active
instrument, and recorded intensity mainly depends on the instrument design, measurement range,
and reflectance of the targets. If the same instrument has been used for data acquisition and the range
effect has been corrected, the major factor affecting recorded intensity is the targets illuminated by the
laser. Therefore, the intensity itself is good enough to characterize the objects.

The results in this study are in agreement with previous results, in which tree species were
classified using ALS combined with multi/hyper-spectral data, although the studies cannot be
compared directly because of the differences in the data used, and the number and type of species
identified. For example, Dalponte et al [40] reported a kappa accuracy of 0.89 when classifying three
boreal tree species (pine, spruce and broad-leaves), using hyperspectral and ALS data with the manual
detection of trees. The higher kappa coefficient obtained in their study could be a result of better
delineation of individual trees by manual detection, and a higher spectral resolution. Jones et al [41]
achieved an overall accuracy of 73% for classifying 11 species in coastal south-western Canada, using
hyperspectral and ALS data. The lower accuracy could be explained by the higher number of species
recognised in the study. This indicates that multispectral ALS data contains similar information to
the fusion of multispectral images and ALS data. Compared with the previous study, which used a
multispectral ALS of similar density for tree species classification, St-onge and Budei [29] reported a
classification error of 4.59% in the case of the level 1 classification (broadleave vs. needleleaf trees),
and of 24.29% in the case of level 2 classification (eight genera), using intensity features (mean and
standard deviation of intensity in three channels). The different number of species could be the reason
for the difference in accuracy.

The use of a single source of data apparently has advantages over the use of fused data, with
respect to data processing. For example, geometric and radiometric calibrations between different data
sources produce big challenges, and require much effort to compensate the changes in illumination
conditions and vegetation [26]. Furthermore, previous studies have shown that background signal
reduced classification accuracies when using multispectral/hyperspectral images [42–44]. In contrast,
multispectral ALS data can easily separate the reflections of vegetation from the reflections of the
ground, thus background influences on the results, like soil, could be minimised. Therefore, the
accuracy of the classification could be improved with the use of multispectral ALS data. However,
this issue needs to be explored further in order to investigate the extent to which the accuracy can be
improved with multispectral ALS data.

The intensity values of different returns are affected by the vertical structures of trees. In theory,
the intensity of only returns can be radiometrically calibrated with high reliability. The first of many
returns is distorted by the signal penetrating to the second and other layers. However, there is still
valuable information of all return intensities confirmed by this study. In the future, it should be studied
whether it is possible to calibrate the intensities of multiple returns in a better way, by taking into
account the attenuated part of the signal and the part that causes other returns.

The major drawback with applied Titan data was the inhomogeneous distribution of the point
cloud. In the across track, the point spacing was significantly smaller than that in the along track.
Either lower aircraft speed or higher scan frequency should be achieved to provide more homogenous
point spacing. Another drawback is that the points from the three channels are not registered from
the same location, which means that it is not multispectral data in the conventional sense. As a result,
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pixel/point wise classification cannot be performed; instead, object-based analysis has to be carried
out, like in this study. The accuracy of the classification may also deteriorate, because the backscatter
from different channels could come from different parts of the objects. The impact of such system
design on classifications needs further investigation. Regardless of these drawbacks, multispectral
ALS data are still a valuable data source for tree species classification, as shown in this study.

Currently, it is more expensive to acquire multispectral ALS data than aerial images and
single-channel ALS. However, it is anticipated that the price will drop as technology develops, and
the market is growing. Furthermore, ALS data can be acquired during both the day and night, which
partly compensates for the cost of the data acquisition. Therefore, multispectral ALS data could be a
cost-effective solution for species-specific mapping of forests in the future, and it has the potential to
increase the automation of the whole processing chain.

6. Conclusions

In this study, we assessed the potential utility of single-sensor multispectral ALS data for tree
species classification in mixed coniferous forests in a boreal zone. The results suggest that additional
information, provided by multispectral laser scanning, may be a valuable source of information for
tree species classification of pine, spruce, and birch, which are the main tree species found in boreal
forest zones. The best overall classification accuracy achieved was 85.9% using point cloud and SCI
features, which was not significantly different from the ones in which all features, or solely SCI features
were used. Point cloud features alone achieved an accuracy of 76.0%. Channel 2 performed the best
when separating pine, spruce, and birch, followed by channel 1 and channel 3, with overall accuracies
of 81.9%, 78.3%, and 69.1%, respectively.

This preliminary study has demonstrated the potential of multispectral airborne laser scanning for
possible future solutions for automatic single-sensor forest mapping. It is expected that multispectral
airborne laser scanning can provide highly valuable data for forest mapping. However, there are many
aspects of multispectral ALS that need to be investigated further, for example: how will multispectral
ALS data perform in other forest zones where the number of species composition is higher? Is it
possible to derive more useful features to improve the classification? From a practical point of view,
future studies could explore the possibility to improve the accuracy of forest inventory mapping using
species information obtained from this study.

Acknowledgments: The research leading to these results has received funding from the Academy of Finland
projects “Interaction of LiDAR/Radar Beams with Forests Using Mini-UAV and Mobile Forest Tomography”
(No. 259348), “Centre of Excellence in Laser Scanning Research (CoE-LaSR)”, laserscanning.fi, (No. 272195)
and “Competence-Based Growth Through Integrated Disruptive Technologies of 3D Digitalization, Robotics,
Geospatial Information and Image Processing/Computing–Point Cloud Ecosystem”, pointcloud.fi (No. 293389).

Author Contributions: X. Yu and J. Hyyppä designed the experiments. X. Yu carried out the research, analyzed
the data and wrote the first draft of the paper. P. Litkey performed intensity calibration. M. Holopainen
and M. Vastaranta were responsible for the field measurements. H. Kaartinen contributed material collection.
All co-authors assisted in writing and improving the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gillis, M.; Leckie, D. Forest inventory update in Canada. For. Chron. 1996, 72, 138–156. [CrossRef]
2. Waser, L.T.; Ginzler, C.; Kuechler, M.; Baltsavias, E.; Hurni, L. Semi-automatic classification of tree species

in different forest ecosystems by spectral and geometric variables derived from Airborne Digital Sensor
(ADS40) and RC30 data. Remote Sen. Environ. 2011, 115, 76–85. [CrossRef]

3. Lovell, J.L.; Jupp, D.L.; Culvenor, D.S.; Coops, N.C. Using airborne and ground based ranging LiDAR to
measure canopy structure in Australian forests. Can. J. Remote Sens. 2003, 29, 607–622. [CrossRef]

4. Coops, N.C.; Hilker, T.; Wulder, M.A.; St-Onge, B.; Newnham, G.; Siggins, A.; Trofymow, J.T. Estimating
canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees 2007, 21, 295–310. [CrossRef]

130



Remote Sens. 2017, 9, 108

5. Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.;
Gobakken, T. LiDAR sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012,
121, 196–209. [CrossRef]

6. Næsset, E.; Økland, T. Estimating tree height and tree crown properties using airborne scanning laser in a
boreal nature reserve. Remote Sens. Environ. 2002, 79, 105–115. [CrossRef]

7. Clark, M.L.; Clark, D.B.; Roberts, D.A. Small-footprint LiDAR estimation of subcanopy elevation and tree
height in a tropical rain forest landscape. Remote Sens. Environ. 2004, 91, 68–89. [CrossRef]

8. Holmgren, J.; Persson, Å. Identifying species of individual trees using airborne laser scanning.
Remote Sens. Environ. 2004, 90, 415–423. [CrossRef]

9. Brandtberg, T. Classifying individual tree species under leaf-off and leaf-on conditions using airborne LiDAR.
ISPRS J. Photogramm. Remote Sens. 2007, 61, 325–340. [CrossRef]

10. Lindberg, E.; Eysn, L.; Hollaus, M.; Holmgren, J.; Pfeifer, N. Delineation of tree crowns and tree species
classification from full-waveform airborne laser scanning data using 3-D ellipsoidal clustering. IEEE J. Sel.

Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3174–3181. [CrossRef]
11. Hyyppä, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume

estimates from 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 2001, 39,
969–975. [CrossRef]

12. Hollaus, M.; Wagner, W.; Maier, B.; Schadauer, K. Airborne laser scanning of forest stem volume in a
mountainous environment. Sensors 2007, 7, 1559–1577. [CrossRef]

13. Ahmed, R.; Siqueira, P.; Hensley, S. A study of forest biomass estimates from LiDAR in the northern
temperate forests of New England. Remote Sens. Environ. 2013, 130, 121–135. [CrossRef]

14. Yu, X.; Hyyppä, J.; Kukko, A.; Maltamo, M.; Kaartinen, H. Change detection techniques for canopy height
growth measurements using airborne laser scanning data. Photogram. Eng. Remote Sens. 2006, 72, 1339–1348.
[CrossRef]

15. Yu, X.; Hyyppä, J.; Kaartinen, H.; Maltamo, M.; Hyyppä, H. Obtaining plotwise mean height and volume
growth in boreal forests using multi-temporal laser surveys and various change detection techniques. Int. J.

Remote Sens. 2008, 29, 1367–1386. [CrossRef]
16. Ørka, H.O.; Næsset, E.; Bollandsås, O.M. Utilizing airborne laser intensity for tree species classification. Int.

Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2007, 36, 300–304.
17. Suratno, A.; Seielstad, C.; Queen, L. Tree species identification in mixed coniferous forest using airborne

laser scanning. ISPRS J. Photogramm. Remote Sens. 2009, 64, 683–693. [CrossRef]
18. Ørka, H.O.; Naesset, E.; Bollandsas, O.M. Classifying species of individual trees by intensity and structure

features derived from airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1163–1174. [CrossRef]
19. Korpela, I.; Ørka, H.O.; Maltamo, M.; Tokola, T. Tree species classification using airborne LiDAR-effects of

stand and tree parameters, downsizing of training set, intensity normalization and sensor type. Silva Fenn.

2010, 44, 319–339. [CrossRef]
20. Yao, W.; Krzystek, P.; Heurich, M. Tree species classification and estimation of stem volume and DBH based

on single. Remote Sens. Environ. 2012, 123, 368–380. [CrossRef]
21. Heinzel, J.; Koch, B. Exploring full-waveform LiDAR parameters for tree species classification. Int. J. Appl.

Earth Obs. Geoinf. 2011, 13, 152–160. [CrossRef]
22. Cao, L.; Coops, N.C.; Innes, J.L.; Dai, J.; Ruan, H. Tree species classification in subtropical forests using

small-footprintfull-waveform LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 39–51. [CrossRef]
23. Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the Greater Kruger

National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining
environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167–179. [CrossRef]

24. Zhou, W.; Huang, G.; Troy, A.; Cadenasso, M. Object-based land cover classification of shaded areas in high
spatial resolution imagery of urban areas: A comparison study. Remote Sens. Environ. 2009, 113, 1769–1777.
[CrossRef]

25. Packalén, P.; Suvanto, A.; Maltamo, M. A two stage method to estimate species-specific growing stock.
Photogramm. Eng. Remote Sens. 2009, 75, 1451–1460. [CrossRef]

26. Puttonen, E.; Suomalainen, J.; Hakala, T.; Räikkönen, E.; Kaartinen, H.; Kaasalainen, S.; Litkey, P. Tree species
classification from fused active hyperspectral reflectance and LiDAR measurements. For. Ecol. Manag. 2010,
260, 1843–1852. [CrossRef]

131



Remote Sens. 2017, 9, 108

27. Korpela, I.; Orka, H.; Hyyppa, J.; Heikkinen, V.; Tokola, T. Range and AGC normalization in airborne
discrete-return LiDAR intensity data for forest canopies. ISPRS J. Photogramm. Remote Sens. 2010, 65, 369–379.
[CrossRef]

28. Lindberg, E.; Briese, C.; Doneus, M.; Hollaus, M.; Schroiff, A.; Pfeifer, N. Multi-wavelength airborne laser
scanning for characterization of tree species. In Proceedings of SilviLaser 2015, La Grande Motte, France,
28–30 September 2015; pp. 271–273.

29. St-Onge, B.; Budei, B.C. Individual tree species identification using the multispectral return intensities of the
Optech Titan LiDAR system. In Proceedings of SilviLaser 2015, La Grande Motte, France, 28–30 September
2015; pp. 71–73.

30. Yu, X.; Hyyppä, J.; Karjalainen, M.; Nurminen, K.; Karila, K.; Vastaranta, M.; Kankare, V.; Kaartinen, H.;
Holopainen, M.; Honkavaara, E.; et al. Comparison of laser and stereo optical, SAR and InSAR point
clouds from air- and space-borne sources in the retrieval of forest inventory attributes. Remote Sens. 2015, 7,
15933–15954. [CrossRef]

31. Bright, B.C.; Hicke, J.A.; Hudak, A.T. Estimating aboveground carbon stocks of a forest affected by mountain
pine beetle in Idaho using LiDAR and multispectral imagery. Remote Sens. Environ. 2012, 124, 270–281.
[CrossRef]

32. Ahokas, E.; Hyyppä, J.; Yu, X.; Liang, X.; Matikainen, L.; Karila, K.; Litkey, P.; Kukko, A.; Jaakkola, A.;
Kaartinen, H.; et al. Towards automatic single-sensor mapping by multispectral airborne laser scanning.
In Proceedings of XXIII ISPRS Congress, Commission III, Prague, Czech Republic, 12–19 July 2016;
pp. 155–162. [CrossRef]

33. Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci. 2000, 33, 110–117.
34. Yu, X.; Hyyppä, J.; Vastaranta, M.; Holopainen, M.; Viitala, R. Predicting individual tree attributes from

airborne laser point clouds based on random forests technique. ISPRS J. Photogramm. Remote Sens. 2011, 66,
28–37. [CrossRef]

35. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
36. Guo, L.; Chehata, N.; Mallet, C.; Boukir, S. Relevance of airborne LiDAR and multispectral image data

for urban scene classification using Random Forests. ISPRS J. Photogramm. Remote Sens. 2011, 66, 56–66.
[CrossRef]

37. Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Hall, D.E.; Falkowski, M.J. Nearest neighbour imputation of
species-level, plot-scale forest structure attributes from LiDAR data. Remote Sens. Environ. 2008, 112,
2232–2245. [CrossRef]

38. Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for
classification in ecology. Ecology 2007, 88, 2783–2792. [CrossRef] [PubMed]

39. Millard, K.; Richardson, M. On the importance of training data sample selection in Random Forest image
classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489–8515. [CrossRef]

40. Dalponte, M.; Ørka, H.O.; Ene, L.T.; Gobakken, T.; Næsset, E. Tree crown delineation and tree species
classification in boreal forests using hyperspectral and ALS data. Remote Sens. Environ. 2014, 140, 306–317.
[CrossRef]

41. Jones, T.G.; Coops, N.C.; Sharma, T. Assessing the utility of airborne hyperspectral and LiDAR data for
species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sens. Environ. 2010, 114,
2841–2852. [CrossRef]

42. Shang, X.; Chisholm, L.A. Classification of Australian native forest species using hyperspectral remote
sensing and machine-learning classification algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014,
7, 2481–2489. [CrossRef]

43. Adelabu, S.; Mutanga, O.; Adam, E.; Cho, M.A. Exploiting machine learning algorithms for tree species
classification in a semiarid woodland using RapidEye image. J. Appl. Remote Sen. 2013, 7. [CrossRef]

44. Carleer, A.; Wolff, E. Exploitation of very high resolution satellite data for tree species identification.
Photogramm. Eng. Remote Sens. 2004, 70, 135–140. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

132



remote sensing 

Article

A Sparsity-Based Regularization Approach for
Deconvolution of Full-Waveform Airborne Lidar Data

Mohsen Azadbakht 1,2,*, Clive S. Fraser 1,2 and Kourosh Khoshelham 2

1 Cooperative Research Centre for Spatial Information, Carlton VIC 3053, Australia; c.fraser@unimelb.edu.au
2 Department of Infrastructure Engineering, University of Melbourne, Parkville VIC 3010, Australia;

k.khoshelham@unimelb.edu.au
* Correspondence: m.azadbakht@student.unimelb.edu.au; Tel.: +61-3-9035-8559

Academic Editors: Jie Shan, Juha Hyyppä, Guoqing Zhou and Prasad S. Thenkabail
Received: 30 May 2016; Accepted: 3 August 2016; Published: 8 August 2016

Abstract: Full-waveform lidar systems capture the complete backscattered signal from the interaction
of the laser beam with targets located within the laser footprint. The resulting data have advantages
over discrete return lidar, including higher accuracy of the range measurements and the possibility
of retrieving additional returns from weak and overlapping pulses. In addition, radiometric
characteristics of targets, e.g., target cross-section, can also be retrieved from the waveforms. However,
waveform restoration and removal of the effect of the emitted system pulse from the returned
waveform are critical for precise range measurement, 3D reconstruction and target cross-section
extraction. In this paper, a sparsity-constrained regularization approach for deconvolution of
the returned lidar waveform and restoration of the target cross-section is presented. Primal-dual
interior point methods are exploited to solve the resulting nonlinear convex optimization problem.
The optimal regularization parameter is determined based on the L-curve method, which provides
high consistency in varied conditions. Quantitative evaluation and visual assessment of results show
the superior performance of the proposed regularization approach in both removal of the effect of
the system waveform and reconstruction of the target cross-section as compared to other prominent
deconvolution approaches. This demonstrates the potential of the proposed approach for improving
the accuracy of both range measurements and geophysical attribute retrieval. The feasibility and
consistency of the presented approach in the processing of a variety of lidar data acquired under
different system configurations is also highlighted.

Keywords: deconvolution; full-waveform; lidar; L-curve; sparse solution; target cross-section

1. Introduction

Laser remote sensing is being increasingly adopted as a useful tool for capturing 3D information
in conjunction with other descriptive data (e.g., intensities) from targets, and it is now being utilized for
a number of applications. These include classification [1,2], object extraction and 3D reconstruction [3],
vegetation structure characterization [4,5] and digital elevation model (DEM) generation [6].

Discrete lidar systems estimate the distance between the sensor and the target through precise
measurement of the transit time between the emitted and backscattered laser pulse using real-time echo
detection. Such discrete systems generally do not specify the exploited pulse detection method [4,7,8]
and only provide range information with a single backscatter intensity value, inherently neglecting the
backscattering characteristics of the illuminated target. In contrast, highly accurate pulse detection and
subsequent range measurement is potentially possible in full-waveform lidar, subject to the methods
adopted for data post-processing. Full-waveform lidar systems record the entire backscattered signal,
providing a range measurement, a measure of the energy reflected from the target and the distribution
of the returned energy along the laser path. Physical characteristics of the underlying target can then

Remote Sens. 2016, 8, 648 133 www.mdpi.com/journal/remotesensing



Remote Sens. 2016, 8, 648

be revealed, thus enhancing the capability of the lidar system to yield both geometric and physical
information of targets for a broad range of applications.

Classical pulse detectors, in ideal conditions, can only provide the range and amplitude values
of pulses, without allowing removal of the effect of the transmitted pulse or the delivery of echo
parameters and radiometric information about targets [9,10]. Moreover, even though accurate range
determination is an important aspect in processing full-waveform lidar data, restoring the target
response is a key prerequisite step not only for range measurement but also for the extraction of
geophysical attributes of the target. The target cross-section is an attribute that is independent of the
instrument [11,12] and is more related to the effective target area (and its shape) inside the footprint,
as well as to its reflectivity and the direction of the incoming light [13,14]. The scattering cross-section,
which provides insight into geophysical characteristics and target roughness [11,15] is an issue of
considerable significance in laser radar remote sensing [14,16] and it can be recovered in the case of
full-waveform lidar [8].

In addition, more useful attributes can be extracted by analyzing the lidar signal geometry.
Recovery of overlapping signals and weak echoes is also feasible and advantageous in full-waveform
lidar to avoid both misinterpretation and incorrect estimation of the range. The additional pulses,
which may not be detected by discrete return systems, along with their associated features, can provide
useful inputs for further processing, e.g., for segmentation, classification and 3D modelling [1,17–19].

A lidar waveform is generally complex, particularly in vegetated areas. Overlapping waveforms
are recorded as a consequence of a finite detection time, noise, impulse function of the receiver and
changes in the transmitted pulse, leading to resolution degradation for closely located targets along the
laser beam [20]. Critical to the success of full-waveform lidar systems is the ability to understand and
interpret the shape of the recorded return laser pulse so as to separate fine object structures. A number
of lidar waveform processing approaches have been developed [14,21–23] and these have generally
concentrated on decomposition of the waveform into a series of parametric (e.g., Gaussian) pulses so
as to extract the range, amplitude and pulse width. Since the lidar waveform is essentially the result
of a convolution of the system transmitted laser pulse and the target cross-section, the retrieval of
target properties requires a deconvolution of the returned waveform. In addition, account must be
taken of the fact that incorporation of the system properties delivers a more meticulous analysis of
the waveform [24]. In particular, deconvolution essentially removes the effect of the system signal,
resulting in an unbiased estimate of the target cross-section.

This paper proposes a new signal deconvolution approach for efficient temporal target
cross-section retrieval from full-waveform lidar. This is achieved through a regularization approach
with sparsity constraints that can be efficiently solved when cast in the form of a convex optimization
problem. An efficient way to determine the optimal regularization parameter value, a critical issue in
regularization, through utilization of the L-curve method and a search for the bending point on such a
curve, is introduced. In order to model and estimate the system waveform, in situations where it is
unavailable, an appropriate approach is proposed through the use of blind deconvolution of waveforms
recorded over nearly flat targets, without requiring information about the surface reflectivity.

The remainder of the paper is organized as follows: Section 2 provides a review of research on
lidar waveform processing. Following this, in Section 3, the proposed lidar waveform deconvolution
method is presented through reference to the fundamentals of laser propagation, regularization
for deconvolution and estimation of an optimal regularization parameter value. In Section 4,
the experimental tests with both synthetic and real data covering different test sites are presented,
and performance of the proposed lidar waveform deconvolution approach is evaluated. Concluding
remarks are offered in Section 5.

2. Review of Related Research

With full-waveform lidar systems increasingly being adopted, improved methods are being
developed for the processing of lidar waveforms. Approaches adopted in the literature can be

134



Remote Sens. 2016, 8, 648

categorized as either decomposition- or deconvolution-based, where the former approaches fit
parametric functions to the received signals before retrieval of the target cross-section.

2.1. Decomposition Methods

Gaussian waveform decomposition methods for the extraction of a parametric description of
the pulse properties, including range, width and amplitude, have been developed for instance by
Hofton et al. [21] for a laser vegetation imaging sensor (LVIS), by Persson et al. [22] for the TopEye
Mark II lidar system and by Wagner et al. [14] for small footprint data. Generally, a set of Gaussian
functions is considered to both fit to the received backscattered waveform and to characterize each
pulse shape in this approach. Gaussian decomposition and other similar decomposition methods
have been extensively used to interpret targets related to the backscattered waveform in urban and
forested areas [1,2,17,25]. However, this method is considered challenging in the case of echoes with
low signal strength (low SNR) and it is deficient in its calculation of the cross-section in complex
waveforms. The method also requires initial determination of the number of targets [16,18,23,26],
which is sometimes impractical or of high computational cost. In addition, a symmetric function
might not always be sufficiently accurate to describe the target characteristics [17,27]. Furthermore,
Gaussian decomposition has a vulnerability in that it can result in a null solution or even negative
amplitudes in some cases [11,18]. The possibility of failure in the detection of peaks and in the fitting
of Gaussian functions to complex waveforms, principally due to a high dependency on local maxima,
has been reported [18]. These problems cause the range accuracy to deteriorate, which then impacts
upon subsequent lidar processing.

More complicated parametric distribution functions for the extraction of pulse parameters have
been investigated. Chauve et al. [27] extracted target attributes from pulses by utilizing a mixture
of the generalized Gaussian and Lognormal functions, with an improved global fitting for the
former, and a better pulse fitting result locally in asymmetric cases for the latter. This work was
extended by Chauve et al. [17] to suppression of the ringing effect, and the results were utilized in
DTM and Canopy Height Model (CHM) extraction, as well as for accurate determination of tree height.
A low rate of height underestimation in the CHM generation was reported by the authors. A set of
parametric pulse shapes (the Burr, Nakagami and generalized Gaussian models) have been considered
by Mallet et al. [23], where it was pointed out that the efficacy of the approach when applied to
object classification was inadequate. However, more accurate results could be achieved when these
waveform features were utilized in combination with geometric attributes. Lin et al. [18] studied weak
and overlapping pulses and reported higher obtainable accuracies in multi-target separation using a
rigorous pulse fitting method, however at very high computational cost.

In general, decomposition methods all attempt to fit a function (or functions) to the received
waveform and extract related attributes from the parametric function(s). However, parameter
estimation based only on the received waveform and not on the perceived deviations in the transmitted
pulse may not in general be valid [11]. In addition, direct extraction of the range from the maximal
amplitude value is not recommended since the signal pulse may be altered as a result of superimposing
different target responses [12,15]. It has therefore been suggested that recording both the received
and the outgoing waveforms is indispensable [12]. Disentanglement of the received waveform from
the instrument and estimation of a signal more related to the target response can be achieved by
exploiting deconvolution approaches. Reconstruction of instrument-independent target features by
deconvolution can result in precise characterization of the actual response of the targets [5,12].

2.2. Deconvolution Methods

The retrieval of target cross-section by signal deconvolution is an ill-posed problem and a unique
solution is usually not obtainable without the imposition of appropriate solution constraints [16].
Unlike Gaussian decomposition, deconvolution does not require information regarding the number of
signal peaks and there is no essential assumption regarding the pulse shape [7,26].
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An encouraging reported approach for both retrieval of the target response and improved range
estimation is Wiener filtering [5,12,19,20]. The Wiener filter minimizes the mean square error between
the approximated cross-section and the true surface response. However, negative amplitudes and
ringing effects usually appear in signals restored by using this method [19,20].

In another approach, reported in Roncat et al. [11], the differential cross-section is measured by
using B-splines as a linear deconvolution approach, with the assumption that pulses are not necessarily
symmetric. Negative amplitude values were reported in the resulting cross-section profile.

Wu et al. [28] defined four steps to form a pre-processing sequence for calibrating full-waveform
lidar data based upon synthetic waveform generation from the DIRSIG simulation model. The defined
steps are noise removal, signal deconvolution, geometric correction, and angular rectification.
Among these, deconvolution has emerged as the most critical for waveforms from lidar with a
nadir scan angle, while geometric calibration is the principal enhancement factor for off-nadir scanning.
The Richardson-Lucy (R-L) method was adopted in the deconvolution investigation. While this
method is efficient in most cases, underestimation of the amplitude values and the occasional missing
of pulses, in addition to essential speculation on the number of iterations by the user, remain its main
shortcomings. It is noticeable that increasing the number of iterations does not generally guarantee
that the optimal results will be achieved because after some iterations the quality of the restored signal
can deteriorate and spurious pulses will be generated as a result of noise amplification [29,30]. As also
reported in Neilsen [31], increasing the number of iterations in the R-L algorithm has an adverse effect
on the range resolution and can cause an increase in the range error.

Deconvolution of the received waveform can be accomplished by regularization techniques,
as demonstrated in Wang et al. [16]. This approach can restrain noise propagation and improve
computational efficiency. However, the method utilized to estimate the regularization parameter,
namely the discrepancy principle, demands that the noise level in the waveform be known, which is
not practical in the case of real data and hence the method is restricted in its application.

Negative amplitude values can be avoided by using iterative deconvolution methods, e.g., the
Gold and R-L methods. Such approaches can also minimize smearing effects (signal distortion level)
on the signal and they have been shown to be effective in retrieving pulses in lidar data [20,26,28],
as well as in other fields of research [32]. Wu et al. [20] reported that not all peaks can be detected.
This can cause errors in range estimation and lead to false target detection. Moreover, the solutions
generated by these methods can be significantly affected by the number of iterations. Thus, any invalid
assumptions can lead to inaccurate results.

Application of compressed sensing in lidar processing using synthetic data has also attracted
limited attention [33,34]. In this case, inclusion of lidar data compression in the acquisition was
endeavored in order to cope with large data volume. The transmitted waveform of the chaotic type
presented in [34] was described to compress waveform data whilst allowing retrieval of the range
information using the DIRSIG simulation model. Higher SNR were perceived in case of chaotic signals
than that of using linear Frequency Modulated (LFM) signals. Reconstructing of randomly generated
surfaces was investigated at different complexity levels through implementing compressed sensing
in [33]. The edges connecting facets could not be retrieved in [33] when the proposed method is based
on the total variation algorithm, while such an algorithm is known for successful retrieval of edges.
In addition, the complexity of surfaces is required in [33] to appropriately retrieve the surface.

The present paper explores the theory of signal deconvolution for improved full-waveform
lidar processing through a reliable sparsity-constrained regularization. In addition, the estimation of
system waveforms based on blind deconvolution is presented and an approach to the determination
of regularization parameters is proposed.

3. Methodology

The proposed approach explores signal deconvolution for target cross-section retrieval. Following
a brief review of two major classes of deconvolution methods and a justification for selection of the
most efficient group, the sparsity-constrained regularization for deconvolution is presented and the
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approaches to the sparse solution are detailed. A method based on the L-curve for the determination
of the regularization parameter is then proposed and a new approach using blind deconvolution for
estimation of the system waveform is developed.

3.1. Deconvolution for Cross-Section Retrieval

Deconvolution is the process of signal and image restoration in a system with linear and
shift-invariant characteristics [35]. There are two major classes of deconvolution methods, namely
direct and iterative. Of the latter group, the Gold [36] and R-L [37,38] are recognized as approaches
that provide signals/images of positive values, provided that the input raw waveform values are
also non-negative [32]. Direct deconvolution methods, on the other hand, involve a regularization
parameter, which controls the level of restoration. The number of optimal iterations in the iterative
methods is of the same level of significance as the regularization parameter in the direct deconvolution
methods, and different values for each of these parameters will surely result in a different solution, and
sometimes may deliver over-smooth or noisy results. Unfortunately, selection of the optimal number of
iterations is still a challenge and changes in this number may result in varying levels of signal recovery
(overestimation or underestimation). In this research, direct deconvolution methods are investigated for
two main reasons. First, an optimal regularization parameter can be more appropriately determined,
so controlling the solution will therefore not be problematic. Second, this class of deconvolution
approaches makes it possible to incorporate additional constraints and conditions [39] and, in turn,
is more flexible compared to the iterative approaches.

3.1.1. Target Cross-Section Retrieval

As mentioned, the process of target cross-section retrieval is an ill-posed problem, and it requires
consideration of additional conditions. In this situation, substantial perturbations can occur in the
restored signal as a consequence of either trivial changes in the received waveform or noise in the
waveform. Therefore, regularization is a necessary way to achieve a stable solution to the deconvolution
problem by providing an approximation after imposing additional constraints [40]. In order to
accomplish the condition, it is necessary to determine an optimal regularization parameter by an
appropriate method [41].

The target cross-section for an extended non-overlapping diffuse surface with reflectivity ρ,
the solid angle of π steradians, and under incidence angle θ, will be [13]:

σex “ 4ρdAcos pθq (1)

where dA “ πR2β2
t

4 is the effective target area illuminated by the laser footprint, for a transmitter with
a typical disk-like aperture with βt as its beamwidth, at the range R.

The received signal power Pr ptq at the receiver is essentially a convolution of the point spread
function (system waveform) S ptq and the unknown differential target cross-section σ ptq, along with
an additive noise term n ptq, and it can be expressed through the following equation [16]:

Pr ptq “ S ptq ˚ σ ptq ` n ptq (2)

In Equation (2), any possible loss of the transmitted pulse energy when intercepted by multi-return
targets (e.g., vegetation) is ignored, and σ ptq represents only the cross-section of the effective areas in
multi-return targets. In order to recover the target response, the effect of convolution in Equation (2)
should be compensated through deconvolution.

3.1.2. Sparsity-Constrained Regularization

Throughout the rest of this paper, waveforms are treated as discrete signals. The general form
of the variational regularization, used to retrieve the temporal target cross-section σ in Equation (2),
is expressed by Gunturk and Li [35] as:

σ “ argmin
σ

t||P ´ Sσ||2 ` λϕ pσqu (3)
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where, λ P p0, 8q is the regularization parameter, ϕ p.q is the regularization function, ||.|| denotes the
Euclidean norm, P is a vector representing the received waveform and S is the blur matrix comprised
of the system waveform.

This objective function seeks a solution by minimizing the sum of squared dissimilarities between
the estimated and the desired solution, while imposing a constraint on the solution to achieve desirable
properties. The first term (residual) in Equation (3) measures how the solution fits the data, and the
regularization term introduces prior information about the solution and imposes a penalty on large
amplitude values of the retrieved signal [42]. The selection of λ should be made with caution, since it
controls the level of signal restoration and different values result in different solutions, and sometimes
may deliver over-smooth or noisy results.

The regularization function plays a critical role and different regularization functions,
appropriate to different specific applications have been introduced in the literature [35].
Tikhonov regularization [43], which is the most common variational regularization method, makes
use of the regularization function ϕ pσq “ ||Lσ||2, where L is a regularization operator. Through a
consideration of prior information and adherence to the Gibbs distribution, the signal probability is
determined by measuring the deviation from smoothness [44]. This is a convex quadratic optimization
problem and can be solved with different approaches [42]. However, the Tikhonov regularization
function, which utilizes the l2-norm, exaggerates data smoothness. The shape of the penalty function
affects the solution. When using the l2-norm, as in Tikhonov regularization, large residuals are allocated
a higher weight than small residuals [42], and also small elements are revealed in the obtained signal
associated with small singular values [45]. As a result, Tikhonov regularization may cause oscillation
around principal peaks, restoring signals with under-estimated amplitude values, and it may also
generate negative amplitude values [32,46]. To avoid such problems, sparsity constraints have been
introduced as an appropriate technique in regularization [35,47]. The term sparsity refers to the
minimum number of nonzero elements within a desired solution that can be included in the objective
function through use of the l0-norm.

Sparse formulation of the regularization solution can be expressed as follows:

σ “ argmin
σ

t||P ´ Sσ||2 ` λ||Lσ||0u (4)

where ||.||0 represents the sparsity constraint on the solution.
Among the methods for sparse solution, greedy pursuit methods and convex optimization

have proven to be effective and are broadly used whilst also being computationally tractable [48].
The effectiveness of convex relaxation techniques in achieving an appropriate solution for the
sparsity-constrained regularization has been verified to a large extent, especially in cases involving
high noise levels. More importantly, a local optimal point, where it exists in convex optimization,
is also globally optimal [42]. In convex optimization methods the idea is to impose a relaxation
and replace the l0-norm in Equation (4) by its closest convex form, the l1-norm, such that standard
methods in convex optimization can be adopted [48]. The reason for the substitution of the l0-norm
with the l1-norm is that the former results in impractical methods because of the high computational
complexity [35]. The cost function is therefore altered to:

σ “ argmin
σ

t||P ´ Sσ||2 ` λ||Lσ||1u (5)

In contrast with Tikhonov regularization, substantial weight is assigned to small residuals in
the case of the l1-norm penalty functions in sparse regularization, hence resulting in even smaller
residuals [42]. Additionally, the l1-norm solution does not produce signal elements relevant to small
singular values [45]. Large amplitude values can be recovered by imposing smaller penalties when
adopting the l1-norm solution, in lieu of that of the l2-norm [44]. Also, the oscillations of Tikhonov
regularization can be controlled to a large extent by this solution. The l1-norm regularization method
has been adopted in many applications, from signal/image deconvolution to feature selection, and
to compressed sensing [35,49]. In the case of waveform deconvolution, small elements of the target
response vector are encouraged to become zero, which is an aim of sparse solutions.
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A sparse solution for Equation (5) always exists as a nonlinear function of the noisy observations,
although it is not necessarily unique. However, solving this problem involves high computational
complexity compared to its counterpart in the l2-norm solution due to its non-differentiability [50].

By recasting waveform restoration into the form of the convex problem in Equation (5), advanced
approaches in convex optimization can be explored. Iterative Shrinkage/Thresholding (IST) methods,
based on either the proximal gradient or expectation-maximization [35,51], together with interior-point
methods [42,50,51], are noteworthy examples. To exploit the latter group, the convex optimization
should be converted to a quadratic form, second-order cone programming (SOCP) problem [50,51],
where interior-point methods have proven to be effective in producing highly accurate results
compared with other methods such as the barrier method [42].

3.1.3. Optimization with SOCP

Linear and convex quadratic problems can be expressed in the style of nonlinear convex SOCP
problems, which can be efficiently solved by primal-dual methods [52,53]. The SOCP form of the main
objective function in Equation (5), with σ, u and v as the variables, is written as [42]:

min u ` λv s.t. ||Sσ ´ P|| ď u, ||σ||1 ď v (6)

Because of the convexity of the cost function and the second-order cone constraint, the SOCP
problem in Equation (6) is a convex problem. In primal-dual interior-point methods, Newton’s
method is employed to calculate the search direction on the central path, from the modified
Karush-Kuhn-Tucker (KKT) conditions. Assigning the residual components (the dual, centrality
and primal residuals) to zero, the Newton step can be obtained as the primal-dual search direction by
solving a set of equations [42].

3.1.4. Blur Matrix Structure

The blur matrix S in Equation (5) should be structured as a function of the system waveform
elements. Undesirable oscillations will likely be revealed in cases where an inappropriate blur model
is defined [54]. The blur matrix can be constructed in the following form [55], where hi represents the
ith element of the system waveform:

S “

»
————————————————————–

h1 0 0 ¨ ¨ ¨ 0
h2 h1 0 ¨ ¨ ¨ 0
...

...
...

. . .
...

hn hn´1 hn´2 ¨ ¨ ¨ 0
0 hn hn´1 ¨ ¨ ¨ 0

0 0 hn
. . .

...

0 0 0
. . . h1

...
...

...
. . .

...
0 0 0 hn hn´1

0 0 0 0 hn

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(7)

This blur matrix has a Toeplitz form and belongs to the class of zero boundary condition.
The received waveform is a (m + n ´ 1) ˆ 1 vector; with the target cross-section vector of size m ˆ 1,
the system waveform vector of size n ˆ 1 and the dimension of the blur matrix S is (m + n ´ 1) ˆ m.
In Section 3.3, an approach for estimation of the system waveform in cases where it is unknown will
be presented.

3.2. Determination of the Regularization Parameter

Optimal selection of the regularization parameter is important for an ideal adjustment between
the regularization function and the solution residual, as the solution can be significantly affected by
the selected value [35]. An optimal regularization parameter avoids under-/over-regularized results

139



Remote Sens. 2016, 8, 648

and in turn unreliable outputs. Therefore, a proper choice of the regularization parameter needs to be
investigated thoroughly in order to achieve the optimal value.

Among the available approaches, some only deal with the residual term, without considering
the regularization term. Of this type, the discrepancy principle [56] and generalized cross-validation
(GCV) [57] could be mentioned. However, some other approaches, e.g., the L-curve [58], take care of
both terms simultaneously [59].

The discrepancy principle method relies strictly upon a known data noise level and it estimates
the regularization parameter such that the residual term is proportional to the predefined noise
level [54,59]. The known noise level is considered as a highly impractical requirement when dealing
with real data. Hansen et al. [54] highlighted an over-smoothed output yet with a known (or with
a precise estimate of) noise level. Use of a large regularization parameter value makes the output
signal over-smooth, and hence, the detailed description of the target response is not recovered [45,59].
These deficiencies make this approach inappropriate in the case of full-waveform lidar data processing.

Unlike the discrepancy principle, the GCV makes no assumption with regard to the noise level.
The optimal value of the regularization parameter is obtained by minimizing the GCV function, where
the effort is to achieve the minimal value of the residual term and eliminate the influence of small
singular values on the output signal [54,59]. However, the occurrence of high correlation between
noise elements impedes the achievement of an appropriate regularization parameter. Moreover,
finding an absolute minimum value of the GCV function may not be achievable due to difficulty in
locating the function’s minimum value since it is near constant in the vicinity of the minimum [45].
This method is also known for resulting in an overestimated regularization parameter, even in cases of
unnoticeable correlation between errors. When it is applied to data with high noise level, results can
be unsatisfactory [59].

In the L-curve method, both the residual and regularization terms are considered concurrently in
order to find the optimal regularization parameter. In search of the optimal value, these two terms
are plotted against each other for a range of plausible regularization parameter values. The idea is
to find a changing point on the curve, where both terms are minimized simultaneously. This point is
actually the margin between over- and under-regularization of the results and it is a representative
of the optimal value for the regularization parameter [35]. The L-curve method is adopted for
estimation of the optimal regularization parameter in this research in the following way: Suppose
P “ tpRg1 , Rs1q, . . . , pRgn, Rsnqu is a set of n pairs from the regularization (Rgi) and residual term (Rsi)
magnitudes that constitute the vertices of the L-curve for a range of regularization parameter values
(λ1, λ2, . . . , λn). The optimal regularization value λOpt over the aforementioned set of points Pi can
then be conveniently calculated by finding the maximum Euclidean distance. Figure 1 illustrates the
location of the optimal regularization parameter on a sample L-curve.
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Figure 1. Optimal regularization parameter on the L-curve.
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3.3. System Waveform Estimation

Waveform deconvolution requires the emitted signal to be known. This information is not always
available in the recorded lidar data. In this section, a new method for estimation of the system
waveform using blind deconvolution is proposed. Under the assumption of an ideally flat target
(at nadir) and considering the measured transmitted signal sM ptq as a convolution of the transmitted
pulse s ptq and the impulse function of the transmitter hS ptq on one side; and assuming the measured
received waveform rM ptq as a convolution of the transmitted pulse s ptq and the receiver impulse
function hR ptq on the other side; the measured received waveform can be expressed in the frequency
domain as [24]:

RM p f q “ SM p f q HR p f q
HS p f q “ SM p f q H p f q (8)

The atmospheric propagation is treated as a constant value for similar targets located at similar
ranges from the receiver. Therefore, the average of the system waveform can be obtained by
deconvolution over a number of recorded samples. A prominent approach to eliciting a rough
estimation of the unknown system waveform is to exploit blind deconvolution, which provides an
estimate of both the point spread function (PSF) and the true signal [35,54]. In this research, only
pulses captured at nadir over almost flat targets are taken into account for the calibration. In order
to alleviate the effects of possible changes of the received waveforms from similar targets due to the
noise, changes of the (unknown) system waveform or other unknown sources, the retrieved system
waveforms are averaged. Estimation of the system waveform in this study is carried out using the
iterative damped R-L method [60]. Once the system waveform is estimated, it will be applied to
waveforms from other targets in order to achieve a rough estimate of the target cross-section via
deconvolution. Possible changes in the system waveform, even between subsequent pulses, makes the
retrieved target cross-section only a rough approximation.

3.4. Quantitative Assessment of the Retrieved Waveform

For quantitative comparison of the methods, the Fréchet distance, Spectral Angle Mapper (SAM),
and Pearson correlation coefficient have been utilized to calculate the similarity of the results with the
“true” cross-section signal.

The SAM metric measures the angle between two waveforms via treating them as vectors with
identical lengths, and it can be expressed as follow:

θ “ cos´1

¨
˝

řN
i“1 RtiR fibřN

i“1 Rt2
i

řN
i“1 R f 2

i

˛
‚ (9)

Here, Rt and R f represent the retrieved and reference waveforms, respectively, where i and N are
the index referring to the waveform samples and the total number of samples in a waveform.

The Pearson correlation coefficient r considers the linear relationship between the retrieved
waveform Rt and the reference signal R f in terms of the magnitude and direction:

r “
SS2

Rt,R f

SSRt,RtSSR f ,R f
(10)

where, SSRt,R f refers to the covariance of the waveforms, and SSRt,Rt and SSR f ,R f represent the
standard deviations of each signal.

The Fréchet distance between P : ra, bs Ñ R
2 and Q :

“
a1, b1

‰
Ñ R

2 as two planar curves, with
d pP pα ptqq , Q pβ ptqqq representing the Euclidean distance between these two curves at specified
vertices, is defined as the minimum required length in connecting two separate paths, when navigating
continuously from one endpoint to the other [61]:

δF pP, Qq “ in f
α,β

max
tPr0,1s

d pP pα ptqq , Q pβ ptqqq (11)
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where a, b P R and a ď b (respectively a1, b1), a (respectively β) is a function with continuous
nondecreasing characteristics from [0, 1] onto ra, bs (respectively

“
a1, b1

‰
), and in f (.) is the “infimum”

or the maximum lower bound of a set.

4. Experiments and Discussion

4.1. Experimental Data

A synthetic dataset and three different real datasets are investigated in order to evaluate the
presented method.

4.1.1. Synthetic Data

Ten synthetic lidar waveforms were generated by convolution of a known system signal
and the given differential target cross-sections. For simplicity, all samples were considered as
mixtures of samples with Gaussian distribution, with various levels of complexity and also different
arrangements of pulses along the signals. This simulated data enables direct comparison of the restored
waveform with the known “truth” data, facilitating quantitative evaluation of the performance of
the deconvolution methods. Different arrangements of pulses with different amplitude values were
considered so as to model different complexities of targets. In order to investigate the robustness of
the methods against noise, the simulated signals were contaminated by three different noise levels
(Gaussian noise with σ = 0.01, 0.02, and 0.05), after imposing a convolution with the synthetic system
waveform. The absolute value of the amplitude values was utilized in order to avoid negative values
resulted from the Gaussian noise. Figure 2 illustrates an example of both the synthetic system signal
and the received waveforms at three different noise levels for limited samples. The true signals have
been generated by computing the probability density functions based on the normal distribution, with
different values assigned to the standard deviation to control the pulse shape.
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Figure 2. (a) The synthetic system waveform; and (b–d) selected sample waveforms at different
noise levels.
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4.1.2. Real LiDAR Datasets

Three different real datasets have been utilized to assess different aspects of the proposed method,
including the approximation of the system waveform and the extraction of radiometric attributes
for different targets. The QLD dataset was acquired over Rockhampton in Queensland, Australia, in
December 2012. The NSW dataset was captured over the Namoi River in New South Wales, Australia
in September 2013, and the third dataset was acquired over the Karawatha forest park in Queensland,
Australia in October 2013. The laser footprint diameters at nadir were approximately 0.30 m, 0.50 m,
and 0.15 m, respectively. A Riegl LMS-Q680i scanner, operating at 1550 nm, with the laser beam width
of 0.5 mrad was used to acquire the datasets. Further details regarding the three lidar missions are
provided in Table 1.

Table 1. Data specification.

Parameter QLD Dataset NSW Dataset Karawatha Dataset

Flying altitude (AGL-m) 600 1000 300
Pulse rate (kHz) 150 240 240

Maximal scan angle (˝) 30 40 25

Although all datasets were recorded with the same instrument, the QLD data was provided
without the system waveforms, while such information was delivered in the NSW and Karawatha
data. With the latter two datasets, more satisfactory results are expected because of the recording of an
equivalent system waveform for each received signal. Partial differences even between subsequent
emitted pulses could then be observed.

As shown in Figure 3, the recorded system waveform in the NSW dataset was usually incomplete
and there is no information at the signal tail. Interestingly, the maximum amplitude of the received
waveform, shown in Figure 3, is higher than the value of the system waveform, which may seem
contradictory. However, it is noticeable that amplitude values of the received waveform and the system
waveform are not necessarily of identical units, which could be connected to the sampling procedure
of the transmitted pulse [5]. The delayed backscattered energy due to multiple scattering within the
tree crown is another possible explanation for this phenomenon.
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Figure 3. (a) A typical recorded waveform in the NSW dataset; and (b) its corresponding original
system waveform.

The diversity of lidar datasets can present challenges in waveform deconvolution and thus the
provision of the QLD, NSW and Karawatha datasets provided a good opportunity to evaluate the
consistency of the proposed regularization method.
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4.2. Preprocessing

The raw incoming waveform typically exhibits a certain level of noise due to sensor impacts
and environment conditions. Moreover, deconvolution might amplify the noise due to its
characteristics [31]. Therefore, a noise reduction method for full-waveform lidar based on the
integration of the Savitzky-Golay (S-G) [62] and the Singular Value Decomposition (SVD) approaches
was employed in the analysis [63]. This approach has advantages for signal pattern preservation,
in addition to avoidance of waveform distortion.

4.3. Deconvolution Results for Synthetic Waveforms

The synthetic data were processed by the proposed regularization approach and the results
were compared to those from the commonly used approaches in signal processing, namely the R-L,
Wiener filter, Tikhonov regularization, and Gaussian decomposition methods. The regularization
parameter was determined by the L-curve method. The performance of the utilized approaches
was quantitatively evaluated through a comparison of the estimated target cross-section with the
“truth” data.

Table 2 explains the parameter tuning for the methods, including the utilized algorithms and the
associated references. The optimal iteration numbers of the R-L method were estimated by calculating
the goodness of fit to the truth data by using the RMSE criterion, through consideration of a wide
range of iteration numbers from 1 to 500. For the Wiener filter, the Noise to Signal Ratio (NSR) was
calculated from the truth data at different noise levels by dividing the variance of the noise elements to
the noise-free signal. Similar to the proposed deconvolution method, the regularization parameter
was estimated by the L-curve method in the case of Tikhonov regularization. The exact number of
expected pulses was assumed to be known in order to apply the Gaussian decomposition method
through application of nonlinear optimization, e.g., the Levenberg-Marquardt algorithm [14].

Table 2. Parameter tuning of the methods.

Method Algorithm Parameter Tuning Reference(s)

Gaussian decomposition Levenberg-Marquardt/Thrust
region (curve fitting in Matlab)

Visual inspection to specify
the number of pulses [14,64]

R-L deconvolution deconvlucy function in Matlab RMSE criterion to select
optimal iteration numbers -

Wiener filtering deconvwnr function in Matlab Noise variance
Signal Variance -

Tikhonov regularization CVX package L-curve [65,66]

Sparsity-based regularization CVX package L-curve [65,66]

Qualitative comparisons of the proposed method against the other four methods are shown in
Figure 4 for selected samples. The figure provides a detailed evaluation of their performance in cases
where the quantitative measures do not necessarily show a better performance of the proposed method.
As shown in Figure 4a, qualitative inspection reveals the weakness of the R-L method in the retrieval
of the second pulse, where two separate pulses are instead generated. Gaussian decomposition
overestimates the amplitude for all three pulses, as well as the area under the first pulse, while the
proposed method marginally overestimates two pulses. The Wiener filter and Tikhonov regularization
methods generate oscillatory pulses that underestimate amplitude values of all pulses. In Figure 4b,
the fourth pulse was not recovered by the R-L method, while the second and the last pulse were also
shifted, with an underestimation of the last pulse as well. The proposed method retrieved all the
pulses at their correct positions and with a minimum of spurious pulses. Gaussian decomposition only
retrieves the third pulse which is marginally shifted. The second and fourth pulses were not retrieved
by the Wiener and Tikhonov methods, while oscillation and underestimation of amplitude values were
apparent. The last pulse was shifted by both the R-L and proposed methods in Figure 4c. Also, the R-L
method could not retrieve the first two pulses and the fourth pulse, and many additional pulses were
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generated, probably as a result of noise amplification. The first two pulses and the last three pulses
were combined separately in two pulses by the Gaussian decomposition, where the amplitude values
were significantly overestimated. The Wiener filter performed slightly better in the retrieval of pulses
than the Tikhonov method, yet the amplitude values were underestimated. In Figure 4d, the sixth
pulse was marginally shifted by the proposed method, while the amplitudes of three other pulses
were overestimated. The R-L method in this case cannot place the fourth pulse, while the first two
pulses were not correctly restored in terms of both their amplitude and pulse locations. In addition,
the last two pulses were slightly shifted and some other false pulses were generated. Two pulses were
retrieved as combinations of the first four pulses by the Gaussian decomposition, where the amplitude
values were overestimated. In Figure 4e, the first, fourth and fifth pulses were not restored by the
R-L method, with spurious pulses instead being generated. The Gaussian decomposition method
retrieved the last two pulses as well as a combination of the first two pulses, with the amplitudes being
overestimated. Tikhonov and Wiener filtering resulted in both oscillations and underestimation of
amplitude values for all pulses. In Figure 4f, the second pulse was not restored in its position using the
R-L method. Gaussian decomposition, on the other hand, does not retrieve the first pulse, while the
last pulse is overestimated in terms of both amplitude and the area under the pulse. The Wiener filter
produces additional pulses, in addition to oscillation around the main peaks, whereas less spurious
pulses were generated using the Tikhonov method. Even though the proposed method occasionally
overestimates some of the pulses, the area under the curves were almost similar to the true signal.
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Figure 4. Cont.
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(f)

Figure 4. (a–f) Qualitative comparison of sample retrieved waveforms by the proposed method, and
the R-L, Wiener filter, Tikhonov regularization and Gaussian decomposition methods.

It is noteworthy that the proposed method provides results of higher accuracy, retrieving all the
peaks with minimal oscillations and minimum change in pulse position. By increasing the noise level
to 0.05, better performance of the proposed method becomes more apparent, in comparison with the
R-L method as the second best approach.

Figure 5 shows the comparison of the proposed method versus the R-L method, the Wiener filter,
the Tikhonov regularization and Gaussian decomposition at three different noise levels based upon
different quantitative metrics. Quantitatively, the accuracy of all methods is gradually diminished
with increases in the noise level. According to the similarity metrics, shown in Figure 5, the proposed
approach retrieves the synthetic target responses with higher accuracy in the majority of the cases.
A slightly better performance is apparent for the R-L method at a σ value 0.02. However, the provided
results of the R-L method are based on an ideal number of iterations related to the minimum RMSE
against the true signals, which cannot be readily determined when dealing with real data.

As shown in Figure 5, Tikhonov regularization, Wiener filtering and Gaussian decomposition all
provide signals with the lowest similarity to the truth waveforms. As seen in Figure 4, both Tikhonov
regularization and the Wiener filter approaches result in ringing effects, with better separated pulses
in the Wiener filter at the cost of revealing more spurious pulses and higher negative amplitude values.
Both methods are deficient in regard to retrieval of the amplitude values and they both fail when
dealing with complex waveforms and closely located pulses, with a higher level of pulse omission
for the Tikhonov method. The inferior performance of Gaussian decomposition is mainly due to the
inadequacy of the method in resolving closely located pulses. In addition, it generates pulses with
negative amplitude values, as shown in Figure 6. Such pulses can be easily detected and removed from
further processing, though at the cost of information deficiency. The poor performance of this method
in the retrieval of the true signals is due to the smaller variance (pulse width) of the fitted pulse than
the synthetic system waveform, which ultimately results in no solution for that pulse. The superior
performance of the proposed method can be seen by looking at both the SAM distance and the
correlation coefficient in Figure 5, while differences in terms of the Frechet distance are less noticeable.

Figure 7 shows the L-curves related to the l1-norm and Tikhonov regularization methods.
The L-curve provides an appropriate basis for determination of the optimal regularization parameter,
which occurs at a balance point, thus demonstrating approximately reciprocal minimum values of both
the residual and regularization terms. Although the optimal regularization parameter for solutions
(at each noise levels) results in roughly similar residual norms (vertical axis), the solution magnitude
(horizontal axis) is evidently larger in the case of the l1-norm method at both noise levels. This implies
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that the solution amplitude can be retrieved with higher values closer to the true cross-section via
the l1-norm, and it confirms the underestimation of amplitude by the Tikhonov method. Overall,
closer similarity to the truth data confirm the potential of the proposed method for retrieval of the
cross-section signal.

(a)

(b)

(c)

Figure 5. Comparison of the proposed method with others at different noise levels in terms of the
three different metrics: (a) SAM distance; (b) Correlation Coefficient and (c) Fréchet distance.
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Figure 6. (a,b) Negative amplitudes resulting from Gaussian decomposition. Red curves represent
individual scatterers, while the sum of all Gaussian functions are shown in black.
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Figure 7. The L-curve plots related to the proposed and Tikhonov regularization approaches for the
same waveform at two different noise levels: (a) σ = 0.01 and (b) σ = 0.05.

4.4. QLD Dataset

The system waveform was not available in the QLD dataset. Due to its necessity for target
cross-section retrieval, an estimation of the system waveform was provided by averaging the
waveforms calculated from more than 500 waveform samples through applying blind deconvolution.
The selected asphalt targets from which the system waveform was estimated have very gentle slopes
of 2.4 degrees on average, at nadir. These small slope values cannot be considered as detrimental
to the determination of the system waveform, since the pulse shapes are not distorted significantly
by these gentle slopes. The averaged system waveform estimated based on blind deconvolution is
shown in Figure 8a, where it was applied with the Gaussian decomposition, R-L method, the proposed
method and Tikhonov deconvolution. Based on the USGS spectral library [67] for different types of
asphalt, the reflectivity value of 0.2 proposed by Wagner et al. [14] was adopted since none of the
values in the spectral library were more than 0.2 for the desired wavelength. Figure 8b shows the
restored sample waveforms, where the first two returns are from a canopy and the last pulse belongs
to a grass surface underneath.

The waveforms restored by the considered methods based on the estimated system waveforms
from blind deconvolution were then examined, where prominent peaks are shown in all methods and
marginal fluctuations were revealed in the restored signal in some cases.
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Figure 8. (a) Estimated system waveforms based on blind deconvolution; and (b) restored target
responses using different methods.

From the restored signal, the target cross-section can be calculated. The overall target cross-section
of the third pulse in Figure 8b, obtained simply by calculating the area under the pulse after applying
the range correction [68], is 0.054 for the l1-norm solution and 0.057 for the Tikhonov regularization
method. These values are close to the equivalent value (0.071) obtained for a grass target with an
approximate reflectivity of 0.25 [67] using Equation (1). The target cross-section estimates from
Gaussian decomposition and the R-L methods were 0.082 and 0.046, respectively. This overestimation
by Gaussian decomposition method is explained by the fact that such a function cannot describe all
pulses appropriately. It is noticeable that the second pulse was not recovered when the number of
expected pulses was set to three in the Gaussian decomposition. All three visible pulses could be
restored by setting this value to four instead, while the restoration resulted in a null solution for the
fourth pulse (located immediately after the third pulse).

Marginal underestimation of the total cross-section value by all methods, including the proposed
method but excepting the case using Gaussian decomposition, can be attributed to either the footprint
area being partially occluded by other targets (e.g., leaves) within the laser path which diminishes
the transmitted pulse energy before it reaches the target, or to the approximated system waveform
averaged over several samples. In addition, asphalt may not be ideally representative of a Lambertian
target due to its variable optical characteristics [1]. Nevertheless, the experiment demonstrated the
feasibility of blind deconvolution for estimation of the system waveform. This characteristic was
confirmed in the NSW dataset where system waveforms were recorded.

4.5. NSW Dataset

The NSW dataset allowed further evaluation of the potential of the proposed approach in
situations where the system waveform is recorded. Moreover, the availability of the system waveform
provides an avenue to evaluate the proposed blind deconvolution approach. The effect of the
L-curve method on the determination of regularization parameters can then be investigated and
the performance of the proposed l1-norm regularization approach can be compared to that of the other
considered methods.

4.5.1. Evaluation of Blind Deconvolution for System Waveform Estimation

Over 4000 waveforms captured at nadir over non-asphalt flat targets were selected for the
estimation of the system waveform, with the retrieved system waveform being plotted against the
average of the recorded system waveforms in Figure 9a. The result shows that the shapes of both system
waveforms are similar. The amplitude of the estimated waveform is slightly larger. This difference is
explained by the fact that they are averaged over many samples, in which the arithmetic mean can be
affected by extreme values. The SAM measure between the estimated and the averaged real waveforms
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is as small as 6.8 degrees. This result strongly supports the use of blind deconvolution for system
waveform estimation when such information is not available. The retrieved temporal cross-section
of a returned lidar waveform obtained using these two system waveforms in the proposed l1-norm
solution in the NSW dataset is shown in Figure 9b where similar amplitude values are seen in both
pulses, through the first pulse is marginally underestimated when the estimated system waveform
is adopted.
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Figure 9. (a) The reconstructed system waveform by blind deconvolution versus the average of the
recorded system waveforms; and (b) comparison of the restored signals based upon the original
incomplete system waveform and that retrieved from blind deconvolution.

4.5.2. Target Cross-Section Recovery

Figure 10a illustrates the L-curve plots, which depict the associated magnitudes of the residual
and the regularization terms for a range of expected regularization parameters of the waveform in
Figure 3 for the l1-norm and Tikhonov regularization approaches. As seen, the maximum magnitude of
the regularization term (horizontal axis) in the proposed l1-norm approach is larger than the magnitude
of this term for Tikhonov regularization, implicitly confirming the potential of the former approach in
the retrieval of a signal with higher amplitude values.

Larger regularization parameters for Tikhonov regularization (λ = 32.37) represent the placing of
more emphasis on the regularization term and forcing the residual term to smaller values. Nevertheless,
as shown in Figure 10b, the deconvolved signal was affected by noise and underestimation of the main
amplitude values, together with fluctuations in between major amplitude values, which will occur as a
consequence of the intrinsic characteristics of the l2-norm, as well as smaller regularization terms, in
comparison with the proposed l1-norm solution. On the other hand, while a smaller regularization
parameter for the l1-norm method (λ = 15.26) indicates less emphasis on the regularization term,
it allows the regularization magnitude to reach higher amplitude values. The deconvolved signal with
the l1-norm reveals the least artifacts or oscillations, especially around the main peaks.

Even though the nonlinear optimization results in the desired parameters for both pulses,
Gaussian decomposition fails to retrieve the second pulse, mainly due to the smaller pulse width
(variance) of the fitted function than that of the system waveform. This example clearly shows the
deficiency of such a method in the retrieval of the target cross-section, even for pulses that are clearly
separated. The R-L method results in a signal similar to that of the proposed method, when marginal
over-/under-estimation of the pulses is evident.

Figure 11 presents a complex lidar waveform in the NSW dataset. The lidar signal penetrated
through the tree canopy before reaching the ground, producing multiple peaks with varying
amplitudes. The effect of multiple scattering reduces the strength of the pulses and causes delay
in the returns, resulting in a long tail in the received waveform. The result of the implemented
denoising approach in Azadbakht et al. [63], on the received waveform, is illustrated in Figure 11a.
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(a)

(b)

Figure 10. (a) The L-curve results corresponding to the l1-norm regularization and Tikhonov
regularization methods; and (b) restored signals from different methods.

The restored signals using the proposed l1-norm method in comparison with those from the
Tikhonov, Wiener and R-L approaches using the recorded system waveform are presented in Figure 11b.
The l1-norm regularization reveals all the peaks with no oscillation or negative amplitude. In the
l1-norm solution, small amplitude values between the main pulses, and after the ground return
(last pulse), can be related to tree leaves and branches. The weak signals may be attributed to multiple
scattering of tree foliage or to noise. Spikey-like pulses emerge in the case of the R-L approach, as the
closest approach to the l1-norm method in terms of cross-section retrieval, probably as a result of noise
amplification. This confirms the vulnerability of the R-L method illustrated earlier using the synthetic
dataset (Section 4.3). In comparison to all other methods, the R-L method produces a significantly
overestimated amplitude for the first pulse. The largest oscillation and negative amplitudes in the
restored waveforms are associated with the Tikhonov method, due to the inherent properties of the
l2-norm solution. Next is the Wiener filter with slightly smaller estimated amplitude values in addition
to oscillation. In Figure 11, none of the pulses were retrieved using Gaussian decomposition, principally
due to the system waveform being wider than the fitted Gaussian pulses in the received waveform.
This method could also not fit a pulse to the second return when three pulses were considered as an
initial value for the nonlinear optimization problem.
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(a)

(b)

Figure 11. (a) Raw received waveform and its noise-reduced version; and (b) the recovered differential
cross-sections for different methods.

4.6. Karawatha Dataset

The target cross-section, the reflectance and the backscatter coefficient [15] of three types of
extended non-overlapping targets were calculated, after retrieval of the temporal cross-sections and
application of further required corrections [68]. Samples were collected over a range of scan angles from
nadir to 25 degrees by inspecting points in a high resolution aerial photograph, taken simultaneously.
Except for water bodies that were only available at limited scan angles, a total of around 200 samples
were collected for each target.

Diffuse target reflectance behaviour was assumed in the calculation of the radiometric features,
although this assumption is not valid for some targets, e.g., water bodies. However, relatively small
reflectance values are due to the low strength of the received signal at off-nadir, for instance in the case
of water bodies with specular reflectance characteristics. The provided results from the boxplots in
Figure 12 confirm the reliability and relevance of the proposed approach in lidar waveform restoration.
These targets can be readily distinguished only by using the radiometric information, while their
height is almost similar and, therefore, geometric attributes are not effective.
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Figure 12. (a) Target cross-section; (b) the reflectance; and (c) the backscatter coefficient for the selected
targets aggregated over different scan angles.

5. Conclusions

This paper has presented a new deconvolution approach for efficient target cross-section extraction
from full-waveform lidar data. The deconvolution, which removes the lidar system signal from
the returned waveform and reconstructs the target cross-section independently of the instrument,
is achieved through a versatile regularization approach with sparsity constraints, which copes
with different kinds of waveforms. The regularization parameter, a critical issue in deconvolution,
is determined with the L-curve method in which the optimal parameter is found at the turning point
of the curve. Blind deconvolution is proposed to estimate the system signal, which is necessary on
lidar instruments that do not record the system waveform.

The proposed approach has been evaluated using both synthetic and real lidar datasets acquired
with and without system waveforms. While the synthetic data allowed for evaluation with “true”
target cross-section, the real data provided an avenue to assess the consistency of the proposed
approach under different instrument and environmental conditions. The results with synthetic data
showed that the l1-norm regularization, with the regularization parameter derived by the L-curve
method, is superior to Tikhonov regularization, the Wiener filter, Gaussian decomposition and the R-L
methods, which currently attract wide usage in lidar signal processing. The restored waveforms are
strongly similar to the truth data despite the interference of different noise levels (Section 4.3).

The effectiveness of the proposed deconvolution method has been further demonstrated in
experimental testing with real data, with and without system signals. It has been shown that
the l1-norm approach always results in a deconvolved signal almost free of substantial oscillations
and negative amplitude values, while such phenomena are usually present with other approaches.
Taken together, the findings of this study support adoption of sparse regularization as a means to
retrieve the target response from full-waveform lidar.

The L-curve method has been shown to be reliable in the determination of the regularization
parameter, as demonstrated in the experiments with both synthetic and real data.

Another finding to emerge from this research is that blind deconvolution has been demonstrated
to be useful in the estimation of the system waveform when it is not available. Comparisons between
the restored lidar waveforms using the system waveform based on blind deconvolution has been
reported. Although restoration of the exact target response is not anticipated, due to the approximate
estimation of the system waveform by averaging over several selected samples, the results demonstrate
the consistency of the reported method in retrieving all pulses. Moreover, investigation of the blind
deconvolution in the NSW dataset showed that the retrieved system waveform is in close agreement
with the average system waveform of more than 3000 waveform samples. These visual and qualitative
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assessments indicate the significance of blind deconvolution in the retrieval of the system waveform,
and they confirm that the deconvolved signal is associated with the target cross-section.

It is concluded that the proposed regularization approach can efficiently process full-waveform
lidar data to restore the target cross-section. The use of this approach will provide additional insight
into the waveform data. The restored cross-section affords the potential identification of either desired
reflecting surfaces or even specific targets in a more consistent manner than is achieved with other
approaches, thus improving the accuracy of range measurement and target attribute retrieval.

Future research will concentrate on investigation of the extracted geometric and radiometric
features using the proposed method, along with additional potential attributes from the restored
signal. Moreover, since direct regularization methods support inclusion of new constraints to better
control the solution, investigation of additional term(s) in the objective function may result in even
higher accuracy.

Acknowledgments: This work was supported by Ph.D. research funding provided by the University
of Melbourne, Australia. The authors thank the Aerial Topographic Laser Survey Systems Company
(http://www.atlass.com.au/) and Geoscience Australia who provided laser scanning data. The authors are
also thankful to three anonymous reviewers for through review with valuable comments.

Author Contributions: Mohsen Azadbakht designed and performed the experiments, and prepared the
manuscript. All authors contributed to the analysis, interpretation of the results and manuscript revisions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mallet, C.; Bretar, F.; Roux, M.; Soergel, U.; Heipke, C. Relevance assessment of full-waveform lidar data for
urban area classification. ISPRS J. Photogramm. Remote Sens. 2011, 66, S71–S84. [CrossRef]

2. Bretar, F.; Chauve, A.; Mallet, C.; Jacome, A. Terrain surfaces and 3-D landcover classification from small
footprint full-waveform lidar data: Application to badlands. Hydrol. Earth Syst. Sci. 2009, 13, 1531–1545.
[CrossRef]

3. Jutzi, B.; Stilla, U. Extraction of features from objects in urban areas using spacetime analysis of recorded
laser pulses. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 1–6.

4. Hovi, A.; Korpela, I. Real and simulated waveform-recording LiDAR data in juvenile boreal forest vegetation.
Remote Sens. Environ. 2014, 140, 665–678. [CrossRef]

5. Adams, T.; Beets, P.; Parrish, C. Extracting more data from lidar in forested areas by analyzing waveform
shape. Remote Sens. 2012, 4, 682–702. [CrossRef]

6. Hollaus, M.; Aubrecht, C.; Höfle, B.; Steinnocher, K.; Wagner, W. Roughness mapping on various vertical
scales based on full-waveform airborne laser scanning data. Remote Sens. 2011, 3, 503–523. [CrossRef]

7. Mallet, C.; Bretar, F. Full-waveform topographic lidar: State-of-the-art. ISPRS J. Photogramm. Remote Sens.

2009, 64, 1–16. [CrossRef]
8. Höfle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J.

Photogramm. Remote Sens. 2007, 62, 415–433. [CrossRef]
9. Jutzi, B.; Stilla, U. Laser pulse analysis for reconstruction and classification of urban objects. In Proceedings

of the International Society Photogrammetry and Remote Sensing (ISPRS) Archives, Munich, Germany,
17–19 September 2003.

10. Wagner, W.; Ullrich, A.; Melzer, T.; Briese, C.; Kraus, K. From single-pulse to full-waveform airborne laser
scanners: Potential and practical challenges. Int. Arch. Photogram. Remote Sens. 2004, 35, 201–206.

11. Roncat, A.; Bergauer, G.; Pfeifer, N. B-spline deconvolution for differential target cross-section determination
in full-waveform laser scanning data. ISPRS J. Photogramm. Remote Sens. 2011, 66, 418–428. [CrossRef]

12. Jutzi, B.; Stilla, U. Range determination with waveform recording laser systems using a Wiener Filter. ISPRS J.

Photogramm. Remote Sens. 2006, 61, 95–107. [CrossRef]
13. Jelalian, A.V. Laser Radar Systems; Artech House: Boston, MA, USA; London, UK, 1992.
14. Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of a

novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote Sens.

2006, 60, 100–112. [CrossRef]

155



Remote Sens. 2016, 8, 648

15. Wagner, W. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements:
Basic physical concepts. ISPRS J. Photogramm. Remote Sens. 2010, 65, 505–513. [CrossRef]

16. Wang, Y.; Zhang, J.; Roncat, A.; Künzer, C.; Wagner, W. Regularizing method for the determination of the
backscatter cross section in lidar data signals. Opt. Soc. Am. 2009, 26, 1071–1079. [CrossRef]

17. Chauve, A.; Vega, C.; Durrieu, S.; Bretar, F.; Allouis, T.; Deseilligny, M.P.; Puech, W. Advanced full-waveform
lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous
forest. Int. J. Remote Sens. 2009, 30, 5211–5228. [CrossRef]

18. Lin, Y.-C.; Mills, J.P.; Smith-Voysey, S. Rigorous pulse detection from full-waveform airborne laser scanning
data. Int. J. Remote Sens. 2010, 31, 1303–1324. [CrossRef]

19. Parrish, C.E.; Jeong, I.; Nowak, R.D.; Smith, R.B. Empirical Comparison of Full-Waveform Lidar Algorithms:
Range Extraction and Discrimination Performance. Photogram. Eng. Remote Sens. 2011, 77, 825–838.
[CrossRef]

20. Wu, J.; Aardt, J.A.N.V.; Asner, G.P. A comparison of signal deconvolution algorithms based on small-footprint
lidar waveform simulation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2402–2414. [CrossRef]

21. Hofton, M.A.; Minster, J.B.; Blair, J.B. Decomposition of Laser Altimeter Waveforms. IEEE Trans. Geosci.

Remote Sens. 2000, 38, 1989–1996. [CrossRef]
22. Persson, A.; Söderman, U.; Töpel, J.; Ahlberg, S. Visualization and analysis of full-waveform airborne

laser scanner data. In Proceedings of the ISPRS Workshop Laser Scanning, Enschede, The Netherlands,
12–14 September 2005; pp. 103–108.

23. Mallet, C.; Lafarge, F.; Roux, M.; Soergel, U.; Bretar, F.; Heipke, C. A marked point process for modeling lidar
waveforms. IEEE Trans. Image Process. 2010, 19, 3204–3221. [CrossRef] [PubMed]

24. Jutzi, B.; Stilla, U. Characteristics of the measurement unit of a full-waveform laser system. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 17–22.
25. Alexander, C.; Tansey, K.; Kaduk, J.; Holland, D.; Tate, N.J. Backscatter coefficient as an attribute for the

classification of full-waveform airborne laser scanning data in urban areas. ISPRS J. Photogramm. Remote Sens.

2010, 65, 423–432. [CrossRef]
26. Zhu, R.; Pang, Y.; Zhang, Z.; Xu, G. Application of the deconvolution method in the processing of

full-waveform LiDAR data. In Proceedings of the 3rd International Congress on Image and Signal Processing
(CISP2010), Yantai, China, 16–18 October 2010; pp. 2975–2979.

27. Chauve, A.; Mallet, C.; Bretar, F.; Durrieu, S.; Deseilligny, M.P.; Puech, W. Processing full-waveform lidar
data: Modelling raw signals. In Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser
2007, Espoo, Finland, 12–14 September 2007; pp. 102–107.

28. Wu, J.; van Aardt, J.A.N.; McGlinchy, J.; Asner, G.P. A robust signal preprocessing chain for small-footprint
waveform lidar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3242–3255. [CrossRef]

29. Reeves, S. Generalized cross-validation as a stopping rule for the Richardson-Lucy algorithm. Int. J. Imaging

Syst. Technol. 1995, 6, 387–391. [CrossRef]
30. Khan, M.K.; Morigi, S.; Reichel, L.; Sgallari, F. Iterative methods of richardson-lucy-type for image debluring.

Numer. Math. Theory Methods Appl. 2013, 6, 262–275.
31. Neilsen, K.D. Signal Processing on Digitized LADAR Waveforms for Enhanced Resolution on Surface Edges.

Master’s Thesis, Utah State University, Logan, UT, USA, 2011.
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Abstract:We evaluate the performance of full waveform LiDAR decomposition algorithms with a
high resolution single band airborne LiDAR bathymetry system in shallow rivers. A continuous
wavelet transformation (CWT) is proposed and applied in two fluvial environments, and the results
are compared to existing echo retrieval methods. LiDAR water depths are also compared to
independent field measurements. In both clear and turbid water, the CWT algorithm outperforms
the other methods if only green LiDAR observations are available. However, both the definition of
the water surface, and the turbidity of the water significantly influence the performance of the
LiDAR bathymetry observations. The results suggest that there is no single best full waveform
processing algorithm for all bathymetric situations. Overall, the optimal processing strategies
resulted in a determination of water depths with a 6 cm mean at 14 cm standard deviation for clear
water, and a 16 cm mean and 27 cm standard deviation in more turbid water.

Keywords: LiDAR; full waveform; bathymetry; wavelet transformation

1. Introduction

Airborne Light Detection and Ranging (LiDAR) is an active remote sensing technique used to
acquire 3D representations of objects with very high resolution [1,2]. LiDAR systems emit short laser
pulses to illuminate the Earth’s surface and then capture the reflected light with photodiode
detectors. By measuring the laser flight time propagating through the medium, a distance to target
(range) can be determined assuming a known constant speed of light in the medium [3,4]. With
superior performance for acquiring 3D measurements and easy deployment, LiDAR data has been
used for many scientific applications such as biomass estimation, archaeological application, power
line detection, and earth science applications including temporal change detection [5–8].

A conventional discrete LiDAR system records only a few ( 5) discrete returns for each
outgoing laser pulse. A hardware ranging method called constant fractional discrimination (CFD) [9]
is implemented in most current LiDAR systems to discriminate vertically cluttered illumination
targets along the laser path [10]. With critical requirements for vertical resolution and the
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advancement of processing and storage capacity over last decade, Full Waveform LiDAR (FWL) has
emerged as a viable alternative to discrete LiDAR. FWL records the entire digitized backscatter laser
pulse received by detector with very high sampling rate (1–2 GHz) [11].

FWLwas introduced in commercial topographic LiDAR systems in 2004 and a number of LiDAR
systems now have the capability to store the entire digitized return waveform [12–14]. FWL enables
better vertical resolution because discrete return LiDAR resolution is largely influenced by laser
pulse width or Full Width at Half Maximum (FWHM) [10,15]. However, sophisticated digital signal
processing methods are required to extract points and other target information (e.g., radiometry)
from current FWL systems. To date, many full waveform processing algorithms have been proposed
and are widely used in the research community. An overview of waveform processing techniques
can be found in [11]. Gaussian decomposition [16–18] and deconvolution [15,19] are two processing
strategies that have been applied in a number of previous studies. Hartzell et al. [20] proposed an
empirical system response model which is estimated from single return waveforms over the dynamic
range of the instrument. The empirical response is then used as a template for actual return
waveforms, resulting in improved ranging.

Recently, the analysis of FWL processing has focused on evaluating the different methods in
parallel to find superior algorithms for specific applications. For example, Wu et al. [21] compared
three deconvolution methods: Richardson Lucy, Wiener filter, and nonnegative least squares to
determine the best performance using simulated full waveforms from radiative transfer modeling;
the Richardson Lucy method was found to have superior performance for deconvolution of the
simulated full waveforms. Parrish et al. [10] presented an empirical technique to compare three
differentmethods for full waveform processing: Gaussian decomposition, Expectation Maximization
(EM) deconvolution and a hybrid method (deconvolve decompose). Using precisely located screen
targets in a laboratory, they arrived at the conclusion that no single best full waveform method can
be found for all applications.

Despite the recent focus on applications of FWL for topographic studies, it was first evaluated
for the processing of LiDAR bathymetry [22]. Recently, however, full waveform bathymetric LiDAR
has not received much attention in the literature, especially compared to topographic FWL. This is
likely due to the lack of available bathymetric LiDAR datasets for the scientific community and the
more complicated modeling required for LiDAR bathymetry to compensate for factors such as water
surface reflection and refraction, water volume scattering and turbidity that can complicate the
propagation models and attenuate return strength resulting in a lower signal to noise ratio (SNR).
Water volume scattering can bedifficult to rigorouslymodel, especially for shallowwater environments
where water surface backscatter, water volume scattering, and benthic layer backscattering are mixed
into a single complexwaveform thatmakes discrimination of individual responses from a single return
difficult [23]. The complex waveform signals in a bathymetric environment demand a noise resistant
and adaptive signal processingmethodology. In order to reduce the complexity of bathymetric LiDAR,
multiple wavelengths (usually a NIR LiDAR system for water surface detection, and a green LiDAR
system for water penetration) systems are normally used to facilitate benthic layer retrieval [12]. For
example, Allouis et al. [24] compared two new processing methods for depth extraction by using
near infrared (NIR), green and Raman LiDAR signals. By combining NIR and green waveforms,
significantly more points are extracted by full waveform processing and better accuracy is achieved.
Even though multi wavelength LiDAR systems are common for bathymetry, single band systems
have emerged recently as well [14,25,26]. Wang et al. [27] has compared several full waveform
processing algorithms for single band shallowwater bathymetry using both simulated and actual full
waveform data, and concluded that Richardson Lucy deconvolution performed the best of the tested
waveform processing techniques. However, the performance with the actual full waveform data was
not verified with comparison to external high accuracy truth data. There have also been several
studies which have examined the performance of single band full waveform bathymetry using
simulated LiDAR datasets. Abady et al. [23] proposed a mixture of Gaussian and quadrilateral
functions for bathymetric LiDAR waveform decomposition using nonlinear recursive least squares.
Both satellite and airborne configurations were simulated and examined and showed significant
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improvement for bathymetry retrieval, however, the simulation has not to date been validated with
observations from real world studies, especially for very shallow water bathymetry in turbid
conditions. The performance of full waveform LiDAR in shallow water has received little attention
in the literature beyond the study by McKean et al. [25]. Limited water depths and significant
turbidity impose challenges for bathymetric LiDAR, especially for longer pulse width laser systems
where water surface, water column and benthic layer returns mix together. A bathymetric full
waveform processing strategy to account for the longer pulse width and the excessive noise present
in the bathymetric waveform would enable more accurate bathymetry determination.

In this paper, we first propose a novel full waveform processing algorithm using a continuous
wavelet transformation (CWT) to decompose single band bathymetric waveforms. The seed peak
locations acquired from CWT are then used as input to both an empirical system response (ESR)
algorithm and a Gaussian decomposition method. As a benchmark for comparison, a common
Gaussian decomposition algorithm is also used with candidate seed locations acquired from second
derivative peaks, similar to that presented in [17,18]. The waveform processing methods are applied
to two distinct fluvial environments with varying degrees of water turbidity. Water depths extracted
from both a discrete point cloud and full waveform processed point clouds are then compared to
water depths measured in the field with an Acoustic Doppler Current Profiler (ADCP). Finally, we
analyze the accuracy of water surfaces extracted from discrete point clouds and full waveform
processed point clouds using both green wavelength and near infrared detected water surfaces
compared to GNSS RTK field measurements. The rest of the paper is organized as follows: Section 2
presents the waveform processing mathematical models and the procedure used for water depth
generation from the LiDAR observations, Section 3 provides a description of the airborne datasets
and ground truthing used to evaluate the processing methodology, and Section 4 presents the
experimental results. The paper closes with a discussion of the study conclusions and areas for future
research.

2. Method and Mathematical Model

FWL return profiles are normally a fixed length discrete time signal containing backscatter
information for a large region of interest. For return profiles where the echoes are clustered in a short
range window, a significant portion of the full waveform does not carry useful information (i.e., the
profile represents the noise threshold); an effective method to pre process the full waveforms that
removes this extraneous information from the original waveform will reduce the total amount of
processing time required. A noise level can be defined as the minimum amplitude and can be
estimated from the full waveform data itself; for example as the median absolute deviation for each
waveform [28]. For our study, amplitudes within 10% of the return gate are considered as the noise
level (Figure 1). The return gate is an instrument specific configuration parameter used to reduce the
effect of sun glint and noise returns. Herein, all the bins below the noise level were removed, and
only the remaining signal was examined. The removal of data below the noise threshold significantly
speeds up the calculations due to the decreased data volume to be analyzed. It should be noted that
bathymetric LiDAR waveforms can have quite complicated return energy profiles. To demonstrate
this, representative samples of bathymetric waveform are given in Figure 2.
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Figure 1. Pre processing of the return waveform by removing data below the noise threshold of the
original waveform. The noise level is defined as 10% above the return gate which is given by the
manufacturer specifications. The truncated waveform is saved for posterior processing.

Figure 2. Typical bathymetric return waveforms. (a–d) are from clear water with multiple visible peaks of
varying peak amplitude; (e–f) contain more subtle evidence of multiple peaks; (g–i) contain multiple peaks
that overlap and are visibly not discernible; (j) contains a single peak. Multiple peaks are critical for benthic
layer retrieval as the first return is normally the water surface and the latter return more probably from the
benthic layer.
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2.1. Continuous Wavelet Transformation

The wavelet transformation can be used to project a continuous time signal into multiple
subspaces consisting of wavelets [29]. By examining this projection, objectives such as denoising,
compression, filtering and other applications can be achieved. A continuous wavelet transformation
(CWT) projects the signal into a continuous time and scale subspace (instead of discrete subspaces)
whereby the signal can be reconstructed from the resulting continuous components [29,30]. CWT is
a very effective method to detect the peak locations in an overlapped waveform [31]. Extending the
use of CWT to FWL thus is natural since the return waveforms can be highlymixed due to potentially
closely spaced backscatters along the laser path.

CWT can construct a time frequency representation of a signal that offers very good time and
frequency localization, making it suitable to localize the peak locations as initial approximations for
subsequent peak estimation algorithms. The mother wavelet template should be continuously
differentiable and compactly support scaling and capture of a high vanishing moment. Considering
that most FWL systems have Gaussian like signals, the Lorentzian of Gaussian mother wavelet has
been used in this study [31], and is given in Equation (1).

Here, is the mother wavelet used in CWT, dilates the mother wavelet and translates
the mother wavelet, is time. Special caution is needed for determination of and . A smaller
can assist in discriminating highly overlapped peaks, but a slight undulation of the waveform may
result in a false peak; larger values of can resist disturbing undulations (i.e., noise) but could miss
weak returns and result in single returns for multiple echoes; however, the smallest cannot be less
than the digitizing interval of signal. The ridge defined in [31] is a good implementation for the
detection of peaks (and a determination of ) but requires a significant amount of computation, so
instead we directly chose a single value for to detect potential peaks. In our study, is set to 1.0
ns because the interval of full waveform samples is 1.0 ns and was set to 0.1 ns for both data types.
A value of 0.1 ns for is equivalent to 1.5 cm in air. Parameters and can be adjusted to fit
different applications and different FWL systems. The wavelet decomposition process is a good
noise resistant subspace representation of a signal, and therefore a simple local maximum filter can
be used to find the peak locations after a wavelet transformation. In our study, a window with a size
of 15 ns was used to detect the local maxima for the peak locations as the FullWidth at HalfMaximum
(FWHM) is 8.3 ns for the Optech Aquarius LiDAR system used in this study [14].

2.2. Gaussian Decomposition Method

Gaussian decomposition is a popular approach for FWL processing as it can simultaneously
provide estimation of peak locations and widths. Gaussian decomposition is implemented using
Expectation Maximization (EM) in this study. EM is an iterative method, normally used in signal and
image processing, to estimate the maximum probability for a set of parameters of a statistical model.
As the name indicates, there should be an expectation (E) step and a maximization (M) step, and EM
iterates between the E step and the M step until a convergence criterion is satisfied [28,32].

A LiDAR waveform return can be represented as the sum of multiple Gaussian distributions
[17], and mathematically this can be expressed as:

Here, is the full waveform that is the sum of the Gaussian components with multiple
components ( ) and is time, represents a Gaussian component with an individual mean
( ) and a standard deviation ( ). The number of peaks and the initial peak locations are needed as
initial values for the EM algorithm described by the following equations:
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Here, is the relative weight of the component distribution ;
is the probability that sample belongs to component ;
is the amplitude for sample ;
is the number of samples in the waveform;
is the mean peak location; and
is the standard deviation for that component, proportional to the pulse width or FWHM.

As EM is a local maximum searchingmethod, peaks with spurious i or i are removed to ensure
a reasonable result. Also, extremely weak returns, for example, peaks with pi less than 0.05 are
removed to guarantee algorithm convergence. FromEquations (2)–(5), it is evident that EM is actually
a Gaussian decomposition because its underlying model is a Gaussian mixture model. For the
purpose of assessing performance of Gaussian decomposition with different seeding peak locations,
both CWT detected peak locations and peaks acquired from second derivative analysis [18] are
applied to initialize EM estimation.

2.3. Empirical System Response Waveform Decomposition

An alternative to the Gaussian model for waveform decomposition is an empirical system
response (ESR) model that represents the convolution of the emitted pulse shape and the sensor
response. Decompositionwith an ESRmodel has the potential to reduce decomposition residuals and
improve ranging precision compared to Gaussian decomposition [20]. The method described in [20]
requires an ESR model spanning the dynamic range of a terrestrial LiDAR sensor to accommodate
nonlinear response characteristics. However, for a FWL sensor with a predominantly linear response,
which includes the airborne systems used in this study, a simplified ESR waveform decomposition
method can be derived.

In lieu of an ESR model spanning the sensor dynamic range, a single empirical response model
can be approximated by averaging waveforms from a single, diffuse, extended target illuminated at
normal incidence. Using standard nonlinear least squares, the model is iteratively shifted (
parameter), scaled in amplitude ( parameter), and scaled in width ( parameter) until the
parameter corrections are negligible, i.e., the model is fit to the observed waveform in an optimal
sense. An un weighted Gauss Newton least squares expression can be written in matrix form as [33]:

where is the × matrix ( = number of waveform data points) of partial derivatives of the ESR
model with respect to the unknown , , and parameters evaluated at each waveform data point;

is the column vector of differences between the observed waveform amplitudes and the
amplitudes computed from the ESRmodel; is the column vector of residuals; and is the column
vector of ESRmodel parameter corrections. The partial derivatives required to populate the matrix
are numerically computed from the ESR model using the current parameter values at each iteration
in the adjustment. Figure 3 illustrates the numeric partial derivatives. As with Gaussian
decomposition, the least squares algorithm can be extended to accommodate a superposition of
multiple ESR models when overlapping return echoes are detected in the observed waveform.
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Figure 3. Graphical representation of numeric partial derivatives necessary for the empirical system
response least squares waveform decomposition algorithm.

2.4. Water Depth Generation

As the fieldmeasurements used in the paper are water depths records collectedwith anAcoustic
Doppler Current Profiler (ADCP), we need to infer water depths from the 3D LiDAR points as a basis
of comparison. We also need to segment the raw point clouds from each of the target extraction
techniques to separate water column and bottom returns and properly identify the benthic layer. The
basic strategy for benthic classification is to first classify the last of multiple returns as initial
candidate benthic returns, and then use a region growing method with the initial benthic points and
regionally lowest elevation points to refine the total benthic surface points using the TerraScan
software package. The classification algorithm is similar to that used to determine ground returns in
topographic LiDAR surveys and is based on the methodology presented in [34]. It should be noted
that each of the green LiDAR returns from below the surface of the water has been corrected for both
refraction of the pulse at the air/water interface, and for the change in the speed of light within water
[22]. To define the water boundary, a fluvial river line is acquired from aerial orthoimages by visually
identifying and digitizing the land/water border.

To convert the benthic layer points extracted from the point cloud to water depths, a water
surface is required to subtract the benthic layer elevation from the water surface elevation for each
benthic point. To highlight the differences in depth determination between single andmultiple bands
bathymetric LiDAR sensors we examine two realizations of the water surface for each river: The first
water surface is extracted from alternative sources (NIR water surface for the Snake River, RTKwater
surface for the Blue/Colorado River) and the second water surface is extracted from each of the green
LiDAR point clouds alone. For green LiDAR point clouds, the water surface can be defined as the
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remaining LiDAR returns within the boundary of the water body after benthic classification. The NIR
water surface was acquired by extracting all NIR returns within the water boundary, as NIR LIDAR
can theoretically only be retro reflected from the water surface [35].

Figure 4. Definition of point to plane distance. For each target point, the neighbor points are those
within the cylinder with a radius of . A fitted plane is constructed by least squares estimation, and
the distance of the candidate point to the fitted plane is defined as the point to plane distance.

Point clouds created by airborne LiDAR are generally irregularly distributed, and therefore
conventional image processing techniques which assume raster input are not suitable for posterior
analysis. As an alternative, we utilized a point to plane distance to compute the distances between an
individual LiDAR returns and its neighbor points [36]. Figure 4 shows the schematic steps to compute
the point to plane distance. For each specific candidate point, neighbor points are selected within the
cylinder with specific searching radius , and thus a fitted plane is constructed by least squares
estimation. The distance from the candidate point to the fitted plane is defined as the point to plane
distance . The point to plane distance is used in this study to calculate the water depth given a cloud
of water surface (reference points) and benthic points (target points).

3. Description of Datasets

3.1. Airborne Bathymetric LiDAR Datasets

To assess the performance of single band full waveform bathymetric LiDAR and the processing
algorithms described in this paper, two datasets representing different river conditions are
investigated: the Snake River in Wyoming’s Grand Teton National Park and the confluence of the
Blue and Colorado Rivers in north central Colorado. Both the Snake and Blue/Colorado Rivers
originate from the Rocky Mountains and their flow conditions are dominated by the annual
snowmelt hydrograph; all remote sensing data collection occurred during low flow conditions in late
summer. The Snake River is predominantly clear water after snowmelt runoff recedes. Here, the
portion of river bed mainly consists of gravel and cobble (see Figure 5a) and is coated with varying
degrees of periphyton and bright green filamentous algae. The varying water depths present in the
study area of the Snake River are well suited for a performance assessment of bathymetric LiDAR.
The Colorado River originates in RockyMountain Park and the Blue River enters the Colorado River
from the south near the town of Kremmling, CO. The Blue/Colorado River has lower gradients than
the Snake River and bed materials consist mainly of sand and fine sediment. This site has variable
water conditions because the Colorado River is also joined by a smaller tributary called Muddy
Creek, which as the name implies, was turbid due to rainfall and surface erosion a few days before
the LiDAR data collection. The Blue River also contains dense aquatic vegetation extending into the
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water column from the bed (see Figure 5b). These varying water conditions present an opportunity
to assess how water clarity influences bathymetric LiDAR performance.

Figure 5. Study areas, (a) Overview of the Snake River with ADCP profiles locations highlighted and
colored by depth. (b) Overview of the Blue/Colorado River study area, the circled area is turbid plume
from Muddy Creek; Colorado River flows from east to west in the image and the Blue River enters
the channel from the south. The ADCP profiles locations are highlighted and colored by depth.

The airborne datasets were collected by the National Center for Airborne Laser Mapping
(NCALM) with Optech Aquarius and Gemini systems. The Aquarius sensor is a single band LiDAR
based on a Q switched frequency doubled Nd:YAG laser with a resultant wavelength of 532 nm,
pulse repetition frequencies (PRFs) of 33, 50, and 70 kHz, a pulse energy of 30 J (at 70 kHz), and a
beam divergence of 1 mrad. The scanner is a conventional side to side oscillating mirror (saw tooth
pattern) with an adjustable field of view up to ± 25° and a maximum mirror frequency of 70 Hz. The
return signal is both analyzed in real time by a constant fraction discriminator (CFD) and stored using
a waveform recorder with 12 bit amplitude quantization and a sampling speed of 1 GHz for post
mission processing. The Gemini system is similar to the Aquarius system with a Nd:YAG laser at
1064 nm, smaller and adjustable divergence angle and PRF up to 167 kHz. Table 1 shows the principal
data acquisition parameters for both project sites.

Table 1. Airborne LiDAR acquisition parameters.

Snake River Snake River Blue/Colorado River

Laser wavelength (nm) 532 1064 532
Pulse width (FWHM in ns) 8.3 12 8.3
Digitization frequency (GHz) 1 N/A 1

Resolution of full waveform (bits) 12 N/A 12
Field of View (FOV) 40° 46° 40°

Beam divergence (mrad) 1 0.25/0.8 1
Pulse rate (KHz) 33 100 33
Date of survey August 2012 August 2012 September 2012

Flight height (AGL, m) 510 580 580
Point density (pts/m2) 4.2 6.3 4.0

It should be noted in Table 1 that there is no NIR data listed for the Blue/Colorado River. NIR
was collected for this study, but unfortunately was acquired at a high flight elevation (2600 m AGL);
laser pulses on water surfaces weremostly absorbed. Effectively nowater surface returns were found
and therefore the NIR data for the Blue/Colorado River was not used. It should also be noted that
flights with the Gemini system and Aquarius system cannot be performed at the same time. The
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Aquarius data was collected three days after Gemini data collection for Snake River, but negligible
water surface elevation change was found for the Snake River and verified using USGS river gauge
station data. Both ADCP field data and Aquarius data were collected on the same day for Blue River,
and thus the water surface elevation change is negligible.

3.2. Acoustic Doppler Current Profiler Data

To assess the ability of full waveform bathymetric LiDAR for measuring river morphology,
ground reference datasets were collected with a Sontek RiverSurveyor S5 Acoustic Doppler Current
Profiler (ADCP) deployed from a kayak. SonTek reports a depth resolution of 0.001 m and an
accuracy of 1% over the range of 0.2–15 m. ADCP data is our primary ground reference data, as the
accuracy should be better than 3 cm for these two projects because most water was shallower than 3
m. Real Time Kinematic (RTK) GPS observations were collected concurrently with the ADCP
observations to provide measurements of water surface elevation. The vertical datum difference
between the LiDAR and RTK GPS was corrected by using common observed ground control points
in a parking lot and then applying the offset to correct the LiDAR observations. The ADCP depth
observation locations for both projects are shown in Figure 5. The distribution of ADCPwater depths
through the Snake River (Figure 6a) and Blue/Colorado River (Figure 6b) show that most water
depths for the Snake River are less than 2 mwhile most water depths for the Blue/Colorado River are
less than 1.5 m.

Figure 6. Field measured Acoustic Doppler Current Profiler (ADCP) water depth distribution for (a)
Snake River (6968 measurements) and (b) Blue/Colorado River (16,681 measurements). Most water
depths for the Snake River are less than 2 m while most water depths for the Blue/Colorado River are
less than 1.5 m.

3.3. Water Turbidity Data

In this study, a WET Labs EcoTriplet was deployed from a kayak on the Blue/Colorado River to
measure the portion of the total back scattering associatedwith particulates (i.e., suspended sediment
and organic material) in the water column. Turbidity, a common metric of water clarity, is derived
from the measured backscatter. Figure 7 shows the spatial distribution of turbidity measurements
across areas with distinct levels of water clarity at the Blue/Colorado River confluence site. The
northern part of the river is distinctly more turbid than the southern portion of the river. Note that
turbidity measurements and ADCP measurements were collected on separate deployments of the
kayak. Figure 8 shows the bimodal distribution of the turbidity measurements.
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Figure 7. Turbidity measurements for the Blue/Colorado River (4663 measurements) with Muddy
Creek entering from the north.

Figure 8. Distribution of turbidity data for the Blue/Colorado River confluence. An obvious bimodal
distribution is displayed; more turbid water is present in the northern part of the river due to Muddy
creek (Figure 7), and the clearer water is present in the southern portion.

4. Experimental Results

4.1. Experiment I: Snake River Bathymetry Study

4.1.1. Distribution of Number of Full Waveform Returns

Four different full waveform processing algorithms have been applied in this study. The full
waveform data for the Snake River was first preprocessed to reduce computing load by thresholding
(Section 2). To analyze the effect of the initial peak location estimates on nonlinear least square
Gaussian decomposition, peak locations that were detected with a second derivative and peak
locations that were detected with a CWT were both used as initial approximations for Gaussian
decomposition. The resulting point clouds are referred to as s_G (Gaussian decomposition initiated
with second derivatives) and c_G (Gaussian decomposition initiated with CWT), respectively. The
peak locations detected by CWT are also used as initial seed values for the ESR pulse fitting. A point
cloud was also generated by using just the peak locations derived from CWT without further



Remote Sens. 2015, 7, 5133–5159

170

Gaussian or ESR refinement. The four point clouds from these full waveform fitting are then used for
further analysis.

The CWT and s_G algorithms generated 24.32% and 43.35%more points, respectively, compared
to the discrete points provided by the manufacturer software, for the Snake River. The distribution
of the number of returns for discrete points, CWT and s_G are shown in Figure 9. This suggests that
s_G performs better than CWT for peak detection in the fluvial environment of the Snake River. More
importantly, both CWT and s_G methods are markedly better at resolving multiple returns; almost
all discrete points are composed of single return points. More return points have a direct benefit for
bathymetric mapping as better coverage and higher density data is the result. In addition, multiple
returns are also critical for shallow water bathymetric mapping as the surface returns and benthic
returns are more likely both represented by multiple reflections. It should be noted that the ESR and
c_G methods are not given in Figure 9 because they were both seeded using the CWT peak locations
and therefore theoretically have the same statistics as the CWT results.

Figure 9.Distribution of the number of full waveform returns using different peak detection methods
for the Snake River. CWT and s_G methods are better able to detect multiple returns while almost all
discrete points are single return.

4.1.2. Water Depth Analysis

To avoid local anomalies (e.g., floating wood, submerged objects, facets of waves, etc.), for each
benthic point, the point to plane distance (see Section 2.4) is calculated as water depth with a search
radius of 10 m for both the NIR and green water surfaces. To evaluate full waveform bathymetric
LiDAR performance, the retrieved water depths have been compared to field measured ADCP
depths. Figure 10 shows all the possible combination of water depths compared to ADCP water
depths and Table 2 shows the statistical comparison results for each water depth estimate.

Table 2. Comparison of LiDAR retrieved water depths to field measured ADCP water depths for the
Snake River. Results in meters.

Point Type: Discrete s_G c_G CWT ESR

Water Surface: NIR Green NIR Green NIR Green NIR Green NIR Green

Mean(Zf Zr) (m) 0.02 0.13 0.02 0.18 0.13 0.32 0.11 0.06 0.13 0.17
Std.(Zf Zr) (m) 0.17 0.20 0.16 0.18 0.14 0.17 0.15 0.14 0.13 0.14

Slope 1.08 1.16 0.93 0.79 0.91 0.75 1.12 1.08 1.08 0.95
Intercept (m) 0.06 0.29 0.09 0.04 0.04 0.06 0.00 0.14 0.05 0.12

R2 0.87 0.87 0.87 0.81 0.90 0.83 0.91 0.92 0.92 0.88
*Zf is field measurement, Zr is LiDAR derived water depth.
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Figure 10. Comparison of LiDAR depth to ADCP depth for the Snake River (top row: LiDAR depths
generated with NIR estimated water surface, bottom row: LiDAR depths with green return water
surface). Black lines in the figures are the 1:1 line while the red lines are regression lines, and the green
shaded areas highlight extremely shallow water (<0.8 m), (a) water depths from discrete points; (b)
water depths from s_G points; (c) water depths from c_G points; (d) water depths from CWT points;
and (e) water depths from ESR points.

With the NIR water surface, ESR performs the best with the lowest standard deviation (Std.) of
13 cm and the highest R2 of 0.92; water depths retrieved from discrete points have slightly higher Std.
of 17 cm and lower R2 of 0.87. With a green water surface, CWT performs the best with a Std. of 14
cm and the highest R2 of 0.92 while s_G water depths and c_G water depths have the worst
performance with 18 cm and 17 cm for Std., 0.81 and 0.83 for R2, respectively. The mean bias of water
depth using a NIR water surface is lower than the mean bias with a green water surface except for
CWT derived points; this is likely caused by water volume scattering and the overlap of benthic and
surface returns for shallow water. In addition, the R2 values for water depths retrieved with a NIR
water surface are higher than those for water depths retrieved with a green water surface with the
exception of the CWT points (0.87 vs. 0.87 for discrete points, 0.87 vs. 0.81 for s_G points, 0.90 vs. 0.83
for c_G points, 0.92 vs. 0.88 for ESR). These differences indicate that NIR returns give a more accurate
water surface than green returns. The CWT methodology is the lone outlier, and shows the opposite
performance as water depths retrieved with a green water surface are better than water depths
retrieved with a NIR water surface ( 11 cm vs. 6 cm for mean depth error, 15 cm vs. 14 cm for Std.,
0.91 vs. 0.92 for R2, respectively). This suggests that the CWT is more effective than the other methods
for green LiDAR waveform processing as it provides a better estimate of the water surface.

The water depths retrieved from c_G points are slightly better than water depths retrieved from
s_G points (with NIR water surface: 14 cm vs. 16 cm for Std., 0.90 vs. 0.87 for R2, respectively; with
green water surface: 17 cm vs. 18 cm for Std., 0.83 vs. 0.81 for R2, respectively). This suggests that the
initial peak location estimates have an effect on the final least square estimates, and that CWT
provides marginally better seed locations.

The green shaded areas (depths < 0.8 m) in Figure 10 indicate that all shallow water depths
retrieved from LiDAR observations have been underestimated. Theoretically, LiDAR can
underestimate water depth because of overlap between the surface return and benthic return for
extremely shallow water. Also, any suspended particulate matter in the water body, or a rough
benthic layer can stretch the incident laser pulse. For very shallow water (green shaded area), the
final laser return will be a superposition waveform of water surface backscatter, water volume
backscatter and benthic layer backscatter.

Because Table 2 shows significant differences between water depths with either an NIR or green
water surface definition, a further inspection of these water surface definitions is warranted. The NIR
water surface shows the best overall internal consistency, with a Std. of 11.76 cm for planar fits of
points within a 2 m search radius. Therefore the NIR water surface is used as a common basis for
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comparison for all the green water surfaces by calculating the point to plane distance with a 2 m
search radius from the green LiDAR points to the NIR surface plane. As Table 3 shows, different
green water surfaces have significantly different mean vertical errors with ESR having the largest at
45 cm and c_G the smallest at 17 cm. The discrete water surface has only a 10 cm of Std., indicating
that the discrete point cloud estimates the water surface well (at least for the Snake River conditions).
However, the overall performance (i.e., determining water depths) of discrete returns is not as good
as CWT which has Std. of 24 cm for water surface; this implies that a CFD is unable to properly
estimate benthic returns in the presence of water column backscatter. The c_G method performs
better than s_G for water surface detection with 17 cm vs. 34 cm for mean vertical error, and 28 cm
and 31 cm for Std, respectively. Again, this is further evidence that an accurate initial peak estimate
is necessary for nonlinear Gaussian decomposition.

Table 3. Statistical mean vertical error and Std. for different green water surfaces. NIR water surface
has an 11.76 cm Std.

Water Surface Discrete s_G c_G CWT ESR

Mean (m) 0.18 0.34 0.17 0.29 0.45
Std. (m) 0.10 0.31 0.28 0.24 0.33

4.2. Experiment II: Blue/Colorado River Study

4.2.1. Distribution of Number of Full Waveform Returns

To further assess full waveform bathymetric LiDAR performance, we performed another study
on the Blue/Colorado River, which has significantly more turbid water than the Snake River. Similar
to the Snake River analysis, all four full waveform processing algorithms were applied to extract
individual point clouds. Only 4.62% more points were detected with a CWT over discrete returns.
The s_G method actually gave 2.07% fewer points than the discrete. The distribution of returns for
this fluvial environment is shown in Figure 11. Note that, CWT extracted significantly more multiple
returns while almost all discrete returns are single return. Again, more multiple returns in general
mean better separation between water surface and benthic layer. The same region growing
classificationmethodology described for the Snake River was also applied to the Blue/Colorado River
point clouds.

Figure 11. Distribution of the number of full waveform returns for different peak detection methods
on the Blue/Colorado River. CWT and s_G methods are better able to detect multiple returns while
almost all discrete points are single return.

4.2.2. Water Depth Analysis

After extracting benthic returns from the full waveform and discrete point clouds, a water
surface was required to retrieve water depths for comparison with the ADCP measurements. In
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contrast to the Snake River, no effective NIR water surface was acquired during the airborne LiDAR
data collection because of high flight altitude (2.6 km above ground) of the NIR collection (see Figure
3b in [14]). Therefore, instead of using a NIR water surface we have used a field measured RTKwater
surface. The RTK water surface locations were recorded during the ADCP water depth collection as
shown in Figure 5b. In addition, the water surface returns from the discrete bathymetric points
proved to have extremely low density, and therefore nowater surfacewas estimated from the discrete
returns. Therefore, for the Blue/Colorado River only four sets of water depths were compared with
the green water surface. For each benthic point, the point to plane distance is calculated with a search
radius of 10 m for both RTK water surface and green water surface. The comparison between the
LiDAR and ADCP depths are given in Figure 12 and Table 4.

Figure 12. Comparison of LiDAR depth to ADCP depth for the Blue/Colorado River ((top) LiDAR
depths generated with RTK estimated water surface, (bottom) LiDAR depths with green return water
surface). Black lines in the figures are the 1:1 lines while the red lines are regression lines, (a) water
depths from discrete points; (b) water depths from s_G points; (c) water depths from c_G points; (d)
water depths from CWT points; and (e) water depths from ESR points.

Table 4. Comparison of LiDAR retrieved water depths to field measured ADCP water depths for the
Blue/Colorado River. Results in meters.

Point Type: Discrete s_G c_G CWT ESR

Water Surface: RTK Green RTK Green RTK Green RTK Green RTK Green

Mean(Zf Zr)(m) 0.17 N/A 0.03 0.60 0.04 0.55 0.16 0.35 0.10 0.35
Std.(Zf Zr)(m) 0.29 N/A 0.27 0.27 0.25 0.24 0.27 0.24 0.28 0.22

Slope 0.67 N/A 0.54 0.45 0.70 0.63 0.85 0.84 0.39 0.48
Intercept (m) 0.42 N/A 0.37 0.12 0.26 0.21 0.28 0.22 0.49 0.01

R2 0.44 N/A 0.41 0.29 0.53 0.43 0.57 0.58 0.25 0.39
*Zf is field measurement, Zr is LiDAR derived water depth.

All waveform algorithms performance have degraded in the turbid water of Blue/Colorado
River. The mean biases for s_G and c_G water depths with green water surface are significantly
higher than that of the Snake River with values of 60 cm and 55 cm, respectively. The Std. for all water
depths retrieved with a green water surface is slightly lower than the Std. of water depths with RTK
water surface, but with significantly higher mean biases. The highest R2 of 0.58 was achieved by CWT
water depths with a green water surface while CWT still gave the highest R2 of 0.57 with the RTK
surface. The more consistent results from the purely peak finding CWT algorithm suggests that the
water turbidity substantially distorts the return waveform shape, which causes significant problems
for algorithms such as Gaussian decomposition or ESR that make assumptions about the shape of the
return energy profile. ESR performed relatively poorly in the Blue/Colorado River with only a R2
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of 0.25 for water depths with an RTK water surface and R2 of 0.39 for water depths with green
water surface.

The overall Std. for the c_G method is slightly better than the s_G method (with RTK water
surface: 25 cm vs. 27 cm, with green water surface: 24 cm vs. 27 cm) and has a higher R2 value (with
RTK water surface: 0.53 vs. 0.41, with green water surface: 0.43 vs. 0.29). This difference reinforces
that accurate initial peak estimates are critical for nonlinear least square Gaussian decomposition.

The differences in depth estimation between an RTK water surface and a green laser water
surface necessitates a further assessment of the water surfaces used to infer water depths. Given the
water turbidity, we would expect the RTK water surface to have better performance. Therefore, we
compare each green LiDAR water surface using the RTK surface as a common reference. For each
green water surface point, the RTK points within 10 m are used to form a water surface plane and
each green water surface point to plane distance to the RTK surface is defined as the planar
uncertainty. Table 5 shows that all green water surfaces from the Blue/Colorado River have high
mean error (s_G: 82 cm, c_G: 79 cm, CWT: 72 cm, ESR: 63 cm). The Std. (s_G: 16 cm, c_G: 13 cm, CWT:
17 cm, ESR: 18 cm) of all water surfaces are marginally better than those for the Snake River because
the RTK water surface is less noisy than the NIR water surface used for comparison on the Snake
River (NIR has 11.76 cm Std., RTK has 4.11 cm Std.). The significant mean vertical biases highlights
the overall poorer performance of bathymetric LiDAR for the Blue/Colorado River. By comparing the
results from Table 4, water depths calculated by using an RTK water surface have a smaller mean
bias than green water surfaces. This suggests that the increasing amount of water volume scattering
caused by the turbid water has skewed the mixture of water surface and volume scattering toward
the bottom causing a larger mean error for green water surfaces. The relatively poor performance of
green water surface extraction is troubling because it suggests that an independent accurate water
surface, i.e., NIR water surface, is a necessity for turbid water depth determination.

Table 5. Statistical mean vertical error and Std. for different green water surfaces. RTK water surface
has a 4.11 cm Std.

s_G c_G CWT ESR

Mean (m) 0.82 0.79 0.72 0.63
Std. (m) 0.16 0.13 0.17 0.18

4.2.3. Water Surface Detection Performance Analysis

In order to better study the impacts of water turbidity, we collected a few representative
waveforms with CWT detected peaks and actual water surface locations calculated from RTK
surveyed points. Figure 13 displays these individual bathymetric waveforms under different water
conditions, varying from shallower to deeper water and also varying from lower to higher turbidity.
A single peak can be detected for shallow water with lower turbidity (Figure 13a,b), shallow water
with higher turbidity (Figure 13f–h) and deeper water with higher turbidity (Figure 13i,j). CWT
detected peaks are closer to the actual water surface for more turbid water (Figure 13f h) and they
move away from the actual water surface for lower turbidity water (Figure 13a,b). The different
behavior of full waveform detection in less turbid and more turbid water suggests that a significant
amount of water volume scattering for more turbid water skewed the bathymetric returns toward
the actual water surface.

However, a further analysis of Figure 13 shows the actual water surface (as measured by RTK)
is located at the very beginning of the waveform. Therefore, it would appear that a simple leading
edge detection method would be able to accurately estimate the actual water surface. We have set a
leading edge detector with an amplitude threshold of 210 to define the water surface. Figure 14 shows
the leading edge detected water surface as well as the CWT detected water surface. A significant
vertical bias is present for the CWT detected water surface in profile A and profile B. This visual
vertical bias confirms the significant increase of water surface error in Table 5. The leading edge
detected water surface matches the RTK water surface very well, confirming that leading edge
detection is effective for estimating the water surface in the Blue/Colorado River. In order to
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generalize the leading edge detection, the same method was also applied to the Snake River to
independently assess performance. Figure 15 shows two profiles of the Snake River with leading
edge water surface detection. A significant vertical bias is present in the Snake River leading edge
water surface; the CWT detected water surface agrees much better with the NIR detected water
surface. This result confirms that the biases in the waveform water surfaces for the Blue/Colorado
River are caused by the increasedwater turbidity, and not by the waveform processingmethodology.
The different performance of leading edge water surface detection and the CWT water surface
indicates that there may be no single solution that can be applied to all rivers to accurately estimate
the water surface for single band LiDAR bathymetry.

Figure 13. Individual waveform with CWT detected peaks (red lines) and actual water surface
location (from RTK—black line) under different water conditions with depth (D, unit: m) and
turbidity (T, unit: NTU). (a,b) are shallow water with lower turbidity, (c–e) deeper water with lower
turbidity, (f–h) shallow water with higher turbidity, and (i–j) deeper water with higher turbidity.
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Figure 14. Profiles for leading edge detected water surface on the Blue/Colorado River. The CWT
detected waveform shows a clear vertical bias from the RTK water surface while the leading edge
detected water surface is much closer to the RTK water surface. Coordinates are in UTM 13N
(NAD83).

Figure 15. Profiles for leading edge detected water surface on the Rusty Bend of Snake River. The
water surface detected with CWT matches the NIR water surface well. Coordinates are in UTM 12N
(NAD83).

Table 6 lists the statistical results for leading edge water surface detection for both the
Blue/Colorado and Snake River. For each leading edge detected point, the point to plane distances
(RTK points are reference points for Blue/Colorado River, NIR points are reference points for Snake
River) were used to form a plane by least square estimation and the point to water surface plane
distance is defined as error. The leading edge detection is poorer than the waveform derived surfaces
for the Snake River as the water volume scattering with low turbidity is not significant. However, if
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the water becomes more turbid, then leading edge detection performs better than the peak detection
or waveform fitting methods.

Table 6. Statistical mean vertical error and Std. for leading edge detected water surfaces. RTK water
surface and NIR water surface are used as reference for the Blue/Colorado and Snake Rivers,
respectively.

Blue/Colorado River Snake River

Mean (m) 0.01 0.60
Std. (m) 0.19 0.27

4.3. Best Performance for Single Band Bathymetric LiDAR

If we specify only single band (green) LiDAR observations, then Table 3 shows that the most
consistent water surface estimate for the Snake River is given by the discrete returns with an 18 cm
mean bias and a 10 cm Std., and Table 6 indicates that leading edge detection yields the best
representation of the water surface for the Blue/Colorado River with 1 cm of mean bias and 19 cm
Std. Therefore, we can assess the best performance for single band green LiDAR in each study by
combining the best estimate of water surface with the best discriminator of benthic layer returns. For
the Snake River, we combined a discrete water surface with CWT benthic layer returns to infer water
depth. For the Blue/Colorado River we used leading edge detection for the water surface and
combined it with CWT benthic layer returns. The optimal single band water depth maps are shown
in Figure 16. Both optimized estimates of depth were compared to field measured ADCP water
depths and the results are shown in Table 7.

Figure 16.Optimal single band water depth map for: (a) the Snake River, coordinates are in UTM 12N
(NAD83), and (b) the Blue/Colorado River, coordinates are in UTM 13N (NAD83)).

Table 7. Best Performance for single band bathymetric LiDAR for both the Snake River and The
Blue/Colorado River.

Snake River Blue/Colorado River

Mean(Zf Zr) (m) 0.06 0.16
Std.(Zf Zr) (m) 0.14 0.27

Slope 1.11 0.85
Intercept (m) 0.06 0.27

R2 0.93 0.58
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The Snake River water depth inferred from a combination of discrete water surface and CWT
benthic layer results in a 6 cm mean bias and 14 cm for Std. with an R2 of 0.93. The results are
comparable to the CWT water depth using a NIR water surface estimate in Table 2. The water depth
inferred from a combination of leading edge detected water surface and CWT detected benthic
returns for Blue/Colorado River also shows similar performance to the CWT water depth with RTK
water surface given in Table 4 (16 cm for mean bias and 27 cm for Std. with R2 of 0.58). This reinforces
the fact that the leading edge detected water surface is close to the RTK water surface and the
relatively significant errors present in the Blue/Colorado River results are heavily dependent on the
accuracy of the benthic layer estimation.

5. Discussion

Full waveform LiDAR processing is able to produce a significantly denser point cloudwithmore
multiple return reflections than CFD for bathymetry. The ability to recover multiple returns by the
waveformmethods is especially significant, because the additional returns aremore probable benthic
returns for fluvial environments. The multiple returns can also benefit the classification of benthic
layer as the last return of multiple returns are assigned as the seed benthic positions for the region
growing classification algorithms. This algorithm is different from the method proposed by Allouis
et al. [24] who usedNIR returns to estimate the water surface; here the mixed LiDAR signal produced
by water surface and water bottom reflections was directly processed through the CWT to extract
both surface and benthic locations. One of the challenges for single band bathymetric LiDAR is
to recover both the water surface and bottom position from the full waveform. The longer pulse
width laser used in the Aquarius system exacerbated the mixture of water surface, water column
and benthic returns. In the future we plan to examine our methodology on short pulse width
bathymetric full waveform LiDAR systems such as the Riegl VQ 820 G, AHABHawkeye III, EAARL,
and Optech Titan.

The results of the study also suggest that there is no superior full waveformprocessing algorithm
for all bathymetric situations which agrees with the conclusions of Parrish et al. [10]. ESR performed
the best in the Snake River using a NIR water surface, with an R2 of 0.92 and the lowest Std. of 13 cm.
However, the c_G and CWT results for the Snake River with the NIR surface were statistically quite
similar to the ESR results. With a greenwater surface the CWT performedmarginally better than ESR
with R2 of 0.92 vs. 0.88, both with a Std. of 14 cm vs. 14 cm. LiDAR for the Blue/Colorado River did
not perform nearly as well as the Snake River study due to the significant water turbidity. CWTwater
depths with either an RTK or green water surface gave the best performance (R2 of 0.57 and 0.58,
respectively). In general the approaches that model expected signal shape (Gaussian and ESR)
performed quite poorly for the Blue/Colorado River, suggesting that the water turbidity causes
significant distortion to the return waveform shape. Based on this we can safely conclude that CWT
is more stable than the other full waveform processing algorithms for shallow water fluvial
environments. Both the ESR and CWT showed good bathymetric performance for difference cases,
confirming that it is critical for commercial software to include a variety of full waveform processing
strategies. However, unfortunately, the optimal processing strategy is not available a priori, and
therefore a certain level of performance assessment is necessary for users to determine the best
processing strategy for their study conditions.

We have also compared water surfaces estimated by both NIR and Green LiDAR returns. There
is a definite vertical bias between the two surface estimates. The comparison of the NIR and green
water surfaces for the Snake River study showed a maximum mean vertical offset of 45 cm and
33 cm of Std. for ESR. The minimum average of 18 cm of vertical offset and 10 cm Std. are observed
for the discrete greenwater surface. Overall, it appears that the NIRwater surface gives slightly better
results than using a green surface (for clear water). Turbid water greatly degraded the green water
surface performance with large mean error (s_G: 82 cm, c_G: 79 cm, CWT: 72 cm, ESR: 63 cm).
The deterioration of water surface performance compared with the clear Snake River indicates that
turbidity can skew the return full waveform toward the benthic layer. Mckean et al. [25] suggested
that suspended sediment and dissolved organic materials can scatter and absorb incidence laser
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radiation. They also reported that turbid water exacerbates laser penetration for the EAARL system
when turbidity reached 4.5 to 12 NTU. This agree with our results, the Blue/Colorado River presented
turbidity ranging from 2 to 12, which negatively impacted Aquarius performance due to substantial
water column scattering. It also further confirms that a multiple wavelength LiDAR may be essential
for bathymetric applications, especially for turbid water. A leading edge detection method was
proposed and tested over these two river conditions; it was found that leading edge detection is
effective if more water volume scattering is present (i.e., high turbidity), but waveform fitting
methods are more effective at low turbidity due to the identification of more water surface returns.

6. Conclusions

The objective of the study was to evaluate the performance of a single band full waveform
bathymetric LiDARwith different processing algorithms andwater surface definitions in two distinct
fluvial environments. We proposed a novel full waveform processing algorithm based on a
continuous waveform transformation; the detected peaks from CWT are used as candidate seed
peaks for both Gaussian and ESR decomposition. The wavelet transformation was assessed in
comparison with a more standard approach of using Gaussian decomposition with initial peak
estimates from a second derivative analysis. Water depths from each waveform method, along with
discrete points produced by the real time constant fraction discriminator have been compared to field
measured water depths. All the methods have been applied to two fluvial environments: the clear
and shallow (mostly < 2 m) water of the Snake River, and the turbid and shallow (mostly < 1.5 m)
fluvial environment of the Blue/Colorado River.

In a summary, full waveform processing can produce more points than discrete CFD processing
to provide better coverage and more multiple returns for better discrimination of benthic returns
from water surface returns. However, with all approaches it is difficult to acquire good quality data
for turbid water, especially when the water is shallow. The proposed CWT method shows better
stability through varying water clarity conditions than the Gaussian or ESR decomposition methods
also tested. A single band full waveform bathymetric LiDAR does not appear to be as accurate as a
two wavelengths system that recovers the water surface using a NIR laser. However, with an
appropriate full waveform processing algorithm, the error in determining the water surface from a
single band green LiDAR can be mitigated; these results are encouraging because they seem to
indicate that with improved detection of the water surface from the green LiDAR we can expect a
single band LiDAR bathymetry system to perform similarly to a two band (NIR and green)
bathymetric system. For this to be realized, however, we must successfully extract the water surface
from the relatively complex backscatter at the air/water interface, which we were unable to do with
the waveform processing algorithms presented. In [23], they proposed a quadrilateral signal tomodel
the effect of water column scattering, and show it to be effective with simulated bathymetric LiDAR
data. However, our initial analysis of this methodology has not shown a significant improvement in
water surface estimation for the Aquarius datasets examined. Future work will therefore focus on
decoupling the water surface and water column scattering at the air/water interface.
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Abstract: From an unprecedented experiment using airborne measurements performed over the rich
forests of Réunion Island, this paper aims to present a methodology for the classification of diverse
tropical forest biomes as retrieved from vertical profiles measured using a full-waveform LiDAR.
This objective is met through the retrieval of both the canopy height and the Leaf Area Index (LAI),
obtained as an integral of the foliage profile. The campaign involved sites ranging from coastal to
rain forest, including tropical montane cloud forest, as found on the Bélouve plateau. The mean
values of estimated LAI retrieved from the apparent foliage profile are between ~5 and 8 m2/m2, and
the mean canopy height values are ~15 m for both tropical montane cloud and rain forests. Good
agreement is found between LiDAR- and MODIS-derived LAI for moderate LAI (~5 m2/m2), but
the LAI retrieved from LiDAR is larger than MODIS on thick rain forest sites (~8 against ~6 m2/m2

from MODIS). Regarding the characterization of tropical forest biomes, we show that the rain and
montane tropical forests can be well distinguished from planted forests by the use of the parameters
directly retrieved from LiDAR measurements.

Keywords: tropical forest; airborne LiDAR; canopy height; Leaf Area Index; apparent foliage

1. Introduction

Tropical forest areas are difficult to monitor/to classify using either remote sensing or in situ

approaches, because of their tremendous heterogeneity and complex structure. The fundamental
challenge is thus to acquire information about the forest vegetation structure given the fact that forest
vegetation limits the ability to acquire information. Forest horizontal patterns are accessible using
passive multispectral sensors [1,2] and hyper-spectral sensors [3–5], but these sensors are not adequate
to penetrate beyond the upper canopy layer [6]. Active remote sensing instruments, including LiDAR
and radar, have more of a chance to peer through the forest canopy down to the ground level [7].
Radar yields volumetric scattering information in addition to surface scattering observations, but the
retrieval of the vegetation vertical structure is not direct, unlike with LiDAR.
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Ground-based LiDAR systems, either terrestrial or portable, can accurately estimate canopy
structural parameters [8–12]; however, covering large areas with such systems is impractical.
Airborne/spaceborne LiDAR technology has been used to rapidly describe forest structure over
large areas; whereas the observations of optical remote sensing is often limited by cloud in tropical
areas. Several airborne discrete return LiDAR datasets have been acquired over tropical forests
and have been successfully used to derive structural characteristics, such as canopy height, canopy
cover and aboveground biomass [13–15]. A full description of the forest vertical structure (including
canopy top, tree crown base height and understory structures) has also been obtained by airborne
full-waveform LiDAR, both with infrared wavelengths [16,17] and ultraviolet wavelengths [18,19].
Recently, the airborne demonstration instrument called the Laser Vegetation Imaging Sensor (LVIS) [20]
has shown that a full-waveform infrared LiDAR with a large footprint can reliably extract the vertical
structure and Leaf Area Index (LAI) of a tropical rainforest (Costa Rica [21]) as well as a mid-latitude
forest (California [22]), even with a dense canopy cover. The LVIS team however acknowledges the
need of a broader dataset on multiple tropical biomes to confirm these findings and compare the
extracted features.

The overarching goal of this paper is to report on a methodology of classification using a
full-waveform ultraviolet airborne LiDAR with a large footprint, of varied tropical forest types on
Réunion Island, which is a rich diversity of tropical ecosystems listed as World Heritage by UNESCO.
The classification, obtained using LiDAR-derived canopy height and LAI, has distinguished native
forest from plantations/exotic forests. The study sites and data collection methods will be described in
Section 2, where the main steps of LiDAR processing for forest studies and the sampling strategy will
also be presented. The retrieved forest structural and ecological properties will be analyzed in Section 3,
along with comparisons to ground-based census and spaceborne observations. The classification of
tropical forest sites will be also presented in this section.

2. Materials and Methods

2.1. Study Sites

Réunion Island is a French overseas department located in the Indian Ocean (20˝06’52”S,
55˝31’57”E; Figure 1). It is a small (2512 km2) tropical volcanic island, which reaches 3070 m in
altitude at its highest point (Piton des Neiges). In spite of the transformation of its habitats [23], the
island still shelters 100,000 ha of native ecosystems (included in a national park) and is home to the
last remnants of intact tropical forests in the Mascarenes archipelago (Réunion, Mauritius, Rodrigues).

Figure 1. Location of the study sites and topography of Réunion Island.
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Seven plots on Réunion Island were used for forest sampling in our study (Figure 1; Table 1). The
coastal test site (CT) has only exotic vegetation. The Cryptomeria (CM) and Tamarind (TM) plots,
located on Mount Maïdo, and the Bélouve (BF) site, located on a central plateau, are tropical montane
cloud forests, which in particular still cover large areas of Réunion Island (60,000 ha), extending from
800 to 1900 m above mean-sea-level (amsl) on the windward side and from 1100 to 2000 m amsl
on the leeward side of the island. This dense forest within cultivated forests on moderate slopes is
very similar to Acacia koa forests in Hawaii. The CM is a monoculture of Cryptomeria japonica, an
introduced species in the Taxodiaceae family. These trees commonly reach 20 to 25 m in height on
the site; they produce a dense canopy, under which light is very scarce. Most acacia stands, like the
TM site, are composed of secondary forest and display a monospecific acacia (highland tamarind)
canopy with shrubby vegetation in the understory, of which the structure can vary with the intensity
of human activities (stock farming in particular). The Mare-Longue sites (three plots dubbed ML-150,
-250 and -550, according to their altitude) are located in the National Park of Réunion Island in the
former Mare-Longue nature reserve, which shelters the last remnant of lowland tropical rainforest
in the Mascarene Islands with around 4000 mm of yearly rainfall. This lowland forest grows on a
non-altered basaltic pahoehoe lava flow dated between four and six centuries old [24]. This forest
displays the greatest tree species diversity on Réunion Island with an average richness of 40 tree species
per hectare [25]. Whereas average tree height remains very low (15 to 20 m), the stem density exceeds
1000 trees/ha (diameter at breast height >10 cm). The most abundant tree species in the sampled plots
is Labourdonnaisia calophylloides (Sapotaceae), endemic from the Mascarene Islands.

Table 1. Main characteristics of the study sites and associated available LiDAR profiles.

Forest Sites
Altitude
(m¨ amsl

1)

Dominant Tree
Species

Sub-Plot
LiDAR
Cover

Laser
Shots

Ground
Slope >

30˝

Exotic
Vegetation

Coastal forest (CT) 10 Only exotic
vegetation - 22 ha 2046 0.06%

Tropical
Montane

Cloud
Forests

Cryptomeria (CM) 1230 Cryptomeria
japonica

40 m ˆ 40
m 10 ha 9646 22.6%

Tamarind (TM) 1750 Acacia
heterophylla

40 m ˆ 40
m 10 ha 14,738 12%

Bélouve (BF) 1600 Acacia
heterophylla

- 400
ha 48,410 7%

Tropical
Lowland

Rainforest

Mare-Longue
(ML)

ML-150 150
Labourdonnaisia

calophylloides

50 m ˆ 100
m 2.8 ha 9808 2%

ML-250 250 50 m ˆ 50
m 1.4 ha 1552 0.2%

ML-550 550 - 0.7 ha 667 16%
1 amsl: above mean-sea-level.

2.2. Data Collection

The following estimation of forest parameters on Réunion Island was performed in May 2014,
combining mainly airborne LiDAR measurements with in situ approaches.

2.2.1. Airborne LiDAR and Instrumentation

The LiDAR system used during the campaign is the Ultraviolet LiDAR for Canopy Experiment
(ULICE; [19]) developed at Laboratoire des Sciences du Climat et de l’Environnement (LSCE) with
the support of CNES (Centre National d’Etudes Spatiales). It was integrated into an autonomous
payload flown on an ultra-light aircraft (ULA) shown in Figure 2. The ULICE system characteristics
and the airborne payload are given in Table 2. The ultraviolet domain is well suited both for eye
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safety at low carrier altitude and for precise retrievals over dense forests with little distortion due to
multiple scattering (Shang and Chazette, 2014). As recommended by several authors [20,26–29], a large
LiDAR footprint is preferred so that the laser can better penetrate the dense tropical forests. Shang and
Chazette [26] estimated an optimal laser footprint diameter around 20 m for dense forests, whereas
Riaño et al. [30] found that the Leaf Area Index (LAI) was better estimated using laser footprints
between 7.5 and 12.5 m. The ULICE system was thus modified to obtain a large and controllable
sounding area on the ground (approximately a 1-m to 10-m footprint diameter for a flight altitude of
~350 m above the ground level (agl)). The effect of LiDAR footprint size will be studied in Section 2.4.

Figure 2. Autonomous payload (~80 kg) implemented on an ultra-light aircraft, including (a) the
Ultraviolet LiDAR for Canopy Experiment (ULICE). The other instruments are also onboard: (b) a
Tetracam ADC (Agricultural Digital Camera) air camera is used to get the photosynthesis activity
index (Normalized Difference Vegetation Index (NDVI)) images over the forest canopy; the ancillary
positioning instrument, called the MTi-G system, consists of a Global Positioning System (5-m accuracy)
and an inclinometer (0.7˝ accuracy); (c) a Vaisala PTU-300 pressure/temperature/relative humidity
probe is used for altitude correction and control of the tropical high humidity conditions that could
affect the transmittance of LiDAR optics.

Table 2. Summary of the ULICE characteristics.

ULICE Characteristics

Emitter (laser) Quantel Centurion, diode-pumped, air-cooled, 6 mJ, 8 ns, 100 Hz, 354.7 nm

Output beam Eyesafe ~40 ˆ 30-mm beam, tunable 0 to 40 mrad divergence with Altechna MoTex
Expander (at 1/e²)

Receiver 2 channels with different optical densities (OD)

Telescope Refractive, 150-mm diameter, 280-mm effective focal length

Filtering No spatial filtering, wideband Thorlabs 355 nm ˘ 5 nm interference filters for large
angular acceptancy (36 mrad)

Field of view 33 mrad for Channel #0, 26 mrad for Channel #1

Detection Hamamatsu H10721 photo-multiplier tubes. Channel #0: 3.0 OD; Channel #1: 4.0 OD

Data acquisition 12 bits, 200-MHz sampling, 2-channel NI-5124 digitizer, 33-Hz actual profile frequency

Sounding area Tunable up to ~30 mrad on Channel #0, <22 mrad on Channel #1 (at 1/e²)
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An ancillary positioning instrument (inclinometer and GPS), an MTi-G system by XSense, is
also onboard the ULA. It provides the horizontal geolocation of the ULA with 5-m accuracy and
the direction of the laser beam with 0.7˝ accuracy (i.e., 3.6 m at the ground for a flight altitude of
300 m¨ agl).With such uncertainties, the study performed at Réunion Island should be statistical,
because we cannot distinguish one tree from another. A Tetracam ADC (Agricultural Digital Camera)
air camera is also onboard to map the photosynthesis activity index (Normalized Difference Vegetation
Index (NDVI)) over the forest canopy to check the scene heterogeneity. However, its images showed
high NDVI (>0.65) over all of the observed sites, making it rather irrelevant for the validation of other
ecological parameters, such as LAI [31].

2.2.2. Field Data Collection

During two months around the airborne measurements, four representative sub-plots of ~0.2 ha
were set up in four forest sites (CM, TM, ML-150 and ML-250 sites, as shown in Table 1), where in situ

measurements were performed. Within each sub-plot, all trees with diameter at breast height (DBH)
>7 cm were identified. The tree top height (TTH) and the DBH were measured using a dendrometer
and forestry measuring tapes, respectively. For trees with multiple stems, each significant stem was
recorded individually. The uncertainties on the TTH from in situ measurements in a dense tropical
forest have been evaluated during the experiment in the order of ˘4 m (several measurements on the
same tree with different operators with a dendrometer). This is due to the difficulty in identifying the
tree top among other branch extremities.

2.2.3. Other Data Collections

Digital terrain models (DTM) of 500-m or 5-m resolution for the whole Réunion Island were
provided by the Parc National de la Réunion (J.-C. Notter, personal communication). The topography
of Réunion Island is given in Figure 1, using the DTM-500 m. The slope of each sampled site was
evaluated using the DTM-5 m.

MODIS (Moderate Resolution Imaging Spectroradiometer) Level 3 land products were compared
with LiDAR observations. The 8-day LAI products derived from MODIS onboard Terra and Aqua are
considered [31]. On 8-day syntheses from May to August 2014, LAI values retrieved on 1-km pixels
were averaged after screening for cloud contamination (i.e., values below the median were removed).

2.3. LiDAR Data Processing

From airborne LiDAR measurements, the forest structural and optical parameters are estimated;
they are in turn used to evaluate ecological parameters, such as LAI. In this study, three key parameters
are estimated from the LiDAR backscatter profiles to characterize the sampled forest sites: the canopy
height (CH), the vertical profile of apparent foliage (Fapp), which informs both the canopy density and
the vertical distribution of leaf biomass along the profile, and the LAI, which is linked to the integral
of the latter parameter.

2.3.1. Forest Structural Parameter: Canopy Height

The canopy height (CH) parameter is assessed from the full-waveform LiDAR profile using
the threshold approach documented in Chazette et al. [32] and applied to forest detection by
Cuesta et al. [18] and Shang and Chazette [19]. CH is estimated as the distance between the first
return, at the upper surface of the vegetation, and the last return, which is normally the ground echo.
For dense forests, the laser beam cannot always penetrate the leaves and reach the ground, so the last
return of the backscattered LiDAR signal is not necessarily the ground echo. Nevertheless, as frequent
measurements were performed (33 Hz), allowing some overlap, the ground level can be correctly
located thanks to time-integrating signal processing in almost all cases and be the reference to estimate
the CH. An example is given in Figure 3. Note that a parasitic echo (undershot) can be observed
beneath the ground echo, which is due to the rebounding, non-linear response of the detector to the
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strong pulse returned by the ground. The standard deviation of LiDAR-derived CH was assessed
to be ~1.5 m when only considering measurement noise and signal processing errors. Shang and
Chazette [26] assessed that LiDAR signal distortion due to the surface slope can lead to a relative CH
uncertainty of ~5% for a slope of 30˝ (see Table 1) and a 10-m footprint, as is the case in our present
study. As a result, the standard deviation of our LiDAR-derived CH should be of the order of ~2 m.
We do not consider geolocation errors in this statistical study.

Figure 3. Example of ground echo and canopy top detection from a range-corrected LiDAR signal
explained in arbitrary units (a.u.) for a section of flight over the tropical forest of Bélouve (BF). The
difference between the ranges of these two points yields the canopy height (CH). Note that the y-axis is
not the ground elevation, but the distance from the emitter. ULA, ultra-light aircraft.

2.3.2. Forest Optical Parameters

The range-corrected backscattered airborne LiDAR signal Sv [33,34], taken at a height above
ground level (agl) h inside the forest cover, can be expressed by the LiDAR equation [35]:

Sv phq “ K ˆ T2
a ˆ BER ˆ αcanopy phq ˆ expp´FOT phqq (1)

where K is the instrumental constant and Ta is the atmospheric transmission. The backscatter to
extinction ratio BER is a classical parameter used in LiDAR analyses [26,36], which characterizes the
probability that an intercepted photon would be backscattered by a scattering layer; it is assumed to be
constant for all canopy levels in this study. The canopy extinction coefficient αcanopy (h) is defined as
the sum of the absorption and scattering coefficients in the canopy. The forest optical thickness (FOT)
is defined only in the forest layer between the considered height (h) and the canopy height (CH) and is
given by:

FOT phq “
ż CH

h
αcanopy

´
h

1

¯
¨ dh1 (2)

Following the method proposed by Ni-Meister et al. [37], we define the transmittance height profile
(THP) by taking a ratio of the energy from canopy returns to the total energy, which characterizes the
amount of skylight intercepted by vegetation at a given level [38]:

THP phq “ Rv phq
Rv p0q ˆ ε (3)

with:
ε “ 1

1 ` ρv
ρg

¨ Rg

Rvp0q

(4)
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where ρv and ρg are the canopy and ground reflectance, respectively. The integrated range-corrected
canopy return Rv(h) (respectively ground return Rg) is defined as the integral of the LiDAR signal from
the canopy top CH to height level h (respectively in the equivalent width of the ground echo ∆hGE,
∆hGE ~4 m):

$
’’’&
’’’%

Rv phq “
� CH

h Sv

`
h1

˘
¨ dh1 “ K ¨ T2

a ¨ BER ¨ r1 ´ exp p´FOT phqqs

Rg phq “
� `

∆hGE
2

´
∆hGE

2

Sg

`
h1

˘
¨ dh1 “ K ¨ T2

a ¨ exp p´FOT p0qq ¨ ρg

π¨∆hGE
¨
� `

∆hGE
2

´
∆hGE

2

g
`
h1

˘
¨ dh1

(5)

where the normalized ground echo g(h) is modelled as a Gaussian function [39] and can be calibrated
by using the returned laser pulse at nadir over a flat surface.

Thus, as BER is equal to ρv
π

, THP can be expressed as a function of FOT:

THP phq “ 1 ´ exp p´FOT phqq (6)

The ε parameter is usually estimated using a known ratio of canopy and ground reflectance,
which was estimated around 2.5 [21] or 2 [38,40] at a 1064 nm wavelength. However, the reflectance
values are not available in our study area. Nevertheless, the reflectance ratio can be estimated using
only LiDAR measurements as follows. Assuming FOT(0) >> 1 (i.e., ε « 1), which is realistic for thick
tropical forests, as highlighted by Shang and Chazette [26], an initial FOT estimator can be evaluated
from Equations (3) to (6), and is given for h > 0 by:

ČFOTi phq « ´ln

ˆ
1 ´ Rv phq

Rv p0q

˙
(7)

This leads to a second assessment:

ČFOT phq “ ´ln

ˆ
1 ´ ε ¨ Rv phq

Rv p0q

˙
(8)

which is made after a correction of the first order using the ε parameter explained as:

ε “ 1 ´ exp
´

´ ČFOT ph0q
¯

(9)

with h0 chosen inside the undergrowth layer of the forest (2 to 3 m above the ground level).
Meanwhile, the reflectance ratio (ρv/ρg) can be determined using the LiDAR signal by:

ρv

ρg
« Rv p0q

Rg
¨

exp
´

´ ČFOT ph0q
¯

1 ´ exp
´

´ ČFOT ph0q
¯ (10)

A final estimate is obtained after correcting for bias towards high values, which can be assessed
very reliably using a simulator of the LiDAR measurements taking inversed profiles for each sampling
site as an input. Such an algorithm converges within a relative uncertainty of ~20% after corrections of
the bias.

This iterative approach was chosen as an alternative to the one based on ground echo
normalization of forest transmittance as proposed by Ni-Meister et al. [37]. The reliance of the latter
on an accurate estimate of the ground to vegetation reflectance ratio is incompatible with the very
diverse and variable forest grounds found at Réunion Island (leaves and debris, soil, lava) and leads to
important errors on the retrieved ecological parameters. This inversion process has been applied to
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each suitable LiDAR profile acquired during the flights above the tropical forests of Réunion Island, in
order to characterize the various tropical forest sites.

2.3.3. Forest Ecological Parameters

Several studies have shown that LiDAR is a powerful instrument to retrieve the LAI [41,42]. The
LAI can be derived from LiDAR measurements by (e.g., [21]):

LAI phq “ C ˆ
ż CH

h

Fapp pzq
G

¨ dz (11)

with the “apparent foliage profile” (Fapp), which can be identified as the vertical profile of vertical
projections of foliage elements, defined by the following equation as in Ni-Meister et al. [37]:

Fapp phq “
dln

´
1 ´ ε ¨ Rvphq

Rvp0q

¯

dh
(12)

Comparing Equations (2) and (8), we find that the Fapp is actually the canopy extinction coefficient
αcanopy in the classical LiDAR equation. We will use Fapp in the following.

All of this mathematical development can be used whatever the wavelength, but for visible or
infrared wavelengths, it may be necessary to consider the multiple scattering effect due to leaves and
branches [26]. The multiple scattering enhances the backscatter LiDAR signal and makes the LiDAR
signal distorted. It can be taken into account by using a multiple scattering parameter as in Platt [43],
Berthier et al. [44] and Shang and Chazette [26].

The LAI is an integration of Fapp. The random orientation of foliage [37] is introduced as
G = 0.5. Clumping coefficient C has been assessed by Chen et al. [45] around 1.58 using the
bidirectional reflectances derived from the Polarization and Directionality of the Earth Reflectance
(POLDER, [46]) instrument onboard the Advanced Earth Observing Satellite (ADEOS), as well as by
He et al. [47] using the MODIS BRDF (Bidirectional Reflectance Distribution Function) product, yielding
C = 1.54 ˘ 0.05 over most tropical forests and on Réunion Island. Note that this clumping coefficient is
the reciprocal of the clumping index defined as the ratio of the effective LAI and the true LAI in some
literature [45,47]. The LAI here calculated is a crude estimate of the true LAI, because it takes into
account the contributions of branches and trunks. Tang et al. [21] considered that the majority of the
backscattered energy measured (93%) was due to leaves, whereas only 7% came from the rest of the
tree. Nevertheless, such a value is not justified in their article, and we do not have the capacity to
verify it in the current study.

2.4. Sampling Strategy

Spatial sampling is a key parameter when using airborne LiDAR to characterize forest plots.
Figure 4 gives an overview of the study sites and examples of LiDAR measurements performed
continuously from the ULA. Note that the availability of ground echoes with a good signal-to-noise
ratio (SNR) is highly variable with the forest site, depending on the vegetation density or the existence
of gaps due to dead trees. We therefore had to adapt the sampling approach or find a representative
sample for all of the sites.

Weather conditions with almost daily cloud formation over the tropical forest sites, coupled with
trade winds or recirculation currents often exceeding 10 m¨ s´1, forced us to revise our initial sampling
strategy of forest sites. It was not realistic to expect ground traces to be sufficiently numerous and
close to each other to reproduce a 3D vision of forest structures. Nevertheless, we had to check that
our samples remained representative.

The horizontal sampling grid during our airborne LiDAR experiment is defined by three
independent parameters: the diameter of the laser footprint (d), the sampling along the ground
track of the ULA (∆X) and the sampling along the perpendicular to the ground track (∆Y). The last
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one must be more specifically defined, as it is based on successive passes of the ULA above the same
forest site.

Laser footprint: In order to evaluate the influence of the laser footprint size (d) on the retrieval
of the ground echo for a flat surface, three specific flights have been conducted at the same flight
altitude over the Tamarind site (TM) with laser footprints at the ground level of 4, 10 and 20 m,
respectively. We note no significant difference in the statistical distributions of tree structures between
these experiments. Indeed, the treefall gaps help to identify the ground echo when using a sufficiently
large laser footprint. A laser footprint of ~10 m associated with a ~350-m flight altitude was therefore
considered for the entire sampling campaign. This footprint size is comparable to the overall span of
dominant trees, and the ground echoes could be perceived from the optically thinner areas between
the trees at each laser shot. Such a value is adequate for a correct assessment of the LAI, as shown by
Riaño et al. [30], who found that LAI was better estimated using laser footprints between 7.5 and 12.5 m.

Figure 4. Photos for the 7 studied sites: coastal (CT), Tamarind (TM), Cryptomeria (CM), Bélouve
(BF), and Mare-Longue (ML-150, -250 and -550) sites. Examples of continuous LiDAR measurements
performed over the sites are also given.

Along-track and cross-track samplings: The influence of the along-track and cross-track sampling
distances (∆X and ∆Y) on the horizontal sampling was evaluated, in order to ensure that the sampling
was sufficient to accurately retrieve the canopy structure, i.e., the correct CH distribution. After the
accumulation of a sufficient number of samples, ∆X and ∆Y were found to be log-normally distributed.
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On the long flight (~40 km) performed over the Bélouve site (BF), we assessed the mean value and
standard deviation of ∆X to be 0.9 ˘ 0.5 m. Such a value is fully suitable for sampling dense tropical
forest from an airborne LiDAR. The sampling distance ∆Y between each ground track was around
100-times (respectively 10-times) larger than ∆X in the BF site (respectively other sites), because a
flight pattern including too many overpasses over the forest plot is not feasible. To assess the effect of
reducing the horizontal sampling frequency, the CH distribution is computed with artificially increased
∆X values ranging from 1 to 100 m, i.e., using only a fraction of the LiDAR shots. The results, presented
in Figure 5, show that the CH distribution at ∆X = 10 m is similar to the reference CH distribution,
which is the one at the native resolution of ∆X « 1 m. Moreover, in Figure 5d, CH histograms appear
similar for values of ∆X between 1 and 100 m. Hence, the distance ∆Y, which is most difficult to keep
during the flights, does not significantly affect the statistical studies performed on the different tropical
forest sites. These results on the horizontal sampling also demonstrate the strong homogeneity of the
dense tropical cloud forest of Bélouve. Note that similar results are obtained for the tropical rain forest
of Mare-Longue.

(a) (b) 

(c) (d) 

Figure 5. Distribution of the canopy height (CH) computed using a varying fraction of the LiDAR
footprints in order to simulate an effective sampling distance between two consecutive footprints
along the ULA ground-track of 1 m (a); 10 m (b) and 100 m (c). The two-dimensional representation is
given in (d).
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3. Results and Discussion on Retrieved Tropical Forest Parameters

Each parameter estimated from the airborne LiDAR measurements over the tropical forests of
Réunion Island will be analyzed and discussed in this section. The results derived from LiDAR
measurements on the various sites will also be compared.

3.1. Canopy Height

3.1.1. LiDAR-Derived Canopy Height

The number of available laser profiles on each sampled site is closely related to weather conditions
during the experiment (Table 3). The two last sites of the Mare-Longue area are likely insufficiently
characterized because the number of samplings is not enough for a reliable statistic. Nevertheless they
are also taken into account in Table 3 where the mean, median and maximum values of retrieved CH
are given, together with the standard deviation around the mean value, which represents so-called
canopy rugosity. The statistic has been established on ~90% of the LiDAR profiles, when the ground
echoes can be well located. The largest CH values are in the same range on all sites (~30 m), except for
ML-250 and -550. The mean and median values are similar, which indicates that there is no significant
bias due to outliers in the statistics. The standard deviation is larger than 5 m for the coastal site (CT),
i.e., large canopy rugosity, pointing out larger differences in terms of tree maturity on these sites. On
the Cryptomeria site (CM), LiDAR observations also show large canopy rugosity. That is because the
sub-plot of interest, which has uniform tree height (~22 m), is surrounded with low vegetation. As
expected, for the Mare-Longue sites, we observe that CH decreases when altitude increases. It is less
noticeable elsewhere, because tree species vary between plots.

Table 3. Statistics (mean, median and standard deviation (SD)) for both the canopy height (CH) and the
assessment of the LAI on the 7 sites: coastal (CT), Tamarind (TM), Cryptomeria (CM), Bélouve (BF) and
Mare-Longue (ML-150, -250 and -550) sites. Profiles with CH < 5 m are not considered. Bold characters
highlight the 4 forest sites where in situ measurements are available (see Table 1). The maximal CH
derived from the LiDAR is also indicated.

CT TM CM BF ML-150 ML-250 ML-550

Number of samples 1621 12,660 5790 42,714 9639 1518 658

CH (m)

Mean 16.2 14.4 15.8 11.4 16.3 15.0 13.2
Median 16.5 15.0 16.5 11.3 17.3 15.0 12.8

SD (rugosity) 5.7 3.1 6.1 3.1 3.8 3.6 2.5
Max 29.3 28.5 29.3 28.5 30.8 24.0 21.0

LAI (m2/m2)

Mean 3.5 4.8 5.0 5.1 7.8 7.5 6.7
Median 2.8 4.2 4.1 4.5 6.7 6.7 5.9

SD 2.7 2.5 3.3 3.0 3.9 3.9 3.7

LAI from MODIS (m2/m2)

Number of pixels
(number of valid

observations per pixel)
2 (10) 4 (14) 3 (14)

Mean - 5.4 5.1 5.9
SD - 0.5 0.4 0.3

Figure 6 gives examples of samplings performed over the TM and CM sites with sampling
distances ∆X « 1 m and ∆Y « 10 m. The presence of both valleys and clear areas observed on the
ADC-air vegetation camera image can explain the inhomogeneity in the LiDAR CH measurements.
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(a) 

(b) 

Figure 6. Horizontal samplings performed on the (a) Tamarind (TM) and (b) Cryptomeria (CM) sites
with a laser footprint of 10 m. The horizontal sampling distances along and perpendicular to the ground
track are ~1 and ~10 m, respectively. The brown color corresponds to the ground numerical model at a
5-m resolution provided by the Parc National de la Réunion (J.-C. Notter, personal communication).
The locations of the sub-plots where in situ measurements were performed are highlighted using thick
black lines.

3.1.2. Comparison with in Situ Measurements

In the four sampled sub-plots, the LiDAR-derived canopy heights (CH) were compared to the tree
top heights (TTH) from in situ measurements. Their statistical moments and normalized distributions
are given in Table 4 and in Figure 7, respectively. Understandably, for in situ measurements, the
sampling areas were reduced (~0.2 ha), but the sub-plots were chosen so as to be as representative
as possible of the extended sites. The agreement is quite good between the two distributions for the
Cryptomeria site (CM). This is not the case for the others. With a LiDAR footprint diameter of 10 m,
numerous smaller trees are hidden by the higher trees; the LiDAR-derived CH distribution is then
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biased toward the higher trees, whereas ground measurements can underestimate actual TTH as the
tree top may not always be well identified because of the complex canopy. It is thus necessary to
consider the apparent foliage profile to better identify the underlying trees.

Table 4. Statistics (mean, median, maximal values and standard deviation (SD)) for both the tree top
height (TTH) as measured from the in situ census and the canopy height (CH) retrieved by LiDAR
measurements in 4 sub-plots of ~0.2 ha: Tamarind (TM), Cryptomeria (CM) and Mare-Longue (ML-150,
-250) sites. The values are given for sub-plots well identified in the main sites (Table 1). All trees with
diameters at breast height higher than 7 cm are considered in in situ measurements.

Sub-Plot

TM CM ML-150 ML-250

Location 21˝4125”S,
55˝21144”E

21˝413”S,
55˝20113”E

21˝21129”S,
55˝44143”E

21˝2112”S,
55˝44139”E

Number of LiDAR profiles 635 245 2371 164
Number of in situ values 176 161 170 259

LiDAR CH (m)

Mean 14.0 22.6 17.9 18.5
Median 13.5 22.5 18.0 18.0

SD 2.2 1.8 2.5 1.8
max 21.8 27.8 30.8 23.3

In Situ TTH (m)

Mean 7.5 19.5 12.9 11.8
Median 5.8 20.4 11.8 12.1

SD 3.7 3.2 4.8 3.4
max 15 24.1 28.9 19.2

Figure 7. Distributions of the tree top height (TTH) from in situ (red) and canopy height (CH) from
LiDAR (blue) measurements for the sub-plots of Tamarind site (TM), the Cryptomeria site (CM) and
Mare-Longue tropical rain forest sites at 150 m (ML-150) and 250 m (ML-250) amsl. The overlapping
parts are in purple. Uncertainty on retrieved heights is 4 m (2 m) for in situ (LiDAR) measurements.

194



Remote Sens. 2016, 8, 43

In Figure 6, the Tamarind (TM) and Cryptomeria (CM) sub-plots are highlighted. We notice that
the TM sub-plot has scarcer vegetation than its surroundings, whereas the CM sub-plot is denser
than its surroundings. Images of the ADC-air vegetation camera obtained over Mare-Longue (ML)
and Bélouve (BF) present on the contrary a good homogeneity, as well as high NDVI (>0.8), typical
of primary tropical forest growing on regular slopes, which is coherent with the results previously
discussed in Figure 5. We also found out that LiDAR-derived CHs are comparable between Tables 3
and 4 for the TM and ML-150 sites. Note that for BF and ML-500, it was difficult to access the site and
almost impossible to identify the top of a tree from neighbors. Consequently, in situ measurements
have not been considered as valid for these two sites. For the CM site where trees have about the same
maturity, the differences between CH derived from LiDAR and TTH derived from in situ measurements
are ~3 m, which is included in the standard deviation of CH and TTH as discussed previously (~2 m
and ~4 m, respectively). For the others, the discrepancy is larger (>6 m) as for the TM site.

3.2. Understanding Results with Apparent Foliage Profiles

The canopy height (CH) does not provide enough resolved information on the vertical structure
of the forest systems, which can be very complex because of the presence of multiple layers of saplings,
as well as undergrowth (i.e., tree ferns, ferns, bushes). Hence, it is preferable to consider the vertical
profile of the apparent foliage (Fapp). Such a profile is corrected from the extinction of the upper canopy.
Parker et al. [48] have shown that Fapp is an important constraint for energy, water and nutrient flows
through forest cover. This is due to the contrasted contributions of the different canopy levels to both
photosynthesis and carbon storage [48].

Figure 8. Evolution of the forest vertical profile of the LiDAR-derived apparent foliage (Fapp) along a
transect of the Bélouve site (BF, left panel). Two specific vertical profiles are shown in the right panel,
and their locations are highlighted in transparent gray in the left panel.

As an example, we focus here on two different flight segments obtained on the Bélouve (BF)
and Tamarind (TM) sites. The first site is very dense with continuous vegetation from ground to the
canopy (as seen in the field), whereas the second one is composed of several distinct internal structures.
Figure 8 shows the evolution of the apparent foliage as a function of distance along the transect in
the BF. Two typical vertical profiles are also given. Certain profiles can show pronounced peaks,
which identify the precise position of the tree crown or, on the contrary, smoother shapes due to the
likely contribution of branches of nearby trees, lianas and, in the lower part of the profile, important
undergrowth. Overall, because of the high density of trees in the tropical montane forest of BF, the
LiDAR profiles mainly highlight only one vertical structure with one peak. This is also the case for
the Cryptomeria (CM) site, but not for the same reason, because it is an exploited plot and there are
generally no overlapping trees. On the contrary, for the TM site, which lies on the slope of Piton Maïdo,
the convoluted tree trunks and complex development in response to storm winds lead to the existence
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of two superimposed layers, as can be seen in Figure 9. The profiles show there is generally an area
with a lower density of vegetation between the two layers (between 4 and 8 m¨ agl), leading to less
backscattered signal. This complex structure may be the source of discrepancies between airborne
measurements and the in situ census made from the ground level. Another interesting and concrete
conclusion is that the energy and water vapor fluxes between the forest and the atmosphere are mainly
at the crown level of the trees for Tamarinds, even if undergrowth also contributes below ~8 m¨ agl.
In contrast, for the BF site, these fluxes are distributed over the whole vertical forest structure.

Figure 9. Evolution of the forest vertical profile of the LiDAR-derived apparent foliage (Fapp) along
a transect of the Tamarind site (TM, left panel). Two specific vertical profiles are given in the right
panel, and their locations are highlighted in transparent gray in the left panel. The gap between the
distances of 70 to 90 m corresponds to LiDAR shots with big pointing angles (the angle between the
actual LiDAR line of sight and the nadir direction is larger than 20˝), which were not considered in
our study.

3.3. Leaf Area Index

LAI is also a key parameter linked to the plant respiration and photosynthesis, as explained by
Gower and Norman [49]. It is important for vegetation growth (carbon sequestration) estimation [50].
Such a parameter is also a strong constraint for forest ecosystem modelling. It characterizes the forest
interaction surface and exchange efficiency with the atmosphere.

3.3.1. LiDAR-Derived LAI

The LAI has been retrieved from each individual LiDAR profile to complement the
characterization of the sampled forest sites. The LAI values are found to be log-normal distributed
for all sampled forest sites, with the mean LAI (LAI) ranging from about 3.5 to 7.8 m2/m2 (Table 3).
The standard deviation is between 2.5 and 3.9 m2/m2, not necessarily correlated with the one of CH
(Table 3). The tropical rain forests of Réunion Island (ML-150) have been shown to be associated with
the higher mean LAI of 7.8 m2/m2. Such a value contrasts with the one retrieved for the tropical
montane cloud forest of Bélouve, which is shown to be ~5 m2/m2 on average. This difference may be
explained in terms of plant nutrient supply between these two forest categories [51]. As an example,
the histogram of LAI derived from the LiDAR for the Bélouve site is also presented in Figure 10.
The LAI value varies much for the same site from one point to another, likely due to very important
difference in terms of nutrient availability in the ground.
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Figure 10. Histogram of the LAI derived from the airborne LiDAR for the tropical mountain rain
forests of Bélouve (BF).

3.3.2. Inter-Comparison and Discussion

In this part, we will compare the LiDAR- and MODIS-derived LAI and discuss previous results
published in the scientific literature.

The comparison with our observations was possible only on the large sampled areas due to
the low spatial resolution of MODIS. Even though the LAI algorithm from satellite observations
usually assumes that the ground is flat and does not handle mutual shadows due to the terrain, the
agreement is very good on Bélouve (ground almost flat; Table 1) and sites situated on the foothills of
the Piton Maïdo (TM and CM, ~5 m2/m2; ground with a certain slope; Table 1). LiDAR-derived mean
LAIs for ML-150, -250 and -550 (7.8, 7.5 and 6.7 m2/m2, respectively) present higher differences with
MODIS-derived LAI (5.9 m2/m2). The small slopes in these sites (Table 1) are not related to a better
agreement, as the sampled surface is too small. We believe that LiDAR measurements offer a better
assessment of LAI than MODIS, as this LiDAR metric has already been validated by Tang et al. [21] and
MODIS-derived LAI saturates at certain value levels because of the nature of the tool [31]. In addition,
the clumping of vegetation structure is less considered by the MODIS LAI algorithm; so it is normal
that the LAI is underestimated. As previously explained, it is difficult to conclude for both ML-250
and ML-550, because the number of samples obtained over these sites is not significant.

Mature evergreen tropical forests usually have large LAI, more than 4 m2/m2, as shown for
example in Doughty and Goulden [52] using monthly MODIS observations over tropical forests of
Brazil. Cristiano et al. [53] also found mean LAI to be larger than 7 m2/m2 for native subtropical forests
of Argentina, Brazil and Paraguay. Moreover, the mean LAI derived from our LiDAR measurements is
within the range of values deduced from the LiDAR- or tower-derived cumulative LAI of Tang et al. [21],
which give LAI between 5 and 9 m2/m2 for secondary and old-growth forests. Asner et al. [54]
performed a global synthesis of LAI from various ecological and remote sensing studies. The mountain
tropical forest of Bélouve, the TM and the CM sites are associated with mean LAI very close to
the one compiled by these authors, which found for tropical deciduous and evergreen broadleaves
LAI between 3.9 and 4.8 m2/m2 on 78 samplings, with a maximal value close to 9 m2/m2. Our
standard deviations are in the same range as obtained by Asner et al. [54], which give values from
0.7 to 4.3 m2/m2.
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3.4. Classification

Regarding the average values and variability of both CH and LAI, the seven sites are in two
distinct groups (Figure 11): the endemic forests and the planted/exotic forests, with their locations
shown in Figure 1. The higher LAI are for the three Mare-Longue (ML) sites; the largest value is found
for ML-150. The site of Bélouve (BF) with LAI “ 5.1 appears to be isolated from the other endemic
forest sites (LAI “ 7.8 for ML-150). Indeed, although the ML and BF sites shelter the densest and
most native tropical forests of the island, they are located at very different altitudes. The BF forest is
characterized by a soil composed of little mineralized organic material, as limited by the temperature
conditions. This can contribute to a limitation of nutrient supplies, as shown by Tanner et al. [55] for
tropical mountain rain forests of Hawaii, Costa Rica and Colombia, which grow mainly on a lava
substrate. The previous coarse separation of forest biomes confirms the work of Strasberg et al. [23].

Figure 11. Mean (dot) and standard deviations (line segments) of forest LiDAR-derived LAI against
the canopy height (CH) for the seven sites: coastal (CT), Tamarind (TM), Cryptomeria (CM), Bélouve
(BF) and Mare-Longue (ML-150, -250 and -550) sites. Measurements with CH < 5 m are not considered.

4. Conclusions

Airborne LiDAR measurements conducted in May 2014 over several tropical forest sites of
Réunion Island allow one to clearly identify the different types of coverage thanks to key parameters
derived from airborne LiDAR measurements: the canopy height (CH), the forest LAI and the vertical
profiles of the apparent foliage (Fapp), introduced in previous works (e.g., [37]), but evaluated without
measuring ground and vegetation reflectance values.

LiDAR-derived CH histograms have been compared to the tree top height (TTH) measured during
in situ censuses. The CH and TTH statistical values (mean, median, maximal values and standard
deviation (SD)) are shown to be in agreement, where it is possible for an operator to distinguish the tree
top from the ground (e.g., Cryptomeria site). We derived the LAI from LiDAR measurements alone. The
LiDAR- and MODIS-derived LAI are shown to be in good agreement. The LiDAR-derived LAI values
are also in the range of usual values regarding previous results published in the scientific literature.

We have shown that the simultaneous use of LiDAR-derived CH and LAI is sufficient to coarsely
classify forests of Réunion Island. The endemic and exotic forests are well distinguished. Hence,
we can recommend airborne LiDAR measurements as a relevant means for studying forest where
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ground-based observations are scarce and difficult to obtain. Besides this main result, this study gives
new technical insights on the capability of LiDAR to penetrate through dense forest, on the choice
of the laser footprint and spatial sampling, taking into account the forest heterogeneity, and on the
retrieval of the LAI, in complementarity with the method of Tang at al. [21].

Finally, this campaign was an opportunity to compose an original and diverse LiDAR database
that will help further works on remote sensing of tropical forests, mainly for the inter-annual evolution
of the forest cover of Réunion Island, which is a rich United-European (French) diverse tropical
ecosystem listed as World Heritage by UNESCO.
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The  advent  of  the  Light  Detection  and  Ranging  (LiDAR)  system  represents  a  technological  
breakthrough  in  acquiring  three dimensional  (3D)  data  of  surface  objects  in  a  rapid  and  
cost effective  manner  [1].  By  now,  a  variety  of  LiDAR  techniques  have  emerged,  including  
satellite based laser scanning (SLS), airborne laser scanning (ALS), vehicle laser scanning (VLS), and  
terrestrial laser scanning (TLS). The airborne LiDAR system, due to its extraordinary capability in  
gathering  highly  accurate  and  dense  elevation  measurements  in  large  scales,  has  become  an  
important new technique for data filtering [2], 3D reconstruction [3,4], and object identification [5,6].  
The  vehicle  LiDAR  system,  mounted  on  high  speed  vehicles,  can  quickly  obtain  detailed  facade  
information  of  surface  objects  with  an  extremely  high  point  density  [7,8].  On  one  hand,  both  
airborne  and  vehicle  LiDAR  are  endowed  with  a  large range  scanning  area,  which  makes  the
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Abstract: A new hierarchical method for the automatic registration of airborne and vehicle light
detection and ranging (LiDAR) data is proposed, using three dimensional (3D) road networks and
3D building contours. Firstly, 3D road networks are extracted from airborne LiDAR data and then
registered with vehicle trajectory lines. During the registration of airborne road networks and
vehicle trajectory lines, a network matching rate is introduced for the determination of reliable
transformation matrix. Then, the RIMM (reversed iterative mathematic morphological) method
and a height value accumulation method are employed to extract 3D building contours from
airborne and vehicle LiDAR data, respectively. The Rodriguez matrix and collinearity equation are
used for the determination of conjugate building contours. Based on this, a rule is defined to
determine reliable conjugate contours, which are finally used for the fine registration of airborne
and vehicle LiDAR data. The experiments show that the coarse registration method with 3D road
networks can contribute to a reliable initial registration result, and the fine registration using 3D
building contours obtains a final registration result with high reliability and geometric accuracy.

Keywords: airborne LiDAR; vehicle LiDAR; 3D road network; 3D building contour; point cloud
registration

1. Introduction
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integration practical. On the other hand, massive façade information is included in vehicle LiDAR
with little top information, while more top information is obtained using airborne LiDAR with little
façade information [9]. Considering the similarity and complementarity of airborne and vehicle
LiDAR data, the integration of airborne and vehicle LiDAR can be performed to lead to new
applications, such as a new presentation of our city, named “point city” (shown in Figure 1). Point
cloud registration is a prerequisite to integrate airborne and vehicle LiDAR data.

(a) (b)

(c) (d)

Figure 1. An example of “point city” with registered airborne and vehicle LiDAR points.
(a) Airborne LiDAR points; (b) Vehicle LiDAR points; (c) Building X in “point city” (blue points:
airborne data, green points: vehicle data); (d) Building Y in “point city” (blue points: airborne data,
green points: vehicle data).

In general, the point cloud registration methods can be divided into two types: the auxiliary
method and the data based method. Auxiliary data (e.g., spectral image and global positioning
system (GPS) data) and artificial targets have been widely used in the auxiliary method to assist the
registration of point clouds. In study [10], a method is proposed for the registration of terrestrial
LiDAR point clouds based on the local features extracted from the images. Firstly, the characteristic
two dimensional (2D) points based on the scale invariant feature transform (SIFT) feature are
extracted from the reflectance images of two scans. Then these 2D points are projected into 3D space
by using interpolated range information. Finally, the transformation parameters of point clouds can
be estimated from the 3D 2D correspondences. Some studies use GPS data, which can achieve
centimeter accuracy, to directly georeference the LiDAR point clouds [11,12]. However, in complex
urban and forest environments, GPS receivers frequently lose lock, which would reduce the
positioning accuracy of the GPS system. Based on this consideration, after using GPS data for
registration, the multi station registrationmethod whichminimizes the surface error of point cloud data
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is applied [13,14]. As auxiliary data is required in the above work, these methods are limited in their
application scope.

The data based method conducts registration based on the point clouds without using auxiliary
data. The iterative closest point (ICP) algorithm is a classic data based method [15]. Based on the ICP
method, many variant approaches appeared later. A flaw of these ICP based approaches is the
calling for a good initial alignment of the point clouds to enable convergence to the local minimum,
which is not always easy to access. Another branch of the data based registration approach lies in
the use of the local normal and curvature feature [16–19]. The basic idea of those methods is that the
conjugate features are determined based on the changes in geometric curvature and the approximate
normal vector of the local surface around each point.

Besides, some data based methods conduct registration by using points, lines, planes, and other
geometric features extracted from point clouds. (1) Point feature is the basic control feature, and has
been widely used in point cloud registration. Barnea and Filin [20] conducted the registration of
terrestrial LiDAR data by extracting key points from the panoramic range image. Cheng et al. [21]
extracted 3D building corners from the intersection of 3D building boundaries from airborne and
terrestrial LiDAR data, and the 3D building corners are matched through an automatic iterative
process. In [22], a shiftable leading point method is optimized for high accuracy registration of 3D
corners; (2) Lines can serve as essential features for the registration of point clouds in areas with
abundant man made structures. Better registration results can be offered with line features than with
point features [23]. Jaw and Chuang [24] provided a line based registration approach, where the
matching of 3D line features is performed with angle and distance as constraints. Lee et al. [25]
extracted 3D line features through the intersection of neighboring planar patches and used them to
adjust the discrepancies between overlapping data strips. Recently, Bucksch and Khoshelham [26]
extracted skeletons from tree branches and utilized them for the precise registration of point clouds.
As line features present geometric evidence of edges, which are quite prominent and extraordinary,
the matching of conjugate lines can be performed precisely; (3) Plane features are also used for the
registration of point clouds. Teo and Huang [27] proposed a scheme for the registration of airborne
and terrestrial LiDAR points using the least squares 3D surface registration technique to minimize
the surfaces between two datasets. In von Hansen’s work, single plane correspondences are used to
find the transformation parameters with some additional assumptions [28]. Zhang et al. [29]
extracted plane features using a segmentation method and adopted the Rodriguez matrix for the
registration work. Brenner et al. [30] showed that three plane matches can help to determine the
transformation parameters between two point clouds, and their method has been compared with the
point based Normal Distributions Transform method [31]. The results of this comparison showed
that the plane based method tends to be more accurate and the point based method is conceptually
simple and fast. Besides, Wu et al. [32] proposed a registration method for airborne and terrestrial
LiDAR point clouds based on building profiles, and achieved registration accuracies of 0.15 to 0.5 m
in the horizontal direction and 0.20 m in the vertical direction.

However, some technical challenges exist for the integration of airborne and vehicle data due to
different perspectives, huge differences of point density, different coverage, and the discrete nature
of points [33]. Carlberg et al. [34] and Hu et al. [35] conducted the registration of airborne and vehicle
LiDAR points by using GPS data directly. However, Früh and Zakhor [36] believe it is not reliable
enough to use GPS data in urban street canyons. As a result, in their method aerial image was
selected as a reference and the Monte Carlo Localization method was applied for the registration.
Some studies related to the registration of LiDAR data and imagery also give good inspirations for
this topic [37,38]. Among the existing literature, auxiliary data is often used to supplement the
registration. In view of the availability and precision of these data, it is essential to get rid of these
auxiliary data and seek conjugate features for the automatic registration. Based on the above, it is
necessary to find reliable matching primitives (e.g., road and wall) from the LiDAR point cloud.

In complex urban environments, the GPS receiver of the vehicle LiDAR platform frequently
loses lock, which would reduce the measurement accuracy of the whole system, and cause the drift
of the local scanning point cloud. The vehicle LiDAR data used in this study has been corrected
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through a topographic map of 1:500. Thus, the coordinate of vehicle data has been converted to a
local coordinate system, while the initial airborne data is in the WGS 84 coordinate frame. In this
study, a hierarchical registration method is proposed, including coarse registration with 3D road
networks and fine registration with 3D building contours.

2. Method

Based on the above consideration, a hierarchical registration method (Figure 2), including
coarse registration with 3D road networks and fine registration with 3D building contours, is used
for the registration of airborne and vehicle LiDAR points.

Figure 2. A flowchart of the proposed registration method.

2.1. Coarse Registration with 3D Road Networks

Two sets of 3D road networks, which contain road links and intersections, are used for the
coarse registration of large range LiDAR data. Three dimensional airborne road networks are
extracted using an existing method [39] from airborne LiDAR data. Existing vehicle trajectory lines
provided along with vehicle LiDAR points are used as 3D vehicle road networks. Both airborne and
vehicle road networks are used for the coarse registration. Considering that the coarse registration
just offers a rough registration relationship, road networks with high positioning precision are not
necessary.

2.1.1. 3D Road Networks from Airborne LiDAR

A method, proposed in literature [39], for automatic detection and vectorization of roads from
airborne LiDAR data, is used in this section. A digital surface model (DSM) is generated by using the
morphology algorithm and intensity values are used for the detection of road points. Due to the
homogenous and consistent nature of roads, a local point density and a minimum bounding
rectangle are introduced to finalize the detection. On this basis, the road centerline is extracted by
the convolution of the binary road image with a complex valued disk named the Phase Coded Disk
(PCD). Both the width and direction of the road at the centerline are obtained from the convolution.
The direction of the road facilitates the successful vectorization of the magnitude image by using the
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described tracing algorithm. The vectorization of any classified road networks captured in a binary
image can be achieved using the PCD method.

After obtaining 2D airborne road networks, a 3D buffer zone along the networks, forming a
cylinder, is constructed. The buffer area is usually several times the average spacing of the point
cloud, and the elevations of the points inside the cylinder volume are averaged to obtain 3D road
networks.

2.1.2. Coarse Registration with 3D Road Networks

In this section, an intersection point registration method with 3D road networks as constraints,
is introduced for the coarse registration. In this method, the 3D intersection points, derived from
airborne and vehicle road networks, respectively, are used for calculating the transformation
matrices. Additionally, the road networks of airborne and vehicle LiDAR data are regarded as
constraints to evaluate the reliability of the matrices.

As shown in Figure 3a,b, the 3D intersection points of airborne and vehicle road networks are
PA = {PAi, i = 0,1,2,…, } and PB = {PBi, i = 0,1,2,…,v}, with their corresponding road networks being
RA = {RAi, i = 0,1,2,…,m}and RB = {RBi, i = 0,1,2,…,n}, respectively. The coarse registration of airborne
and vehicle LiDAR with road networks is conducted as follows:

(1) Selecting intersections.

Choose three pairs of points from intersection sets PA, PB randomly and calculate the
translation matrix T and rotation matrix R1.

(2) Road network transformation.

Use T1 and R1 to convert the road networks RB. The converted road network RC = {RCi,
i = 0,1,2,…,n} is obtained.

(3) Calculating the match rate of 3D road networks.

Determine the matching rate of road networks in RA and RC. In Figure 3c, R1 and R2 refer to
road segments selected from road networks RA and RC, respectively. Starting from Endpoint NA0 of
Segment R1, draw 3D section planes at an interval . The section plane is drawn as a circle with its
radius set according to the positioning precision of extracted road networks. If precise road
networks are provided, a small radius is set and vice versa. As for each node point (e.g., NA0 and
NA1), if it intersects with the other road segments, record the reciprocal of the distance between the

foot point and intersection point as the matching rate i i

i

d d
pme

d
, in which id represents

the distance of nodes NAi and NBi. Otherwise, pme = 0. If several roads intersect with a section plane
leading to pme1, pme2,…, pmen, then the largest matching rate is regarded as its matching rate. As for

road segments R1 and R2, the matching rate is
k

i i

lme
d

, where k is the number of nodes in R1. The

final matching rate between two road networks is
m

j

j

tme lme , where m is the number of road

segments in RA.

(4) Determination of optimal transformation.

Repeat (1)–(3) until the matching rate reaches a certain threshold or all intersection pairs have
been iteratively selected from PA and PB. The transformation matrix with the highest matching rate
is selected as the optimal transformation matrix. All points of PB are transformed and recorded as
PC = {PCi, i = 0,1,2,…,v}.
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(5) Coarse registration.

The successfully matched points from PA and PC are selected as MA = {MAi, i = 0,1,2,…,m}
andMC = {MCi, i = 0,1,2,…,n}, respectively. The least mean square (LMS) method is used to calculate
the registration relationships between set MA and set MC. The acquired registration
transformational matrices R and T are used to transform the LiDAR points. Finally, the coarse
registration is finished.

PA

RA

PB

RB

Figure 3. Coarse registration of 3D road networks. (a) Airborne road networks and intersections;
(b) Vehicle road networks and intersections; (c) Matching rate of two single road segments from 3D
road networks.

2.2. Fine Registration with 3D Building Contours

In this section, on the basis of the above coarse registration, a locally fine registration work is
done with 3D building contours. Coarse registration with road networks can provide a rough
registration result of points; nevertheless, due to the positioning precision of extracted road
networks, the coarse registration of point clouds is not so satisfactory. In addition, it is difficult
to achieve good registration results by applying a single registration relationship for large
scale datasets.
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2.2.1. 2D Building Contours from Vehicle LiDAR

In this section, the 2D building contours are extracted from vehicle LiDAR data based on two
steps, including elevation difference filtering and height value accumulation.

(1) Elevation difference filtering.

Compared with other surface features, obvious elevation differences exist along building
contours. Thus, the building contours can be extracted by setting an elevation difference threshold.
Here a 2D regular grid is constructed with the point cloud projected on it. The elevation differences
of points inside each grid are analyzed and the grids with larger elevation differences than the preset
threshold are retained.

(2) Height value accumulation.

Disturbed by the trees and some other objects, the extraction result only from using the
elevation difference is not satisfactory. As shown in Figure 4a, building contours of both stage style
and herringbone roofs are in a certain elevation range. Exact building contours can be acquired by
obtaining the corresponding elevation range. For this purpose, a further filtering procedure with height
value accumulation is proposed.

Figure 4. Theory of height value accumulation. (a) A sample of building roofs; (b) A sample of height
value accumulation; (c) Height histogram; (d) Extraction of elevation range of building contours.

In Figure 4b, LiDAR points of a building facade and a tree are presented. As we can see, the
building contour points are divided into four grids and the tree points are divided into three grids.
The grids corresponding to the building have consistent highest point (Z3), while that of the tree
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vary. More importantly, grids corresponding to buildings obviously have a large number of points.
If the point number of grids corresponding to each elevation range is added, the range which
contains buildings highest points will stand out as peaks. According to this, buildings can be
extracted from the elevation range. Details are shown as follows:

Step 1: Projecting points to 2D grids.

Construct 2D regular grids and divide the projected points. Then, select the highest point Zi and
calculate the point number Ni of each grid.

Step 2: Calculating the elevation range.

Calculate the elevation range (Zmin, Zmax) with the highest point and lowest point in the point
cloud. Set a small interval as Zs and divide the elevation range, getting the set S = {Sj, j = 1,2,…,n},
where n = (Zmax Zmin)/Zs.

Step 3:Height value accumulation.

For all the grids, if the highest point Zi is within the interval Sj; then the accumulation value Accj
is recalculated as Accj = Accj + Ni, and the height histogram is shown in Figure 4c.

Step 4:Obtaining the elevation range interval of buildings.

The median of the height value accumulation in Figure 4c is set as a threshold, and the data
which is smaller than the threshold is eliminated. The partial derivative is calculated, and the peak
interval is obtained. Finally, the elevation range interval of the buildings (Figure 4d) is used to
extract building contours.

(3) 2D contour extraction.

As for the extracted grids, the points inside them are determined. A random sample consensus
(RANSAC) algorithm [40] is used to fit a plane. Additionally, the 2D building contours are obtained
through the projection of the plane.

2.2.2. 2D Building Contours from Airborne LiDAR

In this section, the 2D building contours are extracted from airborne LiDAR data by using the
RIMM algorithm [9].

Airborne LiDAR points provide rich and abundant top information of buildings, from which
reliable architecture area can be extracted. Here, building areas are extracted using the RIMM
algorithm. For this method, an opening operation is first conducted with a window larger than all
the buildings in a particular area. On this basis, the opening operation is iterated by gradually
decreasing the window at a fixed step length. Furthermore, the surface features can be extracted by
fitting the size of the corresponding window. The elevation differences between two consecutive
iterations are compared, and parts with elevation differences exceeding the minimum building
height are regarded as buildings. Binary images are generated using the extracted building areas.
Hough transformation is conducted for obtaining the 2D airborne building contours.

2.2.3. Extraction of 3D Building Contours

The aim of this section is to extract the 3D building contours. As building contours are extracted
from 2D grids, isolated 3D contours may be extracted as a 2D single contour, as shown in Figure 5a.
Thus, a 3D contour extraction method with point elevation is introduced [21]. Details are shown as
follows.

(1) Projection and division of points.

A plane perpendicular to the XY plane is constructed, and point clouds inside the contour grids
are projected onto this plane (Figure 5b). The projected points are divided into blocks with a small
interval, which is usually slightly larger than the average point spacing.
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(2) Points clustering.

The elevation and gradient difference of neighboring blocks are calculated according to the
highest point in each block. If the differences are small enough, the neighboring blocks are clustered;
otherwise, a new cluster is generated.

(3) 3D contour fitting.

The RANSAC approach is used to fit points of each cluster and 3D building contours
are obtained.

Figure 5. Contour segmentation using point elevation. (a) A sample of a projected 2D contour; (b) A
sample of 3D contour segments.

2.2.4. Fine Registration with 3D Building Contours

Fine registration with 3D building contours consists of two steps: searching for conjugate
contours and fine registration with reliable conjugate contours. Firstly, two pairs of conjugate
contours are used to acquire a registration relationship of airborne and vehicle contours, and all
conjugate contours can be obtained after that. On this basis, a rule is defined to determine reliable
conjugate contours, which are finally used for the fine registration of airborne and vehicle LiDAR.

The airborne and vehicle building contours are recorded as LA = {LAi, i = 1,2,…,m} and LB = { LBi,
i = 1,2,…,n}, respectively. The fine registration with building contours are as follows:

(A) Searching for conjugate contours

(1) Selection of two pairs of conjugate contours.

After the coarse registration with 3D road networks, a rough registration relationship between
two datasets is obtained. Therefore, further fine registration with building contours should be
conducted within a searching space. Randomly select two conjugate contours from LA and LB
respectively, recorded as LA1, LA2, LB1, and LB2. The following conditions should be met:

(a)
ang

dist

dif

lAng Thre

lDist Thre

lDif Thre

, where
l l

lAng
l l

is the angle between the straight lines in

which the two contours are located,
l l PP

lDist
l l

is the distance between the straight lines

in which the two contours are located, lDif l l is the length difference of the two contours.
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l and l refer to the directions of the two contours. (b) LA1 and LB1 are neither parallel nor

coplanar, nor are LA2 and LB2. (c) The angles and distances between LA1 and LB1 equal those between
LA1 and LB1.

(2) Calculation of rotation matrix.

Use two pairs of conjugate segments to calculate the rotation matrix. Here a vector based
transformation model [29] is adopted to calculate the rotation matrix R by using two pairs of
conjugate segments. The elements in rotation matrix R are determined by three rotation angles.

Supposing there is an antisymmetric matrix S where , , are independent.

Rotation matrix R can be expressed using the elements of S as

R

where ; R is the Rodrigues matrix. The characteristics of the antisymmetry matrix

and Rodrigues matrix are:

T
S S

R I S I S

where I is a 3 × 3 unit matrix and RRT= I. In this study, spatial vectors are first obtained with the 3D
building contours. Assuming that the unit vectors corresponding to two pairs of conjugate contours
are v and w, we get equation:

v Rw

From (2) of Equation (2), Equation (3) should be modified as follows:

L Sb

where L = v w; and b = v + w. After S is substituted in Equation (4), the following form can be
written:

xz y

z x y

y x z

Lb b

b b L

b b L

where (bx, by, bz) are the vector components of b, and (Lx, Ly, Lz) are those of L. Then the parameter
vector x can be approximated by using the following linear least squares estimation.

T Tx M M M L

where M is the coefficient matrix of Equation (5), and rotation matrix R should be calculated by
Equations (1) and (6).

(3) Calculation of translation matrix.

After obtaining the rotation matrix R, the transition matrix can be obtained through collinearity
equations. As shown in Figure 6, ab is a contour in LA, c’d’ is the corresponding contour of LB.
Theoretically, ab and c d should be collinear, meaning that the actual position of c’d’ is cd, in
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which
X X d
c c x
Y Y d
c c y
Z Z dc c

z

,
X X d
d d x
Y Y d
d d y
Z Z dd d

z

. According to the collinearity equation, the formula

X Y Y Z Z
c a c a c a

X X Y Y Z Z
b a b a b a

X Y Y Z Z
d a d a d a

X X Y Y Z Z
b a b a b a

can be procured for each pair of contours. After derivation,

Y Y d X X d X X Y Y Y Y X X
b a x a b y b a c a b a c a

Z Z d Y Y d Y Y Z Z Z Z Y Y
b a y a b z b a c a b a c a

Y Y d X X d X X Y Y Y Y X X
b a x a b y b a d a b a d a

Z Z d Y Y d Y Y Z Z Z Z Y
b a y a b z b a d a b a d

Y
a

is obtained. With two pairs of conjugate

contours, a least square method can be used to solve the equations with dx, dy, dz as
the variables.

Figure 6. A sample of collinear lines.

(4) Determination of all conjugate contours.

Transforming all contours by using the obtained matrix. If the conditions in
ang

dist

dif

lAng Thre

lDist Thre

lDif Thre

are satisfied, the contours are considered as conjugate contours.

(B) Fine registration with reliable conjugate contours

Fine registration with reliable conjugate contours is carried out to obtain a more precise
transformation matrix. In the above searching procedure for conjugate contours, only two pairs of
conjugate contours are used. Thus, the registration accuracy can be enhanced by using more
contours.

(1) Selection of reliable conjugate contours.

If the building rooftops have eaves, there may be obvious errors with airborne and vehicle
building contours. It is inappropriate to utilize all the contours for the fine registration. Here the
angles and distances between conjugate contours are analyzed and the obvious outliers are
discarded. Details are as follows:

Step 1: Selecting contours by angle.

As for all conjugate contours of LA and LB , calculate their angles as = { i, i = 0,1,2,…,k}.
Group the angles in and calculate the total number of conjugate contours in each group. If the
group with the largest number of contours reaches a certain percent of the total contours, the
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contours in the group are considered as reliable ones. Otherwise, join other groups of segment pairs
until the proportion of matched pairs is more than a certain threshold. Here the percent threshold is
set according to the overall precision of extracted building contours.

Step 2: Selecting contours by distance.

Just as in Step 1, distances between conjugate contours are also used for selecting the remaining
contours.

(2) Fine registration.

As for all the reliable conjugate contours, use the vector based transformation model [29] and
collinearity equation for calculating the transformation matrix. The fine transformation matrix with
maximum matching rate can be obtained until all reliable conjugate contours have been iteratively
selected. Finally, the fine registration of airborne and vehicle LiDAR data can be achieved.

2.3. Summary of Threshold Parameters

As a few parameters are used in this study, a summarization on the setting of the key
thresholds is shown in Table 1. The setting basis of these thresholds includes three types: data
source, calculation, and empiric. The term “data source” means that a threshold is set according to
the real data. The term “calculation” indicates that a threshold can be calculated automatically in the
method. If this method is applied in some other experimental data, the “data source” and
“calculation” thresholds are easy to automatically determine, which cannot limit the applicability of
the proposed method. The term “empiric” means that the thresholds are set empirically.

The calculation formulas are described briefly as follows. In the coarse registration with road
networks, the radius of the circles is set to 1 m (i.e.,Wmin/5, whereWmin= 5 m is the minimumwidth of
road) for obtaining 3D road networks.

In the extraction of 3D building contours, the size of blocks is one to two times the average point
spacing. In this study, we take 100% as the maximum roof slope. The elevation difference of
neighboring blocks is set to 2 m (i.e., 2 × D × i, where D = 1 m is the block size and i = 100% is the
maximum roof slope). The distance threshold (Thredif) is set to 5 m according to the width of a lane.

Table 1. Key parameters used in the proposed method.

Method Parameter Scale Setting Basis

Coarse
registration
with road
networks

Extraction of three
dimensional (3D)
road networks

Radius of small circle 1 mW/4 Calculation

Determination of
matching rate

Interval of 3D section
planes

1 m Empiric

The radius of section plane 60 m Data source

Fine
registration
with building

contours

Extraction of two
dimensional (2D)
building contours

from vehicle
LiDAR

2D regular grid 1 m × 1 m Data source
Elevation difference 15 m Data source

Elevation interval Zs
4–5 times the
average point

spacing
Empiric

Extraction of 3D
building contours

Elevation difference 2 × D × I Calculation
Angle difference 20° Empiric

Fine registration

Angle threshold Threang 5° Empiric

Distance threshold Thredist
5 m (width of a

lane)
Calculation

Length difference Thredif 10 m Empiric
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3. Experiments and Analysis

3.1. Experimental Data

The experimental area is located around Olympic Sports Center, Nanjing, China (32.0°N,
118.7°E), with a total area of 4000 m × 4000 m. The experimental data includes airborne LiDAR points
(Figure 7a), vehicle LiDAR points (Figure 7b), and the trajectory path of vehicle LiDAR (Figure 7c).
The SSW (Shou shi/Si wei) mobile mapping system (360° scanning cope, surveying range 2–300 m,
reflectance 80%, and point frequency 200,000 points/s) invented by the Chinese Academy of
Surveying and Mapping is used to capture the vehicle LiDAR data and a topographic map of 1:500 is
used for the correction. The whole data is about 30 G. The total amount of vehicle points is nearly one
billion. The average point spacing of airborne LiDAR points is about 0.5 m, with a horizontal precision of
30 cm and vertical precision of 15 cm. The total amount of airborne points is about 78 million. As shown
in Figure 7a,b, the whole area is used for the coarse registration and Area A is selected for the locally
fine registration, and Area B is used for evaluating the registration accuracy.

Figure 7. Experimental data. (a) Airborne LiDAR data; (b) Vehicle LiDAR data; (c) Vehicle trajectory path.

3.2. Coarse Registration with 3D Road Networks

Figure 8a shows the extracted 3D airborne road networks using the method mentioned
in Section 2.1.1. As we can see, there are 131 road intersections in the airborne road network
(black lines).
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(a) (b) (c)

Figure 8. Coarse registration with road networks. (a) Airborne road network (black lines); (b) Vehicle
road network (red lines); (c) Registered road networks.

In Figure 8b, 37 road intersections are seen in vehicle trajectory path (red lines). The actual
number of conjugate intersections is 30. The coarse registration with 3D road networks is conducted,
in which the radius of the section circle is 80 m, and the interval is set 1 m. The calculated matching
rate is 4012.5 and the coarse registration result is shown in Figure 8c, where 30 pairs of intersections
are successfully matched. As we can see, airborne and vehicle road networks are well matched. Little
distortion (i.e., geometric scaling) is seen in the matched networks, which presents that little rotation
is seen along the Z axis. This coarse registration can offer a rough transformation relationship for the
two datasets.

3.3. Fine Registration with 3D Building Contours

3.3.1. Extraction of 3D Building Contours

Figure 9a presents local vehicle LiDAR points around Area A. The points are projected to
regular grids (1 m × 1 m) and the elevation threshold is set to 15 m for the filtering. In Figure 9b, after
elevation filtering, most of the building contours are retained with other non building grids
eliminated. Nevertheless, as we can see along certain building contours (e.g., SA, SB and SC), the
contour grids are of large width, which may lead to the imprecision of vectorized contours. The
proposed high value accumulation is used for a further filtering. In Figure 9c, 18 peaks are acquired,
corresponding to 18 elevation ranges. Using these elevation ranges, more precise contours are
obtained (Figure 9d). Compared with Figure 9b, the width of contour grids is obviously lessened,
especially in Area SA, SB and SC. Finally, with Hough transform, 42 building contours are obtained
from vehicle LiDAR data.

As for airborne LiDAR in Figure 9e, the RIMM algorithm is used to extract the buildings. The
thresholds are set as follows: the size of original morphological window, 106 m; the size of window
reduction in each step, 10 m; height difference, 3 m; roughness, 1.6. The extracted building areas are
shown in Figure 9f. Through the extraction of 3D building contours, 562 building contours are
obtained (Figure 9g).

Figure 9. Cont.
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Figure 9. Building contour extraction of Area A. (a) Vehicle LiDAR data; (b) Elevation difference
filtering; (c) Height value accumulation; (d) Vehicle building contours; (e) Airborne LiDAR data; (f)
RIMM for buildings; (g) Airborne building contours.

3.3.2. Fine Registration with 3D Building Contours

Figure 10 is the fine registration of airborne and vehicle LiDAR around Area A. Figure 10a
shows the result after coarse registration, in which the black segments refer to airborne contours and
red segments refer to vehicle contours. After searching the conjugate building contours, Figure 10b is
obtained, where 15 pairs of building contours are successfully matched. A further fine registration is
conducted in Figure 10c. Compared with Figure 10b, almost all the building contours match well,
especially in FA, FB and FC.

Figure 10. Fine registration with building contours in Area A. (a) Result of coarse registration;
(b) Result after using the conjugate contours; (c) Result of fine registration by only using conjugate
contours in (b), and all airborne contours (black lines) are retained for visualization.

3.4. Result and Analysis

3.4.1. Visual Evaluation

Figure 11 shows the final registration result around Area A, where the blue points refer to
airborne LiDAR points and green ones refer to vehicle LiDAR points.

The overall registration result of airborne and vehicle points is presented in Figure 11a. Figure
11b–e are the four details of VA, VB, VC and VD in Figure 11a, in which the green points and blue
points match well along the building contours. With these integrated airborne and vehicle points, a
multi view all round information of surface features is obtained. Further quantitative evaluations
are conducted with building contours and ground points for the horizontal precision and vertical
precision, respectively.
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(a)

(b) (c) (d) (e)

Figure 11. Registration result of Area A using the proposed method. (a) Registration result in Area A;
(b) Details of VA; (c) Details of VB; (d) Details of VC; (e) Details of VD.

3.4.2. Evaluation on Horizontal Accuracy with Building Contours

An evaluation by using building contours is conducted to evaluate the horizontal accuracy of
the registration result. Here the building contours are extracted by manual means from registered
airborne and vehicle LiDAR, respectively. To make a quantitative assessment of these registration
results, the transect distance and angle between the contours are calculated. The calculation method
of transect distance is described as follows. One contour is taken as a baseline, and lines
perpendicular to this baseline are then constructed with an interval. Thus, the distance between the
baseline and corresponding contour is a transect distance. The average transect distance between
two conjugate contours is the distance between two contours.

Area A Area B

(a)

(b)

Figure 12. Cont.
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(c)

(d)

Figure 12. Evaluation on horizontal accuracy using building contours of Area A (left) and Area B
(right). (a) Result of coarse registration; (b) Result by using the conjugate contours; (c) Result of fine
registration (all airborne contours are retained for visualization); (d) ICP refined result.

Figure 12a–d are the digitized building contours in Area A (left) and Area B (right), in which
black and red segments are building contours extracted from airborne and vehicle LiDAR data,
respectively. Figure 12a shows the digitized building contours after coarse registration with 3D road
networks, where obvious offset is seen. As shown in Table 2, the average and maximum distance of
Area A is 17.44 m and 21.03 m, respectively, with the average and maximum angle offset being 0.95°
and 1.7°. The average and maximum distance of Area B is 7.43 m and 12.68 m, respectively, with the
average and maximum angle offset being 0.88° and 2.1°. Figure 12b shows the registration result
after using two pairs of building contours. As we can see, the digitized contours match well and only
small offsets are seen among the contours. Through statistics, the average and maximum distance of
Area A is 2.53 m and 4.30 m, respectively, with the average and maximum angle offset being 0.82°
and 1.6°. The average and maximum distance of Area B is 1.59 m and 3.79 m, respectively, with the
average and maximum angle offset being 0.69° and 1.3°. The horizontal registration accuracy has
been greatly improved by using building contours. Figure 12c is the final registration result with
reliable conjugate building contours. The building contours digitized from airborne and vehicle LiDAR
data match even better than Figure 12b. In Table 2, the average and maximum distance of Area A is
0.73 m and 1.90 m, respectively, with the average and maximum angle offset being 0.32°and 1.2°.
The average and maximum distance of Area B is 0.63 m and 1.73 m, respectively, with the average
and maximum angle offset being 0.48° and 1.1°. Figure 12d is the registration result by directly using
the ICP method after the coarse registration. The average and maximum distance of Area A is 1.52 m
and 2.55 m, respectively, with the average and maximum angle offset being 0.47° and 1.5°. However,
the average and maximum distance of Area B is 5.27 m and 11.23 m, respectively, with the average
and maximum angle offset being 0.72° and 1.9°.

Table 2. Horizontal accuracy of the registration result. .

Method Transect Distance (m) Line Angle (°)

Average Max Average Max

A B A B A B A B

Coarse registration 17.44 7.43 21.03 12.68 0.95 0.88 1.7 2.1
Searching result 2.53 1.59 4.30 3.79 0.82 0.69 1.6 1.3
Fine registration 0.73 0.63 1.90 1.73 0.32 0.48 1.2 1.1
ICP refined result 1.52 5.27 2.55 11.23 0.47 0.72 1.5 1.9
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According to the above, we can see that the fine registration horizontal accuracy reaches the
meter level, which is relatively high. Compared with the registration result using only two pairs of
building contours, the fine registration with reliable conjugate building contours can achieve better
results. For horizontal accuracy, the fine registration results are better than the ICP results both in
Area A and B.

3.4.3. Evaluation on Vertical Accuracy with Common Ground Points

In order to evaluate the registration accuracy along the vertical direction, some common
ground points are selected. As shown in Figure 13, the ground points (white circles) are evenly
distributed in Area A and Area B, respectively. The elevation of each ground point is obtained by
averaging the Z values of its neighboring points. The elevation differences between airborne and
vehicle ground points are shown in Table 3.

(a) (b)

Figure 13. Location of common ground points. (a) Common ground points of Area A; (b) Common
ground points of Area B.

After coarse registration with road networks, the Average error, Max error, and RMSE error of
common ground points in Area A are 0.92 m, 1.17 m, and 0.97 m, respectively. The Average error,
Max error, and RMSE error of common ground points in Area B are 1.08 m, 1.33 m, and 0.84 m,
respectively. As we can see, in spite of dozens of meters of errors along the horizontal direction, the
errors along the vertical direction reached the decimeter level after coarse registration. The reason
lies in the fact that the experimental area is flat in general, which leads to similar elevations of road
intersections. If the experiment is carried out in areas with undulating terrains, the errors will be
larger. Though relatively high registration accuracy has been achieved with road networks, the
registration is further improved after fine registration using building contours as shown in Table 3.
After searching the conjugate contours, the Average error, Max error, and RMSE error in Area A are
0.46 m, 0.63 m, and 0.50 m. In Area B, the Average error, Max error, and RMSE error of searching
result are 0.59 m, 0.92 m, and 0.68 m. Based on this, after fine registration, the Average error, Max
error, and RMSE error in Area A are 0.39 m, 0.50 m, and 0.42 m, respectively. The Average error, Max
error, and RMSE error in Area B are 0.43 m, 0.75 m, and 0.36 m, respectively. The ICP result is
performed based on the points of Area A and B after coarse registration. In Area A, the Average error,
Max error, and RMSE error of the ICP result are 0.37 m, 0.61 m, and 0.28 m, respectively. In Area B,
the Average error, Max error, and RMSE error of the ICP result are 0.46 m, 0.72 m, and 0.21 m,
respectively.

Table 3. Vertical accuracy of the registration result.

Method
Average Error (m) Max Error (m) RMSE (m)

A/B A/B A/B

Coarse registration 0.92/1.08 1.17/1.33 0.97/0.84
Searching result 0.46/0.59 0.63/0.92 0.50/0.68
Fine registration 0.39/0.43 0.50/0.75 0.42/0.36

ICP result 0.37/0.46 0.61/0.72 0.28/0.21
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As we can see, high registration accuracy is obtained using the proposed method. However, the
vertical accuracies of ICP registration results are better than the fine registration results in Area A and
Area B.

4. Discussion

The registration accuracy of the airborne and vehicle LiDAR point cloud not only depends on
the registration algorithm, but also relies on the precision of the laser scanning system and the scope
of the experimental area. The whole experimental area in the study is about 4000 m × 4000 m and the
average point spacing of the airborne LiDAR data is about 0.50 m. In this circumstance, it is difficult
to achieve extremely high registration accuracy for a large scene dataset with the same parameters.
In study [32], the registration results of airborne and terrestrial LiDAR data reached a horizontal
accuracy of 0.15 to 0.5 m and a vertical accuracy of 0.20 m. Thus, a hierarchical registration strategy,
which contains coarse and fine registration procedures, is used to meet the needs of different
registration accuracies.

The registration result in Figure 11 and the accuracy evaluation in Tables 2 and 3 demonstrate
the relatively good performance of the proposed method in an urban area. For comparison, the ICP
registration method is performed over two small experimental areas (Area A and B). The ICP method
is conducted based on the coarse registered point clouds with a good initial state. In addition, due to
the massive LiDAR data (about 30 G), the ICP method could not be directly applied to the whole
area. The horizontal accuracy of the fine registration results in Area A and B are 0.39 m and 0.43 m,
respectively. The horizontal accuracy of the ICP results in Area A and B are 1.42 m and 5.27 m,
respectively. According to the experimental results, the horizontal accuracy of the proposed method
is better than the ICP method. However, the vertical accuracies of the ICP registration result are
slightly better than the fine registration result both in Area A and B. The ICP method is performed
mainly based on the common ground points of airborne and vehicle LiDAR data, which is prone to
lead a horizontal shift. Thus, the ICP method would achieve a registration result with good vertical
accuracy and unstable horizontal accuracy.

Although the proposed registration scheme can obtain good results in the urban area, there are
some limitations. Firstly, the proposed registration method is hard to deal with in non urban
regions, which contain almost no geometric buildings. Besides, if the road networks of a city are
following a regular grid, the coarse registration would not work due to the strong similarity of road
networks. In addition, if most of the buildings in the experimental area have significant eaves, there
may be obvious errors between airborne and vehicle building contours. As a result, few conjugate
building contours can be extracted, and it would be difficult to achieve the ideal registration result
with fine registration.

5. Conclusions

This paper proposes a hierarchical registration approach for airborne and vehicle LiDAR data.
The keys of this approach lie in a coarse registration method with 3D road networks and a fine
registration method with 3D building contours. In the coarse registration procedure, the extracted
airborne road networks are registered with vehicle trajectory lines based on the road network
matching rate. In the fine registration procedure, the matched conjugate contours are obtained using
the Rodriguez matrix and collinearity equation. Finally, the fine registration is conducted by using
reliable conjugate contours. Through the experiment, the following conclusions can be reached:

(1) The coarse registration method with 3D road networks can provide a rough transformation
matrix for a long range registration task. With the coarse registration, further fine registration
can be done within a small searching space, thus effectively avoiding local optimal result and
greatly reducing the calculation amount.

(2) Three dimensional building contours present high positioning precision and the fine
registration method with 3D building contours can achieve a relatively good registration result.
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The fine registration result achieves an accuracy of 0.73 m in the horizontal direction and 0.39 m
in the vertical direction.

In future work, the proposed method will be applied to different experimental areas to test its
robustness and effectiveness. However, it is still difficult to achieve ideal results for the registration
of those buildings with eaves. Therefore, we will perform a future study on eaves by using the center
points of building roofs or other auxiliary data.
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Abstract: Light Detection and Ranging (LiDAR) is an active sensor that can effectively acquire a  
large  number  of  three-dimensional  (3-D)  points.  LiDAR  systems  can  be  equipped  on  different  
platforms for different applications, but to integrate the data, point cloud registration is needed to  
improve  geometric  consistency.  The  registration  of  airborne  and  terrestrial  mobile  LiDAR  is  a  
challenging task because the point densities and scanning directions differ. We proposed a scheme  
for the registration of airborne and terrestrial mobile LiDAR using the least squares 3-D surface  
registration technique to minimize the surfaces between two datasets. To analyze the effect of point  
density  in  registration,  the  simulation  data  simulated  different  conditions  and  estimated  the  
theoretical errors. The test data were the point clouds of the airborne LiDAR system (ALS) and the  
mobile LiDAR system (MLS), which were acquired by Optech ALTM 3070 and Lynx, respectively.  
The resulting simulation analysis indicated that the accuracy of registration improved as the density  
increased. For the test dataset, the registration error of mobile LiDAR between different trajectories  
improved  from  40  cm  to  4  cm, the  registration  error  between  ALS  and  MLS  improved  from 
84  cm to 4 cm. These results indicate that the proposed methods can obtain 5 cm accuracy between  
ALS and MLS. 

Keywords: LiDAR; point clouds; least squares surface matching; registration 

1. Introduction

Light detection and ranging (LiDAR) systems are currently common tools to acquire three-
dimensional (3-D) surface information. This technology integrates a laser scanner, a Global 
Positioning System (GPS), and an inertial navigation system (INS) and thus can effectively obtain 3-
D surface models. Different platforms, such as aircraft and land-based vehicles can be equipped with 
LiDAR systems, which can be generally classified into two categories: airborne and terrestrial. 
Airborne LiDAR acquires data from the air to the ground to obtain the 3-D points on building 
rooftops and object surfaces, while terrestrial LiDAR usually acquires the 3-D points on building 
façades and object surfaces. Because terrestrial LiDAR cannot easily acquire 3-D points from building 
roofs, airborne LiDAR can be incorporated to provide building roof information. Hence, the 
integration of airborne LiDAR and terrestrial LiDAR is needed to form a complete dataset for 3-D 
buildings. 

Point cloud registration is a procedure to eliminate the inconsistency between different point 
clouds acquired from different platforms. Point cloud data acquired by different platforms have 
different characteristics according to scanning distance, scanning rate, and scanning direction.  
For example, the scanning distance and beam divergence angle of airborne LiDAR is larger than 
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ground-based LiDAR and, consequently, the point density of airborne LiDAR is lower than ground-
based LiDAR. In addition, the scan direction of airborne LiDAR and mobile LiDAR are different, and 
the acquired 3-D points partially overlap on the object surface. Because the scanning range of airborne 
LiDAR is longer than ground-based LiDAR, the scanning area of airborne LiDAR is usually larger 
than ground-based LiDAR. Hence, the registration of airborne and mobile LiDAR is a challenging 
topic in data co-registration. 

Data registration is a procedure to transform a dataset from its own coordinate system to another 
system. It can be classified into 2-D data and 3-D data registration. For example, image registration 
is the most common 2-D data registration, and 3-D point cloud registration is one of the 3-D data 
registrations. The 3-D data registration includes three types of control features: control point, control 
line, and control surface.  

The control points represent a set of 3-D point features in different datasets. This feature is 
widely used in registration because the control point is the basic control feature. Iterative Closest 
Point (ICP) [1–4] is acquired through point features. The ICP algorithm selects the two closest points 
as a conjugate pair and then calculates the transformation parameters to minimize the mean square 
error iteratively until the distance between the point pair is less than the threshold. Rusinkiewicz and 
Levoy [5] analyzed the original ICP and improved the performance and precision; the new ICP can 
register more complex models. The registration precision indicates the geometrical difference 
between two systems. Barnea and Filin [6] transferred the 3-D point clouds to 2-D panoramic range 
images and extracted the registration key points to improve the computational time of conjugate 
points selection. 

The second control feature, control line, is a linear feature consisting of a set of 3-D line features 
in different datasets. This type of line feature mainly occurs in man-made objects such as buildings. 
Linear features cannot be extracted directly from a LiDAR point cloud and are usually intersected by 
two planes. The reliable linear features can be used as control entities to calculate the transformation 
parameters. Habib et al. [7] used line features to register LiDAR point clouds and image data. For the 
image, the control lines were extracted manually; for the LiDAR point cloud, the line features were 
intersected by two near planes. Jaw and Chuang [8] also proposed a line-based method to register 
terrestrial LiDAR point cloud scanned from different stations. 

The third control feature, control surface, is suitable for LiDAR registration because the LiDAR 
systems provide an abundance of 3-D surface features. Rosenholm and Torlegard [9] used digital 
elevation models (DEM) as reference data in absolute orientation of the stereo model from 
stereopairs. Gruen and Akca [10] used least squares 3-D surface matching (LS3D) to minimize the  
3-D distance between the reference data and model data. Akca [11] also used LS3D to register point 
clouds by their geometry and spectrum characteristics. This LS3D method has been applied to many 
applications, such as surface registration for land deformation [12]. 

Multi-strips or multi-stations LiDAR registration is a standard process before delivering LiDAR  
data [13]. LiDAR systems are available on several different platforms, such as airborne LiDAR 
systems (ALS), terrestrial static LiDAR systems, and terrestrial mobile LiDAR systems. In this study, 
the terrestrial LiDAR system (TLS) and mobile LiDAR system (MLS) refer to terrestrial static and 
mobile LiDAR systems, respectively. The registration of LiDAR data can be classified into four 
categories: registration of multi-strip ALS, registration of multi-station TLS, registration of multi-strip 
MLS, and registration of different platforms. 

Multi-strip ALS not only enlarges acquisition areas but also improves the point density in the 
overlapped area. The registration of ALS includes two mathematics models: system-driven models 
and data-driven methods [14]. The system-driven approach considers the physical sensor model of 
ALS and usually requires the trajectories of ALS. In the contrast, the data-driven approach does not 
require physical orientation parameters; it minimizes the Euclidean distance and models the 
discrepancy between strips using actual LiDAR points. The geometric features of ALS registration 
can be a signalized target, control line, or control surface. To avoid the effect of irregular points caused 
by trees, one possibility is to use ground points to calculate the transformation coefficients.  
In addition, LiDAR intensity can be also be integrated in registration. 
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The registration of multi-stations TLS combines the partially scanned objects to obtain a 
complete scene. Because the platform of TLS is fixed during scanning, the point clouds of TLS are 
treated as a rigid body, and the 3-D similarity transformation model is usually adopted in the 
registration of TLS. The registration of TLS can be classified into two categories: Range-based 
registration and image-based registration. Similar to ALS, range-based registration uses 3-D points 
to extract geometric features, including signalized target and non-signalized natural targets. 
Signalized targets such as spherical targets are suitable for an area without man-made objects, and 
non-signalized natural targets such as control lines and control planes can be extracted from  
man-made objects. The image-based registration interpolates the 3-D points into a panorama image 
using the LiDAR intensity. The feature points can then be extracted for registration by image 
processing techniques such as Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust 
Features (SURF).  

The mobile terrestrial LiDAR systems collect and perform mapping from a moving vehicle on a 
road. The aim of MLS registration is to register the LiDAR points from different trajectories; therefore, 
to obtain larger street sections, MLS usually acquires data from direct and reverse lanes using a 
scanning mechanism similar to ALS. MLS uses an odometer, GPS, and INS to determine the position 
and orientation of LiDAR sensors for direct georeferencing; however, the GPS condition in urban 
corridors usually affects the positioning accuracy of MLS. To compare the contribution of GPS 
positioning error to the overall accuracy between ALS and MLS, the scanning distance of MLS  
(range < 200 m) is shorter than ALS (range > 1000 m); consequently, the effect of GPS on MLS is much 
larger than on ALS systems.  

Because ALS and TLS acquire data from different viewpoints, the integration of these systems 
is beneficial to obtain complete data for several applications. Several researchers have investigated 
possible ALS and TLS registration methods. In work by Böhm and Haala [15], who used ICP methods, 
TLS provided the geometric information of vertical walls while ALS provided the geometric 
information of roof-tops for city modelling. Gressin et al. [4] also applied ICP in multi-platform 
LiDAR registration and integrated different types of point features into the tie points selection, 
including point features for registration such as eigenvalues, eigenvectores, dimensionality features, 
and entropy from neighborhood points. Von Hansen et al. [16] extracted the linear features from the 
building boundaries and then applied control lines. Boulaassal et al. [17] extracted the 3-D vectors of 
buildings from ALS, TLS, and MLS separately and then registered all the extracted 3-D vectors by 
linear feature for a detailed 3-D building model; they combined the vector data rather than point 
clouds. Cheng et al. [18] extracted the 3-D building corners from the intersection of 3-D building 
boundaries from ALS and TLS and then applied the 3-D building corners. Wu et al. [19] combined 
the control lines and planes extracted from buildings for the registration of ALS and TLS. 

Most previous studies focused on ALS and TLS registration; relatively few discussed the 
registration of ALS and MLS. The challenge of ALS and MLS registration is to obtain reliable control 
entities from these two different systems. Because ALS and MLS acquire an abundance of 3-D  
surface points, the 3-D surface features such as road and wall surfaces can be utilized in ALS and 
MLS registration.  

The airborne and terrestrial mobile LiDAR systems acquire data efficiently. The objective of this 
study was to co-register the point clouds acquired by airborne LiDAR and terrestrial mobile LiDAR 
and use these complementary data to improve the point coverage in urban areas. The point clouds 
scanned from two platforms can be located at difference coordinate systems, and the point clouds 
must first be registered to remove the error between the point cloud data from the two platforms. 
This study proposes a scheme to register airborne and terrestrial point clouds by surface features and 
discusses the effect between different point densities. 

The terrestrial mobile data use an odometer, GPS, and INS to determine the position and 
orientation of LiDAR sensors for direct georeferencing; however, the GPS condition in urban 
corridors usually affects the positioning accuracy for terrestrial mobile LiDAR. Because the GPS 
condition of airborne LiDAR is better than mobile LiDAR, we assumed that the airborne LiDAR  
have been georeferenced to a world coordinate system. The terrestrial mobile LiDAR is then  



Remote Sens. 2014, 6, 12686–12707  

228

transformed to the coordinate system of airborne LiDAR to improve the accuracy of mobile LiDAR 
in urban corridors. 

2. The Proposed Scheme

The framework consists of two major parts: (1) registration of multi-strips terrestrial mobile 
LiDAR data and (2) registration of airborne and terrestrial mobile LiDAR. First, we co-registered the 
multi-strips terrestrial LiDARs to enlarge the coverage of the dataset. The registered terrestrial 
LiDARs were then transformed to the ALS coordinate system. We used the least squares 3-D surface 
matching (LS3D) algorithm to minimize the Euclidean surface distance between the airborne and 
terrestrial mobile LiDAR point clouds. The registration features in this study are 3-D planes, and the 
applied transformation model is a 3-D similarity transformation. The steps of LS3D are (1) extracting 
planar features; (2) matching criterion; (3) mathematical modeling; (4) solving transformation 
parameters; and (5) applying the parameters to the model data. 

2.1. Planar Feature Extraction

LiDAR point clouds are composed of a large number of irregular points. To improve the 
computational performance, the irregular points must be structuralized into organized points. In this 
study, we used a voxel structure to structuralize the airborne and terrestrial mobile LiDAR. The 
boundaries of the voxel structure were calculated from maximum and minimum values of all points, 
and the grid size depended on the point density. Both ALS and MLS used the same boundaries and 
grid size, and therefore we can search the corresponding points from two different systems 
effectively. After the data structuralization, all the points were indexed into a 3-D grid, and the points 
in a voxel were selected to calculate the planar feature (Figure 1). 

Figure 1. An example of structured points: (a) irregular points, (b) voxel of points. 

3-D planes were used as the control entity for registration; therefore, we used principal 
component analysis (PCA) [20,21] to analyze and calculate the plane features. The points inside each 
voxel are used for PCA calculation. The covariance matrix of points was calculated using Equation 
(1), in which (xi,yi,zi) represent the ith point in the voxel, and  are the mean of the points in a 
voxel. The eigenvalues (λ1 > λ2 > λ3) and eigenvectors (S1, S2, S3) of covariance matrix Mc can be 
extracted by Equation (2). When flatly distributed points are analyzed, the first and second 
eigenvalues are similar and the third eigenvalue is smaller than the other eigenvalues (λ1 ≈ λ2 > λ3). 
We defined λk by Equation (3) [22] to extract the planar features. When λk is smaller than a predefined 
threshold, the points in the voxel can be considered as a plane and the normal vector equal to the 



Remote Sens. 2014, 6, 12686–12707  

229

corresponding eigenvector. Otherwise, the points in a voxel are the less identifiable points (Figure 2). 
Figure 2 shows an example of normal vector extraction. Figure 2a shows a number of voxels after 
structuralization. We select a voxel from Figure 2a and show the points inside the voxel in Figure 2b. 
Figure 3b shows the extracted plane and corresponding normal vector. 

Figure 2. Illustration of points to normal vectors: (a) voxels, (b) points in voxels A, (c) normal vector 
of plane in voxel A. 

(1) 

s s s s s s (2) 

(3) 

To summarize the process of planar object extraction, the extraction of 3D surface features from 
irregular points include the following steps: (1) generating voxel structure for irregular points;  
(2) removing voxels that contain less than 5 LiDAR points; (3) calculating eigenvalues from points 
inside the voxels; and (4) extracting planar object based on parameter λk.The extracted planes could 
be located on walls, roofs, and road surfaces in any direction. The control planes do not have to follow 
the same direction to obtain transformation coefficients; on the contrary, the air-to-ground LiDAR 
registration requires different plane directions to avoid singular problems. The plane equation for 
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each voxel, Equation (4), is suitable to represent a plane in any directions. The plane coefficients are 
calculated from normal vector and mean points from Equation (5):  

Ax By Cz D (4) 

x y z

x y z

A n B n C n

D n x n y n z
(5) 

where x, y, z are plane coordinates;  aremean points of a plane; A, B, C, D are coefficients of 
a plane; and nx, ny, nz are normal vectors. 

2.2. Matching Criterion

After planar feature extraction, we used the extracted planes to search the corresponding planes 
between the two LiDAR systems. The plane-matching criteria included distance and angle thresholds 
(Figure 3). If the Euclidean distance of mean points between ALS and MLS was smaller than the 
distance thresholds and the normal vectors between ALS and MLS had similar orientation, the planes 
from ALS and MLS were treated as a conjugate plane pair. All selected conjugate planes were used 
in 3-D surface minimization. The angle can be calculated using Equation (6). 

Figure 3. Illustration of angle and distance criteria. 

i j

ij

i j

n n

n n
(6) 

where: ni is the normal vector of plane i; nj is the normal vector of plane j; and ij is the angle between 
normal vector ni and nj. 

The conjugate planes selection from ALS and transformed MLS’s planes is based on these two 
criteria: (1) the distance of mean points between ALS and transformed MLS’s is smaller than the 
predefined distance threshold; and (2) the intersection angle of normal vectors between ALS and 
transformed MLS’s is smaller than the predefined angle threshold. After the determination of the 
unknown parameters, we update the transformed MLS’s plane by calculate the parameters and refine 
the automatic conjugate planes. The threshold selection is based on the data itself. In the first three 
iterations, we use large thresholds to handle the large differences between ALS and transformed 

in

jn
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MLS. After three iterations, the thresholds are determined by standard deviation of distance and 
intersection angle between ALS’s plane and transformed MLS’s plane. Below shows the pseudo codes 
for selection of thresholds: 

Pseudo Codes for Selection of Thresholds

1 while (iteration < 20) do 
2 if iteration < 4 then 
3  Threshold_distance = 1m;Threshold_angle = 15deg;
4 else

5 if std(distance) > 0.10m & std(angle) > 5deg then
6  Threshold_distance = 2 × std(distance);Threshold_angle=2 × std(angle);
7 else

8  Threshold_distance = 0.10m;Threshold_angle = 5deg;
9 end if

10 Find plane pair and calculate transformation parameters
11 while stopping criterion is satisfied do 
12 exit loop
13 end while

14 Transform MLS’s plane using calculated parameters
15 Calculate the distance between ALS and transformed MLS’s planes
16 Calculate the intersection angle between ALS and transformed MLS’s planes  
17 Iteration = iteration + 1
18 end while

2.3. Least Squares 3 D Surface Matching (LS3D)

The LS3D algorithm, developed by Gruen and Akca [10], minimizes the 3-D distance between 
surfaces, while the ICP algorithm minimizes the Euclidean distances between points. Compared to 
LS3D, ICP requires relatively higher iteration numbers [23] while LS3D quickly converges to an 
optimal solution. LS3D assumes that two surfaces are created from the same object by different 
processes. In this study, one surface acquired by ALS is called the template surface f(x, y, z),while the 
other surface from MLS is called the search surface g(x, y, z). If the error function e(x, y, z) is zero, 
these two surfaces should be the same, and all the surfaces in the template surface can correspond to 
the surfaces in the search surface, as represented by Equation (7). 

In reality, the two surfaces are not equal. We used error function e(x, y, z) to describe the 
inconsistency between the two conjugate surfaces; hence, Equation (7) can be rewritten as Equation 
(8). To minimize the error function e(x, y, z), the coordinate system of the MLS (x0, y0 z0) was 
subjected to a general 3-D translation, scaling, and rotation transformation (the so called “3-D 
similarity transformation”) used to minimize the integrated squared error function between these 
two conjugate surfaces over a well-defined common spatial domain. The transformation parameters 
of similarity transformation included a translation vector (tx, ty, tz), three rotation angles (ω,φ,κ), and 
one scale factor (m) (see Equation (9)). The rotation angle is counterclockwise. The detail of rotation 
matrix can be found at [24].These parameters were used to minimize the errors between these two 
conjugate surfaces. The aim of LS3D is to determine these 7 parameters using conjugate planes 
between ALS and MLS. 

f x y z g x y z (7) 

f x y z e x y z g x y z (8) 
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where f(x, y, z) and g(x, y, z) are the template and search surfaces; e(x, y, z) is error vector; (x, y, z) are 
the coordinate systems of ALS-derived surfaces; (x0, y0, z0) are the coordinate systems of MLS- derived 
surfaces; tx, ty, and tz are the three translation parameters along three axes; r11 ~ r33 are elements of the 
rotation matrix formed by three rotation angles ω, φ and κ around three axes; and s is the scale factor 
we assume is close to 1. 

To perform least squares estimation, Equation (8) should be linearized by Taylor expansion, 
ignoring the higher-order terms, resulting in Equation (10). The template surfaces f(x, y, z) and search 
surfaces g0(x, y, z) are planar surface patches, represented by Equations (11) and (12). 

x y z

g x y z g x y z g x y z
f x y z e x y z g x y z dx dy dz

x y z

g x y z g dx g dy g dz

(10) 

f f f ff x y z A x B y C z D (11) 

g g g gg x y z A x B y C z D (12) 

where g0(x, y, z) is the initial approximation of search surfaces; gx, gy, gz are numeric first derivatives 
of g(x, y, z); dx, dy, dz are the differentiation terms; Af, Bf, Cf, Df are coefficients of a target plane; and 
Ag,Bg,Cg,Dg are coefficients of a search plane. 

In the linearized Equation (10), elements dx, dy, and dz can be combined with 3-D similarity 
parameters in Equation (9). Equation (13) shows the differentiation terms of dx, dy, and dz. The 
numerical derivatives gx, gy, and gz can be derived from plane equations as Equation (14). 

i

i

i

i

i

i

dp a ds a d a d a d
p

dp a ds a d a d a d
p

dp a ds a d a d a d
p

(13) 

g g g

x y z

g g g g g g g g g

A B C
g g g

A B C A B C A B C
(14) 

where pi (tx, ty, tz, s, ω, φ, κ); and a10~a33 are the coefficient elements. 
The final observation is Equation (15), which is derived from Equations (13) and (14). The least 

squares adjustment algorithm was applied to minimize the errors. We iteratively minimized the sum 
of squared errors between MLS and ALS surface using the LS3D approach. Because the observation 
equation is a nonlinear function, we measured three initial registration points between ALS and MLS 
to obtain initial approximations. The initial approximations were determinate by a noniterative 
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approach [25], which is able to provide stable initial parameters because the manual registration 
points are less than four points. 

In Equation (15), the f(x, y, z) and g0(x, y, z) are ALS and MLS planes, respectively. The initial 
values of unknown parameters for Equation (15) are calculated by three initial registration points 
between ALS and MLS. We apply these initial parameters for converting MLS’s planes to ALS’s 
coordinate systems. Then, we use distance and angle thresholds to find a large number of conjugate 
planes between ALS and The transformed MLS’s planes. As the observation equations are larger than 
the unknown parameters, the parameters of Equation (15) are calculated by least squares adjustment 
through an iterative process [10]. A more in depth description of LS3D details regarding the parameter 
determinations can be found in [26]. 

x y y z z x y z

x y z x y z

x y z

dt g dt g dt g a g a g a dm

g a g a g a d g a g a g a d

g a g a g a d f x y z g x y z

(15) 

2.4. Airborne and Terrestrial Mobile LiDARs Registration

In this study, the ALS data were transformed into a world coordinate system by differential GPS 
(DGPS) and strip adjustment [13]. When a GPS outage occurs in an urban corridor,  
the direct-georeferencing of MLS can only rely on the Inertial Measurement Unit (IMU) and 
speedometer; consequently, the MLS point clouds may contain systematic errors. The ALS data were 
therefore treated as reference data, and the MLS data were transformed into the coordinate system of 
ALS data.  

MLS data usually include forward and reverse trajectories of a road and are used to obtain 
additional 3-D points to describe the road environment. There are two possibilities to co-register the 
forward MLS, reverse MLS and ALS. The first approach co-registers these multi-trajectory MLS data 
before the registration of ALS and MLS; the second approach performs the registration for forward 
and reverse MLS separately. Considering that the similarity between multi-trajectories is higher than 
the similarity between MLS and ALS, the first approach may derive more control features from multi-
trajectories MLS for data registration. Furthermore, the registration of multi-trajectories may enlarge 
the MLS coverage for the registration of ALS and MLS. This study therefore adopted the first 
approach to co-register the multi-trajectory MLS using least square surfaces matching. 

3. Experimental Results

The test data include airborne LiDAR and terrestrial mobile LiDAR data. The test area is about 190 
m by 900 m. The airborne point cloud data were scanned by Optech ALTM30/70 using 7 flightlines. 
The total number of points is 2,774,371, and the average point density is about 15 points/m2. The 
terrestrial mobile LiDAR was scanned by Optech Lynx, and the length of the road is about 900 m. 
The MLS data include the two different trajectories, left-to-right and right-to-left. The total number 
of points is about 79,170,000, and the average point spacing in the horizontal plane is about 5 cm. 
Figure 4 shows the ALS digital surface model (DSM), MLS DSM, and reference orthophoto of test 
area. Only the overlapped are used in registration. Figure 5 compares the profiles of ALS and MLS in 
the test area. The buildings beside the road and trees along streets in the urban corridor cause GPS 
signal occlusion, which significantly degrades the navigation performance; therefore, the MLS data 
need post-processing (i.e., point registration) to obtain precise locations. The parameters used are 
listed in Table 1. 
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(a)

(b)

(c)

Figure 4. Test data: (a) ALS colored by elevation, (b) MLS colored by elevation, (c) reference orthophoto.

(a) (b)

Figure 5. Profiles of ALS and corrected MLS data: (a) profile of ALS colored by elevation, (b) profile 
of MLS colored by elevation. 

Table 1. The parameters setting and descriptions. 

Parameter Descriptions
Parameter

Setting

Voxel size 
The voxel size is a parameter to structuralize irregular points to regular 3-D 
voxels. This parameter is related to point density. A lower point density 
needs larger voxel size to aggregate more points in a 3-D voxel. 

1 m 

Number of 
point in a 
voxel 

This parameter defines the minimum number of point in a voxel. If the 
number of point is larger than this threshold, these points are used to 
calculate the plane equation. Any 3 points can determine a plane, so we 
used more than 3 points in a voxel to determine the plane parameters. 

5 points 
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Table 1. Cont. 

λk 

When λk is smaller than a predefined threshold, the 
points in the voxel is considered as a plane. We 
observed the data set to define this empirical 
parameter. 

0.2 

Intersection 
angle 

If the intersection angle of two planes is smaller 
than the angle threshold, these two planes are 
treated as a conjugate plane pair. We observed the 
data set to define this empirical parameter. 

Fifteen degrees for the first 3 
iterations. After 3 iterations, this 
parameter is 2 × std (intersection 
angle of plane pair after registration). 
(see Section 2.2) 

Distance 

If the Euclidean distance of mean points between 
two planes is smaller than the distance threshold, 
these two planes are treated as a conjugate plane 
pair. This parameter is defined by voxel size and 
pre-alignment quality. 

One meter for the first 3 iterations. 
After 3 iterations, this parameter is 2 
× std (distance of plane pair after 
registration). (see Section 2.2) 

Maximum 
iteration 

The matching process terminates when the iteration 
number exceeds predefined maximum number of 
iteration. For good data configuration, the 
convergence of LS3D is relatively faster than ICP 
approach. 

20 

Stopping 
criterion  

The matching process meets the optimal solution 
when the corrections of transformation parameters 
are smaller than the predefined thresholds. The 
small thresholds are selected to ensure the quality. 

|dtx| < 0.001 m; |dty| < 0.001 m;  
|dtz| < 0.001 m 

|S| < 0.0001; |dω| < 0.001 deg;  
|dφ| < 0.001 deg; |dκ| < 0.001 deg 

The experiments in this study used both simulation and real data to analyze the performance of 
point registration. The validation experiments were carried out in three parts. First, the 3-D points 
with different point densities and standard errors were simulated; second, the relative accuracy 
between forward and reverse of MLS data was examined; and third, the errors between MLS and 
ALS from the proposed methods were checked. 

3.1. Simulation Data Registration

First, we used a simulation dataset to verify the precision of registration at different densities. 
The registration precision indicates the geometrical difference between two systems. In this 
experiment, the point-density ratio indicated the ratio between target points and search points and 
was used to simulate different point densities between LiDAR system 1 and system 2. We simulated 
3-D points distributed on a prismatic building model shaped like a 50 m × 50 m × 50 m box. The point 
densities of simulated system 1 were 100, 90, 80, 70, 60, 50, 40, 30, 20, 10 points/m2, while the point 
density of simulated system 2 was 100 points/m2; therefore, the point-density ratios were 1/1, 1/2, 1/3, 
1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10. The noise levels (random error) of simulated point were 0.10 m and 
0.05 m for system 1 and 2, respectively. The 3-D transformation parameters were predefined using 
the maximum transformation parameters (tx, ty, tz, omega, phi, kappa) in Table 1. One hundred data 
sets are simulated for each point-density ratio. After the data simulation, we used LS3D to solve the 
transformation parameters and applied the parameters to the simulated system 2 data. Every 
transformed point can be compared with the original point. We used the differences along X, Y, and 
Z axes as a precision index (Figure 6). The simulation results indicate that accuracy of registration 
improved as the density increased. The distance error may preserve 5 cm precision when the point-
density ratio is reduced to 1/10. 
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(a) (b)

(c) (d)

Figure 6. Simulation results: (a) Position difference along X-axis. (b) Position difference along Y-axis. 
(c) Position difference along Z-axis. (d) Distance between transformed point and original point. 

3.2. Terrestrial Mobile LiDARs Registration

Because the points of MLS number about 79 million, we reduced the points to accelerate the 
computation by using a 1 m 2D grid to remove the nonoverlapped points. We apply initial translation 
(tx, ty, tz) in point reduction. It can avoid large difference between ALS and MLS. Besides, we use 2D 
grid to accelerate the process of point reduction. In other words, all the MLS points are projected to 
2D horizontal plane and elevation is not considered in this stage. If the points from both trajectories 
appeared in same cell, then that cell was marked as an overlapped cell and all the points in this 
overlapped cell were preserved for registration. The grid size was estimated by the inconsistency of 
points from two different trajectories. The smaller grid size may remove the overlapped points 
incorrectly due to the problem of direct georeferencing. After the nonoverlapped point reduction, the 
number of points was reduced to 44 million, and the compression rate was about 44%. 

To obtain high point density in urban environments in this study, the maximum vehicle speed 
of MLS was <60 km/hr, and arbitrary lane-changing was not allowed, resulting in a continuous and 
smooth driving path. Considering the road length and data volume, we split the data into several 
road segments. In addition, the error behaviors for certain road segments were considered to be 
systematic errors, and a 3-D similarity transformation was considered to compensate the geometric 
inconsistency between two road segments. The length of the road section was 25 m, with a 3 m 
overlap. Each trajectory had 36 segments, and the total number of road segments was 72 in this stage. 
We used the forward trajectory (from left to right) as reference data. The registration coefficients 
converted the points from reverse trajectory to reference data. Because the LS3D algorithm requires 
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initial transformation parameters, we manually measured three registration points in the first 
segment and calculated the initial transformation parameters. The precise registration transformation 
parameters were then determined by LS3D algorithm. We assumed that the actual road path was 
continuous and smooth; hence, the initial parameters for the next road segment could be obtained 
from the previous road segment, and therefore only three registration points were needed to begin 
the TLS data registration. 

The accuracy assessments in this section include three parts: analysis of derived transformation 
parameters, point distance between road marks from two trajectories, and visualization of MLS data 
before and after registration. 

For these road segments, we calculated 36 sets of transformation parameters (Table 2). The scale 
coefficient is very close to 1. It is ranged from 0.9998 to 1.0004. To compare the translation and rotation 
parameters, the standard deviation of translation parameters (i.e., 12.6 cm to 40.2 cm) was much 
larger than rotation angles (i.e., 1.7 cm to 3.5 cm). In addition, the error in vertical direction was also 
larger than horizontal direction. The error in vertical direction was larger than 1 m when the GPS 
solution was not available, similar to error behavior in an urban corridor [27]. In other words, the 
rotation angles were more consistent than the translation parameters. This phenomenon is referred 
to as the positioning errors of GPS outage. Figure 7 plots the translation parameters at different road 
sections and indicates the continuity of translation parameters trajectories.  

Figure 7. The translations in X/Y/Z directions (MLS/MLS registration). 

Table 2. The summary of transformation parameters for MLS/MLS registration. . 

tx (m) ty (m) tz (m) Omega Phi Kappa

Mean 0.689  0.267 −1.639  0.003deg (0.1cm@25m)  −0.001deg (0.04cm@25m) 0.043deg (1.9cm@25m) 
Std 0.247  0.126 0.402  0.080deg (3.5cm@25m) 0.038deg (1.7cm@25m) 0.057deg (2.5cm@25m) 
Min 0.200  0.030 −2.457  −0.130deg (−5.7cm@25m) −0.088deg (−3.8cm@25m) −0.090deg(−3.9cm@25m) 
Max 0.984  0.417 −1.148  0.195deg (8.5cm@25m) 0.087deg (3.8cm@25m) 0.198 deg(8.6cm@25m)  

To evaluate the accuracy of registration, we manually measured 36 well-defined points to 
compare the point distance before and after registration. Because the point spacing of MLS is about 
5 cm, we could identify the corner point of the road marks from the LiDAR intensity. We use lines 
intersection to determine the corner of road mark. Figure 8 is an example of a check-point located on 
a marked pedestrian “zebra” crossing. The total number of independent check-points (CP) is 36. The 
error vectors of check point before and after registration are shown as Figure 9.  
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(a) (b) 

Figure 8. Illustration of independent check-point between trajectories: (a) check point in reference 
strip, (b) check point in registered strip.

Figure 9. Error vectors of check points before and after registration. 

Table 3 shows the results of check points before and after registration. The mean errors before 
registration ranged from −1.634 m to 0.719 m. The mean error in vertical direction is larger than 
horizontal directions. After the registration, the mean errors were significantly reduced to 0.002 m to 
0.025 m. The standard deviations of check point before registration ranged from 0.114 m to 0.401 m 
and fell to <5 cm after registration. 

Table 3. Statistics of the independent check points. 

Max (m) Min (m) Mean (m) Std (m)

dY
Before 1.017 0.295 0.719 0.228 
After 0.042 0.000 0.025 0.043 

dX
Before  0.460 0.073 0.293 0.114 
After 0.056 0.003 0.024 0.043 

dZ
Before 2.469 1.159 -1.634 0.401 
After 0.069 0.000 0.002 0.028 

After the numerical analysis, we also selected some profiles to visually compare MLS before and 
after registration. Figure 10 shows three profiles of the road point cloud before and after registration. 
The width of the profile is 1.5 m, and the different colors indicate points from different trajectories. 
In the figure, the discrepancy was removed after registration. 
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Before 

After 

(a) (b) (c) 

Figure 10. Profiles of MLS before and after registration: (a) profile A, (b) profile B, (c) profile C. 

3.3. Airborne LiDAR and Terrestrial Mobile LiDAR Registration

Once the MLS data from different trajectories were well co-registered, we performed the LS3D 
registration for ALS and MLS data. The spacing of voxel for ALS and MLS was 1 m. The total number 
of points should be more than 5 points for normal angle calculation; the number of voxel for ALS and 
MLS were 40,907 and 218,212 respectively. The registration features included surfaces of roads, walls, 
and other objects. We use elevation and azimuth angles to discuss the distribution of normal vector. 
The elevation angle is a vertical angle from horizontal plane to normal vector; the azimuth angle is a 
horizontal angle from north to horizontal projected normal vector. Elevation and azimuth angles of 
normal vectors (Figure 11) show that the elevation angles of the road and roof points were mostly 
close to 90 degrees, while the elevation angles of the walls were mostly close 0 degrees. The number 
of normal vectors from the road and roofs were larger than the normal vectors from walls  
(Figure 11a), and the total number of elevation angles <10 degrees was 768 (about 2%). These are 
important control elements for registration. The MLS contain more normal vectors from roads and 
walls (Figure 11b), and the azimuths of the normal vectors are distributed on different directions 
(Figure 11c,d). Therefore, the controlling capability of control surfaces is well-distributed to cover  
all directions. 

The statistics of transformation parameters for ALS/MLS registration is shown as Table 4. The 
mean errors in translation parameters were ranged from −0.885m to −0.220m. It was larger than the 
rotation parameters. It means the errors were mostly conducted by GPS positioning error. The 
standard deviation of translation parameters (3.6 cm to 9 cm) was also larger than rotation angles  
(i.e., 0.75~3.5 cm). Figure 12 shows the translation at different distances. 

The accuracy assessments included two parts: plane distance between surfaces from ALS and 
MLS, and visualization of ALS and MLS data before and after registration. Because measuring check-
points between ALS and MLS is difficult, we used the check plane in the accuracy assessment of ALS 
and MLS registration. We manually selected the 74 conjugate planes from ALS and MLS; a least 
squares plane fitting was then applied to estimate the optimal plane equation. The perpendicular 
distance between two planes was calculated as the quality index of ALS and MLS registration  
(Table 5). The data registration improved the mean error datum of ALS and MLS. In addition, the 
precision of registration was improved from 0.847 m between ALS and MLS from −0.979 m to  
−0.02 m. The mean error was mainly caused by the GPS/IMU signals and different to 0.033 m.  
A comparison of the error vectors of perpendicular distance between plane before and after 
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registration shows that the systematic error was compensated by LS3D after registration (Figure 13). 
Hence, the LS3D was able to automatically improve the consistency between ALS and MLS. 

Figure 11. Histogram of elevation and azimuth angles: (a) elevation angles of ALS, (b) elevation 
angles of MLS, (c) azimuth angles of ALS, (d) azimuth angles of MLS. 

Figure 12. The translations in X/Y/Z directions (ALS/MLS registration). 
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Figure 13. Error vectors of plane distance before and after registration. 

Figure 14. The profiles of the airborne LiDAR and terrestrial mobile LiDAR point cloud: (a) profile A, 
(b) profile B, (c) profile C.

Table 4. The summary of transformation parameters for ALS/MLS registration. 

tx (m) ty (m) tz (m) Omega Phi Kappa

Mean −0.333  −0.220  −0.885  
0.001 deg 

(0.1cm@25m)  
−0.008 deg 

(0.4cm@25m) 
0.011 deg 

(0.5cm@25m) 

Std 0.076  0.036  0.088  
0.016 deg 

(0.75cm@25m) 
0.025 deg 

(1.1cm@25m) 
0.080 deg 

(3.5cm@25m) 

Min −0.480  −0.328  −0.980  
−0.041 deg 

(−1.8cm@25m) 
−0.038 deg 

(−1.6cm@25m) 
−0.154 deg 

(−6.7cm@25m) 

Max −0.199  −0.156  −0.667  
0.0335 deg 

(1.4cm@25m) 
0.077 deg 

(3.3cm@25m) 
0.218 deg 

(9.5cm@25m)  

Table. 5. The statistic of the check planes. 

Before Registration After Registration

Mean (m) −0.979 −0.020 
Std (m) 0.847 0.033 

Max (m) 0.929 0.068 
Min (m) 0.581 −0.045 

Because the conjugate planes were mostly located on road surfaces, we selected some profiles to 
evaluate the continuity of walls. Three profiles of the road point cloud before and after registration 
(Figure 14) show that the width of the profile is 1.5 m, and different colors indicate points from ALS 
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and MLS. The discrepancy was removed after registration, indicating that the continuity between the 
building roof and wall was improved after registration.

(a) (b) 

Figure 15. The results of ALS and MLS registration: (a) ALS only (colored by height), (b) registration 
of ALS and MLS (colored by height). 

The perspective view of registration results (Figure 15a,b) shows that the proposed method 
worked well for the registration of ALS and MLS. In addition, the combination of ALS and MLS may 
provide a more complete scene in urban environments. For example, the MLS may improve the wall 
features for ALS. 

4. Conclusions

This study proposed a scheme to co-register the 3-D point clouds scanned from airborne and 
terrestrial vehicle platforms to increase the details of urban scenes. In addition, the data  
co-registration georeferences the uncorrected points from MLS to world coordinates of ALS. The 
proposed method utilized least squares 3-D surface matching to minimize the surfaces between 
different systems. The conjugate surfaces were established by computing the angle and the distance 
between features and can be treated as a control entity to minimum the surface distance between two 
systems. The registrations include two major parts: (1) registration between multi-trajectories MLS, 
and (2) registration of ALS and MLS. The experimental results indicated that the proposed method 
may improve the geometric consistency between ALS and MLS. Under conditions of poor GPS 
reception for MLS, the maximum error between trajectories was improved from 1.6 m to 0.02 m, and 
the standard errors also improved from 0.4 m to 0.05 m. We used the ALS data as reference data, and 
the MLS data were transformed into the coordinate system of ALS data. The geometric consistency 
between MLT and TLS may reach 0.05 m. This model can be applied to point cloud registration from 
different platforms. Notices that the preconditions of the proposed method are: (1) the coordinate 
system of ALS and MLS is similar and the change between these two systems is relatively low. (2) the 
proposed scheme needs control planes in different directions to improve the controlling capability. 
Both horizontal and vertical planes are needed for the proposed methods. In this study, the initial 
parameters for least squares matching were calculated from the manual measured tie points.  
The further improvement of this study will be the automatic tie point selection. Besides, we use  
equal-grid voxels to obtain planar feature, however, the grid size is an important issue in planar  
feature extraction. The future work will adopt optimal neighborhood radius selection [28] in planar  
feature extraction. 
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Abstract: Light detection and ranging (LiDAR) has become a mainstream technique for rapid
acquisition of 3-D geometry. Current LiDAR platforms can be mainly categorized into spaceborne
LiDAR system (SLS), airborne LiDAR system (ALS), mobile LiDAR system (MLS), and terrestrial
LiDAR system (TLS). Point cloud registration between different scans of the same platform or
different platforms is essential for establishing a complete scene description and improving geometric
consistency. The discrepancies in data characteristics should be manipulated properly for precise
transformation estimation. This paper proposes a multi-feature registration scheme suitable for
utilizing point, line, and plane features extracted from raw point clouds to realize the registrations
of scans acquired within the same LIDAR system or across the different platforms. By exploiting
the full geometric strength of the features, different features are used exclusively or combined with
others. The uncertainty of feature observations is also considered within the proposed method,
in which the registration of multiple scans can be simultaneously achieved. The simulated test with
an ideal geometry and data simplification was performed to assess the contribution of different
features towards point cloud registration in a very essential fashion. On the other hand, three real
cases of registration between LIDAR scans from single platform and between those acquired by
different platforms were demonstrated to validate the effectiveness of the proposed method. In light
of the experimental results, it was found that the proposed model with simultaneous and weighted
adjustment rendered satisfactory registration results and showed that not only features inherited
in the scene can be more exploited to increase the robustness and reliability for transformation
estimation, but also the weak geometry of poorly overlapping scans can be better treated than
utilizing only one single type of feature. The registration errors of multiple scans in all tests were all
less than point interval or positional error, whichever dominating, of the LiDAR data.

Keywords: LiDAR; multiple features; registration; simultaneous adjustment; cross-platform

1. Introduction

Light detection and ranging (LiDAR) has been an effective technique for obtaining dense and
accurate 3-D point clouds. Related applications have emerged in many fields because of advances made
in the evolutions of data acquisition and processing [1,2]. Different LiDAR platforms are designed to
operate with different scanning distances, scanning rates, and scanning directions. Therefore, point
clouds generated from different platforms may vary in density, accuracy, coordinate systems, and
scenic extent. Airborne LiDAR system (ALS) renders point clouds covering explicit top appearance of
objects (Figure 1a), while mobiles LiDAR system (MLS) and terrestrial LiDAR system (TLS) provide
façades and object surfaces (Figure 1b). To make use of the complementary information and generate
a complete dataset of 3-D scenes (Figure 1c,d), data integration of different platforms or scans is
indispensable. Even if the global navigation satellite systems (GNSS) and inertial navigation systems
(INS) are available to the ALS and MLS, problems caused by position and orientation system, mounting
errors, and shadowed effect warrant a rectification step for quality products. Thus, registration can be
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regarded as a pretreatment in terrestrial LiDAR data processing to transfer point clouds collected from
different scans onto a suitable reference coordinate system, and also utilized as a refinement procedure
to adjust small misalignments either between adjacent strips of airborne or neighboring mobile LiDAR
data or between the data collected through two different platforms. A proper registration methodology,
being able to tackle the inconsistency between different point clouds, appears crucial to numerous
point cloud applications.

Indeed, considerable solutions for point cloud registration have been proposed in the literature.
Existing methods can be classified into several types, in which surface- and feature-based
approaches are commonly employed and yield high-quality results. The iterative closest point (ICP)
algorithm developed by [3,4] is the most commonly used surface-based algorithm. Many follow-up
improvements [5–8] have promoted ICP efficiency. In addition, other related studies, such as the
iterative closest patch [9], the iterative closest projected point [10], and the least-squares surface
matching method (LS3D) [11,12], have also proven their effectiveness in point cloud registration. On the
other hand, numerous feature-based techniques have been developed based on geometric primitives,
such as points, lines [13–16], planes [13,17–20], curves and surface [21], and specific objects [22].
Methods manipulating image techniques for laser scans [23–26], and refining the 3D fusion based
on the correlation of orthographic depth maps [27] have also been studied for registration purposes.
Wu et al. [28] employed points, lines, and planes to register lunar topographic models obtained by
using different sensors. Han [29] and Han and Jaw [30] applied hybrid geometric features to solve
a 3-D similarity transformation between two reference frames. An extended work of Chuang and
Jaw [31] aimed at finding multiple feature correspondences with a side effect of sequentially gaining
3-D transformation parameters, facilitating the level of automatic data processing. Furthermore,
the ideas of 2D feature descriptors, such as scale-invariant feature transform (SIFT) [32], smallest
univalue segment assimilating nucleus (SUSAN) [33], and Harris [34] operators, were also extended as
Thrift [35] and Harris 3D [36] to work with 3-D fusion and similarity search applications [37–42], but
the current studies mostly undertook the evaluation of shape retrieval [43] or 3D object recognition [44]
using techniques such as the shape histograms [45], scale-space signature vector descriptor [46], and
local surface descriptors based on salient features [47].

Studies with a focus on cross-based registration can be found as in [15,48] which registered
terrestrial and airborne LiDAR data based on line features and combinations of line and plane
features extracted from buildings, respectively. Teo and Huang [49] and Cheng et al. [50] proposed a
surface-based and a point-based registration, respectively, for airborne and ground-based datasets.
However, the inadequate overlapping area of the point clouds of the ALS and MLS or TLS as the
scenarios demonstrated in Figure 1a,b raises challenges for acquiring sufficient conjugate features
and thus is apt to result in unqualified transformation estimation. In addition, the majority of
post-processing methods perform pair-wise registration rather than simultaneous registration for
consecutive scans, and the uncertainty of related observations has rarely been considered during
the transformation estimation. The registration errors tend to accumulate as running each pair
transformation sequentially. On the other hand, the ignorance of varying levels of feature observations
errors would lead to the bias of the estimation.

It also drew our attention to the fact that the existing studies of feature-based point cloud
registration employing line and plane features either utilized only partial geometric information [13,28]
or needed to derive necessary geometric components with alternative ways [29,30]. In this study, we
focused on the employment of features versatile in types as well as both complete and straightforward
in geometric trajectory and quality information. The main contribution of this paper is the rigorous
mathematical and statistical models of the multi-feature transformation capable of carrying out global
registration for point cloud registration purposes. Considering the point, line, and plane features,
the transformation model was driven by the existing models to improve the exploitation of features
on both geometric and weighting aspects and to offer a simultaneous adjustment for global point
cloud registration. Each type of feature can be exclusively used or combined with the others to resolve
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the 3-D similarity transformation. Since the multiple features with full geometric constraints are
exploited, a better quality of geometric network is more likely to be achieved. To correctly evaluate
the random effect of feature observations derived from the different quality of point cloud data, the
variance–covariance matrix of the observations is considered based on the fidelity of data sources.
Thus, the transformation parameters among multiple datasets are simultaneously determined via a
weighted least-squares adjustment.

(a) Scenario of airborne LiDAR (b) Scenario of terrestrial or mobile LiDAR

(c) Registration result (d) Registration result (plan view) 

Figure 1. The demonstration of cross-platform point cloud registration.

The workflow of the multi-feature registration involves three steps comprising the feature
extraction, feature matching, and transformation estimation. Although considerable researches
on extracting point, line [51], and plane [49,52] features from point clouds have been reported,
fully automated feature extraction is still a relevant research topic. We leveraged a rapid plane
extraction [53] coupled with a line extractor [51] to acquire accurate and evenly-distributed features
and then performed the multiple feature matching approach called RSTG [31] to confirm the conjugate
features and to derive approximations for the nonlinear transformation estimation model. Nevertheless,
the authors placed a focus on transformation estimation modeling and left aside the feature extraction
and feature matching with a brief address referred to the existing literature. Two equivalent formulae
for line and plane features, respectively, using different parametric presentation were proposed in the
transformation model. The detailed methodology of how the transformation models were established
and implemented is given in the following paragraph. The terms “point feature” stands for “corner or
point-like feature”, while “line feature” employs only straight line feature throughout the paragraphs
that follow.

2. Concepts and Methodology

The proposed multi-feature transformation model integrates point-, line-, and plane-based 3-D
similarity transformations to tackle various LiDAR point cloud registrations. Seven parameters,
including one scale parameter (s), three elements of a translation vector ([tX tY tZ]

T), and three
angular elements of rotation matrix (R{ω, ϕ, κ}), are considered for the transformation of scan
pairs. The feasible parametric forms of observations used in this paper are the coordinates
of points (P(Xi, Yi, Zi)), two endpoints (Le{Xi,1, Yi,1, Zi,1, Xi,2, Yi,2, Zi,2}) as well as six-parameter
(Lp{ti, ui, vi, X0i, Y0i, Z0i}) or four-parameter (Lp{di, ei, 1, pi, qi, 0}) forms of lines, and two
parametric forms of planes (Plp{θi, ϑi, ρi} and Pln{ai, bi, ci}). The different parametric forms for the
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same type of feature were proposed to fit to the need of feature collection or measurement. In fact, they
are mathematically equivalent. Note that the geometric uncertainty, namely the variance–covariance
matrix, of these feature observations has been integrated into the transformation estimation in
this study.

2.1. Transformation Models

At the methodological level, the spatial transformation of point clouds can be established by the
correspondence between conjugate points, the co-trajectory relation of conjugate lines, or conjugate
planes. Equation (1) presents the Helmert transformation formula for two datasets on a point-to-point
correspondence. To balance the transformation equation for solving seven parameters while providing
a sufficient geometric configuration, at least three non-collinear corresponding point pairs are required
for a non-singular solution. Furthermore, Equation (1) is employed to derive line- and plane-based
transformations in the following paragraphs.

FPi
=

⎡
⎢⎣

X(2)i
Y(2)i
Z(2)i

⎤
⎥⎦ − sR

⎡
⎢⎣

X(1)i
Y(1)i
Z(1)i

⎤
⎥⎦ −

⎡
⎢⎣

tX

tY

tZ

⎤
⎥⎦ =

⎡
⎢⎣

0
0
0

⎤
⎥⎦ (1)

with

R =

⎡
⎢⎣

m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤
⎥⎦

=

⎡
⎢⎣

cos(κ)cos(ϕ) sin(κ)cos(ω) + cos(κ)sin(ϕ)sin(ω) sin(κ)sin(ω)− cos(κ)sin(ϕ)cos(ω)

−sin(κ)cos(ϕ) cos(κ)cos(ω)− sin(κ)sin(ϕ)sin(ω) cos(κ)sin(ω) + sin(κ)sin(ϕ)cos(ω)

sin(ϕ) −cos(ϕ)sin(ω) cos(ϕ)cos(ω)

⎤
⎥⎦

where s is the scale parameter; [tX tY tZ]
T is translation vector; R is a rotation matrix; and ω, ϕ and κ

are the sequential rotation angles.
(

X(1)i, Y(1)i, Z(1)i

)
and

(
X(2)i, Y(2)i, Z(2)i

)
represent the coordinates

of the ith conjugate point in systems 1 and 2, respectively.

2.1.1. Transformation for Line Features

Two types of 3-D line expressions commonly employed in data acquisition were considered.
The transformation model for the two-endpoint type of the line features (Figure 2a) is established by
collinear endpoints of the line features with their conjugate counterparts when transformed to another
coordinate system. The collinearity property for one endpoint may present three alternative forms,
one of which is formulized in Equation (2).

FLe =

⎧
⎨
⎩

u(2)i

(
Xo(2)i − X(1′)i,j

)
− t(2)i

(
Yo(2)i − Y(1′)i,j

)
= 0

v(2)i

(
Yo(2)i − Y(1′)i,j

)
− u(2)i

(
Zo(2)i − Z(1′)i,j

)
= 0

(2)

where i denotes the ith line; j = {1, 2};
(

X(1′)i,j, Y(1′)i,j, Z(1′)i,j

)
shows the transformed jth endpoint

(
X(1)i,j, Y(1)i,j, Z(1)i,j

)
by Equation (1) from coordinate system 1 to system 2; for

(
Xo(2)i, Yo(2)i, Zo(2)i

)
,

either endpoint of
(

X(2)i,j, Y(2)i,j, Z(2)i,j

)
represents the reference point of the ith conjugate line in

coordinate system 2; and
[
t(2)i u(2)i v(2)i

]T
, derived by subtracting the corresponding coordinate

component of the first end-point from the second one, represents the dicovt of the ith line in coordinate
system 2.
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As revealed in Equation (2), one pair of 3-D line correspondences contributes four equations
(two for each endpoint) to the transformation. Similar to the two-endpoint model, the condition for
the transformation model based on four-parameter line features can be established by constraining
the direction vector and penetration point (which is determined by selecting the X–Y, Y–Z, or X–Z
plane, called penetration plane, that supports the best intersection for the 3-D line) of the 3-D line
to attain collinearity with their conjugate correspondents when transformed to another coordinate
system (Figure 2b).

(a) Two-endpoint form

(b) Four-parameter form

Figure 2. Two-endpoint and four-parameter forms of the line-based transformation.

The right-hand side of Equation (3) shows the four independent parameters of the 3-D line
when choosing X-Y intersection plane and they can also be derived from the six-parameter set.
The mathematical formula of transformation based on four-parameter lines can be established in
Equation (4). ⎡

⎢⎣
Xi

Yi

Zi

⎤
⎥⎦ =

⎡
⎢⎣

X0i

Y0i

Z0i

⎤
⎥⎦ + ki

⎡
⎢⎣

ti

ui

vi

⎤
⎥⎦ =

⎡
⎢⎣

pi

qi

0

⎤
⎥⎦ + zi

⎡
⎢⎣

di

ei

1

⎤
⎥⎦ (3)

where (X0i, Y0i, Z0i) and
[

ti ui vi

]T
represent the reference point and direction vector of the ith

line, respectively; (pi, qi, 0) is the penetration point on the X–Y plane;
[

di ei 1
]T

is the reductive
direction vector; and ki and zi are the scaling variables.

F+
Lp

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(2)i

(
X0(2)i − X0(1′)i

)
− t(2)i

(
Y0(2)i − Y0(1′)i

)
= 0

v(2)i

(
Y0(2)i − Y0(1′)i

)
− u(2)i

(
Z0(2)i − Z0(1′)i

)
= 0

u(2)it(1′)i − t(2)iu(1′)i = 0
v(2)iu(1′)i − u(2)iv(1′)i = 0

(4)

where
(

X0(1′)i, Y0(1′)i, Z0(1′)i

)
denotes the transformed reference point (six-parameter type) or

penetration point
(

X0(1)i, Y0(1)i, Z0(1)i

)
of the ith line by Equation (1) from coordinate system 1
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to system 2;
(

X0(2)i, Y0(2)i, Z0(2)i

)
is the reference point or penetration point of the ith conjugate

line in coordinate system 2; and
[
t(1′)i u(1′)i v(1′)i

]T
represents the transformed direction vector

[
t(1)i u(1)i v(1)i

]T
of the ith line by Equation (5) from coordinate system 1 to system 2.

⎡
⎢⎣

t(1′)i
u(1′)i
v(1′)i

⎤
⎥⎦ = R

⎡
⎢⎣

t(1)i
u(1)i
v(1)i

⎤
⎥⎦ (5)

The six positional variables in Equation (4) may vary with the different penetration planes.
Moreover, the conjugate lines from different coordinate systems may have varied penetration planes.
Table 1 shows the appropriate use of parameters according to the facing condition.

Table 1. Variable setting in the four-parameter model of line-based transformation.

Penetration Plane Parameter Constant

X–Y X0i = pi, Y0i = qi, ti = di, ui = ei Z0i = 0, vi = 1
Y–Z Y0i = pi, Z0i = qi, ui = di, vi = ei X0i = 0, ti = 1
X–Z X0i = pi, Z0i = qi, ti = di, vi = ei Y0i = 0, ui = 1

The dual representation forms of the line-based transformation model given in Equations (2) and
(4) are mathematically equivalent and suggest that one pair of conjugate lines offer four equations.
At least two non-coplanar conjugate 3-D line pairs must be used to solve the transformation parameters.
Furthermore, the line trajectory correspondence underpinning the 3-D line transformation allows
flexible manipulation of feature measurements compared with the point-to-point approach.

2.1.2. Transformation for Plane Features

With the similar manipulation mentioned in the line-based model, two equivalent formulae using
three independent parameters for plane-based transformation model were formed. A plane can be
formulated in a normal vector form by considering the dot product of the normal vector and the point
vector of the plane as one (Equation (6)) (zero if the plane includes the origin), or it can be formulated
in a polar form by utilizing horizontal angle (ϑ) and zenith angle (θ) along with the projection distance
(ρ) from the origin (Equation (8)). Notice that the normal vector employed in Equation (6) is the
normalized normal vector of the plane divided by the projection distance. The transformation models
are expressed in Equations (7) and (9) and both forms are depicted in Figure 3.

Pln{ai, bi, ci} = aiX + biY + ciZ =

⎡
⎢⎣

ai

bi

ci

⎤
⎥⎦·

⎡
⎢⎣

X

Y

Z

⎤
⎥⎦ = 1 (6)

Fpln
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

a(1)i − s
(

a(2)im11 + b(2)im21 + c(2)im31

)
/
(

1 − a(2)itX − b(2)itY − c(2)itZ

)
= 0

b(1)i − s
(

a(2)im12 + b(2)im22 + c(2)im32

)
/
(

1 − a(2)itX − b(2)itY − c(2)itZ

)
= 0

c(1)i − s
(

a(2)im13 + b(2)im23 + c(2)im33

)
/
(

1 − a(2)itX − b(2)itY − c(2)itZ

)
= 0

(7)

where i denotes the ith plane; and
[

a(1)i b(1)i c(1)i

]T
and

[
a(2)i b(2)i c(2)i

]T
stand for the normal vectors

of the ith conjugate plane in coordinate systems 1 and 2, respectively.

sinθicosϑiX + sinθisinϑiY + cosθiZ = ρi (8)
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F+
Plp

=

⎧
⎪⎨
⎪⎩

sinθ(1)icosϑ(1)i/ρ(1)i − F1/F4 = 0
sinθ(1)isinϑ(1)i/ρ(1)i − F2/F4 = 0

cosθ(1)i/ρ(1)i − F3/F4 = 0
(9)

with
F1 = s

(
sinθ(2)icosϑ(2)im11 + sinθ(2)isinϑ(2)im21 + cosθ(2)im31

)
;

F2 = s
(

sinθ(2)icosϑ(2)im21 + sinθ(2)isinϑ(2)im22 + cosθ(2)im23

)
;

F3 = s
(

sinθ(2)icosϑ(2)im31 + sinθ(2)isinϑ(2)im32 + cosθ(2)im33

)
;

F4 = ρ(2)i − sinθ(2)icosϑ(2)itX − sinθ(2)isinϑ(2)itY − cosθ(2)itZ;

where (θ(1)i, ϑ(1)i, ρ(1)i) and (θ(2)i, ϑ(2)i, ρ(2)i) represent the parameter sets of the ith conjugate planes
in coordinate systems 1 and 2, respectively. In fact, with sinθicosϑi/ρi = ai, sinθisinϑi/ρi = bi,
and cosθi/ρi = ci, Equations (7) and (9) are mathematically equivalent.

(a) Normal vector form

(b) Polar form

Figure 3. Normal vector and polar forms of the plane-based transformation.

2.2. Contributions of Features toward the Transformation Model

The characteristics of geometric constraints provided by these three types of observations vary
from one type to another. A single point only contributes to translational (or locative) information,
whereas unknown rotation and scale must be solved by points that span the area of interest. By contrast,
a line feature provides the co-trajectory constraint along the line. This feature leaves the degrees
of freedom of one scale, one translation, and one rotation parameter. A plane feature results in
singularities in one scale, one rotation, and two translation parameters on the plane. Thus, line-based
and plane-based approaches require features that supply complementary constraints for an entire
solution. The application of different primitives is extremely appealing for the support of effective
geometric constraints and can resolve situations that are considered difficult when the traditional
point-based approaches are used.

Table 2 summarizes the transformation modes for the three primitives, where the numbers
of independent pair correspondences for points, lines, and planes are notated by nPt, nL, and nPl ,
respectively, and ns is the number of scans. The effective number of equations generated by each
feature is identical to the number of independent parameters, i.e., three, four, and three for a pair
correspondence of point, line, and plane, respectively. The third column in Table 2 shows that the line
features outperform the others in terms of redundancy.
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Table 2. The configurations of the transformation models.

Mode Number of Equations Redundancy
Number of Features for a

Minimum Solution as ns = 2

Point-based 3nPt 3nPt − 7(ns − 1) 3
Line-based 4nL 4nL − 7(ns − 1) 2
Plane-based 3nPl 3nPl − 7(ns − 1) 4

When dealing with two scans, three point feature pairs with nine equations or two non-coplanar
line feature pairs with eight equations are able to solve seven parameters of transformation.
Nevertheless, according to Equations (7) and (9), it simply states that one conjugate plane pair will
produce three equations which convey all the transformation parameters. However, four pairs of
independent and well-distributed conjugate planes are the minimum requirements to solve seven
parameters because planes, even if spatially isolated, may not be so complementary as an effective
response to the transformation parameters. This statement can be understood by considering that
three planes mutually perpendicular to each other contain only the information of three translation
elements and three rotation angles even they supply nine equations. The scale factor cannot be fixed
until a fourth plane is added.

Moreover, the intersected feature may gain geometric significance together with good quality
of positional location at the expense of failing to completely represent the geometric property of the
original data used for the intersection. An obvious example is that a corner point resulting from
intersecting three neighboring planes brings forth only three equations for transformation, whereas
these three planes are able to solve six parameters of 3-D rigid-body transformation. Besides the
distinctive geometric characters elaborated by the individual primitive, appreciating the feature
combinations realized by one point + one line, one point + two planes, one line + two planes, or two
points + one plane in a minimum solution for seven-parameter similarity transformation of two scans
is practically meaningful. Such configurations are arranged and analyzed in the experiments.

2.3. Simultaneous Adjustment Model for Global Registration

As mentioned before, the registration process for multiple scans often follows a pair-wise
approach and then combines all results for the entire datasets. Consequently, registration errors
between neighboring point clouds would gradually accumulate and result in a larger impact on those
data distant from the reference one. In contrast, a global adjustment approach that simultaneously
addresses the registration of all involved scans would minimize errors among all datasets. In such
a simultaneously global registration manner, each feature observation in a scan is associated with
only one residual, instead of receiving a residual as it is conducted by passing the pairs if the feature
appears in more than two scans.

The Gauss–Helmert model of the least-squares adjustment is used to cope with diversified
uncertainty treatment of registration tasks. Equation (10) expresses the mathematical form of the
simultaneous adjustment model. Once a data frame is chosen as the reference, all other frames are
co-registered by conducting the multi-feature transformation.

wj×1 = Aj×[7(ns−1)]ξ[7(ns−1)]×1 + Bj×k(yk×1 + ek×1), e ∼
(

0, Σ = σ2
0 W−1

)
(10)

with {
j = ∑

nmPt
i=1 (3(nPoint,i − 1)) + ∑

nmL
i=1 (4(nLine,i − 1)) + ∑

nmPL
i=1 (3(nPlane,i − 1))

k = 3 ∑
nmPt
i=1 nPoint,i + nl ∑

nmL
i=1 nLine,i + 3 ∑

nmPL
i=1 nPlane,i

where Equations (2) and (7) are used for line and plane features in this formula. y, e, w, and ξ denote
the observation vector, error vector, discrepancy vector, and incremental transformation parameter
vector, respectively; W is the weight matrix; A and B are the partial derivative coefficient matrices with
respect to unknown parameters and observations, respectively; σ2

0 is the variance component; nmPt
,
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nmL
, and nmPL

are the numbers of total matched mates of points, lines, and planes, respectively; nPoint,i,
nLine,i, and nPlane,i represent the numbers of the conjugate features of ith matched mate; nl = 6 based
on Equation (2), otherwise nl = 4 based on Equation (4); and ns is the number of all scans. On the other
hand, if Equations (4) and (9) are employed, the FLe i

and FPlni
in matrices A and B should be replaced

with F+
Lpi

and F+
Plpi

, and the
{

Le(1),i, Le(2),i

}
and

{
Pln(1),i, Pln(2),i

}
are replaced with

{
Lp(1),i, Lp(2),i

}

and
{

Plp(1),i, Plp(2),i

}
, respectively.

According to the Equation (10), the convergent least-squares solutions of the estimated parameter
vector ξ̂, residual vector ẽ, posterior variance component σ̂2

0 , and posterior variance–covariance matrix
of the estimated parameter Σ̂ξ̂ can be computed through Equations (11) to (14), where r represents
the redundancy.

ξ̂ =

(
AT

(
BW−1BT

)−1
A

)−1
AT

(
BW−1BT

)−1
w (11)

ẽ = W−1BT
(

BW−1BT
)−1(

w − Aξ̂
)

(12)

σ̂2
0 = ẽTWẽ/r (13)

Σ̂ξ̂ = σ̂2
0

(
AT

(
BW−1BT

)−1
A

)−1
(14)

with

W = σ2
0

⎡
⎢⎣

Σ−1
Point ΣΣ−1

Point, Line ΣΣ−1
Point,Plane

ΣΣ−1
Point, Line Σ−1

Line ΣΣ−1
Line,Plane

ΣΣ−1
Point,Plane ΣΣ−1

Line,Plane Σ−1
Plane

⎤
⎥⎦;

The uncertainty of the observations, resulting from feature extraction, is considered and
propagated based on how the feature parameters, namely the parametric forms as previously
introduced, are acquired to form the variance–covariance matrix (Σ) of the observed features. The ΣΣ

indicates the covariance between two different feature observations if needed. The quantities revealed
in the variance–covariance matrix present the feature quality that often results from the measuring
errors and discrepancy between the real scene and the hypothesized scene. Basing the observation
uncertainty on the fidelity of the data source is considered an optimal way of assessing and modeling
weights in this work. The weight matrix (W), which is derived from the variance–covariance matrix of
the observations, is then fed into the adjustment model.

3. Experiments and Analyses

The effectiveness of the registration quality provided by the individual and combined features
was validated using the simulated data. The configurations of simulated data were designed to put
more concerns on validating mathematical models in solving the transformation parameters with
varied features, different levels of data errors, minimal and nearly minimal observations, thus rendered
so ideal as well as fundamental as compared to the practical data that often involved much complicated
scenes with feature distribution and quality demanding cautious treatment.

Real scenes with feature appearances collected by TLS, ALS and MLS that dealt with both
single- and cross-platform registrations were subsequently demonstrated to reveal the feasibility and
effectiveness of the proposed method. To fairly evaluate the merits of the proposed registration scheme
in handling multiple scans, we compared our results with those obtained by the ICP algorithm initiated
by Besl and McKay [3] and the line-based method [51]. These methods were coded in Matlab and
realized on a Windows system.

The customary way of assessing transformation and registration quality is to
utilize the root mean square error (RMSE) based on the check points with RMSE_P =√
(RMSE_X)2 + (RMSE_Y)2 + (RMSE_Z)2. Under the mode of multi-feature transformation,
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the positional discrepancies of the conjugate points, geometric relationships quantified by angles
and distances for both conjugate lines and planes are considered as registration quality indicators.
Apart from the RMSE criterion, a distance indicator Qdistance in Equation (15), the average of the
spatial distances of all the conjugate line segments and plane patches, is used to evaluate positional
agreement. Similarly, an angular indicator Qangle in Equation (16), the average angle derived from all
the conjugate line segments and plane patches, is used for evaluating geometric similarity.

Qdistance = 0.5
(
∑

mline

i=1 DLi
/mline + ∑

mplane

i=1 DPli /mplane

)
(15)

Qangle = 0.5
(
∑

mline

i=1 ALi
/mline + ∑

mplane

i=1 APli /mplane

)
. (16)

where DLi
is the average distance of each middle point of the ith conjugate line segments to its line

counterpart along the direction perpendicular to the line, and DPli is the average distance of each
centroid of the ith conjugate planes to its plane counterpart along the normal direction. mline and mplane

are the total numbers of independent conjugate line and plane pairs, respectively. ALi
is the angle of

the ith conjugate line pair computed by the direction vectors. APli is the angle of the ith conjugate
plane pair computed by the normal vectors.

The positional accuracy of each laser point is a function of range, scanning angles, and
positioning/pose observations, if applicable. The proposed quality indicators reflect the registration
accuracy upon the reference data. The point interval of a point cloud intimates the minimum
discrepancy of the raw quality considering the discrete and blind data nature. Thus, we intuitively
included the point spacing of the point cloud into quality analysis for the real datasets, particularly
if it prevails over the point error. In addition to employing check features, we also introduced the
registered features into Equation (15) to derive internal accuracy (IA), which has the same meaning as
the mean square error (MSE) index of the ICP algorithm [3]. The index resulting from transformation
adjustment would not only be used to assess the registration quality but also suggest whether the
internal accuracy and the external one derived from check features are consistent.

3.1. Simulated Data and Evaluation

To simplify the scene geometry and concentrate on validating the mathematical models, simulated
data with a size of approximately 10 m × 10 m × 10 m were generated in this experiment. Figure 4a
shows a point cloud forming a cube, in which 6 planes, 12 lines, and 8 points can be extracted as
observations. Four layers of check points, denoted as rhombuses in a total of 400 points, as shown in
Figure 4b, were densely arranged and situated inside the cube for exclusively evaluating the registration
quality. The point cloud was transformed using a pre-defined set of similarity transformation
parameters to represent the data viewed from another station. To simulate the random errors of
terrestrial scans, both the simulated and transformed point clouds were contaminated with a noise of
zero mean and σ cm standard deviation, where σ ∈ {0.5, 1.5, 2.5, 3.5, 4.5} in each coordinate component.
In this case, the points and lines directly measured from the point clouds were considered the coarse
features as they (points and endpoints) were determined with the same positional quality as that of the
original point. On the other hand, features extracted by fitting process or by intersecting neighboring
fitted planes were deemed the fine observations with better accuracy than original point cloud.

First, the influence of the coarse features versus fine features on the transformation quality
was observed as well as the registration effectiveness derived from individually and unitedly as
the observations when σ = 1.5 cm was added. This exhibited that transformation can be solved by
either applying a single type of features or the combination of multiple features. Figure 5 reveals
the registration quality. To assess the quality of estimated transformation parameters, the solved
parameters were used to transform the 400 check points from one station to another and computed
the RMSE_P.
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Figure 4. Illustrations of experimental configurations.
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Figure 5. Quality assessment.

In light of Figure 5, applying fine features only in this case achieves registration quality ranging
from 0.23 cm to 0.35 cm under the 1.5 cm standard deviation in each coordinate component of the
point clouds, which is much better than the results of applying coarse features only, ranging from 1.26
to 2.68 cm. Using fine features even supplies transformation parameter estimation with sub-point
accuracy of point clouds in this case. Obviously, combining all features also results in satisfactory
registration quality. Further, to hypothesize the TLS data acquisition with reasonable error range,
Figure 6 shows the RMSE_P obtained from each observation set when the standard deviation of
the point clouds is set as σ ∈ {0.5 cm, 1.5 cm, 2.5 cm, 3.5 cm, 4.5 cm}, respectively. As anticipated,
combining all types of fine features resulted in the best RMSE_P under each data quality. As the
deviation increased, namely worsened observations, the advantage of the feature integration became
more obvious. It can be seen in Figure 6 that the error trend of employing feature combination,
benefiting from the accurate observations and high redundancy (83 in this case), grew moderately as
compared to those utilizing single feature type.
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Figure 6. Quality assessment (r indicates the redundancy).
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Further, nine minimal or nearly minimal configurations of observations for transformation
estimation were investigated to show the complementariness among observed points, lines, and planes.
The distribution of the features is illustrated in Figure 7a–i. Specifically, Figure 7a–c was designed to
analyze the different benefits gained from an intersected point versus three planes that determined
the point. Figure 7d–i was configured to verify the feasibility of multiple feature integration by laying
out the feature combinations under the condition of only a few or nearly minimum measurements for
estimating the transformation parameters. The evaluations of transformation quality in relation to all
the cases are presented in Figure 8, where r indicates the redundancy.

Figure 7. Illustrations of feature combinations.

Figure 8. Assessment of the transformation quality of feature combinations.

Again, transformations in all nearly minimal solution configurations were resolved. From the
comparison of transformation results of Figure 7b versus Figure 7c, both sharing the three coarse
points as shown in Figure 7a, it showed that when the three fitted planes, deemed as fine features,
were added, the transformation accuracy was slightly increased with a lower RMSE_P (0.07 cm) than
adding the fine point intersected by these three planes. This effect gave a numerical example to
further add to what was stated in Section 2.2. In the configurations of Figure 7d–h, the transformation
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estimations using the united features under the minimum measurement condition were demonstrated.
It should be noted that the specified number of each feature was insufficient to solve the transformation
alone in these cases. Considering the RMSE results in Figure 8, the combination of one point and
one line (Figure 7d) resulted in dramatic transformation errors because of its poor distribution and
zero redundancy. Transformation errors were reduced with better-distributed features, as those in
Figure 7a,e–h. On the other hand, the configuration of Figure 7i which combined the well-situated two
points, one line, and two planes, gained the best transformation quality among all the cases.

Considering points are relatively likely to be obstructed between scans than other features as
well as the distribution of planes in urban scenes is often monotonous, combinations of these feature
primitives would bring more adaptability to conquer distribution restrictions frequently confronted in
practical cases. The simulated experiments demonstrated the flexibility of feature combinations and
quantified the merits of solving the point cloud registration in a multi-feature manner.

3.2. Real LiDAR Data

To validate the advantage of the proposed registration scheme on real scenes, three cases consisting
of the registration of terrestrial point clouds, the registration between terrestrial and airborne LiDAR
point clouds, and the registration between mobile and airborne LiDAR point clouds were conducted.
The first case demonstrated the routine terrestrial point cloud registration, while the second and third
cases tackled the point clouds with different scanning directions, distances, point densities, accuracy,
and having rare overlapping areas which is unfavorable for most surface-based approaches, e.g.,
ICP [3] or LS3D [11].

To evaluate the effectiveness of the registration quality, the registration results were compared with
those derived from the ICP algorithm [3] and the line-based transformation model [51]. The comparison
with the ICP highlighted the essential differences of the algorithm in terms of operational procedures
(e.g., calculating strategy and with/without the need of manual intervention) and the adaptability for
cross-based LiDAR platforms. On the other hand, the comparison with the line-based transformation
was to illustrate the advantages of feature integration on the operational flexibility and accuracy
improvement. Moreover, the last case demonstrated both the feasibility and working efficiency of the
proposed method in an urban area with larger extent as compared to the other two cases. Notably, the
experiments were performed on the point clouds without any data pre-processing including noise
removal, downsampling, or interpolation.

3.2.1. Feature Extraction and Matching

As fully automated point cloud extraction is still a developing research topic, the proposed
registration scheme may couple with existing feature extraction approaches. From a standpoint of
point cloud registration, to efficiently acquire qualified and well-distributed features is more important
than acquiring complete features of the point cloud. In this study, we leveraged a rapid extractor [51,53]
to acquire line and plane features and subsequently intersected neighboring lines or planes for points as
long as an intersection condition is met [53]. Afterward, a 3D multiple feature matching approach [31]
was implemented to obtain corresponding features and the approximations of similarity transformation
between two data frames. The results were then introduced into the proposed model for rigorous
transformation estimation. Figure 9 shows the workflow of feature acquisition in this study.

Conceptually, the extractor conducted a coarse-to-fine strategy to increase working efficiency.
The point clouds were first converted into a range image and a 2.5-D grid data with a reasonable grid
size according to the data volume, and the correspondence of coordinates was preserved. Although
the process deteriorated the quality of the original data, the computational complexity was reduced.
For line features, Canny edge detection and Hough transformation were implemented in the range
image for detecting straight image lines. The image coordinates of line endpoints were then referred
back to the original point cloud and used to collect candidate points for 3-D line fitting. On the
other hand, the normal vectors of each 2.5-D grid cell were computed and clustered to find the
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main directions of planes in the point cloud. The information was introduced to the plane Hough
transformation as constraints to reduce the searching space, so the computational burden for the plane
extraction can be eased. Subsequently, lines or planes that met the intersection condition were used to
generate point features [53]. Taking lines as an example, the extreme points within the group of points
which described the line were first computed. Then, the extreme points of the line, being the endpoints,
were used to compute the distances with the extreme points of other lines. If the shortest distance
between the two lines was smaller than a tolerance (pre-defined by point space of data), the two lines
were regarded as neighbors and used to intersect point feature. With the aid of this condition, virtual
and unreliable intersected points, along with unnecessary calculations, were avoided. Besides, the
quality measures of the resulting features were provided in the form of a variance–covariance matrix.
Indeed, even though the coarse-to-fine procedure, which reveals approximate areas where features are
possibly located and then aims at these areas to precisely extract the features from the raw point cloud,
promotes the working efficiency and encourages the level of automation, the feature extraction is still
the most computationally expensive step in this study.

 

Figure 9. The structure for feature acquisition.

Afterward, the extracted features were introduced to the multiple feature matching approach,
called RSTG [31], to confirm the feature correspondence and to derive the initial values for the
transformation estimation. The RSTG is the abbreviation of the matching approach which comprises
four steps, namely rotation alignment, scale estimation, translation alignment, and geometric check.
It applied a hypothesis-and-test process to retrieve the feature correspondence and to recover the
Helmert transformation in an order of rotation, scale, then translation. The rotation matrix was
determined by leveraging the vector geometry [29] and singular value decomposition, whereas the
scale factor was calculated by a distance ratio between two coordinate systems. After that, the
translation vector was derived from a line-based similarity transformation model [51] based on a
collinearity constraint. The approach got rid of the point-to-point correspondence of the Helmert
transformation, leading to a more flexible process. Details of the extraction and matching processes
can be referred to [31,51,53].

3.2.2. Registration of Terrestrial Point Clouds

In this case, five successive scans, which cover a volume of 26 m (length) × 18 m (width) × 10 m
(height), collected by Trimble (Mensi) GS200 describing the main gate of National Taiwan University
in Taipei, Taiwan, were used. The nominal positional accuracy of 4 shots as reported by the Trimble
manufacturer was up to 2.5 mm at 25 m range. The details of this dataset and the point clouds are
shown in Table 3 and Figure 10, respectively.

The number of acquired features in all scans was 95 features in total, consisting of 17 points,
57 lines, and 21 planes. They were passed on to the RSTG matcher. Figure 11a illustrates these features
superimposed on the point clouds. The extracted lines were highlighted in red lines, the extracted
points were marked in blue rhombuses, and the points belonging to the same plane were coded by the
same color. Figure 11b shows the feature correspondences, where the corresponding planes are in blue.
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Table 3. Information of the terrestrial point clouds.

Scan 1 Scan 2 Scan 3 Scan 4 Scan 5

Number of points 529,837 624,229 1,432,191 1,105,417 635,438
Avg. scanning distance (m) 26.0 29.7 21.9 22.6 28.2

Density (pts./m2) 8726 1190 2475 2383 1409
Avg. point spacing (cm) 1.1 2.9 2.0 2.0 2.7

Nominal positional accuracy (mm) 2.6 3.0 2.2 2.3 2.8

(a) Scan 1 (b) Scan 2 (c) Scan 3 

(d) Scan 4 (e) Scan 5 (f) Site map 

Figure 10. Illustration of the terrestrial scans.

(a) The extraction results.

(b) The matching results.

Figure 11. The feature extraction and matching results.

The RSTG approach successfully matched three points, 17 lines, and seven planes among all
overlapping scan pairs. The feature correspondences and the approximations of transformation
parameters were delivered to the process of transformation estimation. The registration of the
terrestrial LiDAR point clouds was performed by the proposed simultaneous adjustment model
of the multi-feature transformation. In addition, the approximations were applied to the ICP algorithm
and the line-based transformation. To evaluate the registration quality, there were 24 check points
acquired by best-fit spherical markers as well as 18 check lines and six check planes measured evenly
and manually serving as independent check features.

The overall quality of registration indicated in Table 4 revealed that the positional and distance
discrepancies were about 1 cm, and the angle deviation was about 0.3 degrees. The positional
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discrepancy RMSE_P derived from check points was quite close to the distance discrepancy (Qdistance)

calculated by check lines and planes. The angle deviation also represented similar spatial discrepancy
as the other two indicators when considering the employed line features within 3 m length.
This suggested that these three quality indicators were effective and consistent.

Table 4. The quality assessment of the registration results.

MSE (cm) IA-Qdistance/std. (cm) Qangle/std. (deg.) Qdistance/std. (cm) RMSE_P (cm)

ICP 0.01 - 0.48/0.04 1.30/0.23 1.36
Line-based - 0.87/0.13 0.32/0.02 1.09/0.18 1.17

Proposed method - 0.75/0.12 0.31/0.02 1.04/0.15 1.03

In light of Table 3, the quality and density of the point cloud data were high. As a result, the
three approaches yielded similar registration performances at the same quantitative level. Both the
internal accuracy (IA) and the external accuracy derived from the check features reported satisfactory
registration. The proposed multi-feature method slightly outperformed the baseline implementation
of the ICP and line-based transformation methods based on the same configuration: the same initial
values and one-time execution. It is well known that the ICP method has numerous variants which
apply other techniques, such as limiting the maximum distance in the X, Y and Z directions or filtering
points containing large residuals, to reduce the number of inadequacy points because points far from
the data center do not contribute important information about the scene and some of them could
even be considered as noise. The afore-mentioned process would trade between the points in the
vertical and the horizontal surfaces to avoid a final misalignment if the point number of one of the
surfaces greatly dominates the other. Indeed, the registration quality can be improved by adjusting
parameters and executing the calculation repeatedly. However, our study was interested in comparing
the fundamental methodologies without ad-hoc parameter tuning and repeated manual intervention
to assess the feasibility and effectiveness of these algorithms.

The results in Table 4 validated that integrating multiple features not only offered better
operational flexibility, but also gained better registration quality than just exploiting line features.
The visual inspections of the registration results of the proposed method can be found in Figure 12.
The point clouds of each scan are drawn with different colors, where the discrepancy in overlapping
areas is nearly undetectable and the facades collected by different scans are registered precisely.

(a) Side view (b) Side view (c) Plain view 

(d) Magnified view of A (e) Magnified view of B (f) Registration result

Figure 12. The registration results by the proposed method.
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The registration working process is nearly fully automated. In this case, the execution time for
feature acquisition was about 3.24 min, and the matching and estimation process was about 41 and
2.7 s, respectively. The working time of the extraction and matching processes highly relates to the
amount and complexity of point cloud data. Once the corresponding features are determined, the
transformation estimation will be done in few seconds.

3.2.3. Registration of Terrestrial and Airborne Point Clouds

A complete scene of man-made structures that often appears in urban areas was considered in this
case. A total of seven successive scans of terrestrial LiDAR point clouds were collected by the Optech
ILRIS-3-D system. As displayed in Figure 13a–g, the scans cover the facades of a campus library
building with a size of approximately 94 m (length) × 75 m (width) × 40 m (height). The nominal
positional accuracy of a single shot for ILRIS-3-D is 8 mm at a range of 100 m. In addition, the airborne
point cloud of the same building as shown in Figure 13h was collected via Optech ALTM 3070 at a
flying height of 450 m with a reported elevation accuracy of up to 15 cm at a range of 1200 m and
horizontal accuracy better than (1/2000) × flying height, which is approximately 23 cm in this case.
Table 5 presents the information of all point clouds, in which scan 6 rendered the largest number of
points and the highest density due to the large coverage of the target and the perpendicular scanning
to the building facade.

(a) Terrestrial scan 1 (b) Terrestrial scan 2 (c) Terrestrial scan 3 (d) Terrestrial scan 4

(e) Terrestrial scan 5 (f) Terrestrial scan 6 (g) Terrestrial scan 7 (h) Airborne scan

Figure 13. Terrestrial and airborne LiDAR point clouds.

Table 5. Information of the point clouds.

Scan Number of Points
Avg. Scanning
Distance (m)

Avg. Point
Spacing (cm)

Nominal Positional
Accuracy (mm)

Terrestrial scan 1 543,001 37.366 9.0 2.9
Terrestrial scan 2 574,007 37.716 6.7 3.0
Terrestrial scan 3 565,367 37.831 5.5 3.0
Terrestrial scan 4 511,254 37.601 9.1 3.0
Terrestrial scan 5 484,352 33.779 7.3 2.7
Terrestrial scan 6 1,745,490 94.370 4.6 7.5
Terrestrial scan 7 728,603 36.145 7.7 2.9

Airborne scan 37,678 450 44.7 237

The extracted features were superimposed onto the point clouds, as illustrated by colors, following
a similar coding as previous cases, in Figure 14. There were 297 well distributed features extracted
within the scene. The numbers of extracted features are listed in Table 6.
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(a) Terrestrial scan 1 (b) Terrestrial scan 2 (c) Terrestrial scan 3 (d) Terrestrial scan 4

(e) Terrestrial scan 5 (f) Terrestrial scan 6 (g) Terrestrial scan 7 (h) Airborne scan

Figure 14. The feature extraction results.

Table 6. Numbers of extracted features in each scan.

T-1 T-2 T-3 T-4 T-5 T-6 T-7 A-1 Total

Point 11 1 9 8 4 0 7 3 43
Line 33 23 35 29 23 15 22 13 193
Plane 7 6 11 10 7 5 9 6 61
Total 51 30 55 47 34 20 38 22 297

As seen in Figure 15, each terrestrial scan rarely overlaps the airborne point cloud, and no single
feature can fulfill the minimum requirement of the transformation estimation due to the poor overlap
geometry in this case. Therefore, both the matching and transformation tasks were alternatively
turned to process TLS first and then match and transform TLS to ALS. Again, the RSTG approach was
applied to find the corresponding features of seven terrestrial scans and to render the approximations
simultaneously. The successfully matched features among all overlapping scan pairs comprised nine
points, 39 lines, and 15 planes, as shown in Figure 15a–g. The corresponding features were colored
with the blue rhombus points, red lines, and blue planes, respectively. The correspondences along
with the variance–covariance matrix of features and the approximations of transformation parameters
were then introduced into the multi-feature transformation. However, the corresponding features
between terrestrial scan 1 and scan 7 were not sufficient to construct stable transformation leading to an
open-loop registration in this case. With the same basis of the initial transformation values, the ICP and
line-based methods were performed to align all scans onto the reference frame (scan 6) accordingly.

Apart from the observed features, there were 20 lines and six planes, coded by green color in
Figure 15, manually measured serving as independent check features to evaluate registration quality of
the terrestrial registration. With the larger scanning distances and distance variations than the previous
case, the significance of scale factor was studied in this case. Table 7 shows the estimated seven
transformation parameters using the proposed simultaneous adjustment, whereas Table 8 reveals the
six parameter results when the scale factor was fixed as 1. Further, the quantitative quality assessment
of the terrestrial registration results is displayed in Table 9.
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(a) Terrestrial scan 1 (b) Terrestrial scan 2 (c) Terrestrial scan 3 (d) Terrestrial scan 4

(e) Terrestrial scan 5 (f) Terrestrial scan 6 (g) Terrestrial scan 7 (h) Airborne scan

Figure 15. The feature matching results.

Table 7. The estimated transformation parameters.

Parameters S ω (rad) ϕ (rad) κ (rad) TX (m) TY (m) TZ (m) σ̂0

Scan 1-6 1.0151 −3.4493 2.8075 −1.6508 −94.612 53.321 −18.798

0.855

Scan 2-6 1.0098 −3.2476 2.9891 −1.8388 −71.119 34.458 −12.529
Scan 3-6 0.9987 −3.1344 9.4287 −15.905 0.10513 0.0277 0.3087
Scan 4-6 0.9975 18.248 −12.14 2.3005 −68.693 126.67 −53.181
Scan 5-6 1.002 −3.0229 −3.559 −14.151 −152.29 88.494 −13.467
Scan 7-6 1.0012 2.8475 15.355 −7.9346 −93.779 53.096 −17.995

Table 8. The estimated transformation parameters.

Parameters S ω (rad) ϕ (rad) κ (rad) TX (m) TY (m) TZ (m) σ̂0

Scan 1-6 1.0 −3.4493 2.8075 −1.6508 −94.614 53.323 −18.798

0.894

Scan 2-6 1.0 −3.2476 2.9891 −1.8388 −71.118 34.456 −12.530
Scan 3-6 1.0 −3.1344 9.4287 −15.905 0.105 0.028 0.310
Scan 4-6 1.0 18.248 −12.14 2.3005 −68.692 126.67 −53.180
Scan 5-6 1.0 −3.0229 −3.559 −14.151 −152.290 88.495 −13.466
Scan 7-6 1.0 2.8475 15.355 −7.9346 −93.779 53.097 −17.995

Table 9. The quality assessment of the terrestrial point cloud registration.

MSE (cm) IA-Qdistance/std. (cm) Qangle/std. (deg.) Qdistance/std. (cm)

ICP 3.31 - 9.30/1.31 6.82/2.42
Line-based - 1.97/0.23 0.64/0.40 2.04/0.27

Proposed method - 1.35/0.11 0.42/0.31 1.61/0.21
Proposed method (S = 1) - 1.61/0.47 0.44/0.39 1.73/0.64

In the six-parameter case, the scale factor was fixed as 1, ignoring this effect as most rigid
body-based methods would do. Considering Tables 7–9, the values of posterior variance σ̂0, internal
accuracy, Qangle, and Qdistance report that taking the scale factor into account can obtain better
registration results. The scale may bear certain systematic and random errors in this case, suggesting
that solving seven parameters should render more comprehensive applications. However, the solved
scale parameter needs also to be verified through significance test or based on prior information, if any,
as not to accept a distorted solution. For example, the scale factor provided upon RSTG can be a very
good approximation to be referred to. In Table 9, the proposed method yielded the best registration
result, about 0.4 degrees in angle deviation and 1.6 cm in distance discrepancy, which is smaller than
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the average point spacing of the raw point clouds. Both the line-based and the proposed methods kept
the consistency between the internal and external accuracy while the ICP did not. The MSE estimates
resulted from each registration pair of the ICP nevertheless reached up to 3.3 cm, which indicated
high internal consistency, even though the external accuracy was quite poor compared to either the
proposed or line-based methods. This would suggest that the computation of the ICP might converge
toward a local minimum. In addition, it could be understood that the ICP was affected by noise and its
sequential pair-wise registration scheme made the cumulative errors grow significantly while dealing
with open-loop scans.

Figure 16 shows the distance and angular discrepancies at each scan pair. It reveals that the
misalignment errors of the line-based and proposed methods were spread more uniformly among
successive point clouds, while the discrepancies of the ICP were accumulated. Figure 17 illustrates
the visual inspections of the registration result, where the point clouds of each scan are depicted in
different colors. With the better feature distribution and redundancy (186 in this case), this terrestrial
experiment highlighted the merits of the proposed simultaneous least-squares adjustment and the
multiple feature integration in dealing with the global registration of successive scans.

(a)  (b)  

Figure 16. The discrepancies in each scan pair.

  

 

Figure 17. The terrestrial registration results reviewing from different directions.
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After accomplishing the terrestrial registration, all features had been transformed onto the same
coordinate system. Again, the RSTG approach was implemented to the terrestrial and airborne feature
datasets for finding the conjugate features. There were nine lines and one plane correspondences
found between the local coordinate and the global coordinate systems. It should be noted that the
bulk of these data involved large geometric discrepancy raising the challenge of finding feature
correspondences and the unavailability of reliable conjugate points. Nevertheless, it can be seen in
Figure 15 that the normal vectors of plane features either in terrestrial or airborne scans are of less
variation in geometric distribution. That is, most of the normal vectors of planes point to similar
directions. It is intrinsically due to the specific scanning axis of LiDAR platform which would restrict
the usage of surface-based approaches and plane features in cross-platform point cloud registration.

After feature extraction and matching, the TLS data were registered onto the ALS one by the three
methods, and the registration quality was evaluated by 6 check lines and 1 check plane which were
manually extracted from the point clouds. Figure 18 shows the matched features (red lines and blue
plane) and check features (green).

(a) Terrestrial point cloud (view 1) (b) Terrestrial point cloud (view 2) 

(c) Airborne point cloud (view 1) (d) Airborne point cloud (view 2) 

Figure 18. The feature correspondences and check features.

As shown in Table 10, the check features point out that the registration quality of the proposed
method is about 12 cm in distance discrepancy, slightly better than that of the line-based method.
Apparently, considering the nature of the data characters, the dominant registered errors would inherit
from the airborne point cloud. On the other hand, the ICP algorithm spoiled the registration in
this case because the terrestrial and airborne datasets barely contained overlapping areas along the
boundaries of the roof. The insufficient overlapping surfaces and the uneven data quality led the
ICP method to converge to a local minimum. Indeed, the uneven data quality also directly affected
the effectiveness of feature extraction and thus resulted in unequal accuracy of feature observations.
The proposed multi-feature transformation did introduce variance–covariance matrices of observations
into the adjustment process based on the fidelity of the data quality. If the uncertainty of features
was not considered, namely unweighted, the registration quality deteriorated and the positional
quality dropped almost 2 cm as compared to weighted result in this case. Therefore, by assigning
appropriate weights and adjusting the feature observations accordingly would lead to the better
transformation estimations.
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Figure 19 shows the visual inspections on the registered point clouds. It can be seen that the
point spacing between airborne and terrestrial scans was extremely distinct. However, the junctions
and the profiles in Figure 19b outlined the build boundary quite consistently. In addition, it is worth
mentioning that the quantity of distance discrepancy listed in Table 10 is far less than the average point
spacing (44 cm) of the airborne point cloud.

(a) The registration result of the terrestrial and airborne point clouds 

(b) The magnified area and the profiles

Figure 19. The visual inspections on the registered point clouds.

Table 10. The quality assessment of the airborne and terrestrial point cloud registration.

IA-Qdistance/std. (cm) Qangle/std. (deg.) Qdistance/std. (cm)

ICP - - -
Line-based 11.13/1.13 2.03/0.07 12.48/1.32

Proposed method (unweighted) 12.73/3.41 2.06/0.04 13.62/1.79
Proposed method (weighted) 11.12/1.11 2.02/0.03 11.23/1.24

The registration between TLS and ALS manipulated only the line and plane features since the
conjugate points were not available in this case. As a result, the internal accuracy of the line-based and
the proposed methods appeared very similar but the external accuracy indicated that the proposed
method was slightly better than the line-based method. The registration quality of line-based method
may be influenced by the check plane which was away from the effective area of line observations.
Even though line features were abundant, their reliability could be inferior to plane features considering
their high uncertainty in the discontinuity area of point clouds [54]. Therefore, integrating multiple
features into registration tasks would offer better solutions, especially for those scans rendering poor
overlapping geometry. The total execution time of this case was about 4.5 min for feature extraction,
76.8 s for matching, and 2.4 s for transformation estimation.
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3.2.4. Registration of Mobile and Airborne Point clouds

In this case, we applied the proposed method to the point cloud registration between mobile
LiDAR system (MLS) and airborne LiDAR system (ALS). Regarding ALS and MLS, the exterior
orientation of the sensor is typically known, so point cloud registration serves as a means of producing
a best-fit surface through an adjustment process that compensates for small misalignments between
adjacent data sets. Figure 20 shows the mobile and airborne scans of an urban area in Toronto, Canada.
The mobile point clouds were collected utilizing Optech LYNX system. The absolute accuracy was 5 cm
at 10 m range [55]. The airborne point cloud was collected by Optech ALTM 3100 at a flying height of
385 m with a reported elevation accuracy of up to 15 cm at a range of 1200 m [55] and approximately
19.2 cm horizontal accuracy in this case. The overlap area between the two data was about 412 m in
length and 162 m in width, as shown in Figure 20a. The information of point clouds can be found in
Table 11.

(a) Mobile LiDAR scan (b) Airborne LiDAR scan 

Figure 20. Mobile and airborne LiDAR data.

Table 11. Information of the point clouds.

Scan Number of Points
Avg. scanning
Distance (m)

Avg. Point
Spacing (cm)

Nominal Positional
Accuracy (cm)

Mobile scan 2,911,811 47.7 3 24
Airborne scan 766,488 385 40 19.8

In order to reduce the computational complexity, we trimmed the airborne point cloud according
to the mobile one and left the overlap area for feature extraction and matching. As illustrated
in Figure 21a, there were two points, nine lines, and one plane retrieved from the overlap area,
and even-distributed eight lines and one plane were manually collected as check features for
quality assessment.

The quality indicators in Table 12 show that the remaining discrepancies are 8.7 cm in distance
and 0.01 degrees in geometric similarity. Nevertheless, the visual registration result in Figure 21b
demonstrates the detailed roof and façade of building structures, where the purple and the yellow
points represented the airborne LiDAR and mobile LDAR data, respectively.

Table 12. The quality assessment of the airborne and mobile point cloud registration.

IA-Qdistance/std. (cm) Qangle/std. (deg.) Qdistance/std. (cm)

Proposed method 6.33/1.01 0.017/0.002 8.72/1.18

Apart from the quantity evaluation, three profiles (Figure 21c) were selected to visually inspect
the junctions between MLS and ALS after registration. Profile 1 displayed the road point cloud and
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showed the consistency in plain area; and Profiles 2 and 3 demonstrated the roof and façade of the
same building in two directions. The geometric agreement appeared not only on solid structure objects,
but also on the tree-crown. Figure 21d exhibits the integrated point cloud result colored by height,
which benefits further geometric exploration. The feature extraction process took about 7.5 min since
the space extent of this point cloud data was larger than previous cases. The operation time for the
feature matching and transformation was around 3.12 s.

(a) Extracted features and check features (b) Registration result 

(c) Profile inspection

(d) Before and after the registration

Figure 21. Cross-platform LiDAR registration.
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4. Conclusions and Further Work

In this paper, the authors presented a multi-feature transformation model, exploiting the full
geometric properties and random information of points, lines, and planes, for the registration of LiDAR
point clouds. Simulated and real datasets were used to validate the robustness and effectiveness of
the proposed method. The essential behavior of individual features through coarse versus fine
measurements, single type of feature versus combined features, different levels of point cloud errors,
and minimal and nearly minimal configuration of combined features applicable to the transformation
was realized and evaluated both qualitatively and quantitatively by simulated data. The experimental
results using real scene datasets, on the other hand, showed that the multi-feature transformation
obtained better registration quality compared with the line-based and the surface-based ICP methods
in the first two cases with features inherited in the scene. This highlights the advantages of integrating
multiple features in a simultaneous registration scheme and suggests a comprehensive transformation
model for dealing with scenes involving complicated structures rich in line and plane features.
Practically speaking, by combining the existing feature extraction and feature matching mechanism,
the multi-feature transformation can be considered an automated and efficient technique for achieving
accurate global registration. Under current computing configuration, it consumed about four and
six minutes for all processes in Sections 3.2.2 and 3.2.3 , respectively, with feature extraction taking
about 80% of total computation time. In addition, this paper investigated into the effectiveness using
different feature primitives to exploit the advantages of feature combinations toward registration
purposes within the same platform and across different platforms. Furthermore, Case 3, with much
larger extent of operation area as compared to the other two cases, successfully demonstrated the
applicability of the proposed method tackling the cross-platform registration between ALS and MLS
point clouds with satisfactory result.

To increase the working flexibility and feasibility, future improvements following the proposed
method will explore other feature types and integrate surface- and feature-based approaches to where
geometric features may serve as constraints to gain registration benefit in an effective way.

Acknowledgments: The authors express the most sincere thanks to the Ministry of Science and Technology
(formerly the National Science Council), Taiwan, ROC for granting this study through projects NSC
100-2221-E-002-216, 98-2221-E-002-177-MY2, and 97-2221-E-002-194. In addition, this publication would not
be possible without the constructive suggestions from three reviewers, which are greatly appreciated.

Author Contributions: Jen-Jer Jaw provided the research conception and design and analysis of the experiments
and revised and finalised the manuscript. Tzu-Yi Chuang contributed to drafting the manuscript and the
implementation of proposed algorithms and the analysis of experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shan, J.; Toth, C. Topographic Laser Ranging and Scanning: Principles and Processing; CRC Press: Boca Raton, FL,
USA, 2008; p. 590.

2. Vosselman, G.; Maas, H.G. Airborne and Terrestrial Laser Scanning; CRC Press: Boca Raton, FL, USA, 2010;
p. 320.

3. Besl, P.J.; McKay, N.D. A method for registration of 3-D shape. IEEE Trans. Pattern Anal. Mach. Intell. 1992,
14, 239–256. [CrossRef]

4. Chen, Y.; Medioni, G. Object modeling by registration of multiple range images. Image Vis. Comput. 1992, 10,
145–155. [CrossRef]

5. Mitra, N.J.; Gelfand, N.; Pottmann, H.; Guibas, L. Registration of point cloud data from a geometric
optimization perspective. In Proceedings of the 2004 Eurographics Symposium on Geometry Processing,
Nice, France, 8–10 July 2004.

6. Makadia, A.; Patterson, A.; Daniilidis, K. Fully automatic registration of 3-D point clouds. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA,
17–22 June 2006; pp. 1297–1304.

269



Remote Sens. 2017, 9, 281

7. Bae, K.-H.; Lichti, D.D. Automated registration of unorganised point clouds from terrestrial laser scanners.
In Proceedings of the XXth ISPRS Congress: Geo-Imagery Bridging Continents, Istanbul, Turkey, 12–23 July
2004; pp. 222–227.

8. Bae, K.H.; Lichti, D.D. A method for automated registration of unorganised point clouds. ISPRS J.

Photogramm. Remote Sens. 2008, 63, 36–54. [CrossRef]
9. Habib, A.; Bang, K.I.; Kersting, A.P.; Chow, J. Alternative methodologies for LiDAR system calibration.

Remote Sens. 2010, 2, 874–907. [CrossRef]
10. Al-Durgham, M.; Habib, A. A framework for the registration and segmentation of heterogeneous LiDAR

data. Photogramm. Eng. Remote Sens. 2013, 79, 135–145. [CrossRef]
11. Gruen, A.; Akca, D. Least squares 3-D surface and curve matching. ISPRS J. Photogramm. Remote Sens. 2005,

59, 151–174. [CrossRef]
12. Akca, D. Co-registration of surfaces by 3-D least squares matching. Photogramm. Eng. Remote Sens. 2010, 76,

307–318. [CrossRef]
13. Stamos, I.; Leordeanu, M. Automated feature-based range registration of urban scenes of large scale.

In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Madison, WI, USA, 18–20 June 2003; pp. 555–561.

14. Habib, A.; Mwafag, G.; Michel, M.; Al-Ruzouq, R. Photogrammetric and LiDAR data registration using
linear features. Photogramm. Eng. Remote Sens. 2005, 71, 699–707. [CrossRef]

15. Von Hansen, W.; Gross, H.; Thoennessen, U. Line-based registration of terrestrial and aerial LiDAR data.
In Proceedings of the International Society for Photogrammetry and Remote Sensing Congress, Beijing,
China, 3–11 July 2008; pp. 161–166.

16. Al-Durgham, M.; Habib, A. Association-matrix-based sample consensus approach for automated registration
of terrestrial laser scans using linear features. Photogramm. Eng. Remote Sens. 2014, 80, 1029–1039. [CrossRef]

17. Von Hansen, W. Registration of Agia Sanmarina LiDAR Data Using Surface Elements. In Proceedings of
the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 September 2007;
pp. 93–97.

18. Brenner, C.; Dold, C. Automatic relative orientation of terrestrial laser scans using planar structures and
angle constraints. In Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo,
Finland, 12–14 September 2007; pp. 84–89.

19. Dold, C.; Brenner, C. Analysis of Score Functions for the Automatic Registration of Terrestrial Laser Scans.
In Proceedings of the International Archives of Photogrammetry. Remote Sensing and Spatial Information
Sciences, Beijing, China, 3–11 July 2008; pp. 417–422.

20. Lichti, D.D.; Chow, J.C.K. Inner constraints for planar features. Photogramm. Rec. 2013, 28, 74–85. [CrossRef]
21. Zhang, Z. Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 1994,

13, 119–152. [CrossRef]
22. Rabbani, T.; Dijkman, S.; Heuvel, F.; Vosselman, G. An integrated approach for modelling and global

registration of point clouds. ISPRS J. Photogramm. Remote Sens. 2007, 61, 355–370. [CrossRef]
23. Barnea, S.; Filin, S. Keypoint based autonomous registration of terrestrial laser point-clouds. ISPRS J.

Photogramm. Remote Sens. 2008, 63, 19–35. [CrossRef]
24. Al-Manasir, K.; Fraser, C.S. Registration of terrestrial laser scanner data using imagery. Photogramm. Rec.

2006, 21, 255–268. [CrossRef]
25. Wendt, A. A concept for feature based data registration by simultaneous consideration of laser scanner data

and photogrammetric images. ISPRS J. Photogramm. Remote Sens. 2007, 62, 122–134. [CrossRef]
26. Han, J.Y.; Perng, N.H.; Chen, H.J. LiDAR point cloud registration by image detection technique. IEEE Geosci.

Remote Sens. Lett. 2013, 10, 746–750. [CrossRef]
27. Wendel, A.; Hoppe, C.; Bischof, H.; Leberl, F. Automatic fusion of partial reconstructions. ISPRS Ann.

Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I-3, 81–86. [CrossRef]
28. Wu, B.; Guo, J.; Hu, H.; Li, Z.; Chen, Y. Co-registration of lunar topographic models derived from Chang’E-1,

SELENE, and LRO laser altimeter data based on a novel surface matching method. Earth Planet. Sci. Lett.

2013, 364, 68–84. [CrossRef]
29. Han, J.Y. A non-iterative approach for the quick alignment of multistation unregistered LiDAR point clouds.

IEEE Geosci. Remote Sens. Lett. 2010, 7, 727–730. [CrossRef]

270



Remote Sens. 2017, 9, 281

30. Han, J.Y.; Jaw, J.J. Solving a similarity transformation between two reference frames using hybrid geometric
control features. J. Chin. Inst. Eng. 2013, 36, 304–313. [CrossRef]

31. Chuang, T.Y.; Jaw, J.J. Automated 3d feature matching. Photogramm. Rec. 2015, 30, 8–29. [CrossRef]
32. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the 7th IEEE International

Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; pp. 1150–1157.
33. Smith, S.M. A new class of corner finder. In Proceedings of the 3rd British Machine Vision Conference, Leeds,

UK, 22–24 September 1992; pp. 139–148.
34. Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Fourth Alvey Vision

Conference, Manchester, UK, 31 August–September 1988.
35. Flint, A.; Dick, A.; van den Hengel, A. Thrift: Local 3D structure recognition. In Proceedings of the 9th

Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques
and Applications, Glenelg, Australia, 3–5 December 2007; pp. 182–188.

36. Sipiran, I.; Bustos, B. Harris 3D: A robust extension of the Harris operator for interest point detection on 3D
meshes. Vis. Comput. 2011, 27, 963–976. [CrossRef]

37. Hänsch, R.; Weber, T.; Hellwich, O. Comparison of 3D interest point detectors and descriptors for point
cloud fusion. ISPRS Annals of Photogrammetry. Remote Sens. Spat. Inf. Sci. 2014, II-3, 57–64.

38. Ankerst, M.; Kastenmuller, G.; Kriegel, H.P.; Seidl, T. 3-D shape histograms for similarity search and
classification in spatial databases. In Proceedings of the Symposium on Large Spatial Databases, Hong Kong,
China, 20–23 July 1999; pp. 207–226.

39. Heczko, M.; Keim, D.; Saupe, D.; Vranic, D.V. Methods for similarity search of 3D objects. Datenbank-Spektrum

2002, 2, 54–63.
40. Chen, D.Y.; Tian, X.P.; Shen, Y.T.; Ouhyoung, M. On visual similarity based 3d model retrieval.

Comput. Graph. Forum 2003, 22, 223–232. [CrossRef]
41. Chua, C.S.; Jarvis, R. Point signatures: A new representation for 3D object recognition. Int. J. Comput. Vis.

1997, 25, 63–85. [CrossRef]
42. Belongie, S.; Malik, J.; Puzicha, J. Matching shapes. In Proceedings of the 8th IEEE International Conference

on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 1, pp. 454–461.
43. Bronstein, A.M.; Bronstein, M.M.; Bustos, B.; Castellani, U.; Crisani, M.; Falcidieno, B.; Guibas, L.J.;

Kokkinos, I.; Murino, V.; Ovsjanikov, M.; et al. SHREC’10 track: Feature detection and description.
In Proceedings of the 3rd Eurographics Conference on 3D Object Retrieval, EG 3DOR’10, Norrköping,
Sweden, 2 May 2010; pp. 79–86.

44. Salti, S.; Tombari, F.; Di Stefano, L. A performance evaluation of 3D keypoint detectors. In Proceedings of
the 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission
(3DIMPVT), Hangzhou, China, 16–19 May 2011; pp. 236–243.

45. Gelfand, N.; Mitra, N.J.; Guibas, L.J.; Pottmann, H. Robust global registration. In Proceedings of the 3rd
Eurographics Symposium on Geometry Processing, Vienna, Austria, 4–6 July 2005; pp. 197–206.

46. Li, X.; Guskov, I. Multi-scale features for approximate alignment of point-based surfaces. In Proceedings of
the 3rd Eurographics Symposium on Geometry Processing, Vienna, Austria, 4–6 July 2005; pp. 217–226.

47. Gal, R.; Cohen-Or, D. Salient geometric features for partial shape matching and similarity. ACM Trans. Graph.

2006, 25, 130–150. [CrossRef]
48. Wu, H.; Marco, S.; Li, H.; Li, N.; Lu, M.; Liu, C. Feature-constrained registration of building point clouds

acquired by terrestrial and airborne laser scanners. J. Appl. Remote Sens. 2014, 8, 083587. [CrossRef]
49. Teo, T.A.; Huang, S.H. Surface-based registration of airborne and terrestrial mobile LiDAR point clouds.

Remote Sens. 2014, 6, 12686–12707. [CrossRef]
50. Cheng, L.; Tong, L.; Wu, Y.; Chen, Y.; Li, M. Shiftable leading point method for high accuracy registration of

airborne and terrestrial LiDAR data. Remote Sens. 2015, 7, 1915–1936. [CrossRef]
51. Jaw, J.J.; Chuang, T.Y. Registration of lidar point clouds by means of 3-d line features. J. Chin. Inst. Eng. 2008,

31, 1031–1045. [CrossRef]
52. Wang, M.; Tseng, Y.H. Automatic segmentation of lidar data into coplanar point clusters using an octree-based

split-and-merge algorithm. Photogramm. Eng. Remote Sens. 2010, 76, 407–420. [CrossRef]
53. Chuang, T.Y. Feature-Based Registration of LiDAR Point Clouds. Ph.D. Thesis, National Taiwan University,

Taipei, Taiwan, 2012.

271



Remote Sens. 2017, 9, 281

54. Briese, C. Breakline Modelling from Airborne Laser Scanner Data. Ph.D. Thesis, Institute of Photogrammetry
and Remote Sensing, Vienna University of Technology, Vienna, Austria, 2004.

55. Teledyne Optech. Available online: http://www.teledyneoptech.com (accessed on 14 March 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

272



remote sensing 

Article

An Easy-to-Use Airborne LiDAR Data Filtering
Method Based on Cloth Simulation

Wuming Zhang 1, Jianbo Qi 1,*, Peng Wan 1, Hongtao Wang 2, Donghui Xie 1, Xiaoyan Wang 1

and Guangjian Yan 1

1 State Key Laboratory of Remote Sensing Science, Beijing Key Laboratory of Environmental Remote Sensing
and Digital City, School of Geography, Beijing Normal University, Beijing 100875, China;
wumingz@bnu.edu.cn (W.Z.); wanpeng@mail.bnu.edu.cn (P.W.); xiedonghui@bnu.edu.cn (D.X.);
xinxin1594@aliyun.com (X.W.); gjyan@bnu.edu.cn (G.Y.)

2 School of Surveying and Land Information Engineering, Henan Polytechnic University,
Jiaozuo 454003, China; wht_31@hpu.edu.cn

* Correspondence: qijb@mail.bnu.edu.cn; Tel.: +86-10-5880-9246

Academic Editors: Jie Shan, Juha Hyyppä, Lars T. Waser and Prasad S. Thenkabail
Received: 13 March 2016; Accepted: 3 June 2016; Published: 15 June 2016

Abstract: Separating point clouds into ground and non-ground measurements is an essential step
to generate digital terrain models (DTMs) from airborne LiDAR (light detection and ranging) data.
However, most filtering algorithms need to carefully set up a number of complicated parameters
to achieve high accuracy. In this paper, we present a new filtering method which only needs a
few easy-to-set integer and Boolean parameters. Within the proposed approach, a LiDAR point
cloud is inverted, and then a rigid cloth is used to cover the inverted surface. By analyzing the
interactions between the cloth nodes and the corresponding LiDAR points, the locations of the cloth
nodes can be determined to generate an approximation of the ground surface. Finally, the ground
points can be extracted from the LiDAR point cloud by comparing the original LiDAR points and the
generated surface. Benchmark datasets provided by ISPRS (International Society for Photogrammetry
and Remote Sensing) working Group III/3 are used to validate the proposed filtering method, and
the experimental results yield an average total error of 4.58%, which is comparable with most of
the state-of-the-art filtering algorithms. The proposed easy-to-use filtering method may help the
users without much experience to use LiDAR data and related technology in their own applications
more easily.

Keywords: LiDAR point cloud; ground filtering algorithm; cloth simulation

1. Introduction

High-resolution digital terrain models (DTMs) are critical for flood simulation, landslide
monitoring, road design, land-cover classification, and forest management [1]. Light detection and
ranging (LiDAR) technology, which is an efficient way to collect three-dimensional point clouds over a
large area, has been widely used to produce DTMs. To generate DTMs, ground and non-ground
measurements have to be separated from the LiDAR point clouds, which is a filtering process.
Consequently, various types of filtering algorithms have been proposed to automatically extract
ground points from LiDAR point clouds. However, developing an automatic and easy-to-use filtering
algorithm that is universally applicable for various landscapes is still a challenge.

Many ground filtering algorithms have been proposed during previous decades, and these
filtering methods can be mainly categorized as slope-based methods, mathematical morphology-based
methods, and surface-based methods. The common assumption of slope-based algorithms is that the
change in the slope of terrain is usually gradual in a neighborhood, while the change in slope between
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buildings or trees and the ground is very large. Based on this assumption, Vosselman [2] developed a
slope-based filtering algorithm by comparing slopes between a LiDAR point and its neighbors. To
improve the calculation efficiency, Shan and Aparajithan [3] calculated the slopes between neighbor
points along a scan line in a specified direction, which was extended to multidirectional scan lines
by Meng et al. [4]. Acquiring an optimal slope threshold that can be applied to terrain with different
topographic features is difficult with these methods. To overcome this limitation, various automatic
threshold definitions have been studied, e.g., adaptive filters [5,6] and dual-direction filters [7].
Nonetheless, their results suggested that slope-based algorithms were not guaranteed to function well
in complex terrain, as the filtering accuracy decreased with increasingly steeper slopes [8].

Another type of filtering method uses mathematical morphology to remove non-ground LiDAR
points. Selecting an optimal window size is critical for these filtering methods [9]. A small window size
can efficiently filter out small objects but preserve larger buildings in ground points. On the other hand,
a large window size tends to smooth terrain details such as mountain peaks, ridges and cliffs. To solve
this problem, Zhang et al. [10] developed a progressive morphological filter to remove non-ground
measurements by comparing the elevation differences of original and morphologically opened surfaces
with increasing window sizes. However, poor ground extraction results may occur because the terrain
slope is assumed to be a constant value in the whole processing area. To overcome this constant slope
constraint, Chen et al. [11] extended this algorithm by defining a set of tunable parameters to describe
the local terrain topography. Other improved algorithms that are based on mathematical morphology
can be found in [12–15]. The advantage of mathematical morphology-based methods is that they are
conceptually simple and can be easily implemented. The accuracy of morphological based approach is
also relatively good. However, additional priori knowledge of the study area is usually required to
define a suitable window size because local operators are used [16].

Previous algorithms separated ground and non-ground measurements by removing non-ground
points from LiDAR datasets. In contrast to these algorithms, surface-based methods gradually
approximate the ground surface by iteratively selecting ground measurements from the original
dataset, and the core of this type of filtering method is to create a surface that approximates the bare
earth. Axelsson [17] proposed an adaptive triangulated irregular network (TIN) filtering algorithm that
gradually densified a sparse TIN that was generated from the selected seed points. In this algorithm,
two important threshold parameters need to be carefully set: one is the distance of a candidate point to
the TIN facet, and the other is the angle between the TIN facet and the line that connects the candidate
point with the facet’s closest vertex. These parameters are constant values for the entire study area in
the adaptive TIN filter, which makes it difficult to detect ground points around break lines and steep
terrain. Recently, Zhang and Lin [18] improved this algorithm by embedding smoothness-constrained
segmentation to handle surfaces with discontinuities. Another typical surface-based filtering algorithm
was developed by Kraus and Pfeifer [19], who used a weighted linear least-squares interpolation to
identify ground points from LiDAR data. This algorithm was first used to remove tree measurements
and generate DTMs in forest areas and was subsequently extended to process LiDAR points in
urban areas by incorporating a hierarchical approach [20]. By using this filtering algorithm, ground
measurements can be successfully detected on flat terrain, but the filtering results are less reliable on
terrain with steep slopes and large variability. To cope with this problem, multi-resolution hierarchical
filtering methods have been proposed to identify ground LiDAR points based on point residuals
from a thin plate spline-interpolated surface [16,21,22]. Recently, Hui et al. [23] proposed an improved
filtering algorithm which combines the traditional morphological filtering algorithm and multi-level
interpolation filtering algorithm. It can achieve promising results in both of urban areas and rural
areas.

Another special surface-based filtering algorithm was proposed by Elmqvist [24], who employed
active shape models to approximate the ground surface. In this algorithm, an energy function is
designed as a weighted combination of internal forces from the shape of the contour and external
forces from the LiDAR point clouds. Minimizing this energy function determines the ground surface,

274



Remote Sens. 2016, 8, 501

which behaves like a membrane that sticks to the lowest points. This algorithm is a new idea to model
ground surface from LiDAR data, but the optimization only achieve an global optimum solution,
which does not guarantee to get all the local optimums. Thus, some local details may be ignored.
Meanwhile, this algorithm performs relatively poorly in complex areas as reported in [25]. They may
also fail to effectively model terrain with steep slopes and large variability because they are based on
the assumption that the terrain is a smooth surface. Furthermore, another challenge of these methods
is how to increase the efficiency when the accuracy is fixed [18].

The use of the aforementioned filtering algorithms has proven to be successful, but the
performance of these algorithms changes according to the topographic features of the area, and
the filtering results are usually unreliable in complex cityscapes and very steep areas. In addition,
the implementation of these filtering methods requires a number of suitable parameters to achieve
satisfactory results, which are difficult to determine because the optimal filter parameters vary from
landscape to landscape, so these filtering methods are not easy to use by users without much experience.
To cope with these problems, this paper proposes a novel filtering algorithm which is capable of
approximating the ground surface with a few parameters. Different from other algorithms, the
proposed method filters the ground points by simulating a physical process that an virtual cloth
drops down to an inverted (upside-down) point cloud. Compared to existing filtering algorithms,
the proposed filtering method has some advantages: (1) few parameters are used in the proposed
algorithm, and these parameters are easy to understand and set; (2) the proposed algorithm can be
applied to various landscapes without determining elaborate filtering parameters; and (3) this method
works on raw LiDAR data.

The remainder of this paper is organized as follows. A new ground filtering algorithm is proposed
in Section 2. Section 3 presents the experimental results, and the proposed algorithm is discussed in
Section 4. Finally, Section 5 concludes this paper.

2. Method

Our method is based on the simulation of a simple physical process. Imagine a piece of cloth
is placed above a terrain, and then this cloth drops because of gravity. Assuming that the cloth is
soft enough to stick to the surface, the final shape of the cloth is the DSM (digital surface model).
However, if the terrain is firstly turned upside down and the cloth is defined with rigidness, then the
final shape of the cloth is the DTM. To simulate this physical process, we employ a technique that is
called cloth simulation [26]. Based on this technique, we developed our cloth simulation filtering (CSF)
algorithm to extract ground points from LiDAR points. The overview of the proposed algorithm is
illustrated in Figure 1. First, the original point cloud is turned upside down, and then a cloth drops
to the inverted surface from above. By analyzing the interactions between the nodes of the cloth and
the corresponding LiDAR points, the final shape of the cloth can be determined and used as a base to
classify the original points into ground and non-ground parts.

Figure 1. Overview of the cloth simulation algorithm.
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2.1. Fundamental of the Cloth Simulation

Cloth simulation is a term of 3D computer graphics. It is also called cloth modeling, which is used
for simulating cloth within a computer program. During cloth simulation, the cloth can be modeled
as a grid that consists of particles with mass and interconnections, called a Mass-Spring Model [27].
Figure 2 shows the structure of the grid model. A particle on the node of the grid has no size but is
assigned with a constant mass. The positions of the particles in three-dimensional space determine
the position and shape of the cloth. In this model, the interconnection between particles is modeled
as a “virtual spring”, which connects two particles and obeys Hooke’s law. To fully describe the
characteristics of the cloth, three types of springs have been defined: shear spring, traction spring and
flexion spring. A detailed description about the functions of these different springs can be found in
[27].

Figure 2. Schematic illustration of mass-spring model. Each circle indicates a particle and each line
represents a spring.

To simulate the shape of the cloth at a specific time, the positions of all of the particles in the 3D
space are computed. The position and velocity of a particle are determined by the forces that act upon
it. According to Newton’s second law, the relationship between position and forces is determined by
Equation (1):

m
∂X(t)

∂t2 = Fext(X, t) + Fint(X, t) (1)

where X means the position of a particle at time t; Fext(X, t) stands for the external force, which consists
of gravity and collision forces that are produced by obstacles when a particle meets some objects in the
direction of its movement; and Fint(X, t) stands for the internal forces (produced by interconnections)
of a particle at position X and time t. Because both the internal and external forces vary with time
t, Equation (1) is usually solved by a numerical integration (e.g., Euler method) in the conventional
implementation of cloth simulation.

2.2. Modification of the Cloth Simulation

When applying the cloth simulation to LiDAR point filtering, a number of modifications have
been made to make this algorithm adaptable to point cloud filtering. First, the movement of a particle
is constrained to be in vertical direction, so the collision detection can be implemented by comparing
the height values of the particle and the terrain (e.g., when the position of a particle is below or equal to
the terrain, the particle intersects with the terrain). Second, when a particle reaches the “right position”,
i.e., the ground, this particle is set as unmovable. Third, the forces are divided into two discrete steps to
achieve simplicity and relatively high performance. Usually, the position of a particle is determined by
the net force of the external and internal forces. In this modified cloth simulation, we first compute the
displacement of a particle from gravity (the particle is set as unmovable when it reaches the ground,
so the collision force can be omitted) and then modify the position of this particle according to the
internal forces. This process is illustrated in Figure 3.
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Figure 3. Main Steps in CSF: (a) Initial state. A cloth is place above the inverted LiDAR measurements;
(b) The displacement of each particle is calculated under the influence of gravity. Thus, some particles
may appear under the ground measurements; (c) Intersection check. For those who are under
the ground, they are moved on the ground and set as unmovable; (d) Considering internal forces.
The movable particles are moved according to forces produced by neighbour particles.

2.3. Implementation of CSF

As described above, the forces that act on a particle are considered as two discrete steps.
This modification was inspired by [28]. First, we calculate the displacement of each particle only
from gravity, i.e., solve Equation (1) with internal forces equal to zero. Then, the explicit integration
form of this equation is

X(t + ∆t) = 2X(t)− X(t − ∆t) +
G

m
∆t2 (2)

where m is the mass of the particle (usually, m is set to 1) and ∆t is the time step. This equation is very
simple to solve. Given the time step and initial position, the current position can be calculated directly
because G is a constant.

To constrain the displacement of particles in the void areas of the inverted surface, we consider
the internal forces at the second step after the particles have been moved by gravity. Because of internal
forces, particles will try to stay in the grid and return to the initial position. Instead of considering
neighbors of each particle one by one, we simply traverse all the springs. For each spring, we compare
the height difference between the two particles which form this spring. Thus, the 2-dimensional (2-D)
problem are abstracted as a one-dimensional (1-D) problem, which is illustrated in Figure 4.
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Figure 4. Constraint between particles.

As we have restricted the movement directions of the particles, two particles with different height
values will try to move to the same horizon plane (cloth grid is horizontally placed at the beginning).
If both connected particles are movable, we move them by the same amount in the opposite direction.
If one of them is unmovable, then the other will be moved. Otherwise, if these two particles have the
same height value, neither of them will be moved. Thus, the displacement (vector) of each particle can
be calculated by the following equation:

−→
d =

1
2

b(−→pi −−→p0) · −→n (3)

where
−→
d represents the displacement vector of a particle; b equals to 1 when the particle is movable,

otherwise it equals to 0. −→p0 is the position of current particle that is ready to be moved. −→pi is the
position neighboring particle that connects with p0; and −→n is a normalized vector that points to vertical
direction, −→n = (0, 0, 1)T . This movement process can be repeated; we set a parameter rigidness (RI)
to represent the repeated times. This parameterization process is shown in Figure 5. If RI is set to
1, the movable particle is just moved only once, and the displacement is half of the vertical distance
(VD) between the two particles. If the RI is set to 2, the movable particle will be moved twice, the total
displacement is 3/4VD. Finally, if RI is set to 3, the movable particle will be moved three times and the
total displacement is 7/8VD. The value of 3 is enough to produce a very hard cloth. Thus, we constrain
the rigidness to values of 1, 2 and 3. The larger the rigidness is, the more rigidly the cloth will behave.

Figure 5. Parameterization of rigidness.

The main implementation procedures of CSF are described as follows. First, we project the cloth
particles and LiDAR points into the same horizontal plane and then find a nearest LiDAR point (named
corresponding point, CP) for each cloth particle in this 2D plane. An intersection height value (IHV) is
defined to record the height value (before projection) of CP. This value represents the lowest position
that a particle can reach (i.e., if the particle reaches the lowest position that is defined by this value, it
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cannot move forward anymore). During each iteration, we compare the current height value (CHV) of
a particle with IHV; if CHV is equal or lower than IHV, we move the particle back to the position of
IHV and make the particle unmovable.

An approximation of the real terrain is obtained after the simulation, and then the distances
between the original LiDAR points and simulated particles are calculated by using a cloud-to-cloud
distance computation algorithm [29]. LiDAR points with distances that are less than a threshold hcc

are classified as BE (bare earth), while the remaining points are OBJ (objects).
The procedure of the proposed filtering algorithm is presented as follows:

1. Automatic or manual outliers handling using some third party software (such as cloudcompare).
2. Inverting the original LiDAR point cloud.
3. Initiating cloth grid. Determining number of particles according to the user defined grid resolution

(GR). The initial position of cloth is usually set above the highest point.
4. Projecting all the LiDAR points and grid particles to a horizontal plane and finding the CP for

each grid particle in this plane. Then recording the IHV.
5. For each grid particle, calculating the position affected by gravity if this particle is movable, and

comparing the height of this cloth particle with IHV. If the height of particle is equal to or less
than IHV, then this particle is placed at the height of IHV and is set as “unmovable”.

6. For each grid particle, calculating the displacement of each particle affected by internal forces.
7. Repeating (5)–(6). The simulation process will terminate when the maximum height variation

(M_HV) of all particles is small enough or when it exceeds the maximum iteration number which
is specified by the user.

8. Computing the cloud to cloud distance between the grid particles and LiDAR point cloud.
9. Differentiating ground from non-ground points. For each LiDAR points, if the distance to the

simulated particles is smaller than hcc, this point is classified as BE, otherwise it is classified
as OBJ.

2.4. Post-Processing

For steep slopes, this algorithm may yield relatively large errors because the simulated cloth is
above the steep slopes and does not fit with the ground measurements very well due to the internal
constraints among particles, which is illustrated in Figure 6. Some ground measurements around steep
slopes are mistakenly classified as OBJ. This problem can be solved by a post-processing method that
smoothes the margins of steep slopes. This post-processing method finds an unmovable particle in the
four adjacent neighborhoods of each movable particle and compares the height values of CPs. If the
height difference is within a threshold (hcp), the movable particle is moved to the ground and set as
unmovable. For example, for point D in Figure 6, we find that point A is the unmovable particle from
the four adjacent neighbors of D. Then, we compare the height values between C and B (the CPs for D
and A, respectively). If the height difference is less than hcp, then this candidate point D is moved to C
and is set as unmovable. We repeat this procedure until all the movable particles are properly handled
(either set as unmovable or kept movable).

To implement post-processing, all the movable particles should be traversed, if we scan the cloth
grid row by row, the results may be affected by this particular scan direction. Thus, we first build
up sets of strongly connected components (SCCs) and each SCC contains a set of connected movable
particles. In a SCC, it usually contains two kinds of particles, those particles that have at least one
unmovable neighbor are marked as type M1, and the others are marked as M2 (see Figure 7). Using M1
as initial seeds, we perform the breath-first traversal for the SCC, with which movable particles are
handled one by one from 1 to 18 in Figure 7. This process guarantees that the post-processing are
performed from edge to center, regardless of scan direction.

279



Remote Sens. 2016, 8, 501

Figure 6. Post-processing of the steep slope.

Figure 7. Illustration of strongly connected component (SCC). Movable particles are handled
from 1 to 18.

2.5. Parameters

CSF mainly consists of four user-defined parameters: grid resolution (GR), which represents the
horizontal distance between two neighboring particles; time step (dT), which controls the displacement
of particles from gravity during each iteration; rigidness (RI), which controls the rigidness of the cloth;
and an optional parameter steep slope fit factor (ST), which indicates whether the post-processing of
handling steep slopes is required or not.

In addition to these user-defined parameters, two threshold parameters have been used in this
algorithm to aid the identification of ground points. The first is a distance threshold (hcc) that governs
the final classification of the LiDAR points as BE and OBJ based on the distances to the cloth grid.
This parameter is set as a fixed value of 0.5 m. Another threshold parameter is the height difference
(hcp), which is used during post-processing to determine whether a movable particle should be moved
to the ground or not. This parameter is set to 0.3 m for all of the datasets.

3. Experiment and Results

3.1. Validation of the Filtering

This method was first tested by datasets that were provided by the International Society
for Photogrammetry and Remote Sensing (ISPRS) Working Group III/3 to quantitatively test the
performance of different filters and identify directions for future research [30]. In these datasets, fifteen
samples with different characteristics were selected to test the performance of the proposed CSF
algorithm, which are shown in Table 1. The reference datasets were generated by manually filtering
the LiDAR datasets, and each point in the samples was classified as BE or OBJ.
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Table 1. Characteristics of all samples [15].

Environment Site Sample Features

Urban

1
11 Mixture of vegetation and buildings on hillside
12 Buildings on hillside

2

21 Large buildings and bridge
22 Irregularly shaped buildings
23 Large, irregularly shaped buildings
24 Steep slopes

3 31 Complex buildings

4
41 Data gaps
42 Railway station with trains

Rural
5

51 Mixture of vegetation and buildings on hillside
52 Buildings on hillside
53 Large buildings and bridge
54 Irregularly shaped buildings

6 61 Large, irregularly shaped buildings
7 71 Steep slopes

According to the implementation of CSF, when the original LiDAR point cloud is turned upside
down, the objects above ground will appear below the ground measurements. Then, the complexity
of object measurements (such as rooftops) seldom influences the simulation process. Based on this
feature, we visually classified the samples into different groups according to the properties of the
topography. These properties indicate the existence of steep slopes or terraced slopes. If the terrain
is very flat and has no steep or terraced slopes, RI is set to a relatively large value (RI = 3), and no
post-processing is needed (ST = f alse). If steep slopes exist (e.g., river bank, ditch, and terrace), a
medium soft cloth (RI = 2) and post-processing (ST = true) are needed. When handling very steep
slopes, we need post-processing (ST = true) and a very soft cloth (RI = 1). Thus, the fifteen samples
are classified into three groups, each sharing the same set of parameters, which are illustrated in
Table 2.

Table 2. Parameters for each group of samples (dT = 0.65, GR = 0.5).

Group Feature Parameters Samples

I
Flat terrain or gentle slope,

no steep slopes
RI = 3

ST = false 21, 31, 42, 51, 54

II
With steep or terraced slopes

(e.g., river bank, ditch, terrace)
RI = 2

ST = true 11, 12, 22, 23, 24, 41

III
High and steep slopes

(e.g., pit, cliff)
RI = 1

ST = true 52, 53, 61, 71

The main parameters that control the results and vary with the scene type were RI and ST, which
reduce the complexity and improve the usability of this algorithm. For dT and GR, we set them as fixed
values of 0.65 and 0.5, respectively. These two values are universally applicable to all of the reference
datasets according to our tests. The influence of these two parameters on the results is discussed in
Section 4.2.

To evaluate the performance of this algorithm, the type I (T.I), type II (T.II) and total errors
(T.E.) for all the fifteen samples were calculated. The type I error is the number of BE points that are
incorrectly classified as OBJ divided by the true number of BE points; the type II error is the number of
OBJ points that that incorrectly classified as BE points divided by the true number of OBJ points, and
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the total error is the number of mistakenly classified points divided by the total points. Besides, the
Cohen’s Kappa coefficient [31], which measures the overall agreement between two judges [15,21],
is also calculated in this study. The calculations of T.I, T.II, T.E. and Kappa coefficient can refer to
Hu et al. [32].

The errors and the Kappa coefficients are shown in Table 3. The results show that CSF has
relatively good results for samp21, samp31, samp42, samp51 and samp54 respecting total error and
kappa coefficient. All these samples belong to group I, which indicates that the most suitable types for
our method is urban areas. For group II and group III, the total errors are relatively large (especially
for samp11) compared to group I, which shows that CSF performs relatively poorly in complex
regions similar to other filtering algorithms [21]. Overall, our method is not sensitive to the type and
distribution of object above ground because the LiDAR point cloud is inverted and the shape of the
terrain mostly determines the filtering accuracy. However, in high relief areas with very steep slopes
(e.g., pit, cliff) and low rise buildings, our method perform worst, because when a soft cloth fit with
the terrain, it may also reach the rooftops of low rise buildings.

Table 3. Errors and Kappa coefficients for all samples.

Samples T.I(%) T.II(%) T.E.(%) Kappa(%)

samp11 7.23 18.44 12.01 75.17

samp12 1.15 4.9 2.97 94.04

samp21 3.89 1.78 3.42 90.47

samp22 1.29 25.9 8.94 77.72

samp23 3.52 6.21 4.79 90.38

samp24 1.03 7.73 2.87 92.68

samp31 0.96 2.38 1.61 96.75

samp41 1.48 8.78 5.14 89.73

samp42 3.28 0.87 1.58 96.18

samp51 2.67 4.57 3.08 91.13

samp52 1.01 28.79 3.93 77.05

samp53 3.85 37.08 5.2 46.86

samp54 3.79 2.64 3.18 93.61

samp61 0.87 18.94 1.49 78.1

samp71 1.61 37.85 5.71 68.03

Figure 8 shows the original dataset, reference DTM, produced DTM and the space distribution
of Type I and Type II errors of some representative samples (samp31, samp11 and samp51).
Compared with the reference DTM, the produced DTM has successfully preserved the main terrain
shape and also the microtopography, especially in mine field (Figure 8k). It can also be seen that
the error points mainly exist on the edges of objects for samp11 and samp31, in which some object
measurements with low height values may be classified as BE and some ground measurements with
relatively high height values may also be classified as OBJ. samp11 has a large group of error points
(type II) that almost classifies a whole building as ground measurements, it occurs because the building
is located on a slope and the roof is nearly connected to the ground, causing the building to be treated
as ground in the post-processing step. For samp53 (the same as samp52 and samp61), the very soft
cloth (group III) makes some small vegetation points mistakenly classified as BE. Besides, the total
number of OBJ points is much smaller compared to BE points. These jointly cause a large Type II
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error. However, if a harder cloth is used it may yield the opposite error (BE points around the steep
slopes may be identified as OBJ). Thus, adjusting the parameters is necessary to balance type I and
type II errors. If a large number of low objects exists above the ground, the cloth should be harder (RI
should be set larger), which will guarantee that fewer object measurements are mistakenly classified
as ground objects. Among the samples which have very poor Type II error, samp22 and samp71 are
caused by the incorrectly identification of bridges, which is classified as BE under CSF. The details will
be discussed in Section 4.4.

Figure 8. Results of each group (choose samp31, samp11, and samp53 as representatives): (the first

column) are original datasets; (the second column) are the DTMs that are generated from the reference
data of samp31, samp11, and samp53; (the third column) are the DTMs that are produced from the
CSF algorithm; (the last column) are the spatial distributions of the type I and type II errors.

To quantitatively analyze the accuracy of the CSF algorithm, we compared the total error and
kappa coefficient with some existing top algorithms. The total errors and Kappa coefficients of these
algorithms and our algorithm are shown in Tables 4 and 5. On the whole, the accuracy of our method
is close to some top filtering algorithms, except for samples 22 and 71. The total errors for sample 22
and 71 are relatively high, which are also mainly caused by the bridge.
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Table 4. Total error compared to other reported algorithms (%).

Samples Axelsson (1999) Elmqvist (2000) Pfeifer (2001) Mongus (2012) Li (2013) Chen (2013) Pingel (2013) Zhang (2013) Hu (2014) Mongus (2014) Hui (2016) CSF

samp11 10.76 22.4 17.35 11.01 12.85 13.01 8.28 18.49 8.31 7.5 13.34 12.01
samp12 3.25 8.18 4.5 5.17 3.74 3.38 2.92 5.92 2.58 2.55 3.5 2.97
samp21 4.25 8.53 2.57 1.98 2.55 1.34 1.1 4.95 0.95 1.23 2.21 3.42
samp22 3.63 8.93 6.71 6.56 4.06 4.67 3.35 14.18 3.23 2.83 5.41 8.94
samp23 4.00 12.28 8.22 5.83 6.16 5.24 4.61 12.06 4.42 4.34 5.11 4.79
samp24 4.42 13.83 8.64 7.98 5.67 6.29 3.52 20.26 3.80 3.58 7.47 2.87
samp31 4.78 5.34 1.8 3.34 2.47 1.11 0.91 2.32 0.90 0.97 1.33 1.61
samp41 13.91 8.76 10.75 3.71 6.71 5.58 5.91 20.44 5.91 3.18 10.6 5.14
samp42 1.62 3.68 2.64 5.72 3.06 1.72 1.48 3.94 0.73 1.35 1.92 1.58
samp51 2.72 21.31 3.71 2.59 3.92 1.64 1.43 5.31 2.04 2.73 4.88 3.08
samp52 3.07 57.95 19.64 7.11 15.43 4.18 3.82 12.98 2.52 3.11 6.56 3.93
samp53 8.91 48.45 12.6 8.52 11.71 7.29 2.43 5.58 2.74 2.19 7.47 5.2
samp54 3.23 21.26 5.47 6.73 3.93 3.09 2.27 6.4 2.35 2.16 4.16 3.18
samp61 2.08 35.87 6.91 4.85 5.81 1.81 0.86 16.13 0.84 0.96 2.33 1.49
samp71 1.63 34.22 8.85 3.14 4.58 1.33 1.65 10.44 1.50 2.49 3.73 5.71

Avg. 4.82 20.73 8.02 5.62 6.18 4.11 2.97 10.63 2.85 2.74 5.33 4.39
Std. 3.44 15.92 5.09 2.39 3.84 3.06 2.00 6.01 2.03 1.64 3.23 2.76
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Table 5. Kappa coefficient compared to other reported algorithms (%).

Samples Axelsson (1999) Elmqvist (2000) Pfeifer (2001) Chen (2013) Pingel (2013) Hu (2014) Hui (2016) CSF

samp11 78.48 56.68 66.09 74.12 83.12 82.97 72.92 75.17
samp12 93.51 83.66 91 93.23 94.15 94.83 93.00 94.04
samp21 86.34 77.4 92.51 96.1 96.77 97.23 93.35 90.47
samp22 91.33 80.3 84.68 89.03 92.21 92.04 87.58 77.72
samp23 91.97 75.59 83.59 89.49 90.73 91.14 89.74 90.38
samp24 88.5 54.13 78.43 84.53 91.13 90.39 81.93 92.68
samp31 90.43 89.31 96.37 97.76 98.17 98.19 97.33 96.75
samp41 72.21 82.46 78.51 88.83 88.18 88.18 78.78 89.73
samp42 96.15 90.86 93.67 95.81 96.48 98.25 95.38 96.18
samp51 91.68 52.74 89.61 95.17 95.76 93.9 85.06 91.13
samp52 83.63 9.36 41.02 78.91 81.04 86.24 69.51 77.05
samp53 39.13 7.05 30.83 46.69 68.12 66.43 41.84 46.86
samp54 93.52 55.88 88.93 93.9 95.44 95.28 91.63 93.61
samp61 74.52 10.31 47.09 77.36 87.22 86.76 67.82 78.1
samp71 91.44 26.26 75.27 93.19 91.81 92.59 79.86 68.03

Avg. 84.19 56.8 75.84 86.27 90.02 90.29 81.72 83.86
Std. 13.9 29.18 19.87 12.72 7.58 7.74 13.95 13.12
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3.2. Testing with Dense Point Cloud

The datasets from ISPRS were obtained many years ago, as the development of LiDAR technology,
the density of collected point cloud are continuously arising. Thus, we tested the performance of
CSF with datasets that have more dense points with average point distance equal to 0.6 m–0.8 m, the
information of these datasets are shown in Table 6. By comparing with the true ground obtained by
standard industrial semi-automatic software, the accuracy of CSF is evaluated. The results are shown
in Table 7. It can be seen that CSF has achieved a relatively high accuracy for all the datasets from
urban to rural areas. However, A large T.I error also has been noted for dataset 3, this is because
ground measurements is very sparse in this area. For dataset 4, the error mainly occurs around steep
slopes, since this area contains large number of steep slopes.

Table 6. Characteristics of testing datasets.

Dataset Type Point Number Scope Features

1 Urban 1559933 1 km × 1 km
Flat terrain, large and dense buildings,

high vegetation coverage
2 Urban 1522256 1 km × 1 km Flat terrain with dense bungalow areas
3 Rural 2093506 2 km × 1 km dense vegetation coverage
4 Rural 1418228 0.5 km × 0.5 km Large number of steep slopes

Table 7. Accuracy evaluation with true ground measurements.

Dataset T.I(%) T.II(%) T.E.(%)

1 0.72 13.36 6.84
2 5.29 9.29 7.84
3 36.09 1.84 5.49
4 8.57 22.61 14.09

To analyse the details of CSF, we presented the generated DTM and the cross section of each
dataset. Since CSF will first invert the original point cloud, thus large buildings will produce large
holes. However, when applying a relative hard cloth, this hole can be crossed. Then large buildings
can be removed (see Figure 9). If post-processing is enabled (ST = true), the cloth can fit the ground
very well. Through this way, microtopography (e.g., low-lying areas) in urban areas can be preserved
(Figure 10). In mountain areas, CSF performs relatively poorly, especially in dense vegetation areas
where ground measurements are usually sparse. If the cloth is too soft, many object measurements
may be mistakenly classified as BE. Otherwise, ground measurements may be classified as OBJ due to
the hilly topography (see Figure 11). For areas with large number of steep slopes, cloth should be more
soft and post-process is also needed. Figure 12 shows a typical area with large number of steep slopes,
it can be seen that the main skeleton of terrain has been preserved well. However, some small houses
may be missed (red circle in Figure 12c).
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Figure 9. Removal of large buildings in urban area: (a) Cross sections from (b) and (c); (b) Dataset 1; (c)
Produced DTM. In this dataset, it contains a number of connected large low buildings (see the cross
section), when the cloth is relatively hard, it will not drop into this large hole, then these buildings can
be removed.

Figure 10. Preservation of microtopography: (a) Cross sections from (b) and (c); (b) Dataset 2;
(c) Produced DTM. When post-processing is enabled, the cloth can stick to the surface more closely,
some small steep slopes can be preserved.

287



Remote Sens. 2016, 8, 501

Figure 11. Sparse ground measurements: (a) Cross sections from (b) and (c); (b) Dataset 3; (c) Produced
DTM. In some hilly topography areas, some parts of the cloth may not sticks to the ground well, this
will cause classification errors (BE may be treated as OBJ).

Figure 12. Preservation of steep slopes: (a) Cross sections from (b) and (c); (b) Dataset 4; (c) Produced
DTM. In this dataset, the main objects are vegetation and contains large number of ground
measurements, the cloth can be very soft to maximumly fit the terrain shape with less consideration of
T.II error. Companied with post-processing, large steep slopes can be preserved well.
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4. Discussion

4.1. Accuracy

Among all the reported algorithms, the Axelsson’s algorithm had been implemented in a
commercial software package called Terrasolid [33] and the Pfeifer’s algorithm was implemented
into a commercially available software package called SCOP++ from the German company Inpho
GmbH [34]. The overall performance of our algorithm also showed high accuracy and stability, as both
the mean total error (4.39) and standard deviation (2.76) of all the samples are relatively low compared
to all of the other algorithms. This result is inspirational and demonstrates that our algorithm can be
adapted to various environments and achieves relatively high accuracy.

4.2. Parameter Setting

Usually, we only modify RI and ST for different groups of samples and set dT and GR as fixed
values. These universally applicable parameters (dT and GR) were determined by a number of tests.
Theoretically, smaller dT value would make behavior of simulated cloth more like a true cloth, but it
dramatically increases the computing time. To quantitatively evaluate the influence of dT, we tested
all of the samples with different time steps (from 0.4 to 1.5 with steps of 0.05; 0.4 was chosen because
the value would take too much time to compute when it was smaller than 0.4). The total errors of each
group and the mean total error of all the samples, which depend on the time step, are illustrated in
Figure 13. This figure indicates that the total error increases after an initial decline for all groups, and
all of them achieve the lowest total error around the 0.65 time step. When dT is small, the displacement
of particle in each step is also small. As we have set a maximum iteration number of 500, if dT is too
small, the cloth may not reach the LiDAR measurements or fit with the terrain well after simulation
process. Thus, very small dT may produce large error. On the other hand, When the dT is too large,
the simulated cloth may stick to rooftops, this also increases the total error. Thus, 0.65 was chosen as
the value of dT because it produces relatively good results for all of the samples and it can be applied
to many situations without adjustments.

The grid resolution (GR) parameter in the simulation process has strong relationship with
simulation time because it determines how many cloth particles are created for a specific dataset.
Figure 14 shows the total errors at different GR values. It can be seen that the accuracies of group I and
group III are relatively stable than group II because group II usually have complicated terrain shape
and buildings (e.g., areas with terraced slopes and low rise buildings). However, almost all samples
get the highest accuracy around 0.5, which was then been used as a fixed value.

Except the parameters above, there are two threshold parameters: hcc and hcp. hcc governs the
final classification which separates LiDAR measurements into BE or OBJ. Most particles will stick to
ground after simulation. And OBJ measurements (e.g., buildings and trees) are usually taller than
0.5 m. Thus, we set hcc as 0.5, which is also a fixed value. The influences of hcc on total errors are
illustrated in Figure 15. It shows that this value has limited impact on total errors. As for the parameter
hcp, it is used in the post-processing to decide whether a movable particle should be moved to ground
according to its neighbors. We simply set this parameter to 0.3 m, which indicates the height difference
between two adjacent ground measurements is usually less than 0.3 m on a flat terrain. Since this
parameter is only used when post-process is enabled, and it also only influence the movable particles
over steep slopes, the influence is also limited.
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Figure 13. Total errors for each time step: Group I (a); Group II (b); Group III (c); Mean (d).

Figure 14. Total errors for each grid resolution: Group I (a); Group II (b); Group III (c); Mean (d).
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Figure 15. The influences of hcc on total errors: Group I (a); Group II (b); Group III (c); Mean (d).

During the simulation, CSF will terminate when the M_HV is less than a threshold or the
maximum iterations reach a user specified value. Usually, this user-defined value is set to 500.
However in most cases, CSF will end according to the former criterial. Figure 16 shows the trend
of M_HV and A_HV (average height variation) of a typical scene. It can be seen that both M_HV
and A_HV decreased to a very low value around 100 iterations. Actually, M_HV is 0.0033 when
iteration number equal to 150. That means the CSF will give a satisfied result with a relatively low
iteration times.

Figure 16. Maximum height variation (M_HV) and average height variation (A_HV).
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From the discussion above, the parameter settings in the CSF algorithm are relatively simple and
intuitive. Only two parameters (RI and ST) must be determined through visual judgment by the user.
A rough estimation is enough to determine these parameter values. Usually, RI can be set to 1, 2 or 3
according to the features of the terrain, they are applied to areas with high steep slopes, terraced slopes
and gentle slopes, respectively. ST is set to “true” or “false”. “true” means that there exists steep slopes
and post-processing is needed. “false” means post-processing is not needed (See details in Section 4.3).

4.3. Steep Slopes

For group II and group III, which contain many steep or terraced slopes in the scene, the slope is
an important factor that influences the accuracy of the CSF algorithm. The simulated cloth will lie over
the slope but usually cannot stick to the ground perfectly; at the edge of the slope, some distances will
appear between the cloth and the ground. If this distance exceeds hcc, the ground measurements will
be mistakenly classified as OBJ. A direct method to mitigate this problem is to set the rigidness to a
lower value, but some low objects may be classified as BE as a result. To balance these two types of
errors, a post-processing method for the margin area is proposed in this study, as mentioned in Section
2.3. Thus, we can use a relatively hard cloth and post-processing to remove lower objects and correctly
handle steep slope areas. A typical result is shown in Figure 17, in which the cloth properly sticks to
the terrain near the steep margin after the post-processing procedure.

Figure 17. Simulated cloth over an area with steep slopes: (a) simulated cloth before post-processing;
(b) simulated cloth after post-processing.

4.4. Bridge

When handling steep slopes, an exception is made for bridges, which are defined as OBJ in the
ISPRS reference datasets, but the adjacent road is treated as BE. Usually, this scene will show a gentle
slope along the direction of the road but will show an abrupt elevation change in the direction of the
river (Figure 18). During the post-processing procedure, movable particles over the bridge may be
set as unmovable particles and stick to the bridge because the height difference between two CPs is
very small along the direction of the road. Thus, the bridge will usually be classified as BE through
post-processing in our algorithm.
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Figure 18. Illustration of a bridge: height variation along road is much less than that in direction
of river.

4.5. Outlier Processing

As described in Section 2.2, the cloth particles will stop moving as soon as they reach the IHV; if
some outliers exist under the ground measurements, then some particles will be obscured, and the
cloth is usually propped up by these outliers. This phenomenon can increase the errors around the
outliers because of the rigidness of the cloth. Thus, the outliers should be removed by some statistical
filters before applying the CSF algorithm to the point cloud. Among the fifteen samples that were
used in this study, sample 41 is an exception that has a large area of outliers [11] under the ground,
which cannot be easily removed by a statistical approach. If the outliers could be removed either
automatically or manually before applying the CSF algorithm, the results can be satisfactory. The total
error before removing the outliers was 5.14, which reduced to 1.63 after removing the outliers.

5. Conclusions

This research proposes a novel filtering method named CSF based on a physical process. It utilizes
the nature of cloth and modifies the physical process of cloth simulation to adapt to point cloud
filtering. Compared to conventional filtering algorithms, the parameters are less numerous and are
easy to set. Regardless of the complexity of ground objects, the samples were divided into three
categories according to the shape of the terrain. Few parameters are needed, and these parameters
hardly changed among the three sample categories; only an integer parameter rigidness and a Boolean
parameter ST are required to be set by the user. These three groups of parameters exhibit relatively
high accuracies for all fifteen samples of the ISPRS benchmark datasets. Another benefit of the CSF
algorithm is that the simulated cloth can be directly treated as the final generated DTM for some
circumstances, which avoids the interpolation of ground points, and can also recover areas of missing
data. Moreover, we have released our software to the public [35], and we will also release our source
code to the research community. We hope that the proposed novel physical process simulation-based
ground filtering algorithm could help promote the scientific, government, and the public’s use of
LiDAR data and technology to the applications of flood simulation, landslide monitoring, road design,
land-cover classification, and forest management.

However, the CSF algorithm has limitations as well. Because we have modified the physical
processes of particle movement into two discrete steps, the particles may stick to roofs and some OBJ
points may be mistakenly classified as BE when dealing with very large low buildings. This process
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usually produces some isolated points at the centers of roofs, an noise filtering can help to mitigate this
problem. Additionally, the CSF algorithm cannot distinguish objects that are connected to the ground
(e.g., bridge). In the future, we will try to use the geometry information of LiDAR points or combine
optical images (such as multispectral images) to clearly distinguish bridges from roads.
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Abstract: Area-based analyses of airborne laser scanning (ALS) data are an established approach to
obtain wall-to-wall predictions of forest characteristics for vast areas. The analyses of sparse data in
particular are based on the height value distributions, which do not produce optimal information on
the horizontal forest structure. We evaluated the complementary potential of features quantifying the
textural variation of ALS-based canopy height models (CHMs) for both supervised (linear regression)
and unsupervised (k-Means clustering) analyses. Based on a comprehensive literature review, we
identified a total of four texture analysis methods that produced rotation-invariant features of different
order and scale. The CHMs and the textural features were derived from practical sparse-density,
leaf-off ALS data originally acquired for ground elevation modeling. The features were extracted from
a circular window of 254 m2 and related with boreal forest characteristics observed from altogether
155 field sample plots. Features based on gray-level histograms, distribution of forest patches, and
gray-level co-occurrence matrices were related with plot volume, basal area, and mean diameter with
coefficients of determination (R2) of up to 0.63–0.70, whereas features that measured the uniformity
of local binary patterns of the CHMs performed poorer. Overall, the textural features compared
favorably with benchmark features based on the point data, indicating that the textural features
contain additional information useful for the prediction of forest characteristics. Due to the developed
processing routines for raster data, the CHM features may potentially be extracted with a lower
computational burden, which promotes their use for applications such as pre-stratification or guiding
the field plot sampling based solely on ALS data.

Keywords: forest inventory; Light Detection And Ranging (LiDAR); surface modeling; Inverse
Distance Weighting (IDW) interpolation; image texture anisotropy

1. Introduction

Airborne laser scanning (ALS; also referred to in some instances as “airborne scanning LiDAR”)
has become a routinely operated technique for wall-to-wall prediction and mapping of various forest
characteristics [1]. Due to straightforward implementation with ALS data acquired broadly for
ground elevation modeling [2–4], so-called area-based approaches are the most established prediction
techniques. By area-based approaches, we fundamentally refer to the two-stage procedure [5] in which:
(i) models to predict the forest attributes of interest for the individual areas of interest (AOIs) are fit
based on a set of training field plots; and (ii) the resulting models are applied to all the AOIs of the
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entire inventory area to produce wall-to-wall predictions. Operational implementations are elaborated
upon in [6–8].

To develop predictive relationships between ALS and field training data, relevant features need to
be extracted. The sparse pulse densities (typically < 1 m´2 according to [6,7]) allow extracting features
related to the distributions of height values or proportions of certain types of echoes [5,9], which do
not account for the full horizontal information available in the data. It is possible to extract structural
and volumetric features from sparse, area-based data [10–12], whereas applying notably higher pulse
densities has allowed understory- [13–15] or tree-level descriptions based on canopy density and
height models [16–18]. Canopy height models (CHMs) are rasterized images representing interpolated
difference in elevations between the top of the vegetation and ground level. Importantly, the sparse
pulse density of ALS data constrains the CHM pixel size and therefore affects the accuracies of the
subsequent forest attribute predictions. However, some researchers have related the CHM texture
derived even from sparse ALS data to the properties of the growing stock such as the spatial pattern of
the trees [19,20].

Texture analysis is a well-established field of image analysis with early forest applications for
optical data acquired by varying sensors [21–27]. Additionally, Tuominen and Pekkarinen [28] provide
a comprehensive overview of parameters affecting the prediction accuracies of most essential forest
attributes based on very high-resolution image data in forest conditions closely corresponding to those
of the present study. Textural features derived from the aerial images were used as predictor variables
with ALS point-based features in [29,30]. Even though ALS-based CHMs were readily suitable for
texture analyses, those did not appear until about a decade after the introduction of the ALS-based
CHM products [31]. CHMs derived from high-density ALS data were analyzed for their texture
in [32–34], and those were derived using practical sparse pulse densities in [19,20,35]. The applications
are, to date, related to predicting species, diversity, and the spatial arrangement of the trees, whereas
the relationships between the textural features derived from the CHMs and forest attributes are not
comprehensively known like in the case of aerial images [28].

In all ALS studies cited in the previous paragraph, the characterization of the image texture
was based on computing a gray-level co-occurrence matrix (GLCM) and a set of descriptive features
following the principles presented by Haralick et al., in 1973 [36]. However, there are several alternative
approaches to quantify image texture. The use of Gabor or wavelet filtering produced good results
compared to using the GLCM features with other remotely sensed materials besides ALS data [37].
Autocorrelation functions or (semi-)variograms [38] were tested with optical images [39–41] and with
ALS data [42]. Patch or landscape features [43] were proposed as coarse measures of CHM texture [35].
More detailed approaches, such as analyzing local microstructures [44] or geometrically [45–47] or
topologically [48] driven partitioning of image patches, have been proposed as powerful texture
discriminators. To the best of our knowledge, however, the latter approaches are tested for built
material classification only. Thus, the suitability of these methods and sensitivity of their parameters
for remotely sensed vegetation analyses cannot be deduced based on earlier studies.

In summary, various texture analyses can be identified in the literature to improve the assessments
of forest growing stock attributes, but analyses considering aspects other than GLCM-based textural
features, especially in the case of ALS-based CHMs, are lacking. Even though conventional point-based
ALS features most likely produce the best prediction outcome due to their potential to depict
multilayered vertical strata [49,50], the textural features may be expected to improve the predictions by
allowing a more detailed description of the horizontal forest structure [19,20]. Beside the use of textural
features in supervised learning approaches, the favorable computational properties of the CHMs [51]
may open up possibilities for inventories, in which ALS data have been acquired but no field reference
data yet exist [52]. In those cases, the texture features may be used for pre-stratification or guiding a
later field inventory to cover the variation of forest attributes within the area, which is challenging but
important [53–55]. Thus, testing textural features for both the supervised and unsupervised learning
approaches is well reasoned.
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The purpose of this study is thus to compare texture analysis methods on CHMs derived from
practically available sparse, leaf-off ALS data. Appropriate methods for extracting the textural features
were identified based on a comprehensive literature review. The features were related to selected forest
biophysical properties measured from field reference plots with an area of 254 m2. The performance of
these features was tested in: (i) a supervised prediction of the total stem volume, basal area, and mean
diameter; and (ii) an unsupervised classification of the forest area for a simulated sampling of the
field plots. For benchmarking purposes, the extracted features were compared to the most common
point-based ALS predictor variables in the supervised predictions.

2. Materials and Methods

2.1. Experimental Data

2.1.1. Study Area

The study area is located in the southern boreal forest zone in Evo, Finland (61.19˝N, 25.11˝E).
The area of altogether approximately 2000 ha is a part of a state-owned forest. The elevation is typically
125–145 m above sea level and mineral soils with gentle slopes prevail. The forest stands vary from
natural to intensively managed in terms of their silvicultural status. The area is dominated by Scots
pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] H. Karst.), which altogether constitute
approximately 84% of the growing tree stock, with minor proportions of deciduous trees mainly
occurring below the dominant canopy.

2.1.2. ALS Data

The ALS data used in the study were acquired by the National Land Survey of Finland as a part
of their data-acquisition campaign for creating a nationwide ground elevation model for Finland. The
data were downloaded from a file service [56], from which they are available for free and with extensive
permissions of use. The data were acquired in two separate campaigns: on 7 May 2012 with Optech
ALTM Gemini scanner operated from a flying altitude of 1830 m, and on 13 May 2012 with Leica ALS50
scanner operated from 2200 m. In both the acquisitions, a scanning angle of ˘20˝, a ground footprint
of approximately 50 cm, and otherwise similar scanning parameters were applied to yield a nominal
pulse density of 0.7–0.8 m´2. Both the scanner systems recorded up to four echoes per each emitted
pulse. The data provider had detected and classified the ground level, on which the normalization of
the vegetation height values was based, using an adaptive filtering algorithm [57] implemented in
TerraScan software (Terrasolid Ltd., Helsinki, Finland). As the data are meant specifically for ground
elevation modeling, we assumed the accuracy of this classification to be appropriate for our purposes.
Following similar data acquisition and processing principles, the standard errors of terrain elevation
values were found to be in order of 15 cm [58].

2.1.3. Field Measurements

The field sample was selected based on auxiliary information from the ALS data [59]. Altogether,
five ALS features were extracted to quantify height and canopy cover of the dominant vegetation,
and density, diversity, and proportion of understory trees and shrub layer, determined as below
60% of the maximum height and below 5 m [59], respectively. These data were clustered, applying
an unsupervised k-Means algorithm with equal weights for each feature to obtain an ALS-based
stratification of forest structure. The strategy was found efficient to distribute the sample across the
spatial, size, and age distributions of the tree stock.

A field measurement protocol based on circular plots with the radius of 9 m was applied on
a total of 155 plots. The species and diameter-at-breast height (DBH) were measured for each tree with
a DBH ě 5 cm. For each tree species of the plot, a tree with a DBH corresponding to the median tree
was determined in the field and measured for height. These attributes were used as the median tree

298



Remote Sens. 2016, 8, 582

attributes per plot and species. The similarity of close surroundings of each circular reference plot was
quantified by establishing an additional field plot 16 m from the original plot center in each cardinal
direction (0˝, 90˝, 180˝, and 270˝). In these satellite plots, only DBHs were measured from tally trees
selected employing a basal area factor of 2 m2a´1.

The positions of the field plot centers were measured with a Trimble® Nomad® 900G Global
Positioning System and Global Navigation Satellite System receiver with an external antenna and
battery. At least 100 signals were collected from the center of each plot, and its position was
computed from these observations. The receiver was connected to a GSM phone, which provided
a connection to a reference station for real-time differential correction to help the positioning in the
field. A differential post-processing was finally applied using Trimble®Pathfinder®Office and a local,
permanent base station.

2.1.4. Field Plot Attributes Derived for the Evaluation

Plot-level forest attributes were compiled and aggregated from the tree-level measurements. Plot
basal area (G) was computed by summing the DBH measurements. The variations in the within-plot
DBH distribution and G among the main plot and the satellite plots were quantified using the coefficient
of variation (CV), i.e., the ratio of the standard deviation to the mean of the specific values. The missing
tree heights were predicted by calibrating the parameters of Näslund’s height curve [60] using the
species-specific median tree diameter and height estimates [61]. The basal-area-weighted DBH (DgM)
and height (HgM) were computed based on all the trees of a plot. The volumes of the individual trees
were predicted, employing the DBH and height as predictors of species-specific equations [62]. The
volume models for birch were used for all deciduous trees. The volumes (V) were summed to the
plot level and scaled per ha. Descriptive statistics of the 155 reference plots measured are presented
in Table 1.

Table 1. Central total and species-specific characteristics of the reference data, aggregated to
the plot-level.

Attribute Range Mean SD *

V, m3ha´1 7.0–673.0 184.0 107.0
G, m2ha´1 1.3–48.0 19.8 9.0
DgM, cm 8.4–42.7 22.9 6.9
HgM, m 7.9–32.3 19.0 4.7

Vpine, m3ha´1 0–360.0 101.0 89.0
Gpine, m2ha´1 0–33.1 10.6 8.7
DgM_pine, cm 5.3–50.0 24.3 9.0
HgM_pine, m 3.5–32.0 19.4 5.3

Vspruce, m3ha´1 0–464.0 53.8 87.9
Gspruce, m2ha´1 0–36.3 5.7 7.7
DgM_spruce, cm 5.0–40.0 15.9 9.8
HgM_spruce, m 4.0–32.5 13.7 7.6

Vdeciduous, m3ha´1 0–228.0 29.0 43.2
Gdeciduous, m2ha´1 0–24.9 3.5 4.9
DgM_deciduous, cm 5.0–52.0 16.3 9.3
HgM_deciduous, m 6.0–33.0 16.2 6.2

* Standard deviation.

2.2. Canopy Height Model (CHM) Generation

CHM rasters were generated based on the first-of-many and only echoes of the normalized ALS
data, aiming to obtain the main information from the data while retaining most generalization abilities
over sensors that record a different number of echo categories [6]. The low pulse density of ALS data
was observed to restrict the realism of the CHM, as a requirement for a smaller pixel size would have
meant that fewer CHM values were observed and more were interpolated. Consequently, different
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pixel sizes were tested and an inverse-distance weighting (IDW) technique [63] was applied to fill the
pixels without observations. The IDW algorithm was selected due to its simplicity and controllability
based on only few parameters (see further notes in Section 4). The proportions of the observed CHM
values with the considered pixel sizes are shown on Table 2.

Table 2. The proportion of observed canopy height model pixel values with the considered pixel size
in the reference plots.

Pixel Size Mean SD *

0.5 m 27% 11%
0.75 m 49% 13%
1.0 m 59% 12%
1.5 m 93% 6%
2.0 m 97% 3%
3.0 m 100% 2%

* Standard deviation.

Using the six different pixel sizes (Table 2), the CHM values for all the pixels containing at least
one ALS echo were initially filled by selecting the maximum height value of observations inside the
pixel. A non-filled value ẑ at pixel S0 was interpolated using the observed CHM values z at pixels Si

(Equation (1)), where λi is the weight calculated according to Equation (2) based on an interpolation
parameter α and d0i as the distance between S0 and Si:

ẑ pS0q “
nÿ

i“1

λiz pSiq (1)

λi “ d´α
0i {

nÿ

i“1

d´α
0i (2)

The maximum distance between S0 and Si was set to 3 m, i.e., observations located further than
3 m from the center of an empty pixel had no effect to the interpolation of the specific CHM value.
Values 0.1, 0.5, 1, 2, 3, . . . , 9, and 10 were tested for α. Figure 1 shows examples of CHMs derived
using different pixel sizes and α = 5, which was used in most of the analyses.

2.3. Textural Feature Extraction from the CHM

Image texture analysis has been a subject of very extensive research since the 1970s—for a review,
see, e.g., Chapter 2 in [64]. This makes an exhaustive comparison of all the published methods
impossible. The properties of the algorithms therefore were analyzed by relating earlier literature to
our research objectives, i.e., to model forest attributes aggregated from field plots with a size of 254 m2

based on the extracted textural features. Several aspects such as invariance and robustness of the
extraction method relative to the properties of the analyzed images were considered when choosing
the algorithms [65].

Texture analyses are typically labeled as: (i) statistical; (ii) geometrical; (iii) model-based; or
(iv) signal processing [65,66], in which the discrimination between different textures is based on:
(i) comparing the statistics computed over different (sub-)regions; (ii–iii) determining geometric or
image-model-based primitives that compose the texture; or (iv) filtering the image in the spatial or
frequency domain to be able to compute the frequency components of the image signal. Approaches (ii)
and (iii) were deemed inappropriate for our purposes due to the requirement to assume a geometrical
or image model behind the process that generated the texture, i.e., to assume the spatial and size
variation in the trees of the plots. Approach (iv) was found to be sensitive to a particular frequency
and orientation, and even if the invariance to these factors was achieved by a multichannel filtering
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approach [64], the method appeared as overly complicated for our purposes. Hence, all the methods
included in the present comparison could be labeled as statistical texture analyses. The number of
these methods was further reduced by a requirement to obtain rotation-invariant features, i.e., not
having to assume that the surfaces analyzed are captured from the same viewpoint.

Figure 1. (a) Points with height values >5 m above ground level extracted from an example plot.
Canopy height models interpolated from the point data using pixel sizes of: (b) 0.5 m; (c) 0.75 m;
(d) 1.0 m; (e) 2.0 m; and (f) 3.0 m. In (a), the sizes of the dots are scaled according to the height values,
whereas the tick marks of each sub-plot correspond to a horizontal distance of 2 m.

The methods selected for the analyses are listed and characterized according to the order and
scale considered (Table 3). “Order” determines the immediate neighborhood of pixels considered
as an individual observation, whereas “scale” indicates the spatial domain in which the features
are computed from the individual observations. First-order statistics are based on individual pixels,
whereas second-order statistics also account for the spatial co-occurrence of the pixels [66]. The
features considered here are extracted from the area of full plots (“global” scale) or the plots re-scaled
using the GLCMs (“macro” scale) or detailed local neighborhoods (“micro” scale). The features were
extracted from a circular window with a size of 254 m2 corresponding to the reference plots with 9 m
radii. In addition, a 30 m ˆ 30 m square window centered to the location of the plots were tested as
an alternative computation unit in particular to evaluate the prediction of the CV of G among the
satellite plots.

First-order statistics computed in the global scale are assumed to be neutral to the rotations
of the image, whereas the use of second-order statistics (based on co-occurrence of two pixels)
requires considering the rotation. In the GLCM approach [36], the rotation invariance is obtained by
averaging the features extracted from the GLCMs over all directions. In addition to these second-order,
macro-scale statistics, detailed micro-scale statistics were derived by computing gray-scale changes in
local neighborhoods using the local binary pattern (LBP) approach [44]. In LBP, the rotation invariance
is obtained by computing occurrence statistics for each individual rotation pattern of the neighborhood
considered [44].
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Since the use of higher-than-second-order statistics or other scales is rare in the literature, we
believe that the results obtained by the selected methods (Table 3) can be extended to other texture
quantification methods characterized by the same order and scale. The feature groups considered in
the study are listed as follows.

Table 3. Textural feature groups considered.

Group Order Scale Image Data Source Features and Their Abbreviations

HIST 1st global Gray-level histogram Mean (CHMmean), Standard deviation (CHMstd),
Maximum (CHMmax)

PATCH 2nd global Thresholded image a

Proportion of field plot total area covered by tree
patches (TPt_%), Number of tree patches per hectare
(TPt_den), Average area of tree patches (TPt_avg),
Standard deviation of the area of tree patches
(TPt_std), Average number of pixels in 4-neighborhood
belonging to the same tree patch (TPt_N)

GLCM 2nd macro Grey-level
co-occurrence matrix b

Angular second moment (ASM), Contrast (CON),
Correlation (COR), Sum of squares: variance (VAR),
Inverse difference moment (IDM), Sum average
(SAVG), Sum variance (SVAR), Sum entropy (SENT),
Entropy (ENT), Difference variance (DVAR),
Difference entropy (DENT), 2 ˆ Information measure
of correlation (IMC1, IMC2)

LBP 2nd micro Local binary
pattern (LBP) c

Uniformity of a LBP computed as percentages of at
most 0 (U0), 2 (U2) or 4 (U4) bitwise transitions in the
binary code of a circular neighborhood

a In the abbreviations of the features, subscript t is either 5 m or ad, indicating the use of a constant (5 m) or
adaptive (ad = hmax–hstd) height threshold, respectively; b All features were computed using a lag of 1, 2, 3, 4, or
5 pixels; c All features were computed using a lag of 1, 2, or 3 pixels.

2.3.1. HIST Features

The following first-order, general statistics were derived from the histograms of CHM pixel values:
mean, standard deviation, and maximum (Table 3). These features explain vegetation height and its
variation directly.

2.3.2. PATCH Features

The patch metrics are considered as coarse measures of texture that eventually produce
information on the co-occurrence of groups of pixels obtained by thresholding an image. The spatial
pattern of trees was modeled by thresholding CHMs for representing ground and tree patches [19,20].
In [19], a threshold of 5 m was used to assign all CHM values above that height as tree patches. In [20],
an adaptive difference between the maximum height (hmax) and the standard deviation of the height
values (hstd) was reported as the best canopy threshold for determining the spatial pattern of trees.
Both the aforementioned constant and adaptive thresholds were tested in this study, and the patch
features described in Table 3 were extracted from the thresholded CHMs.

2.3.3. GLCM Features

Textural features were computed from the GLCMs according to [36] by varying the lag parameter
(i.e., the spatial interval between co-occurring pixel values) from 1 to 5. To get rotation invariant
features, angular GLCMs were computed for four different offsets (0˝, 45˝, 90˝, and 135˝), and
the mean values of the four angular textural features were analyzed. One out of the original
14 features [36], namely “Maximal Correlation Coefficient”, was not included in our analyses due to
known computational instability problems associated with this feature. The derived features and their
abbreviations are listed in Table 3. For more detailed descriptions, see [36].
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2.3.4. LBP Features

The rotation invariant textural features based on the LBPs [44,67,68] are computed for every pixel
by comparing the CHM value with its local circular neighborhood. The values are re-coded depending
on the neighborhood: if the value of the pixel is equal or smaller than the value of its neighboring
pixel, the local binary is coded as 1 and otherwise as 0. A single LBP of a pixel thus consists of the
eight binary values derived from its circular neighborhood. Following [44], in which the uniformity of
the image was measured by counting the number of bitwise 0/1 changes in the binary codes, we used
the percentages of LBP patterns having uniformity of at most 0, 2, and 4 (abbreviated as U0, U2 and U4,
respectively) as the extracted LBP features for the reference plots. All the LBP features were computed
using the lags of 1, 2, and 3 CHM pixels.

2.3.5. Conventional Point-Based ALS Features

For benchmarking purposes, the most common point-based ALS predictor variables [5,9], i.e.,
the maximum, the mean, and the standard deviation of the height values; proportion of echoes above
2 m vegetation threshold; the 5th, 10th, 20th, . . . , 90th, and 95th percentiles; and the corresponding
proportional densities of the ALS-based canopy height distribution were calculated according to [69]
(pp. 502–503). The features were computed separately based on the first and last pulse data, i.e., “only”
or “first of many” and “only” or “last of many” echoes, respectively, of up to 4 laser echoes recorded
per pulse.

2.4. Supervised Prediction of Forest Attributes

The performance of the extracted features was first assessed in supervised prediction of forest
attributes based on the observations made from the field-measured reference plots. The strength of
the relationship between the CHM features and various forest inventory attributes was quantified
using the coefficient of determination (R2, [70]). The main attention was focused on central attributes
related to the properties of the forest growing stock, i.e., total stem volume (V), basal area (G), and
basal-area weighted mean diameter (DgM). Due to the earlier reported potential to link the textural
features with the diversity of the tree size and vegetation structure [34,71], we additionally analyzed
the relationships between the textural features and the number of understory trees and variation of the
DBH and G observed from within the 9 m plots and among the satellite plots, respectively.

The applicability of the extracted textural features and the benchmark variables was tested for
predicting V, G, and DgM attributes of the sample plots, as these were found to be most related to the
textural features in the initial tests. To normalize the potentially non-linear relationships between the
forest attributes and the ALS features, three most common transformations (square, square root, and
natural logarithm) of all the textural and point-based features were included as candidate predictors
in addition to the absolute values in a simple linear regression (LR) analysis. The final predictors of
the LR models were selected by inserting one of the predictor candidates at a time into each model
and iteratively appending the feature that produced the best prediction accuracy. The LR models were
formed applying a leave-out-one-plot cross-validation, i.e., excluding each plot at the time from the
model fitting data and predicting for the excluded plot. The prediction accuracy was measured by root
mean square error (RMSE) and relative root mean square error (RMSE%):

RMSE “

dřn
i“1 pŷi ´ yiq2

n
(3)

RMSE% “ 100 ˚ RMSE

y
(4)

where yi is the observed value of variable y on plot i, ŷi is the predicted value of variable y on plot i,
ȳ is the mean of the observed values, and n is the number of reference plots.
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2.5. Unsupervised Classification of the Forested Area

Second, the textural features were evaluated for an unsupervised classification of the forested
area, subsequently prioritizing the plots to be measured for field reference data. Earlier studies
have suggested that the information in the ALS data may be condensed to a few metrics [72,73], the
partitioning of which will provide a stratification corresponding closely to the structural complexity
observed in the field [59,74,75]. In this study, a similar partitioning was carried out using the textural
features, and the applicability of the obtained information was demonstrated by prioritizing the field
plots to be measured for predicting plot V using other features.

The data were stratified using an unsupervised k-Means algorithm [76] implemented in R
statistical computing environment [77]. The algorithm partitions the observations into k clusters
such that the sum of squares from the observations to the assigned cluster centers is minimized. The
clustering was based on the standard Euclidean distance and initialized by altogether 10,000 random
solutions for the initial cluster centers to minimize the randomness in the final result. To use the
standard Euclidean distance, the selected variables were required to have low inter-correlation to
minimize redundancy of the information and thereby ensure an equal weight of each variable in the
unsupervised classification. For this reason, the unsupervised classification was based on altogether six
textural features hand-picked to capture the main variation in the forest structural characteristics but
to have as low inter-correlation as possible. To include all the ALS features with the same importance
in the clustering, the original feature values were normalized between 0 and 1. The normalized feature
values were obtained according to Equation (5):

rij “
qij ´ qmin

i

qmax
i ´ qmin

i

(5)

where rij and qij are the normalized and original values of the jth observation of feature i and qmin
i and

qmax
i are the smallest and largest values of i among all plots.

Since it was found problematic to determine a fixed k, i.e., to fix the expected value of the structural
classes, we determined the final partitioning according to the persistence of the clusters on an interval
of different k values. Based on initial tests in the data studied, the clustering was repeated by gradually
increasing the value of k from 2 to 7, using an R package clue [78] to manage the resulting ensemble of
the k-Means partitions. During the iterations, it was recorded whether the individual cells persisted
in a cluster or shifted from one cluster to another one. As a result, each grid cell was labeled with
an identifier describing its path along the clustering hierarchy. Therefore, as opposed to results with
a fixed k, the final partitioning was based on the composition of the sub-clusters formed during the
clustering. More details on the applied methodology are provided by [59].

The applicability of the information obtained by the stratification was demonstrated by prioritizing
the sample plots to be measured for field reference data. The accuracy of the predictions depends on
how extensively the reference data represent the full range of the phenomenon to be modeled [52]. We
assume that the textural variation extracted from the CHMs is related to the real-world variation of
the forest attributes and therefore indicative of which plots include the extreme variation that must
be captured in the modeling data to produce realistic predictions. This hypothesis was tested by
simulating the sampling of a reduced number of field reference plots for predicting V (cf. [52–54]),
i.e., applying Probability Proportional to Size (PPS) sampling for the selection of the first-stage sample
units [79].

The non-linear relationship between aggregated stem volume (V) and a product of ALS-point-
based mean height (H) and canopy cover (CC) was modeled as:

V “ a ` b pH ˆ CCqc (6)
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where a, b, and c were model parameters solved using the nls function of R [77]. The plots to be included
in the modeling data were prioritized according to the distance to their respective cluster center. The
distribution of the data to the different clusters was assumed to indicate different forest structure types
and the distance to the cluster center to indicate whether a plot represented an extreme (high distance)
or a typical observation of the cluster. The plots were ordered according to the decreasing distance and
inserted one by one to the data used for fitting Equation (6). The RMSE of Equation (6) was recorded
after including each plot.

3. Results

3.1. Effects of the CHM Parameters to the Textural Features

The spatial interpolation of unknown CHM values was based on the premise that CHM values
of two pixels are related to each other, and the similarity is inversely related to the distance between
their locations. In the IDW method, this was affected by the parameter α: the larger the value, the less
weight was given for observations located far from the unknown CHM pixel. Figure 2 shows how the
R2 of various textural features and total stem volume were affected, when the values of α were 0.1, 0.5,
1, 2 . . . 9, and 10 with the pixel size of either 0.5 m or 1.0 m. The rest of the analyses were performed
using α = 5, as with the pixel size of 0.5 m the highest correlations were obtained with that particular
parameter α value, and no obvious improvements by other parameter values were discovered with
the pixel size of 1.0 m.

Figure 2. The R2 of selected textural features and total stem volume with the pixel sizes of 0.5 m and
1.0 m. The interpolation parameter (α) was set to 0.1, 0.5, 1, 2 . . . , 9 and 10.

The pixel size affected the textural features and subsequently the prediction of forest attributes.
To find the optimal pixel size, we evaluated R2 of the selected textural features and the forest attributes
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with varying pixel sizes (Figure 3). Several important textural features had the strongest correlations
with stem volume and basal area when the pixel size was 0.5–1.0 m. No significant differences between
these levels could be observed based on a visual analysis of Figure 3, but since a higher number of pixel
values were observed on the latter (Table 2), the pixel size was set to 1.0 m in the following analysis.

Figure 3. The effect of the pixel size to the coefficients of determination (R2) of selected textural
features and plot-level forest attributes (total stem volume, basal area, mean diameter (DBH), and DBH
variation). The interpolation parameter α was set to 5.

3.2. The Degree of Determination between the Textural Features and Forest Attributes

The R2 of selected textural features and the most common structural forest attributes are presented
in Table 4, while the R2 of all features are presented as Supplementary Data. For benchmarking
purposes, selected point-based features are also shown. None of the ALS-based features correlated
well with CV(DBH) or the number of understory trees on the field plots. The observed R2 of the
textural features and CV(G) on the large plots were more promising, as some of the GLCM features
explained approximately one third of the variation in CV(G). Nevertheless, obtaining approximately
the same degree of determination between the textural features extracted from the 9 m plots and CV(G)
of the satellite plots does not support the causality of this observation. Thus, the rest of the analyses
are focused on the accuracies of the tree-based forest attributes (i.e., V, G, and DgM).

The extracted textural features were fairly insensitive to the computation parameters used. The
patch features explained the variation of V and G more clearly when the constant threshold (5 m) was
used instead of the adaptive threshold. Some GLCM-derived features such as SAVG correlated well
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with V and G (respective R2 of 0.46 and 0.55 regardless of the lag) but always poorly with the DgM.
The lag parameter of the GLCM features affected only a few of the relationships between the GLCM
features and forest attributes. In particular, when a larger GLCM lag value (from 1 to 5) was used for
calculating the CON feature, the stronger R2 was observed with the DgM (from 0.01 to 0.22). LBP-based
CHM uniformity features U0 and U2 were also dependent on G having the dyadic R2 up to 0.20.

Table 4. The coefficients of determination (R2) of selected features (17 textural features and three
point-based features) and three forest attributes with the pixel size of 1.0 m and interpolation
parameter of 5.

Feature V G DgM

CHMmean 0.70 0.63 0.15
CHMstd 0.08 0.00 0.68
CHMmax 0.22 0.07 0.69
TP5m_% 0.47 0.61 0.00
TP5m_N 0.35 0.43 0.06
TPad_% 0.32 0.28 0.04
TPad_N 0.17 0.14 0.19

CONlag = 1 0.02 0.01 0.01
CONlag = 3 0.00 0.00 0.11
CONlag = 5 0.00 0.01 0.22
SAVGlag = 1 0.46 0.55 0.00
SAVGlag = 3 0.46 0.55 0.00
SAVGlag = 5 0.45 0.55 0.00

U0,lag = 1 0.13 0.18 0.00
U0,lag = 1 0.14 0.20 0.01
U2,lag = 1 0.06 0.12 0.00
U2,lag = 2 0.08 0.13 0.03

H_meanFP 0.43 0.22 0.51
VegRFP 0.38 0.58 0.00
H70FP 0.23 0.07 0.74

Among all ALS-based variables, CHMmean was the best feature for predicting V and G with
respective R2 of 0.70 and 0.63 (Table 4). In addition, TP5m_% predicted the respective forest attributes
better than any single point-based feature (R2 of 0.47 and 0.61). H_meanFP and VegRFP were the best
point-based features for predicting V and G with R2 of 0.43 and 0.58, respectively. In addition, based
on graphical comparisons with the point-based mean height features, CHMmean had a stronger but
also more non-linear relationship with V and G. A square root transformation was required to fix the
linearity of the relationship and improved the R2 of both CHM and point-based features. Conversely,
the point-based features were better for predicting DgM (the best feature H70FP had an R2 of 0.74 with
DgM) compared to the best textural features (CHMmax and CHMstd with R2 of 0.69 and 0.68 with
DgM, respectively).

3.3. Prediction Accuracies Based on the Linear Regression Models

The CHM features and the point-based features were applied for predicting V, G, and DgM using
LR. The best prediction accuracies of V (RMSE% of 25.0%) and G (RMSE% of 20.9%) were achieved
by combining both textural and point-based features, whereas an optimal prediction model of DgM

(RMSE% of 12.9%) was based only on point-based features (Table 5).
When all ALS-based predictor features were applied for the LR model of V, as an example,

CHMmean, TPad_%, U0,lag = 1, VegRLP, H_meanLP, SVARlag = 1, H10LP, TPad_std, and TPad_avg were
the first 10 predictor features selected to the model (Table 5). A similar combination of the different
feature groups was used for modeling G, whereas the DgM models were more frequently based on the
point features. The results suggest that combining different feature groups improves the prediction
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accuracies. Considering the interactions between the features in a feature selection procedure also
results in a slightly different ranking of the features than the correlation analyses above.

Table 5. The plot-level prediction accuracy of total stem volume, basal area and mean diameter using
different sets of predictor features and their transformations in linear regression analyses. Altogether,
10 predictors are listed from each feature group in the order they were selected (footnote). The
predictors included in the models were the first 1, 2, 3, or 5 predictors mentioned.

Predictors V, m3ha´1 G, m2ha´1 DgM, cm

RMSE RMSE% RMSE RMSE% RMSE RMSE%

CHM Textural Features a

The best feature 59.8 32.6 5.6 28.3 3.7 16.3
Set of 2 features 54.3 29.6 5.2 26.2 3.4 15.0
Set of 3 features 52.3 28.5 4.9 24.6 3.3 14.6
Set of 5 features 50.6 27.6 4.8 23.9 3.1 13.7

Point-based Features b

The best feature 81.6 44.4 5.7 29.0 3.3 14.4
Set of 2 features 57.4 31.2 4.7 23.8 3.0 13.2
Set of 3 features 55.2 30.0 4.7 23.5 3.0 13.0
Set of 5 features 53.0 28.9 4.6 23.0 2.8 12.2

CHM Textural Features and Point-based Features Combined c

The best feature 59.8 32.6 5.6 28.3 3.3 14.4
Set of 2 features 54.3 29.6 4.9 24.5 3.0 13.2
Set of 3 features 52.3 28.5 4.7 23.5 2.9 12.5
Set of 5 features 49.3 26.8 4.4 21.9 2.7 11.8

a V = f (CHMmean + TPad_%2 + CHMmean
2 +

‘
U0,lag = 1 + SVARlag = 1 + TP5m_std2 + TPad_std2 + TPad_avg2 +

CORlag = 1 +
‘

TPad_std); G = f (CHMmean + TP5m_%2 + TPad_% + CHMmax
2 + CORlag = 1

2 +
‘

U0,lag = 1 +
CORlag = 1 + TP5m_std + U0,lag = 2

2 + log(IMC2lag = 1)); D = f (CHMmax
2 + CONlag = 5 + IMC1lag = 1

2 + CHMmean
2 +‘

U0,lag = 1 +
‘

U0,lag = 2 + log(SVAR) +
‘

CHMmean + TPad_%2 + log(TPad_avg)); b V = f (H_meanFP
2 + VegRFP

2 +
H10FP + H_meanLP

2 + H10LP
2 + VegRLP

2 + D05LP
2 + H_stdLP

2 + H30FP + log(H05LP)); G = f (VegRFP
2 +

H_meanLP
2 + H10lP

2 +
‘

VegRFP + log(H_meanFP) + VegRLP
2 + H50LP

2 + D05FP
2 + H30FP + log(D90FP) +

H_maxFP); D = f (H70FP
2 + H60LP

2 + H20FP +
‘

H10LP +
‘

H30FP + H60FP + log(D90FP) + D95FP
2 + H90LP

2 +
H90FP

2); c V = f (CHMmean + TPad_%2 + CHMmean
2 +

‘
U0,lag = 1 + VegRLP

2 + H_meanLP
2 + SVARlag = 1 +

H10LP
2 +TPad_std + TPad_avg2); G = f (CHMmean + VegRFP

2 + H_meanLP
2 + TPad_den2 + VegRLP

2 +
IDMlag = 3

2 + H10FP
2 +

‘
U0,lag = 1 + TP5m_N2 + H05LP

2); D = f (H70FP
2 + H60LP

2 + log(IMC2lag = 1) + H10LP +
TPad_%2 + log(TPad_avg) +

‘
H20FP +

‘
H30FP + H05FP

2 + D50LP
2).

3.4. Unsupervised Classification

The partitioning of the 155 plots to 2–7 clusters according to the selected features (CHMmean,
CHMstd, TPad_avg, ASMlag = 1, IMC2lag = 1, and U2,lag = 2) resulted in altogether 27 sub-clusters in the
clustering hierarchy. Excluding clusters formed by single plots, the composition of the remaining nine
sub-clusters ordered according to CHMmean and labeled as A–I are shown in Supplementary Data
(Figure S1) in terms of the textural feature values that generated the clusters.

When examined against the field measurements, the clustering could be linked with forest
size-related attributes, particularly the aggregated stem volume, basal area, and mean diameter
(Supplementary Data, Figure S2). Cluster A included the most of the youngest stands, but it was not
completely uniform because of considerable variation in diameter distribution. Maturity and stocking
increased from cluster B to E. Cluster F included the most stocked stands in the data, and F–I were the
most prominent stands in terms of maturity for harvesting. Except for Cluster A, the clusters could
not be linked to dominant species or the heterogeneity in the within-plot diameter or between-plot
basal-area distributions.

The example of using the cluster dispersion obtained solely from the ALS data as a criterion to
prioritize the selection of the sample plots for model fitting is illustrated in Figure 4. The RMSE of V
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based on applying Equation (6) to the full data considerably varied when inserting the initial plots
(Figure 4b). The left column of Figure 4 suggests plots with the highest priorities in terms of the cluster
dispersion are needed to capture the correct form of the relationship, whereas adding plots with lower
priorities does not add information on the relationship. The RMSE stabilized after including 70 plots
with the highest priority (Figure 4b).

(a) (b)

Figure 4. (a) The relationship between the airborne laser scanning estimate of mean height (H) ˆ canopy
cover (CC) and plot volume (V) in the data studied. The filled and open circles correspond to clusters
including single or several plots, respectively, and the size of the open circles indicates the dispersion
of the plot from the respective cluster center; (b) The development of the root-mean-squared-error,
when the prediction of V is based on Equation (6) and an increasing number of sample plots for model
fitting, selected in the order of the decreasing dispersion.

4. Discussion

Unlike in earlier studies based on ALS, we performed a comprehensive comparison of methods for
extracting and quantifying the textural variation present in the CHMs derived from a boreal forest area.
Although earlier studies had related the textural variation of aerial images to size [28] and diversity [71]
attributes of the vegetation and explained the effects of the parameters affecting the textural features
extracted from aerial images [28], a new study was justified since the CHMs interpolated from the
height values differ considerably from the spectral response recorded by the aerial images. The CHMs
directly reflect the size and structure variation in the forest and were expected to thus readily improve
the forest attribute prediction, eluding problems related to variations in geometry and radiometry of
the spectral images [80]. Further, a considerably wider range of textural features was included in our
analyses compared to [28]. The results are based on practical data, which are broadly available due to
the frequent acquisitions of such data for ground elevation modeling. The results of this study may
be seen as a continuation of studies promoting the usability of such data for various forest inventory
applications [2–4,12,59,81].

While an exhaustive comparison of the texture quantification methods was found to be impossible
due to the multitude of the developed methods, we attempted to select the most important ones based
on a literature review of the properties of the algorithms. It could be argued whether the selection
of the methods covered by our analyses was representative. However, our problem of relating the
extracted features to the forest attributes aggregated from field plots with an area of 254 m2 placed
some constraints on the methods. A particular emphasis was placed on the rotation invariance, which
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removed the requirement to run the training procedure applying the same rotation. On the other hand,
the use of the isotropic features may have caused a loss of directionality from these features, which
could have been an important characteristic when classifying the texture.

Assuming an underlying spatial pattern or geometric model of the trees would have enabled the
use of additional approaches to quantify the texture. However, there is no evidence that the spatial
pattern of the trees could be correctly classified based on remotely sensed data [20]. Even if such
a classification were useful for forestry applications, departures from the assumptions could cause
severe error trends [82]. The inherent spatial autocorrelation of the data further prevented the use of
some texture quantification approaches. Given these challenges, it was well reasoned to focus on the
statistical texture analyses and the selected combinations of order and scale (Table 3). Note that similar
considerations on the feasibility of texture analyses and roles of assumptions and spatial scales were
already discussed based on optical satellite images [83].

The generation of CHMs from the low-density ALS data affected the textural features derived
using the selected methods. A part of the textural variation in the CHMs originates from the choice
of whether to interpolate pixel values or increase the pixel size in order to use more observed height
values. The use of small pixel sizes required a number of pixels to be interpolated, whereas increasing
the pixel size would have allowed more pixel values to be based on real height observations. On the
other hand, the degree of detail of the CHM reduced according to the pixel size. Nevertheless, Figure 1
indicates that the vertical and horizontal variation in the forest structure, as captured by the ALS point
data, can be reproduced and analyzed as textural variation in the CHMs. An obvious solution to add
the level of detail of the CHMs would be to increase the point density of the data. Data with a higher
density might improve the texture analyses, but also allow the use of more efficient analysis methods
such as detecting individual tree tops and using them as predictors [18].

The sparse point density led to, at best, a large CHM pixel size. Increasing the pixel size resulted
in an increase of the CHM values observed, but a loss of information in terms of the detail. At small
pixel sizes (0.5 or 1.0 m), the R2 of textural features and forest attributes were stable, whereas at larger
pixel sizes their R2 degraded. The IDW interpolation parameter α only had a minor impact on the
textural features computed in the study. Notably, many other techniques could have been employed in
the interpolation of the CHM rasters. Acknowledging that the effects of interpolation to the quality
of the CHMs should also be further studied, we selected to fill the CHMs using IDW interpolation
due to its simplicity and controllability based on only few parameters. It would further have been
possible to fill the CHMs using more than only or first echoes per emitted pulse, which has become
popular especially when the detail of the CHM must enable individual tree detection [18]. Even
though such alternative may be recommendable for practical purposes, the results obtained here using
only first echo data are more likely reproducible with sensors that record a different number of echo
categories [6].

The performance of the textural features derived using the selected pixel sizes (0.5 or 1.0 m) was
moderately good for predicting V, G, and DgM. Among the tested feature sources, those based on
the HIST, PATCH, and GLCM clearly outperformed those based on LBP. The HIST features derived
from the grey-level histograms directly characterized the forest canopy height based on the CHMs.
CHMmean was clearly the best individual feature for predicting stem volume and basal area among
all the ALS-based features. CHMstd and CHMmax were almost as good as the point-based features to
explain the variation of mean DBH. This is slightly surprising, since the CHM features should overall
include less information compared to the height features computed from the entire point cloud. The
reasons for the more stable relationship with the forest attributes may be related to the smoothing due
to the CHM interpolation step. A similar result was reported in [4] and the potential to improve forest
variables this way should be further examined. Overall, our results indicate that the description of the
forest structure may be considerably simplified using the CHMmean as a substitute (or complement)
for the point-based features. For improved accuracies, one should combine the CHM height features
with the density features derived from the point data.
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Among other textural feature groups, the PATCH features were useful in the prediction of the
volume and basal area. The features derived using adaptive CHM threshold appeared as important
predictors of the volume, whereas the basal area was better modeled when a constant threshold was
applied. Among the GLCM features, SAVGlag = 1 was the best individual feature, while SVARlag = 1
was most often selected to the LR models from the set of other predictor candidates. Conversely,
the uniformity features derived from the LBPs did not stand out with respect to any application
considered. This is also slightly surprising, since LBPs should fundamentally detect more detailed
microstructures than the aforementioned techniques. Analyzing the individual LBPs directly using
more complex machine learning methods might provide better results. The poor performance of the
method may also be related to the low resolution of the data analyzed. Nevertheless, the result may
also indicate that texture quantification methods performing well in man-made material classifications
may underperform in the case of vegetation with considerable natural variations.

Interestingly, the textural features sometimes outperformed point-based features regardless of
which echo types were used for the computation. The use of the area-based approach with point-based
canopy height and density features is a common and established practice for predicting forest inventory
attributes from the ALS data [5,8]. Mainly features based on the vertical distribution of the ALS
point cloud are used, however, for which reason these analyses optimally characterize only the
vertical canopy conditions. The textural features of the present study were computed from the
interpolated CHMs, aiming to improve the characterization of horizontal canopy conditions in ALS
forest inventories. From a forest management planning perspective, the horizontal information in
terms of the stem density and clustering is related to the timing of thinnings, and the inclusion of the
textural features is proposed to improve these decisions [19]. Although Ozdemir and Donoghue [34]
and Wood et al. [71] indicated a potential to link the textural features with the diversity of the tree
size and vegetation structure, respectively, our results did not support this. The textural features were
poorly correlated with the coefficients of variation of the DBH and G values as well as with the number
of understory trees. The features mainly described the properties of the trees in the dominant canopy
such as the total stem volume, basal area, and mean diameter. Direct measures of the understory are
difficult to obtain due to transmission losses occurring in the upper canopy [84] (see also [50]) and
no correlations between the textural features quantifying the top of the canopy and the understory
were observed here. Although a slight correlation between the textural features and CV(G) computed
from the large plots was observed, a similar correlation was obtained when the textural features were
computed from a smaller window. A better solution for quantifying the within-stand variation in
a practical prediction based on the grid cells could be to analyze the variation between the neighboring
cells. A higher number of cells would also likely be needed to make solid conclusions.

In addition to the linear regression analyses, the textural features were demonstrated in
an unsupervised classification using the well-known k-Means approach. The approach provided
a data-driven partitioning of the feature space to the given number of clusters. As there are no objective
criteria for determining the number of clusters [74], we followed an earlier example on determining this
number [59]. By initially experimenting with different numbers of clusters, we found that 4–7 structural
classes could be separated based on our study area and data. There are five classes in both the site
type and development stage classification system applying to the studied forest area. However, not all
classes are likely present and the data may not discriminate between all these properties. Therefore,
the applied split and merge criteria resulted in a reasonable number of clusters.

Notably, the results obtained here are a re-clustering of the entire study area [59]. Whether
applied to the full study area, it is reasonable to expect more clusters to be found similar to [59].
Nevertheless, the main purpose of this analysis was to determine if the developed features could be
used for pre-stratification of the inventory area based on ALS data, as proposed in the introduction
section. It was found that the dispersion of the clusters derived in an unsupervised mode could be
used as an indicator for prioritizing the plots to be measured as the sample to form the reference data
for the wall-to-wall models. We acknowledge that these are indicative results and the generalizability
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of this conclusion should be verified in more extensive data, allowing a split to training and validation
data. For example, the textural features derived show a preliminary potential for streamlining the
sampling design of the field plots to be used for later inventories, which should be further studied.

Practical inventory projects of large areas will most likely need to increasingly account for
computation costs related to extracting the features. We see a considerable potential of the features
developed here related specifically to their computational feasibility. For example, when designing
the sampling protocol to obtain the field reference data for an ALS-based forest inventory, the sizes
and orientations of potential plot locations should not be fixed but instead allowed to vary in order
to design a field sample capturing the essential variation of the forest. Whether guiding the field
plot sampling requires extracting features from, e.g., moving windows of multiple scales, the related
computations are likely much more efficient when based on CHMs rather than underlying point data
due to the efficient processing routines developed for raster data. Specifically, the time complexity
related to CHM-based features reduces from the number of points to the number of pixels of the
CHM, which appears to be a considerable factor in large inventory areas. Relating the computation
costs of extracting various features to the added value obtained could be a potentially interesting
future topic, since at least we are not aware of studies related to the time and space complexity of the
ALS algorithms.

5. Conclusions

CHMs interpolated from the ALS data were found to reflect some degree of textural variation
that was useful for modeling the underlying forest attributes, particularly plot volume and basal area.
Applications based on supervised (linear regression) and unsupervised (k-Means clustering) learning
of forest structure were demonstrated. The latter indicates the utility of the derived features for
improving the sampling of the field plots for forest inventories, which should be further verified with
separate validation data. Among the features considered, the statistical, patch, and GLCM features
outperformed those based on point data, indicating that improved information is contained in the
textural features. Features based on LBP were less useful for the same purpose. Although the tested
features were selected based on a comprehensive review of potential methods to quantify image texture,
we acknowledge that many more textural feature extraction techniques could be considered, especially
if the requirement to produce rotation-invariant features was relaxed. In all, even the sparse-density
data include potential to develop features that quantify very different aspects of the data, which should
be employed together to improve analyses of vertical and horizontal forest structure.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/7/582/s1,
Table S1: Coefficients of determination (R2) between 87 CHM textural features and various forest attributes;
Table S2: Coefficients of determination (R2) between 52 point-based features and various forest attributes; Figure S1:
The distribution of the textural features CHMmean, CHMstd, TPad_avg, ASMlag = 1, IMC2lag = 1 and U2,lag = 2 in the
sub-clusters formed by the k-Means algorithm; Figure S2: The distribution of the field-measured forest structural
attributes according to the sub-clusters formed based on the ALS data.
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Abstract: Due to expected climate change and increased focus on forests as a potential carbon sink,
it is of interest to map and monitor even marginal forests where trees exist close to their tolerance
limits, such as small pioneer trees in the forest-tundra ecotone. Such small trees might indicate tree
line migrations and expansion of the forests into treeless areas. Airborne laser scanning (ALS) has
been suggested and tested as a tool for this purpose and in the present study a novel procedure
for identification and segmentation of small trees is proposed. The study was carried out in the
Rollag municipality in southeastern Norway, where ALS data and field measurements of individual
trees were acquired. The point density of the ALS data was eight points per m2, and the field tree
heights ranged from 0.04 to 6.3 m, with a mean of 1.4 m. The proposed method is based on an
allometric model relating field-measured tree height to crown diameter, and another model relating
field-measured tree height to ALS-derived height. These models are calibrated with local field data.
Using these simple models, every positive above-ground height derived from the ALS data can be
related to a crown diameter, and by assuming a circular crown shape, this crown diameter can be
extended to a crown segment. Applying this model to all ALS echoes with a positive above-ground
height value yields an initial map of possible circular crown segments. The final crown segments
were then derived by applying a set of simple rules to this initial “map” of segments. The resulting
segments were validated by comparison with field-measured crown segments. Overall, 46% of the
field-measured trees were successfully detected. The detection rate increased with tree size. For trees
with height >3 m the detection rate was 80%. The relatively large detection errors were partly due
to the inherent limitations in the ALS data; a substantial fraction of the smaller trees was hit by no
or just a few laser pulses. This prevents reliable detection of changes at an individual tree level, but
monitoring changes on an area level could be a possible application of the method. The results further
showed that some variation must be expected when the method is used for repeated measurements,
but no significant differences in the mean number of segmented trees were found over an intensively
measured test area of 11.4 ha.

Keywords: airborne laser scanning; treeline; monitoring

1. Introduction

Airborne laser scanning (ALS) is used today as a tool for forest applications, both for research
purposes as well as in operational settings. Productive forest has in many places been the main target,
but ALS can also be applied in other types of forest. The very frontiers of the forests have in many
places gradually expanded into alpine areas [1], and this expansion is believed to be caused by several
factors, with reduced grazing by domestic livestock and climate changes as two dominating causes.
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Expansion of forests into areas such as the forest-tundra ecotone will influence carbon sequestration,
but will also in many places have a direct effect on the climate through the so-called “albedo-effect”.
The darker-colored trees will reflect less of the solar radiation than bare ground, especially in the
winter when the ground is covered with snow. The net effect of this phenomenon is warming [2].

It is therefore of interest to map and monitor possible changes taking place in the vegetation
structure of the forest-tundra ecotone, such as the appearance of pioneer trees and the migration of
the tree line. ALS has through several studies been proposed and tested as a tool for this task [3–8].
Several of these studies investigate and document the potential for discriminating between echoes
reflected from trees and echoes reflected from other objects using metrics derived from ALS data,
such as the height above the modeled terrain surface, the backscatter intensity of the echoes and the
properties of the spatial distribution of echoes. There is, however, a need to apply this knowledge and
further develop methods to derive quantitative properties such as tree numbers, crown coverage or tree
size distributions to enable the establishment of efficient monitoring methodologies. A segmentation
and identification of single trees from the ALS data would be one possible way of deriving such
properties. Numerous studies have already proposed and tested methods to derive single-tree
segments from ALS data [9–13]. An introduction to tree segmentation and an overview of these
methods can be found in Koch et al. [14]. Common to all of these studies are that they are focused
on mature forests, with an emphasis on trees considerably larger than those typically found in the
forest-tundra ecotone. We did not consider any of the described methods to be directly applicable
to the task of deriving single-tree information for smaller trees in the forest-tundra ecotone because
with an average point density of, for example, 5–10 points per m2, the number of echoes from each
individual tree will typically range from one single echo up to less than 100 in most cases.

Many of the existing segmentation methods involve interpolation of the ALS point cloud to
a raster or to a three-dimensional voxel space [14]. However, such methods typically assume a
choice of a fixed pixel—or voxel—size. This pixel size will be closely linked to the range of tree sizes
which can be detected. A large pixel size will smooth out the information inherent in the ALS point
cloud and therefore make the detection of small trees harder, whereas smaller pixels will likely cause
over-segmentation of echoes from larger trees. With these existing methods one is, in practice, faced
with a choice of detecting trees within a limited size range, through the choice of a fixed pixel size.
The chosen pixel size and the level of smoothing applied will also determine the spatial extent of each
segmented tree crown. The extent of the segmented tree crowns is typically represented by pixels,
which could limit the ability to accurately represent the crown of small trees. We wanted a method
that could detect trees ranging from small to medium in size, and rather than modifying any of the
existing methods, we developed a simple and novel segmentation procedure. Thus, the proposed
segmentation procedure was specifically tailored to the detection of small trees, with as few as only
one laser echo. It should be noted that its area of application could be wider than just small trees in the
forest-tundra ecotone, including, for example, the monitoring of seedlings in forest stands planted after
final fellings in managed boreal forests, or the detection and monitoring of small trees in afforested
areas in the tropics.

The objectives of the present study were (1) to develop a procedure for automatic detection and
segmentation of small trees using ALS data and (2) to assess the accuracy of the method by comparing
the results with field reference data. We consider small trees in this context to be trees with heights up to
7 m and crown diameters up to 6 m. We further wanted to assess the suitability for monitoring purposes
by testing the stability of the method across two separate ALS acquisitions for the same study area.

2. Materials and Methods

2.1. Study Area

The study area is located in the Rollag municipality in southeastern Norway (60˝01N 9˝011E,
910–950 m above sea level) and is constituted by a rectangle of 200 ˆ 600 m centered on a mountain
ridge. The data materials used were from registrations in the tree line which, at this location, is around
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900–940 m above sea level (Figure 1). The main tree species are downy birch (Betula pubescens ssp
czerepanovii), Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.).

 

Figure 1. Picture of the landscape and vegetation in the study area.

2.2. Field Data

Field registrations from 472 positioned trees ranging from 0.04 to 6.3 m in height were used in the
present study (Table 1). The field work was conducted during the summer of 2012. Within the study
area, 40 points were systematically laid out, and at each point up to 16 trees were selected according
to the so-called point-centered quarter sampling method sampling procedure [15]: At each point a
circular area with a radius of 25 m was sectioned into four quadrants along the cardinal directions N–S
and E–W. Using four height classes (0–1, 1–2, 2–3 and >3 m), the tree nearest to the center point in each
class and quadrant was selected, giving a maximum of four sample trees per quadrant. The purpose
of the procedure was to establish a consistent method to sample trees across the entire range of tree
heights found in the area.

Table 1. Summary of the field-measured trees.

Height (m) Mean Crown Diameter (m) n

min–max (mean) min–max (mean)

Deciduous trees a 0.04–6.30 (1.73) 0.03–5.50 (1.37) 193
Pine 0.06–1.99 (0.47) 0.03–1.35 (0.37) 83

Spruce 0.05–3.08 (1.49) 0.07–3.35 (1.28) 196
All 0.04–6.30 (1.41) 0.03–5.50 (1.15) 472

a Mainly birch.

Each of the sample trees were positioned with real-time differential Global Navigation Satellite
Systems, with an expected accuracy of 3–4 cm. For each tree, the species, height and horizontal
crown diameter in the N-S and E-W directions were recorded. The height and crown diameters were
recorded with a measuring tape, with the heights of the highest trees recorded with a Haglöfs Vertex
III hypsometer.

The horizontal extent—or crown projection—of all field-measured trees in the data material
was defined as an ellipse created from the tree position and the two perpendicular crown diameter
measurements. These field-measured crown segments were used when extracting ALS echoes from
individual trees, and as a field reference in the validation.

2.3. ALS Data

Two sets of ALS data were used in the present study. The first set of ALS data was acquired in
July 2006 with an Optech ALTM 3100 laser scanner mounted on a fixed-wing aircraft. These data were
acquired in two overlapping flight lines, which means that parts of the study area were covered by ALS
data from both flight lines. This dataset was used to test the stability of the proposed segmentation
procedure (further described in Section 2.4).
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The second set of ALS data was acquired in August 2012 with a Leica ALS70 laser scanner
mounted on a fixed-wing aircraft. This dataset corresponded in time with the field registrations and
was used to develop and test the segmentation procedure. The two datasets are denoted ALS2006 and
ALS2012 throughout this paper. Further details of the ALS2006 and ALS2012 datasets are given in
Table 2.

Table 2. Specifications of the two ALS datasets. Mean echo and pulse density calculated from the data,
information in the other fields from the data vendor.

Dataset ALS2006 ALS2012

Sensor Optech ALTM3100 Leica ALS70
Scan frequency (Hz) 70 -

Pulse frequency (kHz) 100 154.4
Flying speed (m/s) 75 69

Mean flying altitude (a.g.l.) 800 m 1800 m
Mean point density (echoes per m2) 8 15
Mean pulse density (pulses per m2) 8 15

Footprint diameter (m) 0.21 0.27
Vertical accuracy (m) 0.10 0.12

Planimetric accuracy (m) 0.13 0.20
Maximum iteration angle (degrees) 9 7.5

Maximum iteration distance (m) 1 1.9

First return echoes were used from the ALS2006 dataset, and all returns from the ALS2012 dataset.
Note that—with respect to return categories—the difference between the two datasets was small, since
most pulses yield only a single echo from the generally low vegetation in the study area. We found that
approximately 97% of the echoes in the ALS2012 dataset were, in fact, single returns. The positional
accuracy of the laser echoes was expected to be in the range of 0.1—0.2 m for both sensors, according
to Ussyshkin and Smith [16] and the Leica ALS70 product brochure [17].

The ALS echoes were, for both datasets, classified into ground and non-ground using the Terrascan
software, following the triangular irregular network (TIN) densification algorithm described by
Axelsson [18]. Control parameters for the ground classification, the so-called “maximum iteration
angle” and “maximum iteration distance”, were set to 9 degrees and 1 m for the first ALS dataset.
In the second dataset, values of 7.5 degrees and 1.9 m were used (see [19]). Above-ground heights
were calculated for all echoes, as the distance between the TIN and the recorded ellipsoidal heights.

A selection of the ALS and field data is visualized in Figure 2.

Figure 2. Visualization of five field-measured trees, and the ALS echoes from ALS2012 in the
corresponding area. Viewed from above (upper figure) and from the side (lower figure). The field-
measured height and crown extent is colored red, and the ALS echoes are colored from grey to black.
The highest echoes are colored black. Note that the terrain height has been subtracted from the ALS
echo heights (see text for details), and that only a sample of trees was measured.
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2.4. Calculations and Analysis

The field dataset was split in to a modeling dataset consisting of four of the 40 sample locations
(locations #10, #20, #30 and #40), and a validation dataset consisting of the remaining 36 locations.
This resulted in a set of 39 trees for modeling, and a set of 433 trees for validation. Note that the
validation dataset was used to validate the whole segmentation process, whereas the modeling data
were used for the two models described in the following. The rationale for this split of the data was to
have a sufficient number of trees for the two allometric models, but with an emphasis on the validation
of the whole segmentation process. We considered the chosen number of trees in the modeling dataset
to be sufficient for the two simple linear models. A summary of the model and validation datasets is
given in Table 3.

Table 3. Number of trees in the modeling and validation datasets.

Height Class Model Dataset Validation Dataset

0–1 m 18 (46%) 202 (47%)
1–2 m 11 (28%) 119 (27%)
2–3 m 6 (16%) 61 (14% )
>3 m 4 (10%) 51 (12%)

all 39 433

The proposed method is based on two models, one allometric model relating field-measured tree
height to crown diameter, and one model relating field-measured tree height to the above-ground
height of the ALS echoes.

2.4.1. Height–Crown Diameter Model

The field registrations in the modeling data were used to fit a non-intercept linear regression
model relating crown diameter to tree height

pcd “ βa ¨ h ` ǫa (1)

where pcd is the crown diameter defined as the mean of the two perpendicular crown diameter
measurements, h is the field-measured tree height, βa is the parameter to be estimated and ǫa

is an error term, expected to be normally distributed with mean zero. Other model forms and
transformations of the variables were tested, but did not result in substantially better models with
this data. The simplest linear model was used in the present study, and other models are not further
documented. A non-intercept model was chosen in order to ensure positive predictions of cd for
all h > 0, and to satisfy the condition that cd = 0 when h = 0. The coefficient of determination for
the non-intercept model was calculated as the square of the Pearson's correlation of the fitted and
observed values.

The relationship between height and crown diameter might vary between species, but since
species information cannot easily be obtained from ALS data we could not use species-specific models
for predictions. The species information were therefore not used when we fitted the model given by
Equation (1).

2.4.2. ALS Echo Height–Field-Measured Height Model

The crown segments formed from the field-measured crown diameters were used to extract
echoes from the ALS2012 dataset for each tree. All echoes inside the crown segment were assigned to
the tree for which the segment was created. We did not introduce specific procedures for handling
overlapping crowns, which means that a single echo could theoretically be assigned to more than
one tree. It further means that any given echo assigned to a tree could have been reflected from an
overlapping part of another tree. In the modeling data the maximum above-ground height of the
echoes assigned to a tree was denoted hmaxALS and related to the field-measured tree height through a
linear regression model

ĥ “ βb0 ` βb1 ¨ hmaxALS ` ǫb (2)
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where ĥ is the estimated tree height, βb0 and βb1 are parameters to be estimated and ǫb is an error term.

2.4.3. Model Fit and Validation

Model fit was assessed by inspecting the coefficient of determination, and the models were further
validated through a leave-one-out cross-validation procedure. Root mean squared error (RMSE) was
computed as

RMSE “

dřn
i“1 pxi ´ x̂iq2

n
(3)

where n is the number of trees, xi is the reference value of the ith tree and x̂i is the corresponding value
predicted by the model constructed from the remaining n-1 trees in the cross-validation. We denoted
RMSE as a percentage of the mean reference value as RMSE%.

2.4.4. Crown Segments

Using the two described models (Equations (1) and (2)), every individual echo with a positive
above-ground height was related to a circular crown segment, positioned with the given echo in its
center (Figures 3 and 4). Equation (2) was used to estimate a tree height from the above-ground height
of the ALS echo, and then this tree height was used in Equation (1) to get an estimated crown width,
and thereby produce an initial circular crown segment. Thus, at this initial stage all echoes with a
positive above-ground height were related to a positioned crown segment. The final crown segments
were then determined by applying a set of simple rules to the initial crown segments:

‚ All echoes that fell within the circular crown segment of an echo higher above ground (i.e., a larger
segment as per the height-crown diameter model) were assumed to belong to the larger
segment, and such smaller segments were therefore removed before the subsequent steps.
This procedure was carried out according to segment size, so that echoes within larger segments
were removed first.

‚ In the next step, overlapping segments were identified and, based on the degree of overlap, the
two underlying echoes were either assumed to be from different trees and the corresponding
segments kept separate, or they were assumed to be reflected from the same tree. If the latter
was true, the smaller segment was merged with the larger. Segments with an overlapping part of
the two radii of more than s times the smaller radius were merged. In the case of merging two
segments, the lowest echo was added as a new vertex in the largest segment (Figures 3 and 4).
In the present study we tested values of s between 0.05 and 0.85.

Figure 3. Graphical representation of steps in the segmentation procedure: (a) Laser echoes viewed
from above, darker color indicates echoes higher above ground; (b) Each echo is associated with a
circular segment. Note that the segment of the echo highest above ground is created first, and echoes
inside this segment are treated as reflected from this segment; (c) Overlapping circular segments are
merged based on the degree of overlap (see text for details), with the echoes of the smaller segments
added as vertices in the larger segment, forming the final segment (shown in black).

The procedure described in this section was implemented in the programming language R [20]
and C++ as a fully automated algorithm.
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Figure 4. Flow diagram showing an outline of the segmentation process.

2.4.5. Validation

The ALS-derived crown segments were compared to the field-measured crown segments, and the
number of field-measured segments matched by an ALS-derived segment was noted. A “match” in
this context is not universally defined, so we had to rely on a set of criteria to decide if two segments
matched up or not. The set of criteria we used basically defines the degree of similarity in terms of
size and position that is required to label a field-measured segment as matched by an ALS-derived
segment, thus regarding the tree as detected and correctly segmented.

An ALS-derived segment was defined to be successfully matched with a field tree by using the
following procedure:

Each field-measured tree was linked to an ALS-derived tree if the position of the ALS-derived
tree was inside the field-measured crown segment. If more than one ALS-derived tree was inside the
field-measured crown segment, the ALS-derived tree with the smallest planar distance to the field tree
position was used. The location of the highest ALS echo within the ALS-derived segment was used as
the ALS-derived tree position.

Linked pairs of trees with large differences in height were excluded. This was done by fitting a
regression model ĥ~h, and excluding all pairs of linked trees with a height difference larger than two
times the standard error of the model.

This procedure corresponds to the procedure used in a comparison of segmentation algorithms
by Vauhkonen et al. [21].

We calculated detection rates for the individual height classes described in Section 2.2 as the
number of correctly segmented field trees in the particular height class to the total number field trees
in that class.
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2.4.6. Stability—Number of Segmented Trees

Due to the design of the field work, we could not calculate the commission error. We did, however,
test the stability of the number of ALS-segmented trees between two separate ALS acquisitions within
a given area. In other words, we tested—for different height classes—if a similar number of trees
would be segmented from a separate, second acquisition of ALS data. One aim of the current project
was to develop a method that was suitable for monitoring, or repeated measurements. In such a
monitoring approach it is desirable to have ALS-derived metrics which are stable, i.e., which vary little
due to properties of the scanning and segmentation process itself. Thus, as much as possible of the
variation between similar metrics derived from two separate acquisitions should ideally stem from
actual changes in the vegetation.

The ALS2006 dataset was used, with two acquisitions carried out on the same day. The same
sensor and flight parameters were used for the two acquisitions. The study area was divided into
hexagonal cells of 200 m2 and after application of the proposed segmentation algorithm, the number of
segmented trees from within each cell was counted. This was done separately with data from each of
the two ALS acquisitions. Note that we, in the segmentation procedure here, used the existing models
derived by Equations (1) and (2) and the field and ALS data from 2012.

Differences in the number of segmented trees between the two acquisitions were tested by
fitting linear mixed effects models, described further in this section. The use of this approach was
motivated by the ability to incorporate assumptions about spatial correlation in the test procedure.
We asserted that the observations might be spatially correlated, which would violate the assumption of
independent observations in statistical tests such as a paired t-test. Following the approach described
by Zuur et al. [22] and Pinheiro and Bates [23], we tested the difference between the mean number of
trees in each height class by fitting a linear mixed effects model:

yi “ xiβ ` bi ` ǫi , i = 1, . . . , M (4)

where yi is a vector with the number of segmented trees in cell i and xi is a vector of the corresponding
acquisitions as factors. We derived the number of trees from two different acquisitions, so yi and xi

will be vectors of length two. Then β is a vector of the regression model parameters (fixed effects), bi is
a vector of random effects allowed to differ for each cell, ǫi is an error vector and M is the number of
cells. In this model framework it is assumed that

bi „ N
´

0, σ2
b

¯
, ǫi „ N

´
0, σ2I

¯
(5)

where σb
2 and σ2 are the within-cell and between-cell variance, respectively. I denotes an identity

matrix. The lme function from the nlme package [24] in the statistical software R was used to fit the
models. The t-statistic and the corresponding p-value for the slope in this model should be identical to
the values obtained from a comparison of the two acquisitions using a paired t-test [25]. We verified
this for all the models in this study by performing paired t-tests using the t.test function in R, and
comparing the results with the slope statistics in the output from the model-fitting using the lme

function. The model given by Equation (4) can thus be used as a comparison of the two acquisitions.
As described by Zuur et al. [22], assumptions about spatial autocorrelation between subjects can be
introduced in a linear mixed effects model by replacing I with a matrix V , such that

ǫi „ N
´

0, σ2V
¯

(6)

with V depending on the given correlation structure. Since the data from the two acquisitions
could exhibit spatially-dependent variation, we tested if incorporating assumptions about spatial
autocorrelation led to models which differed from the models without such assumptions.
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We fitted separate models with spherical and Gaussian correlation structures [23]. Each of these
models was then compared to the model with assumed uncorrelated errors, given by Equations (4)
and (5). Since this model is nested within the models with assumptions about correlated errors, a
likelihood ratio test could be used for the comparisons [23].

3. Results

3.1. Regression Models

Two linear regression models were fit to the modeling dataset (Equations (1) and (2)). Both models
showed good fit, with R2 values of 0.86 and 0.72 (Table 4 and Figure 5). A leave-one-out cross-validation
of the two regression models resulted in RMSE% of 28.5% and 44.7% for the height model (Equation (2))
and crown diameter model (Equation (1)), respectively (Table 4).

Figure 5. Observed versus predicted values for the two linear models: Height–crown diameter model
given in Equation (1) (top), and ALS height–field height given in Equation (2) (bottom).
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Table 4. Regression model variables, parameter values and goodness of fit. RMSE from leave-on-out
cross-validation.

Dependent Variable Independent Variable Parameter Values a R2 RMSE (RMSE%)

h hmaxALS βb0: 0.8030 βb1: 0.9590 0.86 0.49 (28.5)
cd h βa: 0.6621 0.72 0.45 (44.7)

a Significance level for all parameters: p < 0.000.

3.2. Detection and Segmentation

Following the procedure described in Section 2.4, individual crown segments were formed from
the ALS echoes for the entire study area (Figures 6 and 7). We report results for the segmentation
procedure with parameter s = 0.2. Other values of s gave only minor changes in the results, and this is
further discussed in Section 4. The ALS-derived segments were compared to the field-measured crown
segments (Figure 4). A successful match, i.e., a correctly segmented tree, was registered using the
criteria given in Section 2.4. Overall, 46.2% of the trees were successfully segmented. Detection rates
ranged from 15.8% to 80.4% for the individual height classes (see Section 2.2), with the detection rate
increasing with tree size (Table 5).

Figure 6. Single-tree segments from the described procedure (hollow segments) and field-measured
crown ellipses of detected (light grey) and undetected (dark grey) trees. Note that only a sample of the
trees was measured in the field. ALS echoes are colored according to the above-ground height.

Table 5. Detection rates with field-measured segments as reference.

Height Class Correctly Segmented Trees (%)

0–1 m 15.8
1–2 m 68.1
2–3 m 75.5
>3 m 80.4
All 46.2
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Figure 7. Visualization of single-tree segments and ALS echoes from ALS2012, covering the same
area as Figure 2. Viewed from above (upper figure) and from the side (lower figure). The segments
extent and estimated tree heights are colored green, and the ALS echoes are colored from grey to black.
The highest echoes are colored black. Note that the terrain height has been subtracted from the ALS
echo heights (see Section 2.3 for details).

3.3. Stability

Comparison of the linear mixed effects models with and without assumptions about spatial
autocorrelation revealed that no differences could be found between the models, with p-values for
the likelihood ratio tests ranging from 0.15 to 0.99. This suggests that spatial autocorrelation does not
have a major influence in this case, and that using an ordinary paired t-test is sufficient for testing the
differences between the number of trees derived from the two acquisitions in each 200 m2 cell.

These tests for differences between the mean number of segmented trees from the two acquisitions
resulted in p-values ranging from 0.27 to 0.65, and it is evident from this result that no significant
differences could be detected through these tests. It should be noted that this range included p-values
from all comparisons, for the slope coefficients in the mixed models in which assumptions about
spatial autocorrelation were included, as well as ordinary paired t-tests. Overall, this shows that for
the 569 cells—with a total area of 11.4 ha—there were no significant differences between the mean
number of segmented trees derived from the two same-day ALS acquisitions.

Some variation between the number of segmented trees from the two acquisitions was, however,
observed, with the highest variation for the smaller trees (Table 6). Overall, the mean number of
segmented trees in each cell was 52.0 and 51.7 for the two acquisitions. The mean of the differences
between the number of segmented trees in each cell for the two acquisitions was 0.31 with a standard
deviation of 10.20 (Table 6). It is, from this, evident that the number of segmented trees varies for
individual cells. This variation is smaller if one considers only larger trees (Table 6).

Table 6. Comparison of the number of segmented trees within each 200 m2 cell derived using two
separate ALS acquisitions (569 cells of 200 m2). Mean difference between the two acquisitions and the
standard deviation for the difference (sd).

Height Class
Number of Trees

Acquisition 1 Acquisition 2 Difference a

Min–Max (Mean) Min–Max (Mean) Mean sd

0–1 m 0–139 (37.8) 0–170 (37.7) ´0.38 10.04
1–2 m 0–30 (4.6) 0–28 (4.5) ´0.11 2.21
2–3 m 0–30 (3.7) 0–32 (3.8) 0.08 1.82
>3 m 0–31 (6.3) 0–30 (6.3) 0.04 1.27
All 1–147 (51.7) 1–181 (52.0) 0.31 10.20

a No significant differences were observed, see text for details.
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4. Discussion

Over all the four height classes, 46.2% of the trees were correctly segmented by the proposed
method. A higher proportion of the larger trees were correctly segmented and the detection rate
decreased with the decreasing tree size. There are few directly comparable studies, since previous
studies typically targeted trees that are larger than in the present study. Vauhkonen et al. [21] compared
six single-tree detection algorithms in different types of mature forests. The average detection rates for
the different forest types reported by Vauhkonen et al. varied between 54% and 91%. These detection
rates were, however, calculated using the plot-wise total number of tree segments in relation to the
number of field-measured trees. They cannot be directly compared to the detection rates in the present
study, which were calculated based on the linking field and ALS-derived trees. Vauhkonen et al. report
a corresponding number called “treetop candidates linked to field trees”, and this varied between 42%
and 60%. The mean tree diameter at the different sites in the data material used by Vauhkonen et al. was
18.5–35.8 cm, and the ALS point density was 1.5–30 per m2. The detection rates observed for trees with
h < 1 m in the present study were considerably lower than the rates reported by Vauhkonen et al. [21].
These trees are, however, much smaller than any tree in the data material used in that study. For the
trees with h > 1 m, the proportion of detected field trees in the present study seems to be within the
range reported in Vauhkonen et al. [21], as well as in recent studies by Liu et al. [26], and Mongus and
Zalik [27].

The advantage of the proposed method is that it is simple, and can be implemented using models
developed from a limited number of sample trees. A disadvantage is the need for these sample trees,
as well as the detection errors discussed in the following.

From the current study it is evident that direct detection of all individual trees by ALS is not
possible when the properties of the ALS data are similar to those of the current study. Omission errors
will occur, caused by two different factors: firstly, due to limitations in the data material itself; ALS can
be viewed as measuring distances from the aircraft to the ground, with the distance to only some
particular spots on the ground being acquired. In the present study the average density of laser pulses
was eight pulses per m2, and given the footprint size together with the non-uniform spatial distribution
of the laser pulses, this means that some trees will not be hit at all. The fraction of the trees that is not
hit by any laser pulse will depend on a range of factors, such as the pulse density, the pulse footprint
size and the degree of unevenness in the spatial distribution of the pulses on the ground. It is, however,
clear that the size of a tree directly affects the probability for it to be hit by a laser pulse, so smaller
trees are less likely to be hit than larger trees. The trees which are not hit by any laser pulses cannot be
directly detected using the ALS data, and it is hence a definite limit to direct detection of individual
trees inherent in the data material itself. There is, under such conditions, not enough information in
the data material to directly detect all trees, and omission errors are unavoidable if all trees, even the
smallest ones, are considered. The chance of being hit by a laser pulse increases with the tree size, but
even an echo reflected from the tree is in itself not sufficient to ensure a successful detection. To be able
to separate it from the surrounding terrain, the echo must have a positive above-ground height.

The second cause of omission errors is in the segmentation procedure, which in some cases will
fail to produce a segment that matches that of the tree on the ground. This can be seen in Figure 6,
at the rightmost field-measured tree. The ALS-derived segment is, in this case, not similar enough
to be considered a correct segmentation. The reason can be measurement errors, neighboring trees
or other factors affecting how the echoes are being reflected from that particular tree. Segments from
multiple trees can also be erroneously merged, and thus lead to omissions. How the procedure merges
segments is controlled by the s parameter, and this is discussed later in this section.

All echoes with a positive above-ground height will, however, not be reflected from trees, which
is one out of two types of commission errors. Objects such as rocks, hummocks and bushes may all
result in positive above-ground heights, and thus result in falsely detected trees. The intensity value of
the echoes could, however, hold some information that can be used to distinguish between trees and
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the surrounding terrain and vegetation, and some studies have found a positive contribution from the
intensity values when classifying tree and non-tree echoes [7].

The second type of commission error is over-segmentation, which means detecting several trees
from the echoes reflected from a single tree. Due to the design of the field work in which only a sample
of the trees was measured, we were not able to fully assess these commission errors. The parameter s

controls how the segmentation procedure merges initially overlapping segments, and the number of
segments will increase as s increases. So with s = 1 all initial segments are kept as separate segments,
whereas with s = 0 all overlapping segments are merged, i.e., no final segments overlap. Since tree
crowns sometimes do overlap, a reasonable value of s should be somewhere between the two extremes.
The detection rates in the present study varied, however, very little for the different tested values
of s. This can be attributed to several factors, first of all that changing the value of s will only affect
segments that initially overlapped. Furthermore, it is clear that the presence of small segments at the
edge of larger segments does not have a large influence on either detection or omission errors. So even
with some small segments overlapping, the larger segment will still be connected with the field tree.
These small segments will, on the other hand, directly influence the commission errors, and this is the
type of error we were unable to control in the present study. Further research is needed in order to
find an optimal value for s, and to fully assess the commission errors. It should be noted that the study
area, as well as other transition zones between forest and alpine areas, is, in parts, sparsely populated
with trees. In more dense forests, a larger proportion of the trees will have overlapping crowns, which
will affect the performance of the proposed segmentation procedure, as well as the optimal value of
the s parameter.

The initial processing of ALS data for most applications related to forests or trees involves a
choice of algorithms and corresponding parameter values. In the current study, this involves the echo
classification as well as the computation of the above-ground heights. This choice of algorithm and
parameter values will most likely influence further use of the data in, for example, single tree detection.
The widely used classification algorithm based on the principles described by Axelsson [18,28] is used
in the present study. This algorithm requires parameter values for “iteration angle” and “iteration
distance”. The effect of the iteration angle on echoes reflected from small trees in the forest-tundra
ecotone was investigated by Næsset [3]. In that study, an increase in omission errors and a decrease in
commission errors were observed when the iteration angle was increased from six to 12 degrees. A tree
was, in that study, regarded as detected if it yielded at least one echo with a positive above-ground
height, and the terms omission and commission error refer to that definition. A conclusive suggestion
on an optimal iteration angle was, however, not given based on those results. The use of a model-chain
as in the proposed algorithm will cause errors to propagate and add up through the chain. Errors in the
allometric model given by Equation (2) will, for example, affect the results from applying the model
given in Equation (1), and finally the resulting single-tree segments.

When evaluating single-tree detection algorithms, the obtained tree segments will deviate from
the field measurements. The process of choosing and defining the detection criteria will inevitably
involve subjectivity. The choice of detection criteria will affect the detection rates, and the effect of
detection criteria should be incorporated in the evaluation of segmentation algorithms.

In the case of a change assessment in which an identical detection method is applied at two
points in time, omission and commission errors should theoretically be of less consequence. Given that
these errors occur with the same magnitude in each of the two segmentations, actual changes on the
ground between two ALS acquisitions should lead to corresponding differences in the two sets of
segmented trees. The stability of the ALS-derived variables plays a role in this case. The amount of
variation that is due to the scanning and the segmentation process itself will determine the magnitude
of the vegetation changes that can be reliably detected for a given area. The results from the present
study indicate that for the proposed segmentation procedure, some variation must be expected for
smaller areas. The magnitude of the changes that can be reliably detected using the proposed method
could be further investigated. The spatial distribution of the laser echoes on the ground and in the
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vegetation will differ from one acquisition to another. We assessed, in the present study, the influence
of these differences on the resulting single-tree segments by using two separate acquisitions from the
same sensor. The use of different sensors in multi-temporal data acquisition will further contribute to
differences between the two sets of data. Expected effects and possible calibration methods to mitigate
these could be subject to further research.

5. Conclusions

Moderate detection rates were observed when using the proposed segmentation algorithm.
Overall, 46.2% of the trees were segmented correctly. The detection rates were higher for larger trees,
and conversely, lower for smaller trees. The high proportion of undetected trees was partly due to
limitations in the data material itself; some trees were not hit by any laser pulses at all. No significant
differences between the number of segmented trees derived from two separate ALS acquisitions were
found in the present study. This indicates that it can be suitable for monitoring purposes. Even though
the magnitude of the detection errors prevents the detection of changes at an individual tree level, the
method might potentially be used to detect changes at an area level. The use of the proposed method
for area-based monitoring and change detection in the forest-tundra ecotone could be subject to further
research. The proposed method could also be suitable for detection and monitoring of small trees
in other biomes, such as seedlings in boreal forest or regeneration in tropical forests. This could be
further investigated.
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Abstract: Airborne laser scanning (ALS) point cloud data are suitable for digital terrain model (DTM)
extraction given its high accuracy in elevation. Existing filtering algorithms that eliminate non-ground
points mostly depend on terrain feature assumptions or representations; these assumptions result in
errors when the scene is complex. This paper proposes a new method for ground point extraction
based on deep learning using deep convolutional neural networks (CNN). For every point with
spatial context, the neighboring points within a window are extracted and transformed into an image.
Then, the classification of a point can be treated as the classification of an image; the point-to-image
transformation is carefully crafted by considering the height information in the neighborhood area.
After being trained on approximately 17 million labeled ALS points, the deep CNN model can
learn how a human operator recognizes a point as a ground point or not. The model performs
better than typical existing algorithms in terms of error rate, indicating the significant potential of
deep-learning-based methods in feature extraction from a point cloud.

Keywords: deep learning; convolutional neural network (CNN); digital terrain model (DTM); ALS;
ground point classification

1. Introduction

In recent decades, airborne laser scanning (ALS) has become more important in the process of
digital terrain model (DTM) production [1]. ALS can provide a description of a surface on a terrain
with high accuracy and density. However, ALS also records the information of non-terrain objects, such
as buildings and trees. Thus, the ALS filtration is important in the processing of ALS data. Given the
various non-ground objects on the surface and the lack of topology among the points, filtering of the
ALS point cloud can be difficult and troublesome. In fact, point filtering often occupies approximately
80% of the workload of ALS data processing in DTM production. The algorithms of ALS filtration can
be divided into three categories based on their characteristics, as follows:

(1) Slope-based methods. The kernel foundation of these methods considers that two adjacent points
are likely to belong to different categories if they have a mutation in height [2,3]. Slope-based
methods are fast and easy to implement. Their shortcoming is their dependency on different
thresholds in different terrains.

(2) Mathematical morphology-based methods. These methods are composed of a series of 3D
morphological operations on the ALS points. The results of morphological methods heavily
rely on the filter window size. Small windows can only filter small non-ground objects, such
as telegraph poles or small cars. By contrast, large windows often filter several ground points
and make the results of filtration smooth. Zhang [4] proposed progressive morphological filters,

Remote Sens. 2016, 8, 730 332 www.mdpi.com/journal/remotesensing



Remote Sens. 2016, 8, 730

which can filter large non-ground objects with ground points preserved by varying the filter
window size, to overcome this problem.

(3) Progressive triangular irregular network (TIN)-based method. Axelsson [5] proposed the
iterative TIN; this network has been used in some business software. The TIN selects the
coarse lowest points as ground points and builds a triangulated surface from them. Then, the
TIN adds new points to the triangular surface under many constrains for slope and distance.
However, the method is easily affected by negative outliers; these outliers draw the triangular
surface downward.

(4) Surface-based methods. These methods maintain a surface model of the ground based on the
interpolation of ground points [6–9]. However, these methods are sensitive to input parameters
and negative outliers.

Other recent algorithms try to use optimization to obtain accurate classification. For instance,
semi-global filtering (SGF) [10] employs a novel energy function balanced by adaptive ground saliency
to adapt to steep slopes, discontinuous terrains, and complex objects. Then, the SGF uses semi-global
optimization to determine labels by minimizing the energy.

Although the existing methods have done well in ALS filtration, they still need much human
labor to generate DTM based on the filtration results. We want to make full use of the existing
ALS and responding DTM by learning a deep neural network from a big amount of the existing
data. Neural networks has been used in pattern recognition and classification for a long time [11,12].
The deep convolutional neural networks (CNN) [13] are inspired by biological vision systems; these
networks have recently shown their ability to extract high-level representations through compositions
of low-level features [14]. In the present study, we propose a new filtering algorithm based on deep
CNN. First, training samples are obtained from many labeled points. Each image is generated from the
point and its neighboring points; the image can be a positive or negative training sample depending
on the label. Second, a deep CNN model is trained using the labeled data. Images generated from
points are treated as input of the deep CNN model. Then, the input will be processed by several
components being comprised of a convolution layer, a batch Normalization layer, an activation layer
and a pooling layer after some components. At last, the results of the last pooling layer will be
connected to subsequent three fully-connected layers, the last fully-connected layer will produce the
probability for the input to be a ground point or a non-ground point. Detailed construction of deep
CNN model can be seen in Section 2.2. The deep CNN model can learn the important feature of the
input automatically from the huge training data, which usually work better than hand-craft features.
Finally, each point is mapped to an image to classify a raw ALS point cloud; this image is classified as
an image belonging to a ground point or is not used by the trained CNN model.

This paper is organized as follows: Section 2 describes the proposed method. Section 3 presents
the ALS filtration results and analysis. Section 3.3 compares the proposed method with other methods.
Section 4 concludes this study and identifies several aspects for improvement.

2. Methods

The workflow of our approach for filtering is shown in Figure 1. ALS filtering means to find and
delete all non-ground points from ALS data. We treat filtering as a binary classification problem to
classify all the points of ALS data as ground points or non-ground points. The major steps include
the calculation of context information for each point from the neighboring points in a window, the
transformation of the information of the window into an image, and the training and classification
based on the images using the CNN model. Training sample points are selected from a large number of
point clouds with different terrain complexities. A deep CNN model is trained from the labeled images.
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Figure 1. Workflow of the proposed approach. “T” means the samples of ground points and “F” means
the samples of non-ground points.

2.1. Information Extraction and Image Generation

For each ALS point (Pi), its surrounding points within its “square window” are divided into many
cells. The “square window” means a square in (x, y) spatial coordinates. It is a two dimensional window.
In the method, the size of “square window” is 96 m × 96 m, which is divided into 128 × 128 cells.
Each “square window” extracted for a point can be transferred to a 128 × 128 image by mapping each
cell to a pixel with red, blue, and green colors. For each cell, the maximum (Zmax), minimum (Zmin),
and mean (Zmean) of the height among all points within the cell are obtained. Then, the difference
values between Zmax, Zmin, and Zmean and the height (Zi) of point (Pi) are transferred to three integers
within 0 to 255 following Equations (1) and (2); these integers would be the red, green, and blue values
of the corresponding pixel in the image transformed from the cells, as follows:

Fred = ⌊255 ∗ Sigmoid(Zmax − Zi)− 0.5⌋
Fgreen = ⌊255 ∗ Sigmoid(Zmin − Zi)− 0.5⌋
Fblue = ⌊255 ∗ Sigmoid(Zmean − Zi)− 0.5⌋

(1)
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The sigmoid function is expressed in Equation (2), as follows:

Sigmoid(x) = (1 + e−x)
−1 (2)

An example for the point-to-image transformation is shown in Figure 2.

Figure 2. Point-to-image transformation (source: own study in the “FugroViewer”).

2.2. Convolutional Neural Network

CNNs have been the focus of considerable attention for a wide range of vision-related [15–18],
audio-related [19], or language-related [20] tasks. The existing best-performing models [21–23] on
ImageNet ILSVRC have all been based on deep CNNs since 2012. CNNs are designed to process data
that come in the form of multiple arrays, such as 1D arrays for signals like language and 2D arrays for
images or audio spectrograms. CNNs have four key ideas, namely, local connections, shared weights,
pooling, and use of many layers [24]. More detailed description of CNN can be found in [25].

The architecture of the CNN model used in our approach is shown in Figure 3.
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Figure 3. The architecture of the proposed deep CNN.

Deep CNN model is comprised of 6 kinds of layers, the size of layers can be defined as
width × height × depth in which width× height describes the spatial size and depth refers to the number
of channels of its feature maps. The detailed explanation of the layers in Figure 3 can be seen below:
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(1) An input layer is denoted as Input here. The input layer contains the input data for the network.
The input of the deep CNN model is a three-channel (red, green, blue) 128 × 128 image generated
from an ALS points.

(2) A convolution layer is denoted as Conv here. The convolution layer is the core building block of
a convolutional network that performs most of the computational heavy lifting. Convolutional
layers convolve the input image or feature maps with a learnable linear filter, which have a
small receptive field (local connections) but extend through the full depth of the input volume.
The output feature maps represent the responses of each filter on the input image or feature
maps. Each filter is replicated across the entire visual field and the replicated unit share the same
weights and bias (shared weights), which allows for features to be detected regardless of their
position in the visual field. As a result, the network learns filters that activate when they see a
specific type of feature at some spatial position in the input. In our model, all of the convolution
layers use the same sized 3 × 3 convolution kernel.

(3) A batch normalization layer is denoted as BN here. Given that the deep CNN often has a large
number of parameters, taking care to prevent overfitting is necessary, particularly when the
number of training samples is relatively small. Batch normalization [26] normalizes the data in
each mini-batch, rather than merely performing normalization once at the beginning, using the
following equation:

y =
x − μ√
σ2 + ε

γ + β (3)

The input of BN is normalized to zero mean and unit variance and then linearly transformed.
During training, μ and σ2 are the mean and variance of the input mini-batch. During testing, μ and σ2

are the average statistics calculated from the training data. γ and β are learned parameters which scale
and shift the normalized value. ε is a constant added to the mini-batch variance for numerical stability.

Batch normalization can significantly reduce overfitting, allow higher learning rates and accelerate
the training for deep network.

(1) A rectified linear units layer is denoted as ReLU here. Activation layers are neuron layers
that apply nonlinear activations on input neurons. They increase the nonlinear properties of
the decision function and of the overall network without affecting the receptive fields of the
convolution layer. Rectified linear units (ReLU) proposed by Nair and Hinton in 2010 [27] is the
most popular activation function. ReLU can be trained faster than typical smoother nonlinear
functions and allows the training of a deep supervised network without unsupervised pretraining.
The function of ReLU can be demonstrated as f (x) = max(0, x).

(2) A pooling layer is denoted as Pooling here. Pooling layers are nonlinear downsampling layers
that achieve maximum or average values in each sub-region of input image or feature maps.
The intuition is that once a feature has been found, its exact location is not as important as its
rough location relative to other features. Pooling layers increase the robustness of translation and
reduce the number of network parameters.

(3) A fully-connected layer is denoted as FC here. After several convolutional and max pooling
layers, high-level reasoning in the neural network is performed via fully-connected layers.
A fully-connected layer takes all neurons in the previous layer and connects it to every single
neuron it has. Fully-connected layers are not spatially located anymore, thereby making them
suitable for classification rather than location or semantic segmentation.

A BN and a ReLU are applied after every conv layer and the first two FC layers. Thus, layers 1
to 6 are composed of Conv → BN → ReLU and layers 7 and 8 are composed of FC → BN → ReLU .
Pooling layers are applied after layers 1, 2, and 6. The output of the last FC layer is fed to a 2-way
softmax, which produces a distribution over the 2 class labels. Our network maximizes the multinomial
logistic regression objective.
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To train the model of the deep CNN, over 150 million parameters need to be learned.
Two measures are taken to avoid overfitting: huge amount of training data and batch normalization
layers which are proven to be effective.

3. Experimental Analysis

3.1. Experimental Data

A total of 17,280,000 labeled points are sampled evenly from 900 airborne ALS datasets in south
China to be used to train a general model tested in variety types of terrains to evaluate the proposed
approach. Each dataset has an area size of 500 m by 500 m and an average density of 4 points/m2.
Moreover, 40 scenes outside the training areas and the International Society for Photogrammetry and
Remote Sensing (ISPRS) benchmark datasets provided by the ISPRS Commission III/WG2 [28] are
classified to validate the trained CNN model. The 40 scenes have the same area size as the training
data and approximately 40 million points. All training and testing ground truths are produced by a
procedure of DTM production, including automatic filtering by TerraScan software and post manual
editing. Examples of the training dataset and feature maps of the training samples are shown in
Figures 4 and 5, respectively.

It is easy to see from Figure 5 that as the ground points usually being lower than their surrounding
points while non-ground points more probable being higher than their surrounding points, most of
the Fred, Fgreen and Fblue calculated from surrounding cells of ground points by Equation (1) are much
bigger than non-ground points, which causes that the feature images of ground points are much
brighter than non-ground points.

(a) (b)

(c) (d)

Figure 4. Four examples of the training ALS point clouds with different terrain features: (a,b) flat
terrain with buildings and farmland; (c,d): mountainous terrain. White denotes the ground points, and
green denotes the non-ground points.
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(a) (b) 

Figure 5. Training samples of the feature images corresponding to: (a) ground points; and
(b) non-ground points.

3.2. Training

Batch gradient descent with a batch size of 256 examples, momentum of 0.9, and weight decay of
0.0005 to estimate the CNN parameters is used for the training. To find a local minimum of a function,
gradient descent takes steps proportional to the negative of the gradient (or of the approximate
gradient) of the function at the current point. In batch gradient descent, the gradient is approximately
estimated by the mini-batch in each iteration.

The loss function of the CNN model can be calculated as:

L = − 1
m

⎡
⎣

m

∑
i=1

k

∑
j=1

1{y(i) = j}log
e

wT
j x(i)

∑
k
l=1 ewT

l x(i)

⎤
⎦, (4)

where m is the size of batch 256, and k is the number of classes (in here k = 2 because there are 2 classes,
ground points and non-ground points), w is the parameters of the model, x is the output of the upper
layer and for the first hidden layer, and x is the input layer. y(i) is the label of training sample i. The
value of 1

{
y(i) = j

}
equals 1 while y(i) = j and 0 otherwise.

The update rule for weight w was:

vt+1 := 0.9 · vt − 0.0005 · ε · Wt − ε ·
〈

∂L
∂w

∣∣∣
Wt

〉

Dt

Wt+1 := Wt + vt+1

(5)

where t is the iteration index, mini-batch Dt is the m training samples which will be used to estimate

the gradient in this iteration, v is the momentum variable, ε is the learning rate, and
〈

∂L
∂w

∣∣∣
Wt

〉

Dt

is

the average over the t th batch Dt of the derivative of the objective loss function with respect to W,
evaluated at Wt [21].

The training of the CNN model takes approximately three weeks on a PC with Intel i7-4790 CPU,
32 GB RAM, and a NIVIDIA GTX TitanX GPU.
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3.3. Results and Comparison with Other Filtering Algorithms

We compare the deep CNN model with the popular commercial software TerraSolid TerraScan,
Mongus’s parameter-free ground filtering algorithm in 2012 [1], SGF [10], Axelsson’s algorithm,
and Mongus’s connected operators-based algorithm in 2014 [29] on the ISPRS benchmark dataset.
TerraScan uses the TIN-based filtering method; this software produces a significantly low average total
error when a set of tunable parameters of the data is processed using the algorithm. The classification
that CNN used for this test over two datasets is the one trained by the 900 airborne ALS datasets in
south China to challenge the versatility of the CNN.

The filtering accuracy is measured based on the Type I error, which is the percentage of rejected
bare ground points; Type II error, which is the percentage of accepted non-ground points; and total
error, which is the overall probability of points being incorrectly classified. The results are shown in
Table 1 and Figures 6–8. The classification using deep CNN model takes approximately 200 s on a test
ALS dataset with a million points using a computer with an i7-4790 CPU and a TitanX GPU.

We also compare deep CNN model with TerraScan on 40 cases from the test ALS data with
various terrain complexities in the aspects of both error rates and root mean square error of DTM.
The comparison of error rates is shown in Figure 7 and comparison of root mean square error (RMSE)
between the generated DTM with the ground truths is shown in Figure 8.

Table 1. Comparison of deep CNN model and other methods on the ISPRS dataset.

Type I Error (%) Type II Error (%) Total Error (%)

TerraScan 11.05 4.52 7.61
Mongus 2012 3.49 9.39 5.62

SGF 5.25 4.46 4.85
Axelsson 5.55 7.46 4.82

Mongus 2014 2.68 12.79 4.41
Deep CNN 0.67 2.262 1.22

(a) (b) 

Figure 6. Cont.
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(c) (d)

(e) (f)

Figure 6. Detailed comparison with other methods and the proposed algorithm across 15 samples in
the ISPRS dataset: (a) error rates of Terrasan, (b) error rates of Mongus 2012, (c) error rates of SGF,
(d) error rates of Axelsson, (e) error rates of Mongus 2014, (f) error rates of Deep CNN.

(a)

Figure 7. Cont.
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(b)

Figure 7. Error rate of TerraScan (a) and Deep CNN (b) in 40 test cases.

Figure 8. Comparison of root mean square error (RMSE) between the generated DTM with the
ground truths.

The comparison of total error over 40 various complex terrains can be seen in Table 2 below and
the detailed comparison of several examples with different terrains are shown in Figures 9–12.

Table 2. Comparison of total error over 40 various complex terrains between TerraScan and deep
CNN model.

Error TerraScan Deep CNN

type I 10.5% 3.6%
type II 1.4% 2.2%
total 6.3% 2.9%
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Figure 9. Comparison of the proposed method and TerraScan on the detailed difference of the DTM.
Column (a) is the ground truth TIN-rendered gray image of the test data. Columns (b,d) are the results
of filtration by TerraScan and Deep CNN, respectively; the white points denote correctly classified
ground points, the green points denote correctly classified non-ground points, the red points denote
accepted non-ground points, and the blue points denote rejected ground points. Columns (c) and (e)
are TIN-rendered DTM extracted from the results of filtration by TerraScan and deep CNN model,
respectively. In Column (c), blue ellipses denote type I error and red ellipses denote type II error.
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(a) (b)

(c) (d)

Figure 10. Comparison of the proposed method and TerraScan on the details of the plain area: (a) raw
ALS data; (b) ground truth; (c) result of TerraScan; and (d) result of deep CNN model.

(a) (b)

(c) (d)

Figure 11. Comparison of the proposed method and TerraScan on the details of the mountain area:
(a) raw ALS data; (b) ground truth; (c) result of TerraScan; and (d) result of deep CNN model.
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(a) (b)

(c) (d)

Figure 12. Comparison of the proposed method and TerraScan on the details of the complex area:
(a) raw ALS data; (b) ground truth; (c) result of TerraScan; and (d) result of deep CNN model.

The tests strongly indicate that the CNN model produces significantly low Type I error; this
result indicates only a slightly tedious manual post-editing for DTM production because removing the
non-ground points (Type II error) is usually easier than finding the incorrectly rejected ground points.
The proposed CNN-based classification can generate high-quality DTM, particularly to retain subtle,
micro, and steep terrains; existing handcrafted algorithms may produce more Type I error.

Figures 10 and 12 show that deep CNN model does well in some big scale non-ground situations
which are hard for TerraScan such as buildings and farmlands. Figure 11 shows that deep CNN model
conserve the terrain feature well even in the mountains which often has little ground points caused by
the shield of trees. The ground hit density in mountain area of Figure 11 is about 1–2 ground points per
square meter while the ground hit density in plain area in the same data is about 4–6 ground points
per square meter.

However, there are still some cases that deep CNN model cannot deal with very well, as shown
in Figure 13.

The CNN model generates some wrong results (type II error) as shown in Figure 13. This is mainly
because these wrong non-ground points belong to very low (down to 10 cm) man-made structures,
which are too close to the ground. Modifying points-image transformation to represent shape and
structure information may improve the accuracy in the similar cases.
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(a) (b)

(c) (d)

Figure 13. (a) Area that deep CNN model accept many wrong ground points, where the white points
denote correctly classified ground points, the green points denote correctly classified non-ground
points, the red points denote accepted non-ground points, and the blue points denote rejected ground
points; (b) the profile of that area; (c) DTM of that area by deep CNN model; and (d) ground truth
DTM of that area. The root mean square error (RMSE) between the DTM by deep CNN model with the
ground truth DTM in this section shown below is 0.1 m.

4. Conclusions

To the best of our knowledge, this study is the first one that reports using deep CNN-based
classification for DTM extraction from ALS data. Relative elevation differences between each point
and its surrounding points are extracted and transformed into an image representing the point feature.
Then, the deep CNN model is used to train and classify the images. Each point to be processed can
be classified as a ground or non-ground point by the trained deep CNN. A total of 40 ALS point
clouds with 40 million points and the ISPRS benchmark dataset with various scene complexities and
terrain types are tested using one CNN trained by 17 million labeled points. The results show the
high accuracy of the proposed method. The developed method provides a general framework for ALS
point cloud classification.

However, the drawback of deep-learning-based methods is that they usually require large
labeled data and powerful computational resources. Future work should focus on better point-image
transformation and making more compact classification through the deep CNN model to improve the
training and classification. Future work should also perform tests on larger datasets.
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8. Błaszczak-Bąk, W.; Janowski, A.; Kamiński, W.; Rapiński, J. Application of the Msplit method for filtering
airborne laser scanning datasets to estimate digital terrain models. Int. J. Remote Sens. 2015, 36, 2421–2437.
[CrossRef]
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Abstract: Three methods to estimate the presence of ground surface stones from publicly available
Airborne Laser Scanning (ALS) point clouds are presented. The first method approximates the
local curvature by local linear multi-scale fitting, and the second method uses Discrete-Differential
Gaussian curvature based on the ground surface triangulation. The third baseline method applies
Laplace filtering to Digital Elevation Model (DEM) in a 2 m regular grid data. All methods produce
an approximate Gaussian curvature distribution which is then vectorized and classified by logistic
regression. Two training data sets consisted of 88 and 674 polygons of mass-flow deposits, respectively.
The locality of the polygon samples is a sparse canopy boreal forest, where the density of ALS
ground returns is sufficiently high to reveal information about terrain micro-topography. The surface
stoniness of each polygon sample was categorized for supervised learning by expert observation on
the site. The leave-pair-out (L2O) cross-validation of the local linear fit method results in the area
under curve AUC = 0.74 and AUC = 0.85 on two data sets, respectively. This performance can be
expected to suit real world applications such as detecting coarse-grained sediments for infrastructure
construction. A wall-to-wall predictor based on the study was demonstrated.

Keywords: aerial laser scan; point cloud; digital elevation model; logistic regression; stoniness;
natural resources; micro-topography; Gaussian curvature

1. Introduction

There is an increased attention towards classification of the small scale patterns of terrain surface.
Recognition of micro-topography may help in arctic infrastructure planning [1], terrain trafficability
prediction [2], in hydraulic modeling [3], and in detecting geomorphologic features like in [3,4], and
terrain analysis and modelling.

In Finland, a nationwide airborne light detection and ranging (LiDAR) mapping program has
provided the means for detecting ground objects with the ground return density ρ ≈ 0.8 m−2. Since one
needs at least one point per stone, and to define the stone radius one needs at least 4 points per stone,
this leads to an absolute theoretical detection limit of stone radius rmin = 0.6...1.2 m. The real limit
is naturally somewhat higher. The actual stone sizes fall into this critical range (as discussed in
Section 2.2) making the stoniness detection a difficult problem.
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One aspect of the ground surface is the presence of stones and boulders, which can be
characterized by the stone coverage and by stone size distribution. Mass-flow deposits are recognized
by irregular distribution of boulders and stones on their surface. Mass-flow deposits may have regional
significance in aggregate production if they occur in fields as they do in the Kemijärvi region in Finland.
Mass-flow sediments are often moderately sorted sediments with low fine grained fraction (clay and
silt content, <0.006 mm) being less than 12 % [5]. In addition they contain boulders and stones in
their sediments which may be crushed for aggregates. Therefore, they are potential aggregates for
infrastructure construction. Mass-flow deposits can be detected in a two-step process: First candidate
polygons are found by analyzing geomorphological features in a process which can be automated,
then surface stone detection based on airborne LiDAR data is performed to limit the set of candidates.
Various other geomorphological features like paleolandslides [6], fluvial point bars [7], neotectonic
faults [3] and Pulju moraines [8] in Finland and several other types of glacial landforms elsewhere (see
summary in [9]) have already been mapped using LiDAR data.

The intent of this paper is to document various methods, which analyze airborne laser scanning
data (ALS) or digital elevation model (DEM) to detect stony areas. Our hypothesis is that a direct
approach may be able to detect a signal of a target feature like stoniness better than methods using
DEM. This is because DEM is a general smoothed representation of the ground surface for generic
purposes [10]. This paper focuses on binary classification of the stoniness of sample areas. The approach
results in a classifier, which is subjected to 20 m × 20 m point cloud patches to produce a binary mask
about stoniness covering whole Northern Finland. Stoniness is just one example of micro-topographic
features, which could be detected from public ALS data. Even the positive samples of the data sets
focus on stony mass-flow deposits, algorithms are developed for general stoniness detection, which
can be later targeted to various specific purposes depending on the available teaching data. It is our
hope that the research community finds our results and methods useful in the future.

This paper is an expansion of [11], which studied only one polygon set data2014 using curvature
estimation based on local linear fit (LLC). In comparison to [11], this paper uses an additional data set
data2015, additional public DEM data format and two additional methods: local curvature estimation
based on triangulated surface model computed from LiDAR (LTC) and Laplace filtering of a DEM grid
(DEC). LTC uses triangulated irregular network (TIN) produced by a solid angle filtering (SAF). An
overview of the relation of computational methods and various data formats can be seen in Figure 1.

Figure 1. The process flow, methods covered in this paper are highlighted. Data formats: (1) 2 m
raster; (2) point cloud; (3) task-specific TIN model; (4) curvature value sets; (5) sample vectors. LLC
can optionally use either original point cloud (2) or vertex points (3) produced by SAF TIN model.
Wall-to-wall classification is a possibility provided by the resulting binary classifier.
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The structure of the paper is as follows: a summary of current research applicable to
micro-topographic feature detection is in Section 1. Data sets and data formats are explained in
Section 2.2. The solid angle filtering (SAF) can be used by two presented methods, it has been
described in Section 2.4. Three methods are documented in Sections 2.5–2.7. Methods are compared in
Section 3. Possible improvements are discussed in Section 4 and further application areas considered
in Section 5.

Current Research

A good presentation of general-purpose ALS classification is in [12]. Our work relates to
some of the contour and TIN -based ground filtering algorithms mentioned in [13], since all of
our methods either directly or indirectly use or produce a tailor-made ground model. Methods
described in [13] are usually more generic accommodating to infrastructure signatures etc. It is
possible, that methods described in our paper have to be combined with existing generic ground model
algorithms, where an assembly of methods would use e.g., a voting arrangement at the approximity of
constructed environment.

Solid angle filtering (SAF) in Section 2.4 resembles the despike algorithm presented in [14].
Two problems are mentioned in [14]: Unnecessary corner removals (rounding off the vertices of e.g.,
block-like structures) and effects of negative blunders (false points dramatically below the real surface
level). Our routine was specifically designed to eliminate these problems. SAF can also be used
in canopy removal. An interesting new technique in limiting the ground return points is min-cut
based segmentation of k-nearest neighbors graph (k-NNG) [15]. The graph is fast to compute with
space partitioning, and it could have served as a basis for stoniness analysis directly e.g., by fast local
principal components analysis (PCA) and local normal estimation with vector voting procedure, as
in [16]. The literature focuses mostly on laser clouds of technological environment, where the problem
of eliminating the canopy (noise) and finding the ground returns (a smooth technical surface) are
not combined. Our experiments with local normal approximation and vector voting were inferior to
results presented in this paper. There is great potential in local analysis based on k-NNG, though.

There seems to be no research concerning the application of ALS data to stoniness detection
in forest areas. Usually target areas have no tree cover [17], objects are elongated (walls, ditches,
archaeological road tracks, etc.) [17,18] and often multi-source data like photogrammetry or
wide-spectrum tools are used. curbstones which separate the pavement and road in [18]. Their data
has the sample density ρ = 5/ m2 which produces geometric error of size 0.3 m which is larger than the
observed shapes (curbstones) and thus not practical. Effects of foliage and woody debris are discussed
in [19]. They mention that even a high-density ALS campaign is not able to get a dense sampling of
the ground surface in a non-boreal forest (Pennsylvania, U.S.). They reported ground return ratio is
40% with the ground sample density ρ = 4/ m2, which is much higher than ρ ≈ 0.8/ m2 in our study.
The distribution of the local ground sample density was not reported in [19] but is probably much
higher than in our case.

DEM in Figure 1) is a standard data type used by geographic information systems (GIS).
Many implementations and heuristics exist (see e.g., [20]) to form DEM from ALS format .las defined
by [21]. Usually, the smallest raster grid size is dictated by the sample density and in this case DEM
grid size δ = 2 m is possible, and δ = 1 m already suffers from numerical instability and noise.

A rare reference to DEM based detection of a relatively small local ground feature (cave openings)
in forest circumstances is presented in [22]. In that paper the target usually is at least partially exposed
from canopy and the cave opening is more than 5 m in diameter. On the other hand, the forest canopy
was denser than at our site in general. Another application is detecting karst depressions, where slope
histograms [23] and local sink depth [24] were used to detect karst depressions. There are similarities
with our study, e.g., application of several computational steps and tuning of critical parameters
(e.g., the depression depth limit in [23]), although the horizontal micro-topology feature size is much
larger than in our study (diameter of doline depressions is 10–200 m vs. 1.5–6 m diameter of stones in
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our study). The vertical height differences are at the same range, 0.5–1.5 m in our study and in [23,24],
though. A similar study of [25] uses higher density LiDAR data with ρ = 30 m−2 to detect karst
depressions of size 26 m and more. The vertical height difference (depth) was considerably larger
than in in [23,24]. The high density point cloud and a carefully designed multi-step process results
in quantitative analysis of sinkholes in [25], unlike in our study, where the stoniness likelihood of a
binary classifier is the only output.

One reference [19] lists several alternative LiDAR based DEM features, which could be used
in stone detection, too. These include fractal dimension, curvature eigenvectors, and analyzing
variograms generated locally over multiple scales. Some of the features are common in GIS software,
but most should be implemented for stoniness detection.

Hough method adapted to finding hemispherical objects is considerably slower than previous
ones, although there is a recent publication about various possible optimizations, see e.g., [26].
These optimizations are mainly about better spatial partitioning.

Minimum description length (MDL) is presented in [27] with an application to detect planes
from the point cloud. The approach is very basic, but can be modified to detect spherical gaps rather
easily. MDL formalism can provide a choice between two hypotheses: a plain spot/a spot with a stone.
Currently, there is no cloud point set with individual stones tagged to train a method based on MDL.
MDL formalism could have been used without such an annotated data set, but we left this approach
for further study. In addition, probably at least 4..8 returns per stone is needed and thus a higher
ground return density than is currently available.

This paper presents two methods based on ALS data and one method using DEM and acting as a
baseline method. The DEM method was designed according to the following considerations: It has to
be easy to integrate to GIS and it would start from a DEM raster file, then generate one or many texture
features for the segmentation phase. The possible texture features for this approach are the following:

• local height difference, see Laplace filtering Section 2.7. This feature was chosen as the
baseline method since it is a typical and straightforward GIS technique for a problem like
stoniness detection.

• various roughness measures, e.g., rugosity (related trigonometrically to the average slope), local
curvature, standard deviation of slope, standard deviation of curvature, mount leveling metric
(opposite to a pit fill metric mentioned in [19]).

• multiscale curvature presented in [28]. It is used for dividing the point cloud to ground and
non-ground returns, but could be modified to bring both texture information and curvature
distribution information. The latter could then be used for the stoninesss prediction like in this
study. The methods, possibly excluding interpolation based on TIN, seem to be numerically more
costly than our approach.

Possible GIS -integrated texture segmentation methods would be heavily influenced on the choices
made above. Most of the features listed are standard tools in GIS systems or can be implemented
by minimal coding. An example is application of the so called mount leveling metric to stoniness
detection, which would require negating the height parameter at one procedure.

Terrain roughness studied in [19] is a concept which is close to stoniness. Authors mention that
the point density increase from ρ = 0.7/m2 to ρ = 10/m2 did not improve the terrain roughness
observations considerably. This is understandable since the vertical error of the surface signal is at the
same range as the average nearest point distance of the latter data set. The paper states that algorithms
producing the terrain roughness feature have importance to success. This led us to experiment with
various new algorithms.

Point cloud features based on neighborhoods of variable size are experimented with in [29].
Many texture recognition problems are sensitive to the raster scale used, thus we tested a combination
of many scales, too. According to [16], curvature estimation on triangulated surfaces can be divided to
three main approaches:
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• surface fitting methods: a parametric surface is fitted to data. Our local linear fit LLC falls on this
category, yet does not necessarily require triangularization as a preliminary step.

• total curvature methods: curvature approximant is derived as a function of location. Our local
triangular curvature LTC is of this category of methods.

• curve fitting methods.

LLC has a performance bottleneck in local linear fit procedure described in Section 2.5.
This problem has been addressed recently in [30], where an algebraic-symbolic method is used
to solve a set of total least squares problems with Gaussian error distribution in a parallelizable and
efficient way. That method would require modification and experimentations with e.g., a gamma
distributed error term due to asymmetric vegetation and canopy returns.

The vector voting method presented in [16] decreases noise and achieves good approximative
surface normals for symmetrically noisy data sets of point clouds of technological targets. Our target
cloud has asymmetrical noise (vegetation returns are always above the ground), and returns under
the ground (e.g., reflection errors) are extremely rare. Usually vector voting methods are used in
image processing. They are based on triangular neighborhood and any similarity measure between
vertices, focusing signal to fewer points and making it sometimes easier to detect. Neighborhood
voting possibilities are being discussed int Section 4.

General references of available curvature tensor approximation methods in case of triangulated
surfaces are [31,32]. A derivation of Gaussian curvature κG and mean curvature κH is in [33]:

κG = κ1κ2 (1)

κH = (κ1 + κ2)/2, (2)

where κl , l ∈ {1, 2} are the two eigenvalues of the curvature tensor. Perhaps the best theoretical
overview of general concepts involved in curvature approximation on discrete surfaces based on
discrete differential geometry (DDG) is [34].

We experimented with methods which can produce both mean and Gaussian curvatures, giving
access to curvature eigenvalues and eigenvectors. Our experiments failed since the mean curvature κH

seems to be very noise-sensitive to compute and would require a special noise filtering post-processing
step. Difficulties in estimating the mean curvature from a noisy data have been widely noted, see
e.g., [29].

In comparison to previous references, this paper is an independent study based on the following
facts: point cloud density is low relative to the field objects of interest (stones), ratio of ground returns
amongst the point cloud is high providing relatively even coverage of the ground, a direct approach
without texture methods based on regular grids was preferred, individual stones are not tagged in
the test data, and the methods are for a single focused application. Furthermore, we wanted to avoid
complexities of segmentation-based filtering described in [35] and the method parameters had to be
tunable by cross-validation approach.

2. Materials and Methods

Test data is presented in Section 2.2. It is available online, details are at the end of this paper.
Figure 1 presents the process flow of stone detection. Two data sources at left are introduced in

Section 2.2, tested methods (DEC, LLC, LTC) are detailed in Sections 2.5–2.7. The vectorization of
samples varies depending on the method in question, details can be found in Section 2.8. The solid
angle filtering SAF of Section 2.4 is a necessary preprocessing step for LTC, but could be used also
before LLC for computational gain.

2.1. Study Area

The study area is a rectangle of 1080 km2 located in the Kemijärvi municipality, in Finnish
Lapland, see Figure 2. The 675 sample polygons cover approx. 10.7 km2 of the area. Mass-flow
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sediment fields such as the Kemijärvi field, have regional significance for aggregate production as
there is an abundance of closely spaced mass-flow formations within a relatively short distance from
the road network.

Figure 2. Upper left: The site near Kemijärvi Finland. The research area covered by 120 open data .las

files covering 1080 km2. Upper right: the relative location of sample polygons. Amount of sample
sets in parenthesis. Lower left: A view of a sample site in boreal forest. Lower right: approximately
the same view as at lower left after solid angle filtering (see Section 2.4) of the point cloud. The stone
formation has been circled. Location is at UTM map T5212C3, polygon 11240.

2.2. Materials

Table 1 gives a short summary of the data sets: the first set data2014 is rather small with
positive samples occupied by large boulders. The second set data2015 has an imbalance of many
positive samples with smaller stones vs. fewer negative samples. Data sets are depicted in Figure 2.
The acquisition of data sets differ: the classification of data2014 was based on cumulated field
photographs and the land survey annotations of the general topographic map (stone landmarks).
There is no stone size distribution data available for data2014, though. The set data2015 was classified
and the approximative stone size and coverage statistics recorded by a geology expert. The second
data set seems to present more difficult classification task—the areas are more varied and stone size
probably smaller than in the first set. The advantage of having two data sets of different origin is that
the resilience and generality of the methods can be better asserted.

Table 1. Some characteristics of the two data sets.

Data Set Stony Samples Area km2 Non-Stony Samples Area km2 Acquisition

data2014 56 1.7 49 1.7 cumulated observations
data2015 471 4.7 204 6.0 field campaign

The data preprocessing consists of the following three steps:
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1. All hummocky landforms (i.e., hills) with a convex topographic form were delineated from the
ALS derived digital elevation model and its tilt derivative with an Object-Based Image Analysis
algorithm developed in eCognition software, see [1]. This step produced data2014 and data2015

polygon sets ( see Table 1 and Figure 2).
2. A 10 m × 10 m space partitioning grid was used to cut both the point cloud (ALS) and DEM to

polygon samples.
3. Point cloud was cut to 2 m height from initial approximate ground level. The mode of heights in

2 m × 2 m partitions was used as the ground level.

ALS LiDAR data was produced by National Land Survey (NLS) (NLS laser data: http://www.
maanmittauslaitos.fi/en/maps-5) in fall 2012 with a Leica ALS50-II laser scanner (Leica Geosystems,
St. Gallen, Switzerland), the flight altitude was 2000 m. Last-return data has approx. 0.09–0.1 m vertical
ground resolution and average footprint of 0.6 m. ALS data has several additional information fields
per cloud point, see e.g., [21]. We used only x-y-z components of the data. Approximately 25% of
the data are canopy returns, the rest is ground returns. Reflection errors causing outlier points occur
approximately once per 0.5 × 106 returns.

DEM data is 2 m regular grid data available from NLS. It is nationwide data aimed for general
purposes (geoengineering, construction industry). Its vertical accuracy is 0.3–1.0 m std. Both ALS
and DEM data were cut to polygon samples by using 10 m × 10 m space partitioning slots. See two
example polygon shapes in Figure 3. The further processing focused only to the point cloud limited by
each polygon sample.

Figure 3. A stony (upper row) and a non-stony (lower row) sample polygon. Original polygons are
approximated by 10 m × 10 m batches. The ground height (DEM 2 m) and its Laplace discrete operator
signals with 2 m and 4 m radius are depicted. The border noise has been removed from actual analysis.
The 100 m scale is aligned to North.

Stones are bare and the vegetation is thin due to high Northern latitudes.The point cloud on this
site has approx. 25 % returns to forest canopy and approx. 75 % ground returns, so the ground signal
is rather strong. The reflection errors were extremely rare, approx. 1 per 106 returns. Together the
sample sets represent rather well the Kemijärvi study area.
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2.3. Materials online

Sample data sets including some polygon point clouds, DEM data of two map pages, sample
vectors, some field images, SAF algorithm document, a short description of the data set and the
problem are available at: http://users.utu.fi/ptneva/ALS/.

2.4. Solid Angle Filtering (SAF)

The proposed solid angle filtering is a novel method to produce an alternative TIN DEM sensitive
to stones and boulders on the ground. Filtering starts by forming an initial TIN either from a full
point cloud or after an industry standard preliminary canopy and tree point elimination. The cut was
made 2 meters above the local mode of the point cloud height. The 2D projection of TIN satisfies
Delaunay condition at all times during the iterative process of point elimination. The prominent ’pikes’
in the intermediate TIN are removed in random order while the Delaunay triangulation is updated
correspondingly. The implementation requires a dynamical Delaunay algorithm, which facilitates
incremental removal of points. We used an industry standard approach described in [36] with O(k)

computational complexity per removed point, where k stands for the average number of nearest
neighbors of a point.

A second iterative phase removes ‘pits’ in a similar fashion. The prominence of pikes and pits is
measured by solid angle Ωk, which is the spatial angle of the surrounding ground when viewed from
a TIN vertex point pk. Appendix A provides the technical definition of computing Ωk.

Each state of TIN is achieved by dropping one point which fails the following inequality:

Ωmin ≤ Ωk ≤ Ωmax, (3)

where solid angle limits Ωmin = 1.80 sr (steradians) and Ωmax = 12.35 sr correspond to solid angles of
two spherical cones with opening angles 89 ◦ and 330 ◦, respectively. The choice affects the prediction
performance: if both limits are close to a planar situation of Ω ≈ 2π, there is a loss of points. If there
are no limitations (Ωmin ≡ 0, Ωmax = 4π), data is dominated by the noise from canopy and tree
trunks. The solid angle limits were defined by maximizing the Kolmogorov-Smirnov (K-S) test [37]
difference using 95 % confidence limit. Figure 4 depicts the difference between solid angle distributions
at positive and negative sample sets at the choice we made. A pike at approx. 2.5 sr indicates stones.
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Figure 4. The solid angle distribution of positive and negative samples among the data2015 data set.
Averages can be distinguished well but variation among samples is high.

The resulting ground surface triangularization (see lower left part of Figure 2) resembles the end
product of the 3D alpha shape algorithms [38], when alpha shape radius is chosen suitably. It produces
an alternative TIN model which hopefully contains a signal needed in stone detection. In this paper
this method is used as a preprocessing step for LTC method (see Section 2.6) and for LLC method
(see Section 2.5, and Figure 1).
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2.5. Curvature Estimation Based on Local Linear Fit (LLC)

LLC method is based on a curvature approximation method described in [33]. The method
requires surface normals to be available at the triangle vertices. LLC provides these normals by a local
linear fit to the point cloud at a regular horizontal grid. Since the resulting curvature function is not
continuous at the border of the triangles, a voting procedure is needed to choose a suitable value for
each grid point.

Finding the local planes is a similar task to finding the moving total least squares (MTLS) model
in [39]. The differences are the following:

• a space partitioning approach is used instead of a radial kernel function to select the participant
points. This is because ground surface can be conveniently space partitioned horizontally unlike
in [39], where the point cloud can have all kinds of surface orientations.

• the point set is not from constructed environment. Canopy returns create a 3D point cloud, thus
the loss function cannot be symmetrical, but must penalize points below the approximate local
ground plane.

The LLC process has 6 steps, which are expounded in Appendix B. Step 1 is cutting the foliage
dominated part of the point cloud, step 2 approximates ground with local linear planes at regular
grid points. Step 3 spans the grid with triangles avoiding spots with missing data. Step 4 defines the
curvature within each triangle. Step 5 combines the curvature values of the neighboring triangles to
each grid point. Step 6 is about forming a histogram over the whole grid of the sample polygon.

LLC is a multi-scale method like [28]. Steps 1 through 6 are repeated with differing grid lengths
δj, j ∈ [1, 6] of the grid, see Table 2. There is a potential danger for overfitting, so the qualities of grid
sizes are discussed here from that point of view.

Table 2. Square grid sizes used in local linear fit of LLC method.

Grid Version 1 2 3 4 5 6

Grid constant δm (m) 1.25 2.0 3.0 4.0 5.0 6.0

The smallest grid size δ1 = 1.25 m has approx. 85 % of the grid slots with only 1 to 3 points
as shown in the left part of Figure 5 and so it represents a practical low limit of the local planar fit.
A practical upper limit is δ6 = 6 m because only the largest boulders get registered on this scale. Such
large boulders are few, as shown in the right part of Figure 5.

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

#points

fr
e

q

number of points within a range

 

 
0.65 m

1.27 m

2.54 m

6.32 m

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

stone coverage %

fr
e
q
.

distribution of the stoniness parameters

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

stone size (m)

fr
e
q
.

 

 

Figure 5. Approximative properties of data2015 data set. Similar qualities of data2014 are not available.
Left: The number of stones at a spatial partition when the partitioning range (the grid size δ) changes.
A sensible approximation of e.g., local ground inclination is possible only when there are at least
3 points per grid square. Right: The difference between positive and negative samples is mainly in
stone size distribution. The practical detection limit in size is approx. 1.0 m.
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2.6. Local Curvature Based on Ground Triangularization (LTC)

The input is a triangulated surface model generated by SAF method described in Section 2.4 and
Figure 1. LTC produces the curvature estimates directly to the vertex points, so local linearization step
3 of the LLC method of Section 2.5 is not needed. Vectorization (step 4 of LLC) has to be done, but
only once, since there are no grids nor multi-grids in this method. The idea is to calculate the value
κk of a Gaussian curvature operator at each ground point pk based on the Gauss-Bonnett theorem as
described in [31].

The right side of the Figure A1 depicts a point pk and its neighboring points pi and pj.
The neighboring triangles Tk of a vertex point k define a so-called spherical excess, which is the
difference between the sum of triangular surface angles βikj and the full planar angle 2π. Now, one
can write an estimator for the Gaussian curvature κk at point pk based solely on local triangularization
formed by the Delaunay process:

βikj = acos(pi − pk, pj − pk)

Ak = ∑t∈Tk
At/3 (4)

κk ≈
(

2π − ∑(i,k,j)∈Tk
βikj

)
/Ak, (5)

where βikj is the angle at vertex k in a surface triangle t = (i, k, j) ∈ Tk, acos(., .) is the angle between
two vectors defined in Equation (A1) in Appendix A, and Ak is a characteristic surface area associated
with the vertex k. The characteristic area has been defined approximately by taking one third of the
area At of each adjoining triangle t. There are locally more stable but also more complicated ways
to calculate Ak, see e.g., [31,32]. The choice made in Equation (4) causes noise because the area is
approximate but seems to allow effective histogram vectors.

2.7. Curvature Based on Filtering DEM by a Modified Discrete Laplace Operator (DEC)

The third method is traditional, fast and easy to implement in the GIS framework and thus
provides a convenient baseline for the previous two methods. Local height difference is converted to
local curvature approximant. Curvature histograms are then vectorized as in previous methods.

DEM data with a regular grid with the grid size δ = 2.0 m was utilized. Data is publicly available
over most of Finland. The discrete 2D Laplace operator with radius rhoriz = 2.0 m is well suited
for detecting bumpy features like stones at the grid detection limit. It simply returns the difference
between the average height of 4 surrounding grid points and the height of the center point. A modified
Laplacian filter with rhoriz = 4.0 m (length of two grid squares) was used to estimate the local height
difference on the larger scale, see Figure 6. A postprocessing transformation by Equations (7) and (8)
was applied to produce correspondence to Gaussian geometric curvature κk at point k. A geometric
justification for the transformation is depicted in Figure 6. A stone is assumed to be a perfect spherical
gap with perfect horizontal surrounding plane. The mean curvature κH can be approximated from
the observed local height difference of Equation (6) by using the geometric relation Equation (7),
see Figure 6. z̄(rhoriz) is the average height at the perimeter of horizontal radius r. The local height
difference Z̄ is the key signal produced by Laplacian filter. Gaussian curvature is approximately the
square of the mean curvature, when perfect sphericality is assumed, see Equation (8). The sign of the
Gaussian curvature approximant κGk at point ck can be decided on the sign of the height difference Z̄ at
vertex k. The index k of the vertex point pk is omitted for brevity. Equation (7) comes from rectangular
triangle in Figure 6.

Z̄ = z − z̄(r) local height difference (6)

1/κ2
H ≈ r2

horiz + (1/κH − Z̄)2 approximate mean curvature condition (7)

κH ≈ 2Z̄/(Z̄2 − r2
horiz) mean curvature solved from Equation (7)

κG ≈ − sign(Z̄)κ2
H approximate Gaussian curvature (8)
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Figure 6 shows grid squares of size 2 m × 2 m. Points A are used to calculate the average height
z̄(2.0 m) and points B the average height z̄(4.0 m).

Figure 6. Left: The Laplace difference operator returns the height difference between the center point (1)
and the average of points A. The modified Laplace difference operator does the same but using points
B. These two kernels define each an average circumferential height difference Z̄. Right: The geometric
relation between Z̄ and approximate mean curvature κH . Horizontal line represents average ground
level at the circumference.

Many sample polygons are relatively small. The above described difference operator produces
numerical boundary disturbance, see Figure 3. This can be countered by limiting the perimeter
average z̄(r) only to the part inside the polygon, and then removing the boundary pixels from the
histogram summation.

The next step is to build the sample histograms as with other methods. Histogram vectors from
two filters are concatenated to produce a sample vector of a polygon. The details of forming the
histogram are given in Section 2.8.

2.8. Vectorization

All three methods produce histograms of Gaussian curvature κG = ±1/r2, where r is the local
characteristic curvature radius and the curvature sign has been chosen in Equation (8) so that potential
stone tops have negative curvature and “pit bottoms” have positive curvature. An ideally planar spot
k has curvature radius rk ≡ ∞ and curvature κG ≡ 0. Recall that minimum detectable stone radius
is approx. rmin = 0.6...1.2 m, which leads to a Gaussian curvature interval of κG ∈= [−1.8, 1.8] m−2.
This range was spanned by histogram bins. LLC and DEC are rather insensitive to bin choice, so a
common ad hoc choice was made for these methods, see Table 3. The LTC method proved sensitive
to bin choices, so the values were derived using a subset of 10 positive and 10 negative samples in
leave-pair-out cross-validation. This set was excluded from later performance measurements.

Table 3. Curvature histogram bins.

Method Positive Half of the Bin Values

LLC and DEM 0.010, 0.030, 0.060, 0.13, 0.25, 0.50, 1.0, 2.0
LTC 0.031, 0.12, 0.25, 0.44 ,0.71, 1.13, 1.8

The histogram creates a vector representation xi, i = 1..n for all sample polygons i. The LTC
method produces one histogram vector, the DEC method produces two vectors (for r = 2 and r = 4 m)
and LLC produces 6 vectors (for 6 different grids), which are then concatenated to form the final
sample vector xi.

Figure 7 provides a summary of average curvature distributions produced by each of the three
methods. The planar situation with κG ≡ 0 is the most common. Occurrences with characteristic radius
r < 1 m are very rare. Useful information is contained within the range κG ∈ [−1, 1] m−2. With LLC
method, grid size δ = 2 m is able to detect greater curvatures and grid size δ = 5 m is the last useful
grid size. DEM is remarkably similar to 2 m LLC grid, which was to be expected.
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Figure 7. Curvature distributions produced by each method. Upper left: LLC and grid size 2m.
Upper right: LLC and grid size 4 m. Larger grid size results in narrow band around κ = 0. Lower left:
DEM curvatures are characterized by kurtosis. Lower right: the LTC distribution.

Negative samples (dashed lines) have about the same amount of exactly planar samples, but are a
little bit more slightly curved (|κG| ≈ 0.4 m2) samples. This probably results from the basic ground
curvature distribution. If the presented three methods were to be adapted elsewhere, the changing
background curvature spectrum may result in changes in the prediction performance.

The LTC method is able to detect the negative curvature around the stone causing the curvature
distribution to be asymmetric. Unfortunately, this method is also very noise-sensitive reducing its
performance.

Each method requires more testing and especially test data with known stone properties (relative
coverage of the surface, radius and height distribution, individually located and labeled stones).

2.9. Logistic Regression

The label vector yi ∈ {−1, 1}, i ∈ D = 1...n was acquired by field campaign done by a geology
expert. D is the index set of the full sample set, size n = |D| varies depending e.g., on the different
sensitivity to sparse point cloud of each method. The sample vectors xi ∈ R

d are produced by histogram
vectorization described in Section 2.8. Dimensionality d varies depending on the method. We use the
affine form zi = (1, xi) to shorten the following treatise. Vectors {zi}i∈D are also standardized before
solving the regression problem.

This is a qualitative response problem, so logistic regression was chosen to predict a label ŷ from
a given sample vector x. The prediction coefficient β ∈ R

d+1 is tuned by usual maximum likelihood
approach to optimal value β∗

D′ using a sample set {(zi, yi)}i∈D′ , D′ ⊂ D where D′ is the training
set used:

f (zi, β) = Pr(yi = 1 | zi) = (1 + exp [−β · zi])
−1

ŷ(D′)(z) =

{
1 when f (z, β∗

D′) ≥ 1/2

−1 otherwise
(9)

The area under curve (AUC) performance measure is natural in this application area, where cost
functions do exist but are not exactly known. The sample set data2014 is rather small and the sample
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set data2015 has imbalanced samples of positive and negative cases and the n-fold cross-validation
may produce too optimistic estimates, as mentioned in [40]. It is recommended in [40] in this case:

• to perform a leave-pair-out (L2O) test over all possible positive-negative label pairs P, and
• to measure L2O area under curve AUC by using the Heaviside function H(.) for summation.

P = {(i, j) | yi = 1, yj = −1, i, j ∈ D} all possible (+,–) pairs

AUC = ∑(i,j)∈P H(ŷij(zi)− ŷij(zj))/|P| leave-pair-out AUC (10)

ŷij(z) = ŷ(D\{i,j})(z) prediction without a pair i, j based on z

H(∆ŷ) =
(
1 + sign(∆ŷ)

)
/2 Heaviside over the prediction difference

2.10. Method Parameters and Design Choices

Some parameters were optimized by nested cross-validation or K-S test and thus settled. Some
parameters are ad-hoc built-in parameters, values of which are chosen mostly during the coding
process. These should be taken into consideration if the methods are utilized under slightly different
conditions. A list of the open parameters, their potential range and some of the discrete design choices
available, follows. Table 4 is a summary of the treatise.

Table 4. Effective method parameters, a summary.

Method Parameters Binary Choices

SAF 2 0
LLC 3–15 63
LTC 0 1
DEC 2 1

LLC: There are 11 non-zero shape parameters of the planar distance weight function g(.) presented
in [11]. The validation of the choices made will be a separate publication. There are some minor design
choices, an example is Equation (B2): one can use either median or mean rule in composing curvature
from surrounding triangle vertices, and results do not change noticeably. Median rule was used to
reduce occasional outliers. Another example is the 6 grid sizes in Table 2. The number of possible
subsets of grids to be used equals 26 − 1 = 63.

LTC: There is a design choice of using the local surface area At/3 in Equation (4) or a more
complex definition given in [32]. This is listed as one binary choice in Table 4.

DEC: There is a binary choice of either choosing Laplacian filter signal Z̄ or the Gaussian
approximant κk of Equation (8) based on the signal Z̄.

2.11. General Wall-to-Wall Prediction

Methods presented in Sections 2.4–2.9 were applied only to given polygon areas, since teaching
is possible only where the response value is known. But after the parameters of predictor have been
settled, the area to be inspected can be a generic one. As a demonstration and speed test, we applied
methods to a 1080 km2 area divided to 20 m× 20 m pixels with approx. 320 points from a point cloud of
density ρ = 0.8 m−2. Pixels have 6 m overlapping margins to increase the sample area to 32 m × 32 m
(approx. 820 points) to avoid partially populated histograms, which would not be recognized correctly
by the classifier. See Figure 8 for the DEC method wall-to-wall result.
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Figure 8. Left: The local height from DEM files, 30 km × 36 km area depicted. The scale is oriented
northwards. The general location of the rectangle can be seen in upper left part of the Figure 2. Right:
Stoniness probability by DEC method. The scale is probabilty of having stones on a particular pixel.
Roads and waterways are classified as stony areas. LLC and LTC methods are much less sensitive to
roads and constructed details.

3. Results

Binary classification of stoniness was done by logarithmic regression over curvature histogram
vectors cumulated over each sample polygon area. Three methods were used; they differ on how the
curvature approximants were produced(Table 5):

• Local linear fitting (LLC) divides the polygon into 6 different grids. Each grid square is fit by a
plane approximating the local ground height of the center of the plane and the plane orientation.
Curvatures are computed from these center points and their orientation normals.

• Curvature from DEM (DEC) uses traditional DEM data. Curvatures are approximated by the
observed local height difference delivered by a modified discrete Laplace operator.

• Curvature by local triangulation (LTC) has a TIN computed by SAF method of Section 2.4.
The curvature is then computed triangle by triangle as in LLC.

Area under curve AUC [41] was measured using both data sets and all three methods, see
Section 2.9. The AUC measure describes the discriminative power of a predictor over various possible
cutoff point choices. A proper cutoff depends on the costs involved and is not known at the moment,
justifying the accommodation of AUC. Leave-pair-out variant of AUC was used, see considerations
for this choice in Section 2.9.

Table 5. Leave-pair-out AUC results based on three methods used: digital elevation model, local linear
fit and local triangular curvature for two polygon sample sets.

Data Set DEC LLC LTC

data2014 0.85 0.82 0.79
data2015 0.68 0.77 0.66

LLC proved best for data2015. This data set is large and perhaps more representative of the
locality, and the performance AUC = 0.77 can be considered adequate for practical application such as
pre-selecting possible gravel deposit sites for infrastructure construction. Its performance is also on
par with many hard natural resource prediction tasks based on open data, see e.g., [2].

Data set data2014 is somewhat exceptional, since it contains larger boulders and seems to be an
easy prediction task for wide array of methods. Both DEC and LLC performed well. The same holds
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to several other tested methods which have not been included to this report, e.g., neighborhood voting
based on solid angle values.

DEC performance is mediocre with data2015 set because the average stone size depicted in Figure 5
right side is actually below the theoretical detection limit of a regular 2 m grid. Established DEM
computation routines are a trade-off of many general-purpose goals and some of the stone signal
seems to be lost in the case of the data2015 set.

LLC, eventhough it was cross-validated with data2014, performed adequately here. There were
high hopes about local curvature based on triangularization (LTC), but it performed the worst. This is
because LTC computes the curvature directly from a TIN, and the process produces a lot of noise. LTC
has been included in this report mainly because the method is fast to compute and there seems to be
potential to reduce noise in the future by neighborhood voting methods.

The processing speed (see Table 6) has a linear dependence with the area analyzed. This is
because the analysis is done by space partitions of constant point cloud sample size n. All the steps
have a linear O(n) time complexity except the Delaunay triangulation in SAF. The point removal
phase in SAF is of O(kn) complexity, where k ≈ 5...20 is the amount of nearest neighboring points.
The experiments were run on a desktop computer with Intel Core i5-3470 CPU (3.20 GHz) running
Ubuntu Linux 14.10. LLC implementation requires several intermediary file operations, which
makes it slow. All implementations are experimental prototypes and many speed improvements
are still possible.

Table 6. Analysis speed computed from average of two runs over the data set data2015.

Analysis Speed DEC LLC LTC

km2/h 200 0.5 4.0

4. Discussion

A traditional approach for terrain micro-topography classification is to use DEM model as a basis
for a wide array of texture methods. The low end has a simple texture feature computation followed
by segmentation tuned manually by an expert. The high end has several texture features extracted,
and preferably at least two DEM models of different grid size as a basis for analysis.

This paper presents a way to use the existing ALS LiDAR material to construct an alternative
task-specific terrain surface representation which hopefully contains more information e.g., concerning
the presence of stones. All methods presented are conceptually simple, although documenting and
coding LLC and LTC brings up a multitude of details and ad hoc choices, see e.g., the number of
method parameters in Table 4. Each method has potential for further improvement by a more thorough
parameter tuning. SAF and LLC have enough method parameters that tuning by new field campaign
data at more southern boreal forests could succeed. More southern boreal forest provides a challenge
since the ratio of the ground returns is only 30%–60% instead of 70% at our Northern test site.

LLC and DEC perform well enough to be practically usable. The direct utilization of ALS data
seems to work on this site.

Because LTC is based on a TIN model, there is available additional geometrical information like
mean curvature, curvature eigenvalues and eigenvectors etc. for more complex micro-topographic
features. If it is possible to reduce the noise and keep the computation costs at the current low level,
a combination of these features could be a basis for fruitful multi-layer texture analysis.

Many terrain micro-topography classification tasks e.g., registering post-glacial landslides, karst
depresssion detection and fault lines detection e.g., can be done with DEM and by texture methods,
but there may be a need to add stoniness or curvature related features to improve the classification.
The current data sets do not provide accurate quantitative information about stoniness for regression
methods. The wall-to-wall stoniness result with 20 m × 20 m pixels produced by current binary
classification (see Figure 8) can be utilized as an additional feature in other prediction problems in the
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future. The wall-to-wall pixel size must be increased when the ground return ratio decreases in the
southern dense forests.

Three individual methods or a combination of them can be modified to produce estimates of
the relative stone coverage and stone size distribution. This step can be taken only if data sets come
available with individual stones and their properties tagged out. Furthermore, more sophisticated
probabilistic and minimum description length (MDL) based methods would then be possible. The stone
coverage and size distribution information in Figure 5 is approximative only, so current data sets
cannot be used for development of quantitative stoniness models.

It is hard to estimate how far to southern forests the three methods can be extended. The ground
return density varies with boreal forests, and detection results from spatially rather sparse accessible
spots should be somehow extended to nearby areas using other available public data and Machine
Learning methods. This line of research requires specific field test sets, though.

There are several other micro-topological problems, e.g., classifying and detecting undergrowth,
marshland types, military structures, unauthorized inhabitation and geomorphology e.g., frost
phenomena. Some of these require comparison of two snapshots from ultra-light vehicle (UAV)
scans, and e.g., a combination of SAF and MDL might perform well in this scenario. We believe SAF
has wide adaptivity to several purposes by tuning its 2 parameters (minimum and maximum spatial
angle allowed) and MDL can be built to detect a specific shape (a hemisphere in cases of stones, a box,
a prism or a cylinder in case of other applications). As mentioned before, MDL would require denser
point clouds with ρ ≈ 1.6...3.2 m−2.

5. Conclusions and Future Research

Results in Section 3 show that LLC performs better than DEC but is numerically much more
expensive. LLC seems to be robust and useful when the computation costs can be amortized over
several subsequential analyses. LTC performed worst but there is room for improvement as discussed
in Section 4. Both LLC and DEC are ready to be applied to industrial purposes after prototyping
implementations are upgraded to production code.

Current results are bound to stoniness of mass-flow deposits what comes to teaching data, but
each method should work in generic stoniness detection, if such a need arises and general teaching
data sets become available.

Using direct ALS information either as an alternative data source or supplementary one may help
solving a variety of micro-topography detection problems better in the future. The research efforts will
be focused on the following topics:

• Extending the analysis to more dense forests, where stoniness detection occurs only at benevolent
cicumstances (forest openings, sparse canopy, hilltops). In this environment the acquired
stoniness signal has to be combined to a wide array of open data features to extend prediction to
unobservable areas. The corresponding field campaigns will be more elaborate.

• Taking into account the stone coverage and size distribution. It is likely that a multi-grid method
like LLC might perform well in this prediction task (given suitable teaching data), whereas DEC
may be restricted by the general purpose nature of DEM and its modest grid size.

• Topography and vegetation classification of marshlands. Marshlands have similar high ground
return ratio as the current case site. SAF can be tuned by cross-validation to produce a tailored
TIN and an improved LTC method with added curvature properties (mean curvature, curvature
eigenvectors) could detect various micro-topographic marshland features. It is our assumption
that the histogram approach would work also with marshland classification, given a suitable
teaching polygon quality produced in field campaigns.

• Using min-cut based segmentation of k-NNG graph of ALS data as described in [15] instead of
simple Delaunay triangulation. One has to modify the algorithm to include neighborhood voting
to reduce noise. This could be a fruitful approach, since it could suit to 3D analysis of forest tree
species, providing more motivation for the implementation.
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• Utilizing all relevant LiDAR attribute fields, like return intensity, return number, the scan angle etc.
(see [21]).

Acknowledgments: Department of Information Technology of University of Turku covered the travel and
publication costs. English language was revised by Kent Middleton.

Author Contributions: Maarit Middleton designed and conceived the sample polygon sets; Raimo Sutinen
conceived the research problem; Paavo Nevalainen designed the methods and analyzed the data;
Paavo Nevalainen wrote the paper; Jukka Heikkonen contributed to the paper; Tapio Pahikkala contributed to the
performance analysis.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ALS Aerial laser scan
AUC area under curve
DDG Discrete differential geometry
DEC Curvature based on DEM
DEM Digital elevation model
DTM Digital terrain model
GIS Geographic information system
k-NNG k-nearest neihgbors graph
K-S Kolmorogov-Smirnov test
L2O Leave-pair-out
LiDAR Light detection and ranging
LLC curvature based on local linear fit
LTC local curvature based on ground triangulation
MDL Minimum description length principle
MTLS Moving total least squares
NLS National Land Survey of Finland
PCA principal components analysis
SAF Solid angle filtering
TIN triangulated irregular network
UAV Ultra-light vehicle

Appendix A

The computation of a solid angle Ωk takes place at the approximity of a point pk, namely at the
set of the adjoining triangles Tk, see detail A) of Figure A1. Detail B) presents a tetrahedron defined
by points pk, pi, pj, pl , where pi, pj ∈ Tk\pk are from the outskirt of the triangle set Tk and pl is an
arbitrary point directly below point pk. There are several ways to implement the solid angle calculation,
a formula based on a classical l’Huillier’s theorem [42] is presented here:

acos(a, b) = cos−1(a0 · b0) angle between two vectors (A1)

x0 := x/‖x‖2 vector normalization

αi = acos(pl − pk, pj − pk) compartment angles i, j, k

αj = acos(pi − pk, pl − pk)

αl = acos(pj − pk, pi − pk)

α0 = αi + αj + αl basic product term

ωil j = 4 tan−1
√

tan α0
4 Πν∈{i,j,l} tan α0−2αν

4 compartment angle (A2)

Ωk = ∑il j∈Tk
ωil j solid angle at point pk (A3)
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Figure A1. Solid angle filtering. (A) The set of adjoining triangles Tk of a point pk seen from above;
(B) A compartment ijl of the vertex point pk presented in detail. A solid angle Ωk is a sum of
compartment angles ωil j of Equation (A2). Point pl is an arbitrary point directly below the vertex
point pk.

Equation (A2) approaches so called Heron’s planar trigonometric formula [42] when angles
αi, ... approach zero. The practical implementation requires a combination of space partitioning to a
manageable point cloud patches of approx. 700...2000 points and a 2D Delaunay triangulation with an
efficient point removal method. We use a batch version (python scipy.spatial.delaunay) with our own
industry standard routine for deletion. This combination is simple to implement and excels in practise
as [36] mentions, even though there exists faster incremental deletion arrangements with 2..3 times
slower construction phase.

Appendix B

Step 1: Data can be preprocessed in three different ways before the LLC step. Alternatives are
listed here in the order of increasing computational efficiency and decreasing amount of points:

(a) raw 3D ALS data
(b) same as (a) with tree and foliage returns cut from approx. 2 m height from approximative

ground level
(c) TIN model produced e.g., by solid angle filtering of Section 2.4

The local linear fitting step 2 finds similar ground model per each alternative, only the speed of
convergence varies. All three alternatives seem to result in about the same quality when measured by
predictor performance.

Step 2: The fitting of the plane resembles a normal regression problem with an ad hoc nonlinear
loss function, which penalizes residuals below the plane to force the ground fit. By applying the
fitting process to planes of varying sizes one gets an assembly of plane orientations and plane centers.
The neighboring planes can then be used to approximate local curvature. Since sample density is
low, some of the plane fits cannot be performed. Therefore, it is numerically more resilient to use
triangulation over neighboring planes and define curvature over each triangle using formulation
developed in [33]. Another approach would be to produce a triangular mesh and estimate curvature
based on it, as in [31,32]. There is a large filtering effect in this approach, since vertex normals depend
on surrounding vertices. Local linear fit seemed to pick up the stoniness signal better, especially since
we used multi-scale grids.

The grid division has been depicted in Figure B1. At each grid slot, one has to find the best fitting
plane P(p, n), where p ∈ R3 is the center point of the plane P and n its normal. The initial state for
the plane is: P0 = P(lowest point of local sample, (0, 0, 1)T) δ.

The plane P represents a good local ground linearization provided that the weight function
g(l) of the orthogonal distance l penalizes heavily points below the approximated ground level.
The details of weight function have been published in [11]. The practical considerations in selecting the
weight function shape are at rapid and guaranteed convergence, whereas the influence to prediction
performance comes from the actual ground returns and their geometry.
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Figure B1. Left: An individual local plane P(pk, nk) at grid point ck and its parameters (local plane
center point pk and normal nk). A triangulation T of the grid avoids squares with incomplete data.
A local cloud point set Qck

and neighboring triangles Tk ⊂ T of a grid slot ck are also depicted. Center:
a stone revealed by two adjacent tilted planes. This stone provides a signal with the grid size δ = 2 m.
Note the amount of missing planes due to a lack of cloud points. Right: The grid of size δ = 4 m at
the same spot. The stone does not appear, local variation has disappeared but the grid is almost full
approximating the sample polygon shape.

The optimal fit at each grid slot concerns now coordinate components wT = (pz, nx, ny) of p and
n. The local plane P is found by a numerical minimization:

w∗ = argmin
w

∑
qj∈Qc

g[(qj − p) · n] (B1)

Step 3: Triangulation is based on the grid centers, where the surface normal is known. Because
of relatively low point density, some grid locations are bound to have no points and thus have to be
omitted from triangulation, see Figure B1. The triangularization T outlined in Figure B1 is generated
randomly, see Figure B1. The end result dictates the adjoining triangle sets Tk ⊂ T of each grid point
k. The size |Tk| of the adjoining triangle sets varies depending on how dense or sparse point cloud is
nearby point k: 1 ≤ |Tk| ≤ 8.

Step 4: The curvature is approximated on each vertex of each triangle as in [33]. There are several
other similar formulations e.g., using rectangular grids, but those are not so suitable in the presence of
sparse and missing cloud points. The end result is set of candidate curvatures κtk, t ∈ Tk per each grid
point pk.

Step 5: Now the task is to combine the final curvature approximant at a grid point pk by taking a
median of values available at the adjoining vertices of all surrounding triangles:

κ(pk) = median
t∈Tk

κtk (B2)

Step 6: We used the normalized histograms of h = histk∈Kκ(pk), where K is the set of grid centers
and histogram operator hist(.) and its properties are documented in Section 2.8.
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Abstract: This paper presents an automated and effective method for detecting 3D edges and tracing
feature lines from 3D-point clouds. This method is named Analysis of Geometric Properties of
Neighborhoods (AGPN), and it includes two main steps: edge detection and feature line tracing.
In the edge detection step, AGPN analyzes geometric properties of each query point’s neighborhood,
and then combines RANdom SAmple Consensus (RANSAC) and angular gap metric to detect
edges. In the feature line tracing step, feature lines are traced by a hybrid method based on region
growing and model fitting in the detected edges. Our approach is experimentally validated on
complex man-made objects and large-scale urban scenes with millions of points. Comparative studies
with state-of-the-art methods demonstrate that our method obtains a promising, reliable, and high
performance in detecting edges and tracing feature lines in 3D-point clouds. Moreover, AGPN is
insensitive to the point density of the input data.

Keywords: 3D edge; Edge detection; Feature line tracing; RANdom SAmple Consensus (RANSAC);
Angular gap

1. Introduction

1.1. Problem Statement

Feature extraction in 2D-images, one of the most important topics in the fields of image analysis
and computer vision, has been studied for years [1]. Edges and feature lines are considered as
important features in various urban scenes covering a vast number of man-made objects. Generally,
once edges are detected, a further step will be done for tracing feature lines from the detected edges.
For edge detection in images, edges have been well defined, such as “the boundary element between
two regions of different homogeneous luminance” [2] or “large or sudden changes in some image
attribute, usually the brightness” [3]. An extensive review of the established edge detection methods
can be found in the literature [1]. Apart from the surveyed methods, many outstanding methods have
been proposed such as the revised Canny operator [4] and Edison operator [5].

In recent years, benefiting from the advances in sensor technology for both airborne and
ground-based laser scanning, dense 3D-point clouds have become increasingly common [6]. Therefore,
edge detection and feature line extraction in 3D-point clouds have become a novel research topic.
However, in the fields of remote sensing and photogrammetry, the approaches have just scratched the
surface, and the definition of 3D edges has not yet been confirmed though feature line extraction has
long been a major issue in the 3D city modeling works.
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In addition, the established edge detection methods defined for images cannot be applied directly
to 3D-point clouds. The main reasons for this are given below:

(1) The data representation is different. An image is considered as a matrix, whereas a 3D-point
cloud is an unorganized and irregularly distributed [7] scattered point set.

(2) The presented information type is different. An image contains cryptic spatial information,
and abundant spectral information. Comparatively, a 3D-point cloud contains explicit spatial
information, and the reflected intensity at times [8].

(3) The spatial neighborhood is different. An image is arranged as a grid-like pattern, and
the neighborhood of a pixel can easily be determined. However, a 3D-point cloud is
unorganized, and the neighborhood of a point is more complex than that of a pixel in an image.
Generally, in 3D-point clouds, there are three types of neighborhoods: spherical neighborhood,
cylindrical neighborhood, and k-closest neighbors based neighborhood [9]. The three types of
neighborhoods are based on different search methods, and change of the search method alters
the neighborhood correspondingly.

To address the aforementioned problems, an automated and effective method is proposed to detect
edges and trace feature lines from 3D-point clouds. Prior to presenting our method, the definition of 3D
edges is given herein. Traditionally, 2D edges in an image are defined as the following two types [10]:

(1) Gray level edges, which are often associated with abrupt changes in average gray level.
(2) Texture edges, which are the abrupt “coarseness” changes between adjacent regions contained

the same texture at different scales, or the abrupt “directionality” changes between the directional
textures in adjacent regions.

Then, the definition of 2D edges is extended by the literatures [1–4,11]. Specially, the literature [1]
defines 2D edges as one-dimensional discontinuities in the intensity surface of the underlying scene.
However, the intensity or spectral information cannot describe the complete geometric properties in
3D-point clouds. According to the definitions in images and the characteristics of 3D-point clouds, we
visibly define 3D edges as 3D discontinuities of the geometric properties in the underlying 3D-scene.

Mathematically, we define 3D edges as the following two types (see Figure 1):

(1) Boundary elements, which are often associate with an abrupt angular gap in the shape formed by
their neighborhoods. The details are presented in Section 2.2. Boundary elements are the edges
belonging to roof contours, façade outlines, height jump lines [12], and other types of surface’s
contours. Specially, the surface is a 3D-plane or a curve surface.

(2) Fold edges, which are the abrupt “directionality” changes between the normal directions in
adjacent surfaces. Generally, two curve or planar intersected surfaces exist in the neighborhood of
a fold edge. The details are presented in Section 2.2. Fold edges are the edges belonging to plane
intersection lines [13], sharp feature line [14], breaklines [15], and other types of intersections
between different surfaces.

Edge detection in 3D-point clouds is similar to 2D image processing. The usual aim of edge
detection is to locate edges belonging to boundaries of objects of interest [3]. Most edge detection
techniques consist of two stages [11]: (1) converting an original image into features; and (2) assigning
points to edges or non-edges. Similarly, our proposed edge detection procedure first computes angular
gap feature for all the points in a 3D-point cloud, then assigns the points to edges or non-edges.
Sometimes, there is a further stage called edge linking, in which the detected edges are examined once
again for instance to obtain closed contours [11]. For 3D-point clouds, the edge linking procedure
may relate to a special application such as line segment extraction or building reconstruction. In this
paper, we present a feature line tracing procedure for linking the detected edges to feature lines, such
as boundaries and intersection lines. The feature lines might be straight or curve, however, must
be smooth.
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(a) (b)

Figure 1. The definition of two types of edges.

To detect the defined 3D edges and trace the feature lines from 3D-point clouds, we propose an
Analysis of Geometric Properties of Neighborhoods (AGPN) method. AGPN first analyzes geometric
properties of each query point’s neighborhood in spatial domain, and then detects 3D edges based on
RANSAC and angular gap metric. Finally, to trace feature lines from the 3D edges, a hybrid method
based on region growing and model fitting is proposed. With the proposed AGPN method, we can
detect the two defined 3D edges—boundary elements and fold edges from 3D-point clouds directly
without extra image processing or point cloud preprocessing (e.g., segmentation or object recognition).

1.2. Related Work

In the fields of remote sensing, photogrammetry, and computer vision, edge detection and
feature line extraction from airborne or terrestrial laser scanning data, has long been one of the major
issues. Specifically, feature line extraction from 3D-point clouds, as a substep in 3D city modeling
works, has been a major research topic for years [12,13,15–35]. Research efforts for 3D edge detection
and feature line extraction from laser scanning data can be categorized into two groups: (1) direct
methods [12,13,15–26], first recognize the building points from a 3D-point cloud, next, segment or
cluster building points into planes, finally, detect edges and extract feature lines i.e., plane outlines and
plane intersection lines [13]; (2) indirect methods [26–35], first convert a 3D-point cloud into an image,
or register with corresponding images, next, detect 2D edges in the images, and then project the 2D
edges back into the 3D-point cloud to obtain 3D edges.

The above-noted approaches can detect edges on regular feature lines such as plane intersection
lines [13] or breaklines [15,16], roof or wall outlines [15,17] in buildings or piecewise planar objects. We
mainly review the aforementioned direct methods herein, because the indirect methods might cause
loss of spatial geometric information when a 3D-point cloud is converted into an image. To extract
roof boundaries or façade outlines, a boundary estimation method is required in the direct methods.
At beginning, 3D-point clouds without a high point density bring challenges to this task [18]. The
literature [12] extracts roof boundaries named height jump lines by using segmented ground plans.
With the improvement of the point density of 3D-point clouds, two groups of boundary estimation
methods are proposed. The first group of methods [17,19,20] extract boundaries based on triangulation.
In this case, a Triangular Irregular Network (TIN) for the planar segments is generated first, and
then long TIN edges appear only at the outer boundary (segment outlines) or inner boundary (holes).
Boundary points are just the end points of the long TIN edges. The second group of methods [21,22]
extract boundaries based on convex hull algorithm. In this case, the convex hull algorithm is modified
by local convex hull testing to deal with complex boundaries. Then the points which are close enough
to the query local convex boundary are picked up and treated as boundary points. In comparison
with boundary extraction, the extraction for plane intersection lines is more convenient in the field of
photogrammetry. After all the planar segments in a 3D-point cloud have been determined, the topologic
relations among the planar segments are computed and represented by an adjacency matrix [15], then
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all pairs of adjacent planar segments are intersected to extract plane intersection lines [12,13,15,23],
and thus, the edges on the intersection lines can be easily detected.

The aforementioned methods can, however, detect edges and extract feature lines in only regular
buildings or piecewise planar objects. Furthermore, the literature [6] reviews the drawbacks of this
work in the literature [13], some of which are common in state-of-the-art methods using 3D laser
scanning data. The drawbacks include: (1) these methods are incapable of fitting a small and narrow
plane in a noisy point cloud; (2) these methods may generate unexpected lines at non-planar surfaces
when the data become complex.

Some approaches [14,36–40] employ surface meshes or point-based surfaces, which can detect 3D
edges or extract feature lines from some irregular objects and more complex surfaces. However, these
methods are only applied to a small-scale 3D-point cloud with a single object. Specially, an angular
gap based method [39,40], whose variations are widely used in building reconstruction work [41],
fan clouds work [42] and the Point Cloud Library (PCL) [43], has been proposed. In this paper,
the angular gap based method is utilized as a criterion in our proposed method.

2. Methodology

2.1. Overview

To detect 3D edges and trace feature lines, a two-step strategy based on AGPN, is illustrated in
Figure 2. In the diagram shown in Figure 2, the upper part marked by blue dotted lines is the first step,
and the lower part marked by red dotted lines is the second step. The first step, detailed in Section 2.2,
detects or locates edges in 3D-point clouds based on RANSAC, normal optimization, and angular gap
computation. The second step, detailed in Section 2.3, traces feature lines from the detected edges
based on neighborhood refinement and growing criterion determination.

Figure 2. Overview of the proposed AGPN.

The pseudo code of our proposed AGPN method and its parameters are shown in Appendix A.

2.2. Edge Detecton

2.2.1. Geometric Property Analysis

The inherent property of being an edge is that it is the local neighborhood of a point rather than
the point itself [44]. Based on this principle, we design an algorithm to determine whether a point is
an edge or not by analyzing geometric properties of the point’s neighborhood. In the neighborhood of
a boundary element, there is only one curve or planar surface. In the neighborhood of a fold edge,
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there are two or more intersected surfaces. We first present the flowchart of the edge detection step,
and then explain why the defined edges can be detected.

The flowchart of the edge detection step in our proposed AGPN is shown in Figure 3. Let o

denote an unlabeled point. Our method first searches the nearest neighbor point set P of o based on
distance. Next, the point set P is fitted into a local plane, pl, by the RANSAC algorithm, and then P

is divided into inliers (on the fitted plane pl) and outliers. The point o will be labeled as non-edge if
it does not belong to the inliers. Otherwise, o and the inliers are connected to construct a number of
spatial vectors, from which angular gap will be calculated based on the optimized normal detailed in
Section 2.2.4. If a substantial angular gap exists between the constructed spatial vectors on pl, o will be
labeled as edge. Otherwise, o will be labeled as non-edge. Edges will be detected after all the points in
a 3D-point cloud are labeled.

It is noteworthy that we use the angular gap method rather than a modified convex hull boundary
detection algorithm, which can be widely found in some references, because the inliers may be a subset
of a surface plane model. Moreover, a kd-tree is used to determine the nearest neighbor point set P of
each point.

 

Figure 3. Flowchart for the edge detection step in AGPN.

As shown in Figure 3, the plane model, calculated by the RANSAC algorithm, fits a local surface
in the nearest neighbor point set P of the unlabeled point o (see Figure 4). When o is on a plane outline
or plane intersection line, the plane model is impeccable. When o is on a curve surface boundary or
intersection of different curve surfaces, the plane model is also the most direct and effective geometric
model for approximating the local smooth surface, because the neighborhood of o is a local small area
of the surface.

Based on the plane model fitted by the RANSAC algorithm, the nearest neighbor point set P are
divided into inliers and outliers (see Figure 4). The inliers are in the fitted plane and the outliers are
outside. It can be found that, by the RANSAC algorithm, a best plane model can be found in P. If a
point is a boundary element, the inliers are on the fitted plane, and the outliers are noise. If a point is
a fold edge, the inliers are on the fitted plane lying on one of the intersecting surfaces in the point’s
neighborhood (see Figure 4).

The edge detection procedure in AGPN can detect both boundary elements and fold edges.
The detection of the two types of edges is detailed in Sections 2.2.2 and 2.2.3, respectively.
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(a) (b)

Figure 4. Local plane (rendered in red) fitted by the RANSAC algorithm in the nearest neighbor
point set P. (a,b) show two types of neighbor point sets respectively. There are three planes in (a) and
two planes in (b).

2.2.2. Boundary Element Detection

As shown in Figure 5, there is only one surface in the neighborhood of an unlabeled point o.
K points depicted in blue and red are the nearest neighbors of o, obtained using a kd-tree. Points
pi (i = 1 · · · Nr) rendered in red are inliers extracted by the RANSAC algorithm. These inliers are on
the fitted plane pl of the local surface.

(a) (b)

Figure 5. Distribution of the nearest neighbors of an unlabeled point on a surface: (a) the neighborhood
of an interior point; (b) the neighborhood of a point on a boundary.

If o is on a surface boundary, there will be a substantial angular gap Gθ (see Figure 5b) between
vectors

→
opi (i = 1 · · · Nr) on the local plane pl. If o is an interior point (see Figure 5a), the distribution

of the angles between vectors
→

opi (i = 1 · · · Nr) will be consecutive, and there will certainly be no
substantial angular gap.

Notably, o will be labelled as noise or an isolated point if it is an outlier of the local plane pl.

2.2.3. Fold Edge Detection

As shown in Figure 6, the neighborhood of an unlabeled point o includes two intersecting surfaces.
K points depicted in blue and red are the nearest neighbors of o. Points pi (i = 1 · · · Nr) rendered in
red are inliers extracted by the RANSAC algorithm. The extracted inliers are on the fitted local plane
pl lying on one of the intersecting surfaces.

If o is a fold edge point, there will be a substantial angular gap Gθ (see Figure 6b) between vectors
→

opi (i = 1 · · · Nr) on the local plane pl. The local plane pl is on one of the intersecting surfaces. If o is an
interior point on one of the intersecting surfaces (see Figure 6a), the distribution of the angles between
vectors

→
opi (i = 1 · · · Nr) will be consecutive, and there will certainly be no substantial angular gap.

Figure 6c shows a special case, that is, the point densities of the intersecting surfaces are
considerably different. One of the intersecting surfaces contains sparse points, while the other
intersecting surface includes much dense points. If o is an interior point on the surface with sparse
points, the inliers extracted by the RANSAC algorithm will be on the other surface with dense points.
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Then, once the angular gaps are computed from these inliers, there will be a substantial angular
gap, resulting in o mislabeled as an edge. Fortunately, o is an outlier of the fitted local plane pl, and
therefore, it can be rejected by determining whether or not it is an inlier of the fitted local plane pl.

 
(a) (b) (c) 

Figure 6. Distribution of the nearest neighbors of an unlabeled point on a surface intersecting structure:
(a) the neighborhood of an interior point on one of the intersecting surfaces; (b) the neighborhood
of a fold edge point; (c) the neighborhood of a point on the two intersecting surfaces with different
point densities.

In addition, if the number of inliers is less than three, the inliers will not be able to fit a plane.
In this case, o will be labeled as noise or a local extreme, such as the vertex of a circular cone.

2.2.4. Normal Optimization

Generally, the normal of a 3D point is computed by a covariance matrix created from the nearest
neighbors of the 3D point [45], which is called PCA-Normal herein. The PCA-Normal is the normal of
the tangent plane of a 3D point. In our method, the normal is required to be orthogonal to the local
fitted plane pl. When we detect boundary elements, only one surface exists in the neighborhood, and
pl is on the surface. When we detect fold edges, two or more intersecting surfaces exist, and pl is on
one of the intersecting surfaces. However, the PCA-Normal is orthogonal to the tangent plane, and
hence it cannot meet the aforementioned requirement.

The reasons for this are that the PCA algorithm cannot detect any of the intersected planes in a
complex neighborhood. Fortunately, the RANSAC algorithm can solve this problem, and deal with
noise as well. As shown in Figure 4, the RANSAC algorithm can detect a proper plane in either of the
two complex neighborhoods.

In this study, we fit a local plane in the neighborhood to estimate the normal
→
n of an unlabeled

point o. The procedure first searches for the neighbors of o. Next, to eliminate the influence of outliers
or noises, a local plane pl is fitted using the RANSAC algorithm. Then,

→
n is the normal of the local

fitted plane pl. Note that the normal
→
n used in this study is named RANSAC-Normal.

2.2.5. Angular Gap Computation

To compute the angular gap, Gθ , a spatial coordinate frame is constructed based on the local plane
pl and its normal vector

→
n . The axes of this frame are composed of two perpendicular vectors

→
u ,

→
v on

pl and the normal vector
→
n . The angular gap Gθ is computed by Equations (1)–(4):

du
i =

→
opi ⊙

→
u (1)

dv
i =

→
opi ⊙

→
v (2)

θi = arc tan (du
i /dv

i ) (3)

Gθ = max (θi+1 − θi) (i = 1 · · · Nr − 1) (4)

where
→

opi (i = 1 · · · Nr) is the vector connecting the unlabeled point o to an inlier pi extracted by the
RANSAC algorithm. The distribution of Gθ is shown in Figure 7.
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Figure 7. Distribution of Gθ , each point is colored according to its value of Gθ .

The pseudo code of the edge detection step in AGPN and its parameters are shown in Appendix B.

2.3. Feature Line Tracing

Once edges have been detected, a further step will trace the detected edges into segments. Each
segment is a point list, in which all the points belong to the same feature line. The proposed feature
line tracing method connects edges with similar principle directions and splits edges with abrupt
directionality changes. Thus, the traced feature lines are curve or straight, however, must be smooth.

The proposed feature line tracing is a hybrid method based on region growing and model-fitting
algorithms. The model-fitting algorithm estimates 3D line parameters in each point’s neighborhood
by the RANSAC algorithm. The directional parameters of the fitted 3D line denote the principle
direction of the edge point. The region growing algorithm clusters the detected edges into segments
based on the following two redefined growing criteria related to the refined neighborhood and the
principle direction.

The proposed feature line tracing procedure includes two essential steps: neighborhood
refinement and growing criterion definition.

2.3.1. Neighborhood Refinement

Compared to an image, a 3D-point cloud is an unorganized and scattered point set, which brings
great challenges to neighborhood searching of edge points. Our method first obtains the nearest
neighbors of a query point by using the kd-tree algorithm. Next, a straight line model is fitted by the
RANSAC algorithm, and then, the nearest neighbors are divided into inliers and outliers. The inliers
containing the query point are the refined nearest neighbors. Otherwise, the outliers are processed
iteratively by the RANSAC algorithm until the updated inliers contain the query point. Therefore, an
adaptive neighborhood is designed for each query point.

2.3.2. Growing Criterion Definition

Two growing criteria given by [46] are redefined in this study.

a Proximity of points. Only points that are near one of the points in the current segment can be
added to the stack of the segment. For feature line tracing, this proximity of edge points can be
implemented by the aforementioned neighborhood refinement.

b Smooth direction vector field. Only points that have a similar principal direction with the current
tracing segment can be added to the stack of the current segment. In this paper, a line model is
first fitted from the refined neighborhood by the RANSAC algorithm, and then the principal
direction of the current point is defined as the direction of the fitted line.

In addition, a larger proportion of inliers to all nearest neighbors implies a higher possibility of
the presentence of feature lines. Due to the region growing procedure being irreversible, an edge point
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with greater linearity should be grown first to ensure a better tracing result. Therefore, edge points are
first sorted by their proportion values, and then grown in order.

The general region growing procedure for linear feature segmentation is sensitive to the size of the
established local neighborhoods and the location of seed points. However, the refined neighborhood
and the aforementioned sorted edge points can overcome the problem. It is validated that the proposed
feature line tracing procedure can distinguish spatially-adjacent, collinear/coaxial lines (see Figure 8).

(a)

(b)

Figure 8. Feature line tracing, (a) feature line segments generated by region growing method; (b) feature
line segments generated by the proposed feature line tracing method. The traced segments are marked
by different colors.

Three parameters are used in the feature line tracing step, that is, the number of nearest neighbors
K2 for kd-tree algorithm, distance threshold d2

r for the RANSAC line model estimation, and smooth
direction threshold sm_thr. The traced feature lines are shown in Figure 8b.

3. Experiments and Analysis

The proposed algorithms were implemented in C++ using the PCL. There are five parameters
in the proposed AGPN (detailed in Appendix A). In this study, the point spacing of the input data
affects the performance of our proposed AGPN most. Moreover, the performance is also affected by
the distance thresholds d1

r and d2
r related to the point spacing. Therefore, we describe the testing data

in Section 3.1 and discuss parameters tuning in Section 3.3. The point spacing is measured by the open
source software CloudCompare [47].

To quantitatively evaluate the performance of our AGPN, four measures are defined in Section 3.2.
We further compare the proposed AGPN with two representative algorithms: the boundary estimation
method presented in the PCL and the edge points clustering algorithm presented in the literature [13].
The comparative studies are presented in Section 3.7.

3.1. Testing Data

The open datasets available from the homepage of 3D ToolKit [48] are employed. The datasets are
recorded by a Riegl VZ400 scanner in the Bremen city center. The point density of a single 3D scan
is uneven.

From the open datasets, we selected two testing sites, i.e., Site 1 and Site 2. The two sites contain
a large number of complex man-made objects. Table 1 shows their detailed information, including
the number of points, maximum point spacing, minimum point spacing and the parameters used in
our experiments.

The point spacings in the two testing sites are quite different. In Site 1, the point density is
uneven. In the neighborhood of the scanner, the average point spacing is 0.001 m, and in the areas
away from the scanner, the average point spacing is 0.15 m. The variation tendency of the point density
is consecutive with the variation of the distances to the scanner. In Site 2, except for the window areas,
the average point spacing is 0.005 m. In the window areas, the point density decreases rapidly, and the
average point spacing turns to 0.01 m. The variation tendency of the point density is piecewise.
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Table 1. Data description and parameter settings for the two testing sites.

Number
of Points

Maximum
Point Spacing

Minimum
Point Spacing

Parameters

K1 d1
r K2 d2

r sm_thr

Site 1 14040449 0.15 0.001 200 0.01 15 0.01 0.2
Site 2 4411599 0.01 0.005 200 0.005 15 0.005 0.2

3.2. Evaluation Metrics

To test the performance of the proposed AGPN, we quantitatively evaluate the results of the edge
detection step and the feature line tracing step, respectively, by four measures: pdc(correctness rate of
the edge detection step), pmj(mislabeled rate of the edge detection step), pdct(correctness rate of the
feature line tracing step), and pmjt(mislabeled rate of the feature line tracing step). To compute pdc and
pmj for evaluating the 3D edge results, we count the number of the feature lines which the detected
edges belong to. The feature line is curve or straight, however, must be smooth. The four measures are
defined as follows:

pdc =
Ndc

Ngc
(5)

pmj =
Nmj

Ngc
(6)

pdct =
Ntc

Ndc + Nmj
(7)

pmjt =

⎧
⎪⎨
⎪⎩

Nmjt

Ndc+Nmj
i f Nmjt ≤ Ndc + Nmj

Nmjt

Nmjt+Ntc
Otherwise

(8)

where Ndc is the number of true positive feature lines contained in the detected edges, Ntc is the number
of correctly traced feature lines in the feature line tracing step, Ngc is the total number of feature lines
in the ground truth, Nmj is the number of mislabeled feature lines contained in the detected edges, and
Nmjt is the number of incorrectly traced feature lines in the feature line tracing step. Larger values of
pdc and pdct, and smaller values of pmj and pmjt are more desirable.

3.3. Parameter Tuning

One of the major strengths of the proposed AGPN is that the extracted 3D edges in the edge
detection step are sufficiently subtle with the default value ( π

2 ) of the angular gap (Gθ).
Table 1 lists the parameters used in the proposed AGPN and their empirical values. We maintained

K1 = 200 and K2 = 15 for Site 1 and Site 2 because both K1 and K2 have little influence on the quality of
the results.

In addition, because the feature line tracing parameters are mainly dependent on the requirements
of users, we only analyze the influence on the application of 3D line segment extraction. Under this
condition, to ensure the sufficient quality of the result, sm_thr is set to 0.2.

We selected a number of subsets in Site 1 with the same point spacing (0.01 m) to analyze the
sensitivity of d1

r and d2
r . As shown in Figure 9, the x-axis denotes d1

r and d2
r , the y-axis depicts the

average values of the correctness and mislabeled rates. It can be seen that when the value of d1
r and d2

r

are close to the point spacing of 0.01 m, the edge detection step and the feature line tracing step both
achieve good results. If we set d1

r smaller than the point spacing, the mislabeled rate pmj will arise.
Although the correctness rate pdc also arises, it is much slighter than pmj. According to this figure, if
the point spacings of the input data are the same, a reasonable configuration is obtained with d1

r and
d2

r equal to the point spacing of the input data. Otherwise, we can set the parameters according to the
variation tendency of the point density. For example, if the variation tendency of the point density is
piecewise, we set d1

r smaller than the average point spacing in the edge detection step, and thus all the
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edges can be ensured to be detected, next, we utilize the feature line tracing step to trace all the edges,
then filter the traced segments with small number of points.

 
(a) (b)

Figure 9. Average values of correctness and mislabeled rates for different values of d1
r and d2

r : (a) results
of the edge detection step with different values of ; and (b) results of the feature line tracing step with
different values of d2

r .

3.4. Normal Estimation

To demonstrate the feasibility of our RANSAC-Normal, we compare it with the PCA-Normal.
The comparison is shown in Figure 10. When a point is a fold edge, there are two intersecting surfaces
orthogonal to each other in its neighborhood. The PCA-Normal (see Figure 10a) is orthogonal to the
tangent plane rather than one of the intersecting planes, while the RANSAC-Normal (see Figure 10b)
is orthogonal to one of the intersecting planes. If we construct a coordinate frame based on the
computed RANSAC-Normal, the other two axes

→
v and

→
u of the coordinate frame are located in one

of the intersecting planes. Therefore, the RANSAC-Normal reaches the requirement of our method
(see Section 2.2.4).

(a) (b)

Figure 10. Normal estimation of the neighborhood with two intersecting planes: (a) PCA-Normal
→
n ;

(b) RANSAC-Normal
→
n estimated by our method.

3.5. Influence of Point Density

The point density of the input data mainly determines the details of a complex object, such as
a chimney, step, or window. To analyze the influence of the input density on the results of the edge
detection step and the feature line tracing step, we down-sampled a point cloud data of a window
(see Figure 11a) with different point densities.

As shown in Figure 11c, the horizontal axis denotes the number of points in the down-sampled
data. The light blue bar represents the ratio of the contained feature lines in the original data of a
window to all feature lines in the window (denoted by r1). When the data is down-sampled into
different point densities, the value of r1 decreases with the decreasing of point density. We can find
that the ratio of feature lines in the detected edges to all feature lines (denoted by r2) and the ratio of
traced feature lines to all feature lines (denoted by r3) are close to the ratio r1. For example, when the
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data is down-sampled to 6673 points, only the sixty percent of the original feature lines are contained,
the values of r1, r2 and r3 are close to 0.6 simultaneously, and both the correctness rates of the edge
detection step and the feature line tracing step are close to 1.0. This indicates that as long as a feature
line is contained in the data, our method can detect the edges and trace the feature line segment.
Therefore, the experimental results demonstrate that the correctness rates of the edge detection step
and the feature line tracing step are not influenced by the point density.

(a) (b)

(c)

Figure 11. (a) Original input data without down-sampling; (b) the input data down-sampled to
6673 points; (c) correctness rates under different densities.

3.6. Results

With the discussed values of the parameters used in the proposed AGPN, the overall performance
is evaluated on the aforementioned two testing sites.

To test the capability of the proposed AGPN detecting the defined types of edges presented in
Section 1.1, a small scene in Site 2 is selected. The selected small scene and its details are shown in
Figure 12a. Four surfaces exist in this scene, i.e., one curve surface rendered by red color and three
planar surfaces rendered by blue, green, and yellow colors respectively. There are fold edges belonging
to the intersection curves [49] and lines [13], and boundary elements belonging to the plane outlines.
Three parts of the edges are marked by white rectangles. Specifically, the fold edges belonging to an
intersection curve are the intersetions of the red curve surface and the green planar surface. The results
of our proposed AGPN are shown in Figure 12b,c. Figure 12b shows the detected edges. We can find
that all the defined edges are detected in the scene of interest. Figure 12c shows the traced feature line
segments rendered by different colors. Specifically, the purple and orange segments correspond to the
two intersection curves of the scene respectively, and other segments correspond to the intersection
lines and outlines.
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(a)

(b) (c)

Figure 12. The results of a small area, (a) shows the four surfaces, and three kinds of edges in this area;
(b) shows the edges detected by our method; (c) shows the feature line segments traced by our method.

In Site 1, the variation tendency of the point density is consecutive with the variation of the
distances to the scanner. Therefore, we set the thresholds of d1

r and d2
r to the average point spacing 0.01.

In Site 2, the variation tendency of the point density is piecewise, i.e., the point spacing in window
areas (0.01) is much larger than that in non-window areas (0.005). According to the discussion in
Section 3.3, we set the thresholds of d1

r and d2
r to 0.005 (the average point spacing in non-window

areas). The parameters and their values used in the proposed algorithms are listed in Table 1. To clearly
demonstrate the performance of the proposed method, the 3D edge detection results are overlaid on
the original point cloud.

The results of Sites 1 and 2 are shown in Figures 13 and 14, and the accuracy evaluation results
are listed in Table 2. In Table 2, the correctness rates pdc and pdct of Site 2 are higher than that of Site 1.
The reason is that the variation range in Site 1 is larger than that in Site 2. According to the analysis in
Section 3.3, when the values of d1

r . and d2
r are unequal to the point spacing, the correctness rates will

decrease. We can also find that the mislabeled rate pmj of Site 1 is lower than that of Site 2. A close-up
visual inspection shows that there are many windows in the second site data, the misjudgments
mainly arise in the areas of windows. The reason is that the point spacings in the areas of windows
are much larger than the ones in non-window areas. Moreover, the difference of point spacings
between windows and non-window areas in Site 2 is larger than that in Site 1. According to the
analysis in Section 3.3, when the parameter of distance threshold is smaller than the point spacing, the
misjudgments will arise. Furthermore, the tendencies of the correctness rate pdc and the mislabeled rate
pmj (in Figure 9a) validates that the mislabeled rates of the edge detection step in Table 2 is reasonable.

In Figures 13d–f and 14d–f, all the defined types of 3D edges are detected by our proposed method,
and some details in the results of Sites 1 and 2 are presented. We can find that most of the edges in
the window areas or walls with textures belong to intersection curves or intersection lines. Specially,
most of the intersected planes or curve surfaces are narrow, which are difficult to be extracted by
segmentation or clustering procedures for 3D-point clouds.
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(a)

(b) (c)

(d)

(e)

(f)

Figure 13. Results of Site 1: (a) edge detection result overlaid on the original input data; (b) edges;
(c) traced feature line segments depicted in different colors; (d–f) details of edges and traced feature
line segments demarcated by different colored outlines corresponding to (a).
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(a)

(b) (c)

  
(d)

  
(e)

  
(f)

Figure 14. Results of Site 2: (a) edge detection result overlaid on the original input data; (b) edges;
(c) traced feature line segments depicted in different colors; (d–f) details of edges and traced feature
line segments, demarcated by different colored outlines corresponding to (a).

Table 2. Accuracy results of the proposed algorithms.

Edge Detection Feature Line Tracing

pdc (%) pmj (%) pdct (%) pmjt (%)

Site 1 95.6 3.4 86.7 10.1
Site 2 98.1 5.2 87.9 5.3
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3.7. Comparative Studies

In our comparison, we do not include all types of the existing methods. This paper compares
the proposed AGPN method to “direct methods” because AGPN processes 3D-point clouds directly.
In the proposed AGPN, there are two steps, i.e., edge detection step and feature line tracing step.
We compare the existing methods with the two steps individually.

A boundary estimation method is presented in PCL, and it uses an angle criterion which is similar
to the literature [41]. Comparative results of the boundary estimation method and our edge detection
method are shown in Figure 15. Three subsets are selected from the testing datasets. The comparative
results show that the proposed edge detection method can detect all types of edges irrespective of how
complex the details of the objects are. However, the boundary estimation method in PCL is incapable
of detecting fold edges. Table 3 lists the comparative accuracies of our edge detection method and the
boundary estimation method.

(a)

(b) (c)

(d) (e)

Figure 15. Comparison of the results of the AGPN and existing methods: (a) original input data;
(b) edges detected by our edge detection method; (c) edges detected by PCL, where the results are
optimal, obtained by training ten sets of parameters; (d) feature line segments traced by our method;
(e) feature line segments traced by the method in the literature [13].

The reason is that the boundary estimation method detects 3D edges using only angle criterion,
which is insufficient for detecting fold edges from unorganized point clouds. Besides, the boundary
estimation method detects surface boundaries using the PCA-Normal, which ignores the influence of
outliers and noises. Therefore, the boundary estimation method is incapable of dealing with an edge
with a complex neighborhood.
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Table 3. Comparative accuracy results.

Our edge
Detection Method

PCL Method
Our feature Line
Tracing Method

Edge Points
Clustered by [13]

pdc (%) pmj (%) pdc (%) pmj (%) pdct (%) pmjt (%) pdct (%) pmjt (%)

Data1 100.0 0.0 80.0 0.0 100.0 0.0 100.0 0.0
Data2 88.3 6.3 52.6 2.7 90.3 19.6 50.6 3.4
Data3 86.8 5.2 60.3 5.5 88.9 14.1 31.0 4.4

An edge point clustering method has been proposed by the literature [13]. Comparative results of
our feature line tracing method and the algorithm in the literature [13] are shown in Figure 15, where
different traced feature line segments are rendered in different colors. Comparative accuracy results of
our method and the method in the literature [13] are listed in Table 3. It can be seen that our feature
line tracing method performs very well, and the tracing quality of it is obviously better than that of the
algorithm in the literature [13].

The reason is that the literature [13] determines the principal direction of each edge point by
analyzing a self-correlation matrix constructed by nearest neighbors, but ignoring outliers among the
nearest neighbors. When several feature lines intersect, the neighborhood will not be a linear structure,
resulting in the edges in this intersecting area will be missed.

4. Conclusions

In this paper, we propose an automated and effective method named AGPN, which detects
3D edges and traces feature lines from 3D-point clouds. There are two main steps in our proposed
AGPN: edge detection and feature line tracing. In the first step, AGPN detects edges from 3D-point
clouds. This step first analyzes the geometric properties of each query point’s neighborhood, and then,
combines RANSAC algorithm and angular gap criterion to label the query point as edge or non-edge.
In the second step, AGPN traces feature lines from the detected 3D edges. This step is a hybrid method
based on region growing and model fitting. In this step, we refine the neighborhood of each query
point and redefine two growing criteria to overcome the uncertainties of the region growing procedure.

The contributions of the proposed AGPN method include: (1) image processing or point cloud
preprocessing such as segmentation and object recognition are not needed, thereby reducing the
complexity of the 3D-point cloud process; (2) the proposed edge detection method in AGPN can detect
all the defined types of 3D edges and be insensitive to noise; (3) the feature line tracing step in AGPN
is used to distinguish spatially-adjacent, collinear/coaxial lines in complex neighborhoods.

The experimental results show that our proposed AGPN can detect all the defined types of edges
irrespective of how complex the details of the objects are. The feature line tracing step can trace
feature lines in a complex neighborhood with several intersected or parallel lines. In comparison
with state-of-the-art methods, the proposed AGPN can obtain superior results qualitatively and
quantitatively. Moreover, we analyze the uncertainties of the results of our proposed method from
two aspects, i.e., parameters tuning and influence of point density. In the analysis of the parameters
tuning, we present the variation tendency of the correctness rate and the mislabeled rate with different
parameters. Then, we achieve a good result according to the point spacing of the input data and
the variation tendency. In the analysis of the influence of input density, the experimental results
demonstrate that the two steps in our method are not influenced by the input density, though the
details of a complex object mainly depend on it.

However, a limitation exists in that over-segmentation arises when the parameters of the feature
line tracing procedure are strict or there is a gap in a long feature line. In the future work, we will
attempt to solve this problem. In addition, it would be interesting to apply the proposed algorithms to
object recognition in large-scale 3D-point clouds.
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Appendix A

There are five parameters in our proposed AGPN. Specifically, the first two parameters are the
number of nearest neighbors K1 and the distance threshold d1

r for the RANSAC plane model estimation
in the edge detection step. The last three parameters are smooth direction threshold sm_thr, the number
of nearest neighbors K2 for kd-tree, distance threshold d2

r for the RANSAC line model estimation in the
feature line tracing step. The following pseudo codes are the details.

AGPN

Input: Point cloud = {P}, parameter K1, d1
r , d2

r , K2, sm_thr.
1: Edge points {E} ← ∅

2: Feature line segments {FS} ← ∅

3: Edge detection step {E} ← Ξ
(
K1, d1

r

)

4: Feature line tracing step {FS} ← Θ
(
E, K2, d2

r , sm_thr
)

5: Return Feature line segments {FS}

Appendix B

The edge detection step in AGPN uses two parameters. Specifically, the first is the number of
nearest neighbors K1. The second is the distance threshold d1

r for the RANSAC model. Furthermore,
there is a default threshold π

2 for the angular gap (Gθ). The following pseudo codes are the details.

3D Edge Detection

Input: Point cloud = {P}, parameters K1, d1
r .

1: Edge points {E} ← ∅

2: For i = 0 to size ({P}) do

3: Current neighbors {Nc} ← ∅

4: Find nearest neighbors of current point {Nc} ← ϕ
(

P, i, K1)

5: Current normal vector nc ← {0, 0, 0}
6: Current inlier list {Ic} ← ∅

7: Compute current inlier list {Ic} using RANSAC {Ic} ← Ω
(

Nc, d1
r

)

8: Normal optimization nc ← φ (Ic)

9: If Pi /∈ Ic || size (Ic) <3 then

10: Continue
11: End If

12: The first axis u ← {0, 0, 0} , the second axis v ← {0, 0, 0}
13: Construct coordinate frame u, v ← Γ (nc)

14: Compute angular gap Gθ ← Λ (i, Ic, u, v)

15: If Gθ>= π
2 then

16: {E} ← {E} ∪ i

17: End If

18: End For

19: Return Edge points {E}
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Abstract: Plane segmentation is an important step in feature extraction and 3D modeling from light
detection and ranging (LiDAR) point cloud. The accuracy and speed of plane segmentation are
two issues difficult to balance, particularly when dealing with a massive point cloud with millions of
points. A fast and easy-to-implement algorithm of plane segmentation based on cross-line element
growth (CLEG) is proposed in this study. The point cloud is converted into grid data. The points
are segmented into line segments with the Douglas-Peucker algorithm. Each point is then assigned
to a cross-line element (CLE) obtained by segmenting the points in the cross-directions. A CLE
determines one plane, and this is the rationale of the algorithm. CLE growth and point growth
are combined after selecting the seed CLE to obtain the segmented facets. The CLEG algorithm
is validated by comparing it with popular methods, such as RANSAC, 3D Hough transformation,
principal component analysis (PCA), iterative PCA, and a state-of-the-art global optimization-based
algorithm. Experiments indicate that the CLEG algorithm runs much faster than the other algorithms.
The method can produce accurate segmentation at a speed of 6 s per 3 million points. The proposed
method also exhibits good accuracy.

Keywords: cross-line elements; plane segmentation; airborne LiDAR point cloud; line segmentation;
fast segmentation

1. Introduction

To segment a light detection and ranging (LiDAR) point cloud is to partition the points into
different groups with homogeneous properties, such as height, density, and normality. Using plane
segmentation to extract facets from a point cloud is important in object classification, building
extraction, and roof reconstruction. The main methods of plane segmentation are generally categorized
as edge detection, profile line analysis, point clustering, model fitting, region growth and optimization.

Edge detection methods [1,2] convert a point cloud into a digital surface model (DSM).
Edge detection of the raster DSM is then implemented for segmentation, the quality of which depends
on the edge detection operator.

Methods based on profile line analysis employ scan line analysis to identify planes [3].
Proper selection of the scan line direction is essential in these methods [4]. The profiles in one or
more directions are utilized to segment the data in order to detect man-made structures (i.e., bridges
and buildings) from the LiDAR point cloud [5–7]. These methods are usually effective and fast.
However, using profile information for accurate plane segmentation remains insufficiently explored.
The algorithm design, quality and performance assessment compared with existing methods need to
be comprehensively investigated.
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Methods based on point clustering, including octree-based clustering [8,9], K-means clustering [10–12],
fuzzy clustering [13,14] and mean shift [15–17], cluster the point cloud into point groups by using
similarity measurements, such as distance between points and point density. These methods can
produce stable results but may lead to over-segmentation or under-segmentation because of the
improper clustering algorithm setup (e.g., parameters of the kernel width and the minimum point
number of a valid region in mean shift segmentation) [18].

Methods based on model fitting attempt to solve the plane equation by fitting local points with
the presupposed model. Random sample consensus (RANSAC) [19], Hough transform [20], and tensor
voting [21] are popular algorithms in this category. RANSAC can outperform methods based on
normal vector consistency and outline segmentation [22]. Normal driven RANSAC is an accelerated
version of the original RANSAC [23]. The limitation of RANSAC is that the neighborhood of points
located on the same plane is not fully considered. The algorithm selects planes with the maximum
number of support points in each iteration, which may not be correct. Several improved algorithms
have been developed for these problems [24,25]. 3D Hough transform is a voting-based algorithm
of plane extraction in 3D Hough space (θ, φ, ρ). The disadvantage of this method is that the voting
operation in the 3D Hough space is usually slow; the same problem is encountered in selecting support
points [26]. Many methods (e.g., random Hough transformation) have been proposed to speed up
Hough transformation [27]. Tensor voting obtains 3D normal vector field based on discrete points, by
which the maximum tendency is utilized to extract characteristic regions [28,29]. The drawback of the
tensor voting method is the dependency on selecting the parameter of the range of influence [28].

Methods based on region growth select seed points or regions as the original patches and cluster
the points subordinated to the same patch [30–34]. These methods can also be integrated with model
fitting methods. These methods ensure that the points on the same plane are in the neighborhood; they
are faster than model fitting methods when the point number is large [35]. The normal vectors of points
in the region of growth can be computed through principal component analysis (PCA). The region of
growth similar to the image region of growth is then utilized to extract planes [36]. An iterative PCA
is developed to estimate local planarity [37]. Region growth methods usually rely on the choice of
seed points. The computation of the normal vectors becomes unstable when noise points exist or the
supporting points are not properly selected. In addition, these methods may lead to over-segmentation
or under-segmentation in the surface intersection region and noisy areas [38].

Optimization-based methods are inspired by image segmentation that uses a graph to represent
data elements (e.g., pixels or super pixels) with connected nodes. The segmentation can be
modeled as an optimization problem to determine the best graph cut [39–41]. The frequently used
graph cut algorithms are minimum spanning tree [42], normalized cut [43,44] and Graphcuts [38].
Other optimization methods, such as level set, are also utilized to segment planes [45]. A recent study
has shown that using Graphcuts to optimize the initial segmentation [38] significantly improves the
initial over-segmentation and eliminates the cross-planes. The limitation of this method is that the
result relies on the initial segmentation, and the speed is low because of its iterative optimization
operation [46].

Developing a fast, accurate, and easy-to-implement segmentation algorithm is still necessary to
address the various scenarios involving massive point numbers, noisy and complex object contexts.

This paper presents a new segmentation method based on cross-line elements growth (CLEG).
This method combines profile analysis, model fitting and region growth. The point cloud is converted
into a grid index data structure. The Douglas-Peucker algorithm [47] is subsequently utilized in
four directions to extract the cross-line elements (CLEs). CLE can determine a plane, and this is the
rationale of the proposed method. The final facets can be obtained after selecting the seed CLEs and
combining CLE growth and point growth. Comparison of CLEG with other popular methods, such
as RANSAC [19], 3D Hough transformation [27], PCA [36], iterative PCA [37] and a state-of-the-art
global optimization-based algorithm [38], shows that the proposed algorithm runs much faster than
them and produces stable and accurate results. The remainder of the paper is structured as follows.
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Section 2 formulates the proposed segmentation method. Section 3 describes the test data and presents
the experimental analysis. Section 4 provides the conclusion.

2. Plane Segmentation Using Cross-Line Elements

In general, a good plane segmentation algorithm has to address some key issues: (1) how to
accurately measure local planarity with proper selection of support points for these measurements;
(2) how to properly group all spatially adjacent points belonging to one facet; (3) how to efficiently
deal with large-scale data. The existing methods, such as model fitting, clustering, region growth
and global optimization, have more or less room to improve in these aspects, as presented in the
introduction. In this study, aiming at solving these problems, a cross-line element growth (CLEG)
method is proposed to segment point cloud accurately and efficiently.

The workflow of the CLEG algorithm is shown in Figure 1; the red lines in the segmentation
result are the seed CLEs, and the white points are the gross noise points.

The pseudo-code is listed to describe the principle of the algorithm:

CLEG(points, label)
Grids=StoringPointsInGrid(points);
directions = horizon, vertical, upper right, lower right;
for each direction

LineSegmentation=DouglasPeucker(Grids);
end for
for each grid

if CLE crossing the grid is stable
Add grid to seeds;

end if
end for
Sort(seeds);
for each seed

if not labeled
GetPlanFunction(CLE);
CLEbasedgrowth(label);
Pointbasedgrowth(label);

end if
end for
End

A CLE is defined as two cross-lines at a cross-point in two directions. In one direction, the
cross-line is determined by two planes, i.e., the candidate plane and one special plane (e.g., ZOY
plane, plane 1, plane 2, and ZOX plane in Figure 1). The directions of the cross-lines are relative to the
equation of the candidate plane. The cross-line is determined by the candidate plane and ZOY plane,
for example; Equation (1) is the function of the candidate plane, and Equation (2) is the function of
ZOY plane.

a ¨ x ` b ¨ y ` c ¨ z ` d “ 0 (1)

y “ e (2)

The direction vector of the cross-line is then (c, 0, ´a). Similarly, the direction vector of the
cross-line determined by the candidate plane and the plane 1 is (´c, c, b ´ a); the direction vector of the
cross-line determined by the candidate plane and the plane 2 is (c, c, ´a ´ b); and the direction vector
of the cross-line determined by the candidate plane and ZOX plane is (0, c, ´b). Therefore, a CLE can
determine the plane model.
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In 3D space, two intersected straight lines passing the cross-point determine the plane model.
In other words, a point and the normal vector formed by the intersected lines are the basic elements
in plane detection, which is the rationale of CLEG-based plane segmentation. The CLEG algorithm
has the following advantages: (1) the CLEs can be easily and quickly extracted in the profile space;
(2) a CLE contains rich information, such as rough plane model and facet size; which can further help
in finding better seeds and measurements for the growth of CLEs and points; (3) pre-segmenting the
point cloud into CLEs eliminates the problem of selecting support points in clustering and model fitting
methods [25], which leads to a more accurate and stable segmentation; and (4) the CLE extraction and
growth operation are efficient in terms of computational cost, thereby making it suitable for use when
dealing with a massive number of points.

Figure 1. Workflow of plane segmentation using cross-line elements.

2.1. Line Segmentation

The seed CLE is derived by first converting the point cloud into a grid index data structure based
on ground sample distance (GSD), which can be obtained from the average point density. The grid
index data structure is utilized to improve the efficiency of data inquiry. More than one point may
exist in each grid. Some grids may also be null, as shown in Figure 1 (i.e., 2D Grid Index).

An extended line segmentation of scanning line segmentation [7] is employed to segment the
profiles in four directions (i.e., vertical, horizontal, upper right, and lower right). The angle between
the split line segment and the horizon direction is calculated by using the Douglas-Peucker algorithm
(Figure 1) [47]. The tolerance is ε. The difference between the original Douglas-Peucker algorithm
and the proposed method is that the angles between the line segments and the horizontal plane are
calculated simultaneously (denoted by α in Figure 1). The angles are important in the subsequent steps
in seed selection and growth. The length and angle of each grid in each direction is then obtained, as
shown in Figure 2. The black points are the uncolored points because more than one point may exist in
one grid, and only the highest point is colored. Each grid is crossed by line segments and defined as
a cross-point after using the Douglas-Peucker algorithm in four directions.
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Horizontal direction Vertical direction 

Input data Upper right direction Lower right direction 

Figure 2. Line segmentation in four directions.

The length of a line segment becomes relevant to the surface roughness of the region after line
segmentation. The lines are much longer on large planes (e.g., ground and roof) and shorter in regions
with a significant height difference (e.g., tree area). A valid CLE is defined as the cross-line whose
length is longer than threshold l at a cross-point in two directions. All the lines crossing the cross-point
may be longer than the threshold. The two longer lines indicate the principal directions. The facets are
obtained by using the CLEs to select the seed and region growth.

2.2. Selection of Seed CLEs for Growth

A coarse-to-fine strategy is employed to extract prior large planes and guarantee the segmentation
quality and stability. The seed CLE is selected based on estimations of the plane property. The seed
CLE should satisfy the following conditions.

1. Each line of the seed CLE is longer than the minimum length threshold l.
2. The cross-point of the seed CLE should not be the end points of the line segments to ensure the

stability of the seed CLE. A false seed CLE is shown in Figure 1. The red cross denotes the false
selection of the seed cross-line element.

3. The variance between the angle (i.e., α in Figure 1) of the cross-point and those of the neighbor
points should be small. Figure 3 shows red lines, which denote the seed CLE and the red point,
which represents the cross-point. The ZOY plane is the segmentation direction and nb1 nb2 . . .
nb8 are the neighbors of the cross-point. The α0, α1 . . . α9 variance should be smaller than the
threshold and should extend to the four directions to ensure the stability of the seed CLE. Several
false seed CLEs could be found in the tree areas if the condition is not applied. The variance in
the rough areas can be large because the angles can vary significantly even if the lines of CLE are
longer than l.
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Figure 3. Seed CLE and neighbors of the cross-point.

The cross-points that meet the aforementioned conditions are sorted by using the length of the
CLE. The seed cross-points of the CLE are then processed in order.

The points on the CLE may not be on the same plane when the seed CLE is selected. Figure 4
shows the CLE, which is represented by red lines. The CLE should be checked as valid.

Figure 4. Points on CLE may not be on a plane.

The characteristic of the line intersect with the plane indicates that the angles between the parallel
lines and the plane are equal. Accordingly, α1, α2, α3, β1, β2, β3 represent the angles of the line segments
(Figure 5). The condition that α1 = α2 = α3 and β1 = β2 = β3 should be satisfied when the plane is
perfect. The valid seed CLE should also satisfy the condition that the difference between the angles
of the point on CLE and that of the cross-point is sufficiently small. A threshold of ∆α is utilized in
this study. Figure 4 shows that the points on the blue plane do not satisfy the condition. ∆α can be
obtained adaptively.

∆α “ arctanp d

l
q (3)

In Equation (3), d is the threshold of point to plane distance. l is the minimum line length threshold.
The region growth is the employed to obtain the points of the entire plane after the seed CLEs

are extracted.
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Figure 5. Cross-line element and its characteristic.

2.3. Region Growth

Region growth includes CLE growth and point element growth. Using CLE growth can improve
the stability of region growth and accelerate the process.

The disadvantage of the conventional region growth method is the process of obtaining seed
points and the reliable similarity measurement of region growth. Researches sometimes use the
minimum number of points as the indicator of a valid plane. However, this method may not be stable
because of the complex point distribution at tree and noisy areas.

Similar to PCA, the angle limitation is added in the region growth. Subsequently, the angles are
more stable than those in the PCA because calculating the angles does not depend on the neighboring
relationship. The angles can also be correctly calculated at the edge of the plane, as shown in
Figure 1 (i.e., Douglas-Peucker). The angle limitation is that the angles on the horizontal plane
of the two principal directions of each candidate point are nearly equal to those of the seed cross-point.
The red point in Figure 6 denotes the cross-point. α0 and β0 are the angles of CLE in the two principal
directions. The angles of the lines crossing the candidate point in the two principal directions should
be nearly equal to the cross-point seed when dealing with region growth.

Figure 6. Cross-point of CLE.

Combining CLE growth and point growth can ensure the stability of the region growth.
The sequence of adding points in the model fitting procedure influences the results of the region
growth. The points on CLE are more stable and have more information than those on the short lines.
Therefore, the points on CLE are processed first to ensure the stability of the region growth. The next
seed is then processed if no line is added in the CLE growth. The valid seed CLEs are used to calculate
the plane function after the stable CLE is obtained.

2.3.1. CLE Growth

After obtaining the seed CLEs, CLE growth is utilized to calculate the principal direction lines
which are not the cross-lines of the seed CLE at each seed point and to check whether the candidate
CLE is on the plane. This seed CLE is omitted if no CLE is added because the seed CLE is unstable.
In Figure 7, the red lines are the seed CLE. The blue and yellow lines are to be grown in step one of
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CLE growth. The blue lines on the plane are to be added. The yellow lines are not on the plane. A more
stable plane function is obtained thereafter.

Figure 7. Step one of CLE growth.

All the directions of CLE growth are subsequently employed. The CLE growth principle is similar
to that of point growth. The only difference is that the elements are crossing lines. Only the end points
of the crossing lines are used in the measurement procedure to analyze whether the crossing lines are
on the plane or not.

2.3.2. Point Growth

After CLE growth, some points may be ignored because of noises. The distance of the point to the
plane is measured in processing of the point growth. The angles of the lines crossing the candidate
points on the two principal directions should be nearly equal to those of the seed cross-point. As shown
in Figure 6, α0 and β0 of the candidate points should be nearly equal to those of the seed cross-point;
otherwise, the length of the line segment is small.

3. Experimental Analysis

3.1. Test Data

The LiDAR point clouds of three different regions are utilized to validate the proposed method.
The regions are the Vaihingen area in Germany [48], Wuhan and Guangzhou in China. The description
of the datasets is listed in Table 1.

The comparison test consists of roof and area segmentation.

Table 1. Descriptions of test data.

Site Vaihingen Wuhan Guangzhou

Total area size 2,320,000 m2 127,636,898 m2 60,115,494 m2

Point density 4 points/m2 8 points/m2 6 points/m2

Roof type Mostly gable roof
with a large slope Flat roof and gable roof Flat and gable roofs

with a small slope

Scene type Urban area with
little trees Urban area with many trees Urban area with

many trees

Feature The roofs are simple The roofs are complex The slope of the roof
is small

Used points 3,911,955 2,374,018 15,597,504
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3.2. Roof Segmentation

Several of the typical segmentation methods for roof segmentation used in the comparison
test are RANSAC [19], 3D Hough transformation [27], PCA + region growth (RG_PCA) [36], iterative
PCA + region growth (RG_IPCA) [37], and the global optimization-based algorithm Graphcuts (Global
energy) [38]. The algorithms are all implemented with Microsoft Visual C++ under the Microsoft
Windows 7 operating system. A personal computer with Intel Core i5, 2.5 GHz CPU, 4GB memory is
used for the testing. The ground truth of roof segmentation for quality evaluation is obtained through
manual editing.

The seven metrics utilized to evaluate CLEG and the compared algorithms are computation time
(time), completeness (comp), correctness (corr) [49], reference cross-lap (RCL), detection cross-lap
(DCL) [50,51], boundary precision (BP), and boundary recall (BR) [52].

Completeness is defined as the percentage of reference planes that are correctly segmented.
This metric is related to the number of misdetected planes.

comp “ TP

TP ` FN
(4)

Correctness denotes the percentage of correctly segmented planes in the segmentation results.
It indicates the stability of the methods.

corr “ TP

TP ` FP
(5)

TP in Equations (4) and (5) denotes the number of planes found in both the reference and
segmentation results. Only the planes with a minimum overlap of 50% with the reference are true
positives. FN denotes the number of reference planes not found in the segmentation results (i.e., false
negatives). FP is the number of detected planes not found in the reference (i.e., false positives).

Reference cross-lap rate is defined as the percentage of reference planes that overlap multiple
detected planes. This metric shows the over-segmentation of the methods.

RCL “ N1
r

Nr
(6)

Nr in Equation (6), denotes the number of reference planes, and N1
r is the number of reference

roof planes that overlap more than one detected plane.
Detection cross-lap rate denotes the percentage of detected planes that overlap multiple reference

roof planes. This metric shows the under-segmentation of the methods.

DCL “ N1
d

Nd
(7)

Nd in Equation (7) denotes the number of detected planes, and N1
d is the number of detected

planes that overlap more than one reference roof plane.
Boundary precision measures the percentage of correct boundary points in the detected

boundary points.

BP “
ˇ̌
ˇ̌ Bd X Br

Bd

ˇ̌
ˇ̌ (8)

Boundary recall measures the percentage of correct boundary points in the reference
boundary points.

BP “
ˇ̌
ˇ̌ Bd X Br

Br

ˇ̌
ˇ̌ (9)
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Br in Equations (8) and (9) denotes the boundary point set in reference, Bd denotes the
boundary point set in the segmentation results, and | | denotes the number of points in a dataset.
Over-segmentation may result in a high boundary recall ratio, whereas under-segmentation may lead
to high boundary precision. Only when boundary precision and boundary recall are both high can the
precision of the method be determined.

The same parameters are utilized in the comparison test to ensure the comparability of the results
as shown in Table 2.

Table 2. Parameters used in the comparison test.

Parameter Value Methods

Point to plane distance threshold d 0.3 m RANSAC, Hough, RG_PAC, Global
energy, and CLEG

Curvature threshold 0.01 RG_PCA and RG_IPCA
Minimum number of points required

for a valid plane 10 RANSAC, Hough, RG_PCA, RG_IPCA,
and Global energy

Line segmentation threshold ε 0.25 m CLEG
Grid size 0.6 m CLEG

Min line length l 1.8 m CLEG

Many gable roofs with large slopes are found in Vaihingen. The roof structure is also complex, as
shown in Figure 8a. Some noise points also exist (Figure 8b). A complex roof structure with planes
that have a small slope difference with its neighbor planes, and also with small structures, is shown in
Figure 8c. Many flat and gable roofs are found in Wuhan. The slope of gable roofs is not large. A flat
roof is close to the gable roofs, as shown in Figure 9a. A complex symmetric roof structure is shown in
Figure 9b. A symmetric trapezoid roof is shown in Figure 9c. Many gable roofs with small slopes are
found in Guangzhou. The nearly arc-shaped roofs results in weak edges of the planes, as shown in
Figure 10a. Figure 10b,c show several complex structures and roofs close to one another.

Segmentation results of roof points in the Vaihingen area are shown in Figure 8, and the evaluation
of precision is listed in Table 3.

Segmentation results of roof points in the Wuhan area are shown in Figure 9, and the evaluation
of precision is listed in Table 4.

Table 3. Quality of the segmentation results in the Vaihingen area.

Time % Comp % Corr % RCL % DCL % BP % BR

(a)

RANSAC 0.016 s 100 85.7 0 28.6 72.1 78.7
3D Hough 59.795 s 75 37.5 75 0 29.8 44.2
RG_PCA 0.016 s 100 72.7 25 0 100 5.8
RG_IPCA 0.015 s 100 88.9 12.5 0 94.2 55.1

Global energy 0.062 s 100 88.9 12.5 0 84.9 81.6
CLEG <1 ms 100 100 0 0 97.7 93.7

(b)

RANSAC 0.046 s 77.8 70 0 80 40.1 88.1
3D Hough 244.329 s 44.4 7.8 66.7 2.1 17.4 55.9
RG_PCA 0.046 s 100 42.9 44.4 0 41.1 38.4
RG_IPCA 0.015 s 100 62.3 22.2 7.1 48.2 53.6

Global energy 0.328 s 100 81.8 22.2 0 83.4 84.0
CLEG <1 ms 100 100 0 0 87.5 83.4

(c)

RANSAC 0.016 s 100 87.5 14.3 12.5 60.4 87.1
3D Hough 84.038 s 71.4 27.8 57.1 5.6 20.5 48.9
RG_PCA 0.031 s 100 100 0 0 84.8 8
RG_IPCA 0.015 s 85.7 100 0 16.7 50.9 51.4

Global energy 0.078 s 85.7 100 0 16.7 71.5 60.3
CLEG <1 ms 100 100 0 0 84.3 86
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Table 4. Quality of segmentation results in the Wuhan area.

Time % Comp % Corr % RCL % DCL % BP % BR

(a)

RANSAC <1 ms 100 100 0 33.3 19.3 63.4
3D Hough 136.376 s 33.3 9.1 66.7 41.7 3.7 10.1
RG_PCA 0.031 s 100 75 33.3 0 40 65.6
RG_IPCA 0.015 s 100 75 33.3 33.3 26.6 68.3

Global energy 0.047 s 100 100 0 0 77.5 75.4
CLEG <1 ms 100 100 0 0 87.1 84.7

(b)

RANSAC 0.827 s 15.4 26.7 0 73.3 17.7 60.2

3D Hough 1434.733
s 46.2 13.4 50 14.1 16.7 54.9

RG_PCA 0.063 s 100 52 34.6 0 28.3 23.2
RG_IPCA 0.201 s 100 86.7 3.8 3.3 64.1 61.9

Global energy 2.325 s 100 88.9 0 7.4 73.3 70.6
CLEG 0.015 s 100 100 0 0 92.7 91.3

(c)

RANSAC 0.016 s 100 71.4 0 28.5 34.0 66.1
3D Hough 161.929 s 60 11.1 80 44.4 18.3 61.1
RG_PCA 0.031 s 100 35.7 60 0 29.2 52.9
RG_IPCA 0.016 s 100 55.6 60 0 46.5 71.3

Global energy 0.109 s 100 83.3 20 0 65.6 71.7
CLEG <1 ms 100 100 0 0 88.8 87.8

Segmentation results of roof points in the Guangzhou area are shown in Figure 10, and the
evaluation of precision is listed in Table 5.

RANSAC runs fast when the point number is small (Table 4). The time of dataset (a) is less than
1 ms. However, the algorithm runs slow when the point number is large. The voting procedure with
all the left points is undertaken afresh when a plane is found. When the roof structure is complex,
many errors occur because the spatial relationship of the neighbors is not considered. The results are
shown in the black rectangles in Figures 8a–c, 9a–c and 10a–c.

Table 5. Quality of segmentation results in the Guangzhou area.

Time % Comp % Corr % RCL % DCL % BP % BR

(a)

RANSAC 0.047 s 23.1 37.5 15.4 50 20.0 62.6
3D Hough 556.970 s 61.5 14.3 76.9 12.5 17.5 54.5
RG_PCA 0.110 s 84.6 91.7 8.7 0 75.4 21.4
RG_IPCA 0.031 s 84.6 68.8 8.7 0 69.3 59.0

Global energy 0.842 s 84.6 78.6 8.7 0 78.0 72.0
CLEG 0.016 s 100 100 0 0 86.0 80.9

(b)

RANSAC 0.016 s 50 51.4 0 28.6 62.8 77.8
3D Hough 610.557 s 50 44.4 25 22.2 18.9 9.2
RG_PCA 0.078 s 100 38.1 37.5 0 66.2 58.8
RG_IPCA 0.047 s 75 40 12.5 6.7 83.1 57.0

Global energy 0.374 s 100 100 0 0 86.0 77.8
CLEG <1 ms 100 100 0 0 95.5 96.9

(c)

RANSAC 0.047 s 9.1 14.3 0 100 17.1 57.8
3D Hough 866.773 s 18.2 3.6 45.5 16.4 15.3 50.5
RG_PCA 0.078 s 63.6 53.8 18.2 16.4 74.1 29.8
RG_IPCA 0.046 s 100 84.6 9.1 15.4 40.6 38.9

Global energy 0.374 s 100 100 0 0 74.5 73.6
CLEG 0.015 s 100 100 0 0 85.6 87.0

399



Remote Sens. 2016, 8, 383

Image 

  

RANSAC 

   

3D 

Hough 

 

 

RG_PCA 

  

RG_IPCA 

 
 

Global 

energy 

 
 

CLEG 

  

 (a) complex roof (b) with noise points (c) with small 

planes 

Figure 8. Segmentation of roof points in Vaihingen. (a) complex roof; (b) with noise points; (c) with
small planes.
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Figure 9. Segmentation of roof points in the Wuhan area. (a) normal structure; (b) complex structure;
(c) symmetric structure.

The voting space in 3D Hough transformation is first computed. The votes are then sorted,
and the planes are detected in order. The region growth is finally used to obtain an entire plane in
the supported points. The results of 3D Hough transformation are sometimes worse than those of
RANSAC because one point may support many planes, and the remaining planes may not be the
most supported ones. Many false planes are detected, as shown by the red rectangles in Figures 8a–c
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and 9a–c. 3D Hough transformation has the same disadvantage as RANSAC and causes cross-planes
without the use of normal vectors. The terminal condition is difficult to decide, and it uses the ratio of
the smallest plane to the largest plane and the ratio of number of remaining points to total points may
also lead to missing small planes, as shown by the center red rectangles in Figure 10a–c.
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Hough 
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RG_IPCA 

Global 

energy 

CLEG 

(a) weak edge (b) symmetric structure (c) complex structure

Figure 10. Segmentation of roof points in the Guangzhou area. (a) weak edge; (b) symmetric structure;
(c) complex structure.

RG_PCA employs the K-nearest neighbors (KNN) to obtain the neighbor relationship and compute
the normal vectors using PCA. The regions are then grown using the normal vectors. PCA may produce
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unstable results in estimating the normal vector at the edge regions. Therefore, the methods do not
perform well in segmenting the points close to the facet boundary, as shown by the green rectangles in
Figures 8a–c, 9a and 10c. KNN may produce an unstable neighbor relationship in areas with a largely
uneven point density and results in over-segmentation, as shown by the green rectangles in Figure 9b,c.
The difference of the normal vectors at the edge areas is small when the slope is small. This causes
under-segmentation, as shown by the green rectangles in Figure 10a,b.

RG_IPCA utilized a triangulated irregular network (TIN) to obtain the neighbor relationship,
compute the initial normal vectors using PCA, and grow to regions. This method can properly estimate
the normal vectors at several boundary regions but may also lead to errors in several areas, as shown
by the blue rectangles in Figures 8b,c, 9a,b and 10c. RG_IPCA has the same disadvantage as RG_PCA
when the slope is small. The method results is under-segmentation, as shown by the blue rectangles
in Figure 10a,b. Over-segmentation also exists in RG_IPCA, as denoted by the blue rectangles in
Figures 8a and 9c.

The global energy method utilizes Graphcuts to obtain the minimum energy. This method
yields quiet accurate results but depends on a good initial input. Consequently, missed planes will
also be missed in the optimization results, as shown by the yellow rectangles in Figures 8c and 10a.
The method also causes over-segmentation in noisy areas, as shown by the yellow rectangles in
Figures 8b and 9c. The improper neighbor relationship causes under-segmentation, as denoted by the
yellow rectangle in Figure 9b. The separated planes are combined because TIN may connect faraway
points. The two facets are on the same plane because of symmetry. In other conditions, global energy
can perform quite well and obtain complete results with the fewest points left. CLEG can properly
handle these complex structures with very few missing points.

The proposed CLEG algorithm also has several disadvantages caused by the strict conditions of
seed CLE selection. A seed CLE is not detected when the plane is small. Therefore, the plane may be
missed, as shown by the red rectangle in Figure 11.
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RG_PCA 

RG_IPCA 

Global energy 

CLEG 

Figure 11. Disadvantage of the proposed method.
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3.3. Region Segmentation

The CLEG algorithm can also process the point cloud containing terrains, buildings, trees, etc.
The proposed method is similar to region growth methods. The comparison methods only include
RG_PCA and RG_IPCA. The parameters used are shown in Table 6. The difference is that the minimum
number of points required for a valid plane is larger than that in roof segmentation, because if the
number is small, there may be many false planes detected in tree areas.

Table 6. Parameters used in the comparison test.

Parameter Value Methods

Point to plane distance threshold d 0.3 m RG_IPCA, CLEG
Curvature threshold 0.01 RG_PCA, RG_IPCA

Minimum number of points required for a valid plane 20 RG_PCA, RG_IPCA
Line segmentation threshold ε 0.25 m CLEG

Grid size 0.6 m CLEG
Min line length l 1.8 m CLEG

Seven datasets are utilized to prove the effectiveness and speed of the proposed method.
The description is listed in Table 7.

Building the neighbor relationship possesses the highest computation cost in RG_PCA and
RG_IPCA during the comparison test. The methods are different in the two algorithms. KNN is used
in RG_PCA, and TIN is used in RG_IPCA. RG_PCA employs PCA to estimate the normal vectors of
each point. The results may be unstable at boundary points, which often results in over-segmentation,
as denoted by the blue rectangles in Figures 12 and 13. RG_IPCA sometime estimates the false normal
vectors and results in some false segmentation, as shown by the yellow rectangles in Figures 12 and 14.
Over-segmentation is also found in noisy areas, as shown by the blue rectangle in Figure 13. Although the
minimum point of a valid plane is 20, some planes are found in the tree areas, as shown by the green
rectangles in Figures 12 and 13. CLEG can handle these cases well with faster speed (Table 7).

Segmentation results of the point cloud Vaighingen using a small dataset.

1 1 1 

2 2 2 

RG_PCA RG_IPCA CLEG

Figure 12. Segmentation results in the Vaighingen area using dataset (a).
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Table 7. Computation time in the comparison test.

Dataset Area Number of Points RG_PCA RG_IPCA CLEG

(a) Vaihingen 321,956 70.054 s 1.482 s 0.468 s
(b) Wuhan 298,666 255.170 s 2.356 s 0.499 s
(c) Guangzhou 174,830 15.616 s 0.780 s 0.187 s
(d) Vaihingen 3,582,656 - 17.691 s 6.272 s
(e) Wuhan 2,058,844 - 10.203 s 2.948 s
(f) Guangzhou 3,091,547 - 15.116 s 8.580 s
(g) Guangzhou 12,305,250 - - 58.126 s

Segmentation results of the point cloud in the Wuhan area using a small dataset.

RG_PCA RG_IPCA CLEG

Figure 13. Segmentation results in the Wuhan area using dataset (b).

Segmentation results of the point cloud in the Guangzhou area using a small dataset.

RG_PCA RG_IPCA CLEG

Figure 14. Segmentation results in the Guangzhou area using dataset (c).
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KNN is very slow when large datasets are used for segmentation. Therefore, only RG_IPCA is
used for comparison. RG_IPCA may result in false segmentation at the roof areas, as shown by the
blue rectangles in Figures 15–17. False segmentation is also observed at ground area, as shown by
the green rectangle in Figure 16. Under-segmentation is found when the slope is small. This result is
denoted by the red rectangles in Figures 15 and 16. A cross-plane is denoted by the black rectangle in
Figure 17. Furthermore, many planes are found in the tree areas, as shown by the yellow rectangles in
Figures 15–17. CLEG can still handle these areas well with less processing time.

Segmentation results of point cloud in the Vaighingen area using a large dataset.
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Figure 15. Segmentation results in Vaighingen using dataset (d).
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Segmentation results of the point cloud in the Wuhan area using a large dataset.

RG_IPCA 

1 

2 

3 

4 

CLEG 

1 

2 

3 

4 

Figure 16. Segmentation results in the Wuhan area using dataset (e).
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Segmentation results of the point cloud in the Guangzhou area using a large dataset.
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Figure 17. Segmentation results in the Guangzhou area using dataset (f).

Building TIN in RG_IPCA during the test causes shortage in memory when a large point cloud
with 12 million points is used. The CLEG algorithm can handle this large dataset, and completes
the segmentation within 1 min (Figure 18). The proposed algorithm uses grid indexing instead of
point-based neighbor relationship and CLE growth to overcome the shortage of uneven point cloud
density. The process that consumes the most computation time in CLEG is the sorting of the seed
points, which can be improved in the future by parallel computing.
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1 
2 

3

Figure 18. Segmentation results in the Guangzhou area using dataset (g).

3.4. Parameters Setting

The important parameters in CLEG algorithm are grid size and min line length. The grid size can
be determined by the average point density.

The threshold of min line length is selected empirically in our experiment. This has an impact
on the plane extraction results. The areas with line segments shorter than the threshold are missed.
An example is shown in Figure 19.

(a)  (b) (c)  

(d)  (e) (f)  

Figure 19. The influence of min line length. (a) Corresponding image; (b) l = 1.8 m, a narrow plane is
missed; (c) l = 3.0 m, small planes are missed; (d) l = 4.2 m, more small planes are missed; (e) l = 6 m,
a large plane is missed; (f) l = 7.2 m, more large planes are missed.

As shown in Figure 19b, a narrow but long-shaped plane object is missed marked in the yellow
box. From Figure 19c–f, with the increase of min line length threshold, more and more planes are
omitted as marked in the red boxes. The threshold can be determined by the minimum size of the
planes according to the level of detail.
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4. Conclusions

Using profiles or scan lines of LiDAR data to segment a surface and classify objects is not
new [3–7]. This study focuses on using cross-line elements for plane segmentation. Proper and quality
seed selection and region growth based on information derived from CLE are considered for the
accurate and stable detection of planes. The pre-segmentation of the point cloud into CLEs eliminates
the problem of selecting support points in clustering and model fitting methods, which is the key for
the proposed method. With the use of the angle information derived from the CLE, the stages of seed
selection and growth become more reliable. Furthermore, the CLEG algorithm is computationally
efficient due to simple operations in seed generation and growth. The tests using various datasets
show that the proposed algorithm runs much faster than popular methods while producing stable and
accurate segmentation results. CLEG has great potential in feature extraction, object classification and
3D modeling of buildings.

However, the CLEG algorithm may still result in missing small facets because of the missing seed
CLEs. Furthermore, the parameter of minimum line length has an impact on the plane extraction
results; some narrow but long-shaped plane objects are missing. An additional retrieval step may
be necessary to find these missing small and narrow planes. Two parallel lines can also determine
a plane. In the next study, this could be combined with CLE to detect the missed narrow but long
planes. Meanwhile, the CLE-derived features may be utilized in object classification and building
detection from point cloud data, which is an important future task in extending the usage of CLEs.
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Abbreviations

The following abbreviations are used in this manuscript:

LiDAR light detection and ranging
DSM digital surface model
CLE cross-line element
CLEG cross-line element growth
RANSAC random sample census
PCA principle component analysis
IPCA iterative PCA
GSD ground sample distance
RG region growth
KNN K-nearest neighbors
TIN triangulated irregular network
RCL reference cross-lap
DCL detection cross-lap
BP boundary precision
BR boundary recall
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Abstract: RANdom SAmple Consensus (RANSAC) is a widely adopted method for LiDAR point
cloud segmentation because of its robustness to noise and outliers. However, RANSAC has a tendency
to generate false segments consisting of points from several nearly coplanar surfaces. To address this
problem, we formulate the weighted RANSAC approach for the purpose of point cloud segmentation.
In our proposed solution, the hard threshold voting function which considers both the point-plane
distance and the normal vector consistency is transformed into a soft threshold voting function
based on two weight functions. To improve weighted RANSAC’s ability to distinguish planes, we
designed the weight functions according to the difference in the error distribution between the
proper and improper plane hypotheses, based on which an outlier suppression ratio was also defined.
Using the ratio, a thorough comparison was conducted between these different weight functions
to determine the best performing function. The selected weight function was then compared to the
existing weighted RANSAC methods, the original RANSAC, and a representative region growing
(RG) method. Experiments with two airborne LiDAR datasets of varying densities show that the
various weighted methods can improve the segmentation quality differently, but the dedicated
designed weight functions can significantly improve the segmentation accuracy and the topology
correctness. Moreover, its robustness is much better when compared to the RG method.

Keywords: 3D point clouds; building reconstruction; building roof segmentation; weighted RANSAC

1. Introduction

Numerous studies have been conducted in 3D building reconstruction in the past two decades [1–3].
According to [4,5], reconstruction methods can be divided into two general categories: data-driven and
model-driven. For high density point cloud data or complex roof structures, the task often converges
on a data-driven process based on segmentation [2]. According to [6,7], there are three data-driven
segmentation techniques: edge-based or region growing (RG), feature clustering, and model fitting.

Segmentation methods based on edge or region information [8–12] are relatively simple and
efficient but are error-prone in the presence of outliers and incomplete boundaries. When the transitions
between two regions are smooth, finding a complete edge or determining a stop criterion for RG
becomes difficult [6]. Techniques using feature clustering for segmentation [6,13–18] experience
problems in deciding the number of segments; and poor segmentation (over-, under-, no segmentation,
or artifacts) can occur when small roof sub-structures exist or tree points close to the building roofs are
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not completely filtered beforehand. Compared with the above techniques, [7] suggested that model
fitting methods can be more efficient and robust in the presence of noise and outliers. RANdom SAmple
Consensus (RANSAC) [19] and Hough transform are two well-known algorithms for model fitting.
The concept and implementation of the RANSAC method are simple. It simply iterates two steps:
generating a hypothesis by random samples and verifying the hypothesis with the remaining data.
Given different hypothesis models, RANSAC can detect planes, spheres, cylinders, cones, and tori [20].
Numerous variants have been derived from RANSAC; and a comprehensive review is available in the
work of [21]. Those variants (i.e., [22–24]) provide the possibility of improving the methods in both
robustness and efficiency. Information like point surface normal [4,7] and connectivity [25] also can be
incorporated in RANSAC for better results. Moreover, although the RANSAC method is an iterative
process, reference [5] suggests that it is faster than the Hough transform.

LiDAR techniques generate ever increasingly high resolution data. This provides the possibility to
recognize subtle roof details and rather complex structures; but in the meantime, it brings challenges to
current RANSAC-based segmentation methods. A widely concerning problem is the spurious planes
that consist of points from different planes or roof surface [4,6,7,26,27]. A detected plane overlapping
multiple reference planes or a plane snatching parts of the points from its neighbor planes are frequent
occurrences. Their misidentification and incorrect reconstruction may have a crucial effect on the
understanding of the building structure (i.e., topology of the building) [28,29]. To address this issue,
many additional processes were designed and used in past studies, such as normal vector consistency
validation [4,7], connectivity [26], and standard deviation of the point-plane distances. Those processes
need careful fine tuning of their parameters in order to achieve the best performance (e.g., reference [30]
suggests that the threshold should be in agreement with the segment scale). This is a difficult task
and highly relies on prior knowledge of the data and scene as well as the experience of the operators.
Therefore, a more accurate fitting method is needed to suppress the spurious planes.

Although no applications were found in building roof segmentation, the M-estimate SAC (MSAC)
and the Maximum Likelihood SAC (MLESAC) in [31] provided a potential solution to the spurious
planes problem. In these two methods, the contribution of a point to the hypothesis plane is no longer
a constant 0 or 1, but rather a loss function (inversed to weight) according to the point-plane distance.
Basically, a large distance is assigned to a large loss, and false hypotheses are suppressed because of
the larger total loss. However, we argue that their loss functions were not sufficient to distinguish the
spurious plans from the correct hypothesis plane for complex roof segmentation problems. Inclusion
of other additional factors into the loss function, such as surface normal, would make the methods
more adaptive and robust.

This paper implements the idea of loss function into the popular RANSAC method and proposes
a weighted RANSAC framework for roof plane segmentation. In the framework of our new method,
the hard threshold voting function which considers both the point-plane distance and the normal
vector consistence is transformed into a soft threshold voting function based on two weight functions.
New weight functions are introduced based on the error distribution between the proper and improper
hypothesis planes. Different forms of weights were tested and compared, yielding a recommended
weight form.

The remainder of this paper is organized as follows. Section 2 discusses the related work and the
modification of the existing weighted RANSAC into the normalized forms. In Section 3, the design
of an ideal weight function is discussed, and several different weight functions are proposed and
evaluated. Experimental results are presented and analyzed in Section 4, followed by discussion and
concluding remarks in Section 5.
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2. Background

2.1. RANSAC-based Segmentation

Although the RANSAC-based segmentation methods have several variations, they consist of
three steps [4]: preprocessing, RANSAC, and post-processing. The preprocessing step yields the
surface normal for each LiDAR point. The roof points can be separated to a planar set and a nonplanar
set (if so, the nonplanar points are excluded from the second step and be retrieved in the final step).
The second step is a standard implementation of the RANSAC method [14]. It iteratively and randomly
samples points to estimate the hypothesis plane and then tests the plane against the remainder of the
dataset. A point is taken as an inlier if the point-plane distance and the angle between the point’s
normal vector and plane’s normal vector (in [6]) are smaller than the given thresholds. After a certain
number of iterations, the shape that possessed the largest percentage of inliers relative to the entire
data is extracted. The method detects only one plane at a time from the entire point set. Thus, the
process has to be implemented iteratively in a subtractive manner, which means that once a plane is
detected, the points belonging to the plane are removed and the algorithm continues on the remainder
of the dataset until no satisfactory planes are found. To be fast, the constraints of normal vectors [7,32]
and local sampling [4,32] are used to avoid the meaningless hypotheses. A fast and rough clustering
(or classification) process can be used to decompose the dataset [7,33]. To be robust, validations on
normal vector consistency [4,7], connectivity [26], and standard deviation of point-plane distances
are also adopted. The main task of post-processing is to refine the segmentation results, retrieve roof
points from unsegmented point sets, find missing planes, and remove false spurious planes [27,32].

For classical RANSAC methods, the plane with the maximum inliers is generated when
determining the most probable hypothesis plane M̂:

M̂ “ argmax
M

$
&
%

ÿ

PiPU

TpPi, Mq

,
.
- (1)

where U is the set of remaining points, NU is the number of points in U, and T(Pi) is the inlier indicator:

T pPi, Mq “
#

1 di ă dt and θi ă θt

0 otherwise
(2)

where di is the point-plane distance, θi is the angle between point Pi’s normal and plane’s normal [7],
and dt and θt are the corresponding thresholds.

2.2. Spurious Planes

The problem of spurious planes is a widely discussed common problem that has yet to be resolved
in RANSAC-based segmentation. Generally, the planes detected by the RANSAC methods may belong
to different planes or roof surfaces. As shown in Figure 1a, suppose that the threshold dt can be well
estimated beforehand according to the precision of the point clouds, then a proper segmentation is
achieved if the hypothesis planes π1 and π2 receive the largest inlier ratio. However, poorly estimated
planes may be detected, such as plane π3 in Figure 1b, whose point count is much larger than that of
π1 or π2, thus leading to false segmentation. The RANSAC method extracts planes one after the other
from LiDAR points so these mistakes may occur at plane transitions. The situation in Figure 1b can
further intensify such competitions as the inaccurate hypothesis tends to generate more supports from
roof points.
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Figure 1. An example of spurious planes. (a) The well estimated hypothesis planes (π1 and π2); the
two green parallel lines are the boundary of the point-to-plane distance threshold; (b) A spurious plane
(π3) is generated under the same thresholds; (c) A detail view of (b), where n is the normal vector of the
plane π3, and e1 and e2 are the point normal vectors. The d1, d2, θ1, θ2 are the corresponding observed
values of point P1 and P2 in Equation (2). θ0 is the angle between π3 and the real roof surface (π0).

2.3. Existing Weighted RANSAC Methods

Instead of using fixed thresholds in the determination of inliers, MSAC and MLESAC [31] use
a loss function to count the contribution, which is actually a contribution loss, of the inliers based on
the point-to-plane distance. The most probable hypothesis M̂ is determined by minimizing the total
loss of hypothesis M:

M̂ “ argmin
M

$
&
%

ÿ

PiPU

Loss pdpPi, Mqq

,
.
- (3)

The MSAC adopts bounded loss as follows:

Loss pdq “
#

d2 |d| ă dt

d2
t otherwise

(4)

MLESAC utilizes the probability distribution of error by inliers and outliers, models inlier errors
as Gaussian distribution and outlier errors as uniform distribution:

Loss pdq “ ´log

˜
γ

1?
2πσd

expp´ d2

2σ2
d

q ` p1 ´ γq 1
ν

¸
(5)

where γ is the prior probability of being an inlier, which is the inlier ratio in Equation (1), σ is the
standard deviation of Gaussian noise (σd = dt/1.96), and ν is a constant which reflects the size of
available error space.

For the so-called weighted RANSAC, the loss function is transformed as the normalized weight
functions for testing points, having values from 0 to 1, so that different weight functions can be easily
compared and further applied to more than one factor (i.e., considering both distance and normal
directions). As a result, the loss functions of MSAC and MLESAC are normalized as Equation (6).

weight pdq “ loss p`8q ´ loss pdq
loss p`8q ´ loss p0q (6)

3. Weighted RANSAC for Point Cloud Segmentation

For the weighted RANSAC methods, the weight value of an inlier reflects its consistency with
the hypothesis plane. An ideal weight function is expected to suppress the spurious planes as far as
possible without excessively penalizing the proper planes. In this work, the purpose is achieved by
comparing the error distribution between the proper and improper hypotheses. In Section 3.1, we
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discuss the drawback of the existing weighted methods that form the design principle of the ideal
weight function. Then, several new weight functions are defined based on the design principle in
Section 3.2. In Section 3.3, adding the factor of normal vector errors into the weight functions is
considered, and a joint weight function is designed via the multiplication of the two factors (distance
and normal vector). Those new weight functions are compared and evaluated in Section 3.4, together
with the existing weighted methods.

3.1. Improvements Consideration of the Weighted Function

Figure 2 (Bottom) provides examples of the point-to-plane distance distribution for both the
proper hypothesis and the spurious plane. To clarify the discussion that follows, the distance range
is divided into three regions, namely A, B, and C. Generally, the inliers of a proper-plane tend to
focus on the region with a smaller distance, which follows the normal distribution in theory, while the
distribution of the distances to a spurious plane tend to be more dispersed. For traditional RANSAC,
the spurious planes are detected instead of the proper plane if there are too many points in region
C. An intuitive solution to alleviate the problem is simply using a smaller distance threshold, i.e.,
changing the threshold dt to d1

t, which reduces the inliers count of the spurious plane (yellow region).
However, a too small threshold will decrease the number of inliers (red region) and eventually result
in over-segmentation.

  

Figure 2. Comparison of point-to-plane distance distribution between proper and improper hypotheses.
(Top) Plots of the weight functions (dt = 1.96σd, MLESAC: γ = 0.3, ν = 3σd); (Bottom) Examples of
distance distribution for the proper hypothesis and the spurious plane. A, B, and C are a rough division
of the distance range: A for regions where the proper planes are dominant in the point count, B for
regions where the point counts are similar, and C for regions where spurious planes generate more
inliers. The red region represents the lost roof points when using a stricter threshold and the yellow
region indicates that more points are excluded from the spurious planes than the proper hypothesis.
BDSAC is a newly designed weight curve.

Without changing the dt threshold, MSAC and MLESAC suppress the spurious planes by
assigning smaller weights to the inliers with larger distances so that the inliers in area C of Figure 2
will contribute less to the evaluation of the hypothesis plane. The inadequacy of MSAC and MLESAC
are mainly caused by its slow decrease of the weight curves. Generally, the weighted methods are
expected to suppress the spurious plane as far as possible without excessively penalizing the proper
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planes. Under such consideration, we expect the curve of the weight function to decrease rapidly
in area B and gradually with small weight values in area C (i.e., the curve of BDSAC in Figure 2).
However, as shown in Figure 2, there are still a great deal of inliers that have large weight values and
gradients in area C for MSAC and MLESAC. MSAC has the largest absolute gradient at the threshold
boundary, and the MLESAC has a boundary weight value of over 0.2, which limit their suppressing
to spurious planes. To overcome the drawbacks of these two methods, we attempted to modify the
weight functions, and the improved versions of weight functions are shown in Section 3.2.

3.2. Modified Weight Functions and New Weight Functions

First, the weight functions of RANSAC, MSAC, and MLESAC were modified. Generally, after
a hypothesis plane is accepted, it is expected that all the inliers should be excluded to avoid affecting
the detection of other planes; while in the plane detection step, it is wished that as fewer outliers
included as possible to decrease the possibility of false plane detection and the absence of minor inliers
is acceptable. This reminds us to reduce the thresholds used in the weight functions and to keep the
threshold unchanged for inlier exclusion. For such an objective, a reduction ratio µ was applied to
the distance threshold dt in the weight function. For example, the MSAC with a reduction ratio µ is
expressed by (denoted by MSACµ):

weightμ pdq “

$
’&
’%

1 ´
ˆ

d

μ ¨ dt

˙2
|d| ă pμ ¨ dtq

0 otherwise

(7)

Similarly, the reduction ratio µ also was adopted in classical RANSAC and MLESAC to generate
the two modified versions, named RANSACu and MLESACu. RANSACu uses smaller threshold μ ¨ dt

for inlier determination; and the σd in Equation (5) of MLESACu is reduced to μ ¨ dt{1.96.
As discussed in Section 3.1, two new weight functions stricter in theory can be designed, whose

value is close to 1 in region A, close to 0 in region C, and rapidly decreasing in region B. One weight
function is a piecewise-linear function, which linearly decreases in Region B (denote by LDSAC).

weight pdq “

$
’’’&
’’’%

1 |d| ď d1
d2 ´ |d|
d2 ´ d1

d1 ă |d| ă d2

0 others

(8)

where d1 and d2 are the selected thresholds between 0 and dt ( i.e., 0.2dt and 0.7dt in our test).
Another weight function is a smooth curve decreasing along the “bell” curve (denote by BDSAC):

weightpdq “ expp´ d2

σd
2 q (9)

The curves of the weight functions and the absolute value of their gradients are illustrated in
Figure 3. All the weight functions are inversely proportional to the point-to-plane distance d with a
range of from 0 to 1, thus the most probable hypothesis plane M̂ is decided similarly with classical
RANSAC in Equation (1):

M̂ “ argmax
M

$
&
%

ÿ

PiPU

weight pdiq

,
.
- (10)

As the value of the weights is generated by simply mapping the value of d/σd into pre-calculated
tables, the efficiency of all the methods are similar.
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Figure 3. Weight functions of various RANSAC methods: (Left) Plots of the weight functions; (Right)
Plots of the absolute value of gradient.

3.3. Joint Weight Function Regarding Angular Difference

The normal vectors of the inliers are generated by neighborhood analysis [6,10] and often have
fine consistency for 2.5D roof surfaces. For poor hypotheses, a systematic deviation of the normal
vectors (i.e., θ0 in Figure 1c) can exist between the hypotheses plane and the real roof surface. As the
normal of the points turns out to be in accord with the real roof surface, this deviation will reflect in
most roof points. As a result, the angular difference between the points and the hypothesis plane (θ in
Equation (2)) has long been used to evaluate the quality of inliers, either as constant thresholds in [7]
or as a normal vector consistency validation in [4]. It is very natural for us to consider adding the
angular difference into the weight definition.

Suppose the distribution of angular difference θ is independent with the distance and also obeys
the normal distribution with a standard deviation of σθ. Then, the weight of the angular difference
can be defined by using the same form as the distance (simply replace d by θ). For instance, the weight
functions of BDSAC for angular difference θ can be defined as:

w pθq “ expp´ θ2

σ2
θ

q (11)

Then, the final weight weight pdi, θiq, considering both the point-to-plane distances and the angular
differences, can be defined as the product of the two weights:

weight pdi, θiq “ wpdiqwpθiq (12)

Similar to Equation (9), the most probable hypothesis plane M̂ is determined by maximizing the
total weight of all the hypothesis of M

M̂ “ argmax
M

$
&
%

ÿ

PiPU

weight pdi, θiq

,
.
- (13)

To distinguish from methods considering point-to-plane distance only, a subscript of “nv” is added
to the methods that take the angular difference into account (e.g., BDSACnv for the improved method
of BDSAC).

3.4. Weight Function Evaluation

A proper weight function is expected to suppress the improper hypotheses as much as possible,
without excessively penalizing the proper ones. Since the decreasing rates of the total weights for the
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hypothesis plane under different weight functions are different, an outlier suppression ratio is defined
as the evaluation metric here:

ratioos “ Wtest

Wre f
(14)

where Wref stands for the total weight of the reference plane (the plane fitted by all the inliers), and
Wtest is the total weight of the test hypothesis plane.

The test hypothesis planes are randomly generated and manually marked as positive or negative,
based on whether a correct segmentation can be generated. For a positive hypothesis, we expect that
the ratio of a good weight function is stable, which should be close to 1. For negatives hypotheses, we
need the ratio to be as small as possible, and a ratio over 1 indicates that a false hypothesis gains larger
weights than the proper ones, leading to false segmentation.

To evaluate the weight functions defined in Sections 3.2 and 3.3 10 hypotheses planes are generated
from the point cloud of the building in Figure 4, among which three hypotheses are positive and seven
hypotheses are negative.

Figure 4. Buildings with both positive and negative hypotheses. The deep blue triangle is a negative
hypothesis as it is athwart the two roof planes, and the cyan triangle is a positive hypothesis which can
produce a correct segmentation.

The outlier suppression ratios of the 10 hypotheses are shown in Figure 5. As shown in Figure 5a,
the ratios of eight methods considering only distances error are compared, and the mean ratio of the
10 hypotheses under different thresholds are illustrated in Figure 5c. As shown in Figure 5b,d, we
compare the improvements of the methods after considering both the distance and angular difference
in the weight function, corresponding to Figure 5a,c. Several conclusions can be made at this point:

(1) For all the weighted methods, the evaluation of the positive hypotheses (planes 1, 2, and 3) are
stable as the ratios in Figure 5a are close to 1.0 and the ratio reductions in Figure 5b are close
to 0. Meanwhile, all the weighted methods can significantly decrease the ratios of the negative
hypotheses when compared to RANSAC, but their suppressing ability are different.

(2) By comparing the results between the modified weight functions and the original functions (i.e.,
MSAC0.7 and MSAC), it can be concluded that reduction of the inlier threshold can suppress
the outliers effectively. The newly designed LDSAC and BDSAC functions have the best
performances, which verifies our considerations in Section 3.1.

(3) From Figure 5c, it can be seen that all the methods can be affected by the threshold in some
degree, but the newly designed weighted methods are least influenced.
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(4) Figure 5b,d illustrate the improvements after taking the angular differences into the weight
functions. All the weighted methods gain positive effects and the effects are not sensitive to
the thresholds.

(a) (b) 

(c) (d) 

Figure 5. Suppressing ability and threshold sensitivity test. (a) Suppressing ratios for planes under
different weight forms; (b) Ratio reductions after considering the angular difference (i.e., the ratio
reduction of BDSACnv is the ratio of BDSAC minus the ratio of BDSACnv); (c) Mean ratio of the ten
planes under different dt thresholds; (d) Mean ratios reduction after considering the angular difference
(the reduction approach is similar to (b)).

As the performances of the segmentation methods are greatly influenced by the complexity of the
input data and the threshold parameters, we simulate the data in Figure 6 to test the robustness of the
algorithm on a variety of conditions. The data consists of two adjacent horizontal planes, both 10 m ˆ 5 m
with an average point distance is 0.5 m. The height difference between the planes (∆d) and the
added Gaussian noise (with a standard deviation of σ) are both changeable. The thresholds dt for the
methods are tested from 0.02 m to 0.2 m, every 0.01 m a trail.

The difficulty of segmentation will obviously increase when ∆d decreased or σ increased, which
will influence the selection of the dt thresholds. For data with a larger σ, the dt needs to be larger
in order to include all the plane inliers; otherwise, over-segmentation may occur. As a result, nearly
all the methods fail when dt is smaller than 2σ in Figure 6c (the value need to be even larger in
real applications). The value of ∆d reflects the separability of the two planes and stricter thresholds
are needed for a successful separation. The setting of thresholds needs to consider both factors and
find a proper value between the two limitations, finally forming the acceptable areas for different
weighted methods in Figure 6. For classical RANSAC, the results are rather disappointing and a proper
threshold is difficult to generate. However, for the weighted methods, as the spurious planes are
suppressed, much looser thresholds are allowed which result in larger areas in Figure 6. It also can
be seen that both adding new weight forms and considering the angular difference in the weights
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produce positive effects on the acceptable areas. This decreases the difficulty of threshold selection
and allows the possibility of processing more complex data. For instance, when ∆d equals 0.15 m and
0.2 m in Figure 6b or when σ equals 0.03 m and 0.04 m in Figure 6c, the classical RANSAC methods
will always fail while our new weighted methods can produce a correct segmentation. Intuitively, a
spurious plane that passes through the middle of the two planes will include all the points if dt is
larger than ∆d/2 for classical RANSAC and cannot distinguish the two planes well when dt is larger
than ∆d/3 in our experiments. In comparison, proper results are produced by BDSACnv even when dt

is larger than 2∆d/3.

(a) (b)

(c)

Figure 6. Data sensitivity test. (a) Simulated data, with changeable ∆d and σ; (b) Segmentation results
under different ∆d; (c) Segmentation results under different σ. The colored regions depict the range of
dt that can produce a correct segmentation.

4. Experiments and Evaluation

After comparing the effects of different weight functions in suppressing spurious planes and their
sensitivity to thresholds and input data, this section presents the stability and robustness segmentation
results and the optimal weight recommendations. The various assessment metrics are introduced, and
the experiments on various datasets to test the overall performance of the methods are presented.

4.1. Datasets and Fundamental Algorithm

The experiments utilized two datasets. The first dataset was collected in the city of Vaihingen,
ISPRS dataset [34] and the other set, which has a higher point density, was collected on the Wuhan
University campus, China. In the quantitative tests, the reference data were created manually based
on the initial segmentation results and aerial images. Since our segmentation algorithms initiates
from the classified building roof points, the points on the ground, walls, and vegetation were filtered
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beforehand and excluded from the quantitative tests. The results of a RG-based method [11] are also
used for comparison purposes.

To evaluate the effects of the weighted methods, a fundamental RANSAC-based segmentation
algorithm is needed. Since this paper focuses on the effects of the different weight functions,
only a brief introduction to the algorithm implementation is provided here. The main framework
of the algorithm follows the work of [4], but we also refer to the work of [7,25] (described in
Section 2.1). In the pre-processing stage, the points normal are estimated through the tensor voting
algorithm [10], which also divides the points into planar and nonplanar sets. In the second step
(standard RANSAC stage), the density-based connectivity clustering is implemented [22] to ensure the
spatial connectivity of the detected planes. Some speed-up techniques also are also utilized: a fast and
rough connectivity clustering to decompose the integral data [35] (connectivity of the octree cells) and
the ND-RANSAC [32] and Local RANSAC [4] to avoid meaningless hypotheses. The post-processing
mainly included the following aspects: (1) completion of the roof plane by searching the points from
the unsegmented points; (2) clustering of the remaining points set and an extra searching process
to detect the lost segments; and (3) to avoid over-segmentation or detecting a plane twice, a region
merging process [32] was adopted among the neighbor planes, which required the total weights of the
merged plane to be larger than that of either single plane. Some basic specifications for the datasets are
provided in Table 1, and the main parameters are shown in Table 2.

Table 1. Properties of the two datasets.

Site Vaihingen Wuhan

Acquisition Date 22 August 2008 22 July 2014
Acquisition System Leica ALS 50 Trimble Harrier 68i

Fly Height 500 m 1000 m (cross flight)
Point Density ~4/m2 >15/m2

Table 2. Parameters used in the experiments.

MinPt MinLen Angle dt θt Ncc Dcc P0 NbPt1 NbPt2

Vaihingen 5 1 m 15˝ 0.15 m 10˝ 5 1.5 m 0.99 5 20
Wuhan 20 1 m 15˝ 0.20 m 10˝ 5 0.75 m 0.99 10 30

MinPt: the minimum number of points for a plane; MinLen: the minimum length of the detected edge. Angle: the
angle threshold between the three sample points’ normal and the plane’s normal used in hypothesis generation
(ND-RANSAC, see [31]). Ncc (least number of points) and Dcc (searching distance) are the parameters used in
the density-based connectivity clustering [24]. P0 is the confidence probability to select the positive hypotheses
at least once. NbPt1 and NbPt1 are the two parameters (nearest n points) used in the tensor voting-based
method [10] (two rounds of voting).

4.2. Evaluation Metrics

The evaluation metrics consisted of two parts: the object-level evaluation metrics provided in [36]
and the quality of the roof ridges detected after segmentation. Completeness (Comp), Correctness (Corr)
and Quality in [36] are used to assess the segmentation results:

comp “ ||TP||
||TP|| ` ||FN||

corr “ ||TP||
||TP|| ` ||FP||

Quality “ ||TP||
||TP|| ` ||FN|| ` ||FP||

(15)

where TP (True Positive) is the number of objects found both in the reference and segmentation,
FN (False Negative) is the number of reference objects not found in segmentation, and FP (False
Positive) is the number of detected objects not found in the reference. Different from the metrics
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defined in [37], which are widely adopted for the ISPRS benchmark dataset, the metrics in [36]
found the correspondences between the reference and the segmented data by using the “maximum
overlap” instead of the “overall coverage”. As they only establish one-to-one correspondences, the
TP values in the reference and segmented data are always the same. This can be more convenient
for distinguishing the segmentation errors when the relationships of one-to-many, many-to-one, or
many-to-many occurred. For example, if one segmented plane corresponds to two reference planes
(one-to-many), the two reference planes will all be taken as TPs for the metrics in [37] (fail to detect
under-segmentation), while the smaller reference plane will be detected as FN in [36] instead.

Even a small number of incorrectly segmented points sometimes can have a very large influence
on the identification of building structures (i.e., false division of roof boundary points can affect the
roof topology). Such errors may not be easily detected by the segmentation-based metrics as they only
offer a quick assessment at plane level, (i.e., a minimum overlap of 50% with the reference is required
to be a TP). Consequently, a result-driven metrics is designed based on whether the segmentation
results influences the extraction of roof ridges. The intersection line is calculated using the method and
parameters provided in [28]. Considering that the intersections of roofs ridges in corners (i.e., using
the close-circle analysis in [38]) may cover up some mistakes in segmentation, only the original ridges
are compared in the experiments.

Two ridge-based metrics are utilized in our experiments. One metric is based on the roof topology
graph (RTG) which mainly considers the existing ridges between planes. In the above metrics,
the one-to-one correspondences among the reference planes and roof planes have been established.
A detected ridge is related to two extracted planes and is taken as a TP only when two correspondences
between planes can be found and a reference ridge exists between the two planes. The second metric
is much stricter and accepts a TP only when the corresponding ridges are similar enough. To achieve
such a goal, the similarity between the reference ridges and the test ridges are defined (Figure 7),
which consists of three aspects: distance consistence (dc), orientation consistence (oc), and projection
consistence (pc):

dc “ exp

#
´

ˆ |CC1| ` |DD1|
2 ¨ dis0

˙2
+

oc “ exp
"

´p α

α0
q

2
*

pc “ |AB| X |C1D1|
|AB| Y |C1D1| “ |C1B|

|AD1|

(16)

where α0 and dis0 are two previously established values (i.e., 5˝ and 0.2 m). As the oc, pc and dc

are values between 0 and 1, the large the better, the integral consistence is set as the product of the
three values:

ic “ oc ¨ dc ¨ pc (17)

 

Figure 7. Definition of ridge similarity. Line AB: the reference ridge (Ref); line CD: the detected ridge
(Test), where C1 and D1 are the corresponding projection points of C and D; and α is the intersect angle.

4.3. Experiments

In this section, the improvements from using the weighted approach experimentally are verified.
First, the methods for typical scenes that are error-prone for classical RANSAC are presented. Then,
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the results for the Vaihingen and Wuhan University datasets are evaluated by the metrics given in
Section 4.2.

4.3.1. Local Data

For the RANSAC-based methods, spurious planes that consist of points from several roof surfaces
are easily generated when adjacent planes have very similar heights or normal orientations. As shown
in Figure 8, we select eight typical buildings (a)–(h) to examine the new weighted methods, with the
error-prone regions numbered from 1 to 12. In regions 1–2, 5, and 11, a detected plane is possibly
be overlapping multiple reference planes; for regions 3–4 and 9–10, poor segmentation may occur
when inaccurate hypothesis planes snatch points from neighbor planes; for regions 6–8, two planes are
shown as merged into one; and the roof in region 12 is not complanate, thus the segmented results are
likely fragmentized. Due to the limited space, we present only the segmentation results for RANSAC,
BDSAC, and RG. The MSAC and MLESAC results are very similar to the conventional RANSAC
results and can hardlyable to distinguish the poorly estimated planes. Further discussion will be
provided in Figure 9.

(a)

(b)

(c)

(d)

Figure 8. Cont.
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(e)

(f)

(g)

(h)

Figure 8. Results of segmentation and ridge detection for error-prone buildings. (a–h) are eight selected
buildings containing error-prone regions. From left to right: reference images, results by classical
RANSAC, results by RG, and results by BDSACnv.

(a) (b) 

Figure 9. Suppressing ratios comparison. The spurious planes detected by RANSAC in Figure 8
(regions 1–11). (a) Suppressing ratio for methods that only consider point-plane in weight functions;
(b) Ratios for methods considering both distance and angular difference.
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As shown in Figure 8, our new weighted method significantly improved the segmentation and
ridge detection results. In regions 1–9, most of the segmentation errors for the RANSAC method,
which are also common for the RG method (regions 5–9), are properly solved. In regions 10–12, all the
methods fail to create ideal results. The errors in region 10 are mainly caused by sparse data; and in
region 11, the normal difference between planes A and B is about 3˝and the height difference between
B and C is only about 0.15 m, which are too small to distinguish under the current thresholds. The RG
method successfully distinguished roofs A and B while it fail to separate B and C. For region 12, all the
methods fail because the origin data is not complanate. As a result, our method, compared to the RG
method, is slightly better in region 10 but worse in region 11. The quantitative results in Table 3 support
our conclusion. Comparing the results of our method to classical RANSAC, the overall segmentation
quality increases from 61.3% to 77.2%, and the two ridge-based metrics also increase from 51.8% to
81.7% and 41.6% to 69.3%. Meanwhile, our results are also better than the RG method by the metrics.
It can be seen that for regions like 1–4 and 9–0, the incorrectly classified points may not be significant
in point count but had strong influences on the identification of roof topology. Such errors are not
distinguished by the segmentation-based metrics (i.e., the three planes in region 9 are considered as
TPs). Our ridge based metrics show more reasonable evaluation under such situations as the errors
will damage the distinguishing of roof ridges. The metrics based on ridge similarity are stricter than
those based simply on RTG and exclude some ambiguous or incomplete ridges, such as the ridges in
building (b) in Table 3, and thus are more reasonable in some situations.

Table 3. Quality of segmentation results for data in Figure 8.

ID nPls nRidges Method
Segmentation Ridges (RTG) Ridges (ic > 0.3)

%Cm %Cr %Qua %Cm %Cr %Qua %Cm %Cr %Qua

a 10 7
RANSAC 80 100 80 71.4 55.5 45.5 57.1 44.4 33.3

RG 100 100 100 71.4 100 71.4 71.4 100 71.4
BDSACnv 100 100 100 100 100 100 71.4 100 71.4

b 5 3
RANSAC 80 57.1 50 66.7 50.0 40.0 0 0 0

RG 100 100 100 100 100 100 100 100 100
BDSACnv 100 100 100 100 100 100 100 100 100

c 7 5
RANSAC 85.7 60 51.5 60.0 37.5 30.0 40.0 25.0 18.2

RG 85.7 75 66.7 100 71.4 71.4 100 71.4 71.4
BDSACnv 100 100 100 100 83.3 83.3 100 83.3 83.3

d 10 11
RANSAC 80.0 100 80.0 90.9 100 90.9 90.9 100 90.9

RG 80.0 100 80.0 90.9 100 90.9 90.9 100 90.9
BDSACnv 100 100 100 100 100 100 100 100 100

e 9 7
RANSAC 88.9 100 88.9 71.4 100 71.4 57.1 80 50

RG 60 100 60 71.4 100 71.4 57.1 80 50
BDSACnv 100 100 100 100 100 100 100 100 100

f 12 12
RANSAC 66.7 66.7 50 33.3 50.0 25.0 33.3 50 25.0

RG 83.3 90.9 76.9 41.7 55.5 31.2 41.7 55.5 31.2
BDSACnv 91.7 91.7 84.6 91.7 91.7 84.6 66.7 66.7 50.0

g 23 5
RANSAC 69.6 64.0 50.0 100 62.5 62.5 100 62.5 62.5

RG 78.3 72.0 60.0 100 71.4 71.4 100 71.4 71.4
BDSACnv 69.6 66.7 51.6 100 50.0 50.0 100 50.0 50.0

h 11 10
RANSAC 90.9 71.4 66.7 90.0 64.3 60.0 80.0 57.1 50.0

RG 81.8 69.2 60.0 70.0 46.7 38.9 60.0 40.0 31.6
BDSACnv 90.9 66.7 62.5 90.0 69.2 64.3 80.0 61.5 53.3

sum 87 60
RANSAC 78.2 73.9 61.3 71.7 65.2 51.8 61.7 56.1 41.6

RG 82.8 83.7 71.3 75.0 73.8 59.2 71.7 70.5 55.1
BDSACnv 89.7 84.8 77.2 96.7 84.1 81.7 86.7 77.6 69.3

Figure 9 depicts the performance results of the different weighted methods based on the data in
Figure 8, via the outlier suppression ratio (Equation (14)). In each error-prone region, we utilize the
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largest spurious plane by RANSAC as the test hypothesis plane, whose total weight is Wtest, and the
total weight of the largest reference plane in the corresponding region is Wref. Regions 1–11 in Figure 8
are evaluated. Region 12 is omitted because the roof surface is nonplanar.

Although the ratios are smaller for MSAC and MLESAC than for classical RANSAC, all of them are
over 1; thus, the two methods will still accept all the spurious planes that result in false segmentation.
As a result, simply using MSAC and MLESAC cannot improve the segmentation results. For our
new method, both the new weight forms and the weights regarding angular difference have distinct
positive effects on the final results. Considering only one factor may fail in some situations, such as
regions 4 and 7 for BDSAC and MSACnv. Meanwhile, the extent of the improvements by angular
difference in the weights may be different for the planes. For planes with distinct biases in both the
distance and normal vectors, such as regions 2 and 8, the suppressing of the total weights can be larger
than in other regions. Again, BDSACnv provides the best results. In addition, although our methods
fail in region 11, the ratio of the BDSACnv is still smaller than the other weighted methods.

4.3.2. Vaihingen (Germany)

Figure 10 illustrates the segmentation results for the Vaihingen data; specifically, Figure 10a–c are
the benchmark data of the “ISPRS Test Project on Urban Classification and 3D Building Reconstruction”,
in which A and B have been tested in Figure 8e,f, respectively. Other error-prone regions for the classical
methods also are indicated in the Figures. For region E, the situation is similar to Figure 8b,f, where
spurious planes overlapping multiple roof planes can be produced. In region G, several planes
intersect at the same roof corner, which requires more accurate segmentation methods and neighbor
competition in the post-processing to better divide the roof boundary points. Our weighted methods
show advantages in those regions as well, as the planes with smaller distance errors are more likely
to be accepted. Such differences can be detected by the ridge-based metrics. When the transitions
between the neighbor regions are smooth, as shown in E, the RG-based methods may fail. Some of the
errors are caused by the processing before roof segmentation; for example, the points in region C are
classified as vegetation and parts of the points in region D are lost in the original data. All the methods
fail in those regions and the related roof ridges are also lost. For E, F, and G, the segmentation results
of the different methods are illustrated in Appendix I for comparison.

The quantitative results of the Vaihingen data are shown in Figure 11. It can be seen that our
BDSACnv method generates significant improvements compared to the traditional methods RANSAC
and MSAC. Higher scores are achieved by our methods when using either the segmentation-based
metrics or the two ridge-based metrics. The improvements of MSAC and MLESAC to RANSAC are
not evident in the test data, and many spurious planes are still detected. It should be noted that
some error-prone regions are also difficult for the RG method because regions with small angular or
height differences often have very smooth transitions (e.g., B and E). Besides, the RG methods seem
to be unstable in a few regions, such as the over-segmentation that unexpectedly occurs in F (see
Appendix I).

  

Figure 10. Cont.
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Figure 10. Segmentation of Vaihingen data. (a–f) are six selected areas from the data. (top: image,
bottom: results of BDSACnv).

Figure 11. Quantitative results of the Vaihingen data. (a–f) are the six areas selected in Figure 10.
Three metrics are used, from left to right: quality of segmentation and quality of two ridge based metrics.
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4.3.3. Wuhan University (China)

The segmentation results of the Wuhan University data are illustrated in Figure 12. Some error-prone
regions are designated. For L and M, spurious planes that overlap multiple roof planes can be
produced. For J and O, the small roof planes or short roof ridges may be lost because of small point
counts and the competition of roof points from large neighbor planes. In areas (g)–(l), there are many
roof details (e.g., Figure 10e), including small windows, eaves, and even guard bars made of glazed
tiles, which greatly increase the segmentation difficulties and ultimately results in small plane pieces
and short false ridges. In K, a horizontal plane is produced passing through the four planes because
the normal errors are not considered in the weight functions. The weighted methods demonstrate
great robustness under those situations and therefore significantly improve the segmentation results.
Our methods also encounter problems which are unable to resolve. For example, since our weighted
methods are not yet adaptable to a curved surface, they divide H and N into several broken pieces.
In addition, the RG-based methods fail in I because the points from the upper structure divide the
bottom plane into many pieces. The segmentation results for I, K, L and M using different methods are
also shown in Appendix I.

Figure 12. Cont.
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Figure 12. Segmentation results of Wuhan University data. (g–l) are six selected areas from the data.
(top: image, bottom: results of BDSACnv).

The quantitative results of the Wuhan University data are illustrated in Figure 13. Similar to
Figure 11, our method makes significant improvements compared to the other weighted methods.
For areas (g) and (h), the RG method’s performance is unsatisfactory because many broken
fragments exist. For I in area (h) especially, the bottom planes become numerous broken fragments.
The RANSAC-based method can be more robust in those situations. Since the RG method considers
the roof slope, it can distinguish very small angular differences, which makes it better than the original
RANSAC method results in L and M; and over-segmentation also occurred using RG in L and M.
A detailed comparison is available in Appendix I.

Figure 13. Quantitative results of the Wuhan University data. (g–l) are the six areas selected in
Figure 12. Three metrics are used, from left to right: quality of segmentation and quality of two ridge
based metrics.

The overall quantitative results are shown in Figure 14, which includes the results of Figures 8,
10 and 12. It can be seen that, while the improvements were not very obvious, the results of
MSAC and MLESAC are slightly better than that of RANSAC. Our BDSACnv generate significant
improvements compared to both classical RANSAC and the existing weighted methods. Compared to
RANSAC, BDSACnv improves the overall segmentation quality from 85.7% to 90.1%, as well as the
two ridge-based metrics from 75.9% to 83.6% and 68.9% to 80.2%. The quality of the RG method is
lower than the RANSAC-based methods, mainly due to their instability in areas (c), (g) and (h).
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Figure 14. Integral quantitative results. Three metrics are used, from left to right: quality of
segmentation and quality of two ridge based metrics.

5. Conclusions

A new weighted RANSAC algorithm for roof point cloud segmentation is introduced in this
paper, in which the hard threshold voting function considering both the point-plane distance and
the normal vector consistence is transformed into a soft threshold voting function based on two
weight functions. Our method utilizes a new strategy to design the ideal weight functions based
on the error distribution between the proper and improper hypotheses. Several different weight
functions are defined using this strategy, and an outlier suppression ratio is put forward to compare the
performance of different weight functions. Preliminary experiments comparing the suppression ratios
of different weight functions demonstrated that the BDSACnv method is able to effectively suppress
the outliers from spurious planes. As a result, we chose BDSACnv for the further experiments and
compare its performance with other existing segmentation methods, including original RANSAC,
MSAC, MLESAC, and a representative RG method. A set of local data with error-prone regions and
two large area datasets of varying densities are used to evaluate the performance of the different
methods. The quantitative results of both the segmentation-based metrics and the ridge-based metrics
indicated that the different weighted methods improve the segmentation quality differently, but
BDSACnv significantly improve the segmentation accuracy and topology correctness. When compared
with RANSAC, BDSACnv improved the overall segmentation quality from 85.7% to 90.1%; and the
two ridge-based metrics also improved from 75.9% to 83.6% and 68.9% to 80.2%. Moreover, the
robustness of BDSACnv is better compared to the RG method. As a result, we believe there is potential
for the wide adoption of BDSACnv as an upgrade to or replacement of classical RANSAC in roof
plane segmentation.

However, our method has several limitations. First, although the weighted RANSAC approach is
robust to parameters, a small amount of post-processing is still needed to avoid false segmentation or
artifacts (see Section 4.1). Second, the weight definition of our method requires a robust estimate of
point surface normal, which can be problematic for small buildings or when the point density is low
with regard to the roof dimensions. Third, the issue of spurious planes is efficiently suppressed by our
method but not completely solved; therefore, spurious planes still may occur in extreme conditions
(i.e., Figure 8g).

There are also some possible improvement directions for future work. The number of iterations
for RANSAC increases rapidly when the inlier ratio decreases, thus a combination of cluster and
fitting to decompose the input data step by step could greatly improve the algorithm’s efficiency and
robustness. Meanwhile, RANSAC is a one-at-a-time process so adopting the competition approach
among neighbor planes could improve the accuracy of segmentation. Finally, only the segmentation of
roof planes was considered in this paper, but applying the weighted methods to other roof shapes is
possible as the methods mainly are concerned with the procedure of hypothesis verification and do
not change the generation of the hypothesis.
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Abstract: A new approach for three-dimensional (3-D) reconstruction of building roofs from airborne
light detection and ranging (LiDAR) data is proposed, and it includes four steps. Building roof points
are first extracted from LiDAR data by using the reversed iterative mathematic morphological (RIMM)
algorithm and the density-based method. The corresponding relations between points and rooftop
patches are then established through a smoothness strategy involving “seed point selection, patch
growth, and patch smoothing.” Layer-connection points are then generated to represent a layer in the
horizontal direction and to connect different layers in the vertical direction. Finally, by connecting
neighboring layer-connection points, building models are constructed with the second level of
detailed data. The key contributions of this approach are the use of layer-connection points and
the smoothness strategy for building model reconstruction. Experimental results are analyzed from
several aspects, namely, the correctness and completeness, deviation analysis of the reconstructed
building roofs, and the influence of elevation to 3-D roof reconstruction. In the two experimental
regions used in this paper, the completeness and correctness of the reconstructed rooftop patches
were about 90% and 95%, respectively. For the deviation accuracy, the average deviation distance and
standard deviation in the best case were 0.05 m and 0.18 m, respectively; and those in the worst case
were 0.12 m and 0.25 m. The experimental results demonstrated promising correctness, completeness,
and deviation accuracy with satisfactory 3-D building roof models.

Keywords: airborne LiDAR; building roof; three-dimensional (3-D) reconstruction; layer-connection
points; smoothness strategy

1. Introduction

The three-dimensional (3-D) reconstruction of building models is an important means of obtaining
3-D structural information of urban scenes. Such reconstructions are applicable in fields such as
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urban planning, change detection research, and solar mapping [1–3]. The 3-D modeling solutions
enable users to rapidly construct 3-D maps of surrounding areas that are suitable for professional
visualization systems. As the most important and challenging task in digital city construction, the 3-D
reconstruction of building models has received considerable attention over the past few decades [4,5].
Traditionally, photogrammetry is the primary approach used for deriving geo-spatial information, and
it is implemented through the use of single or multiple optical images; often, aerial stereo images have
been used for 3-D building model reconstruction. Some detailed reviews of the techniques for building
reconstruction from aerial imagery have been published in the literature [6]. However, considerable
manual assistance is required, which results in a low degree of automation.

Airborne light detection and ranging (LiDAR) technology has developed rapidly, and has been
found useful for many applications in various fields [7–10]. In particular, airborne LiDAR technology
presents a new avenue for the 3-D reconstruction of building models [11], and relevant methods
have been reviewed in the literature [12]. Tomljenovic et al. [13] provided an overview of building
extraction approaches applied to airborne LiDAR data from several aspects, such as dataset area,
accuracy measures, reference data for accuracy assessment, and the use of auxiliary data. Presently,
detailed 3-D information about the ground surface can be obtained by the airborne LiDAR equipment
with a high degree of automation; however, the massive number of irregularly distributed points
brings new challenges for the reconstruction work. Therefore, full utilization of the advantages of
LiDAR points for high-quality building model reconstruction remains an important research topic.

Most previous approaches related to building model reconstruction with airborne LiDAR data
can be divided into the following two categories: model-driven (parametric or top-down strategy)
and data-driven (non-parametric or bottom-up strategy) methods. The benefits and drawbacks
of the model- and data-driven methods have been discussed in a previous study [14]. In the
model-driven methods, a predefined catalog of roof shapes is prescribed (e.g., flat, hip, gambrel).
One of the advantages of model-driven methods is that the final roof shape is always topologically
correct according to the predefined shapes. However, failure is possible when reconstructing
complex building characteristics and building models that are excluded in the predefined shapes [12].
In addition, the level of detail in the reconstructed buildings is compromised as the input models
usually consist of rectangular footprints and the current level of automation is comparatively low.
In contrast to model-driven methods, data-driven approaches are more flexible and do not require prior
knowledge, in which a building roof is reassembled from roof parts found by a segmentation algorithm.
A challenging feature of these methods is to identify the relationship between the neighboring
rooftop patches; for example, coplanar patches, intersection lines, or step edges between neighboring
planes. The main advantage of these methods is that polyhedral buildings of arbitrary shape may
be reconstructed [15]. The main drawback of data-driven methods is their susceptibility to the point
density of the point clouds.

In the past studies, much of the work on the reconstruction of building models using airborne
LiDAR data focuses on the extraction of rooftop contours [11,16]. Cheng et al. [17] combined airborne
LiDAR data and optical remotely sensed images for the reconstruction of 3-D building models. They
developed an integration mechanism that incorporates the segmented roof points and two-dimensional
(2-D) lines extracted from optical multi-view aerial images to enable 3-D step line determination, from
which 3-D roof models could be reconstructed. Similarly, Susaki [18] achieved 3-D building model
reconstruction through a combination of airborne LiDAR data and high-spatial resolution aerial
images. Verma et al. [19] introduced a new method for the detection and reconstruction of complex
building models in which no a priori hypotheses are required; with this method, the topology of
complex roof shapes is determined by using the roof-topology graph. Sohn et al. [20] used a binary
space partitioning tree to reconstruct the global geometric topology of polyhedral buildings from
adjacent linear features by using airborne LiDAR data. Zhang et al. [21] derived the building footprints
through the combination of a region-growing algorithm and a boundary extraction method before
building model reconstruction. Kada and McKinley [22] proposed an approach for decomposition of
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footprint with an additional generalization of the footprint. The building models were reconstructed by
assembling building blocks from a library of parameterized standard shapes. Further, Vallet et al. [23]
introduced an approach where the footprint decomposition is triggered by a digital surface model
derived from the laser points. However, the reconstruction of 3-D building models with rooftop
contours extracted from airborne LiDAR data is usually difficult. This is because the topological
relationship between rooftop contours of different roof layers is difficult to confirm and, additionally,
the extraction of rooftop contours is strongly affected by noise.

The extraction of rooftop patches, a prerequisite of plane-based methods, is another way to obtain
building models from airborne LiDAR data. Common methods of extracting rooftop patches include
the 3-D Hough transformation [24,25], the region growing technique [26,27], and application of the
random sample consensus (RANSAC) algorithm [28,29]. Fan et al. [30] proposed the hierarchical
decomposition of ridge lines for rooftop patch extraction. Awrangjeb and Fraser [31] classified
original airborne LiDAR points into ground points and non-ground points. Coplanarity and local
characteristics of each point were then used to segment the building rooftops from the non-ground
points. Chen et al. [32] conducted a sequential process of morphological filtering, region growing, and
adaptive RANSAC algorithm calculations to segment the rooftop points, whereas Kim and Shan [33]
considered the optimization of an energy function and introduced a global segmentation strategy
for rooftop patches that guaranteed the topological consistency of the extracted patches. Sampath
and Shan [34] applied a fuzzy k-means algorithm to cluster the rooftop points to each patch and
distinguished parallel and coplanar patches based on distance and connectivity. The 3-D building
models were then obtained by using an adjacency matrix. Although the rooftop patches can be
segmented well by using the above mentioned methods, the patches are not fit to construct 3-D
building models directly. This is because the airborne LiDAR points representing these rooftop
patches are usually irregularly distributed. Therefore, some researchers considered combining the
model- and data-driven methods to reconstruct building roofs from airborne LiDAR data. This hybrid
approach, also known as the global strategy, exhibits both model- and data-driven characteristics.
For example, Satari et al. [35] applied the data-driven method to reconstruct cardinal planes and the
model-driven method to reconstruct dormers. Lafarge et al. [36] presented a structural approach
for building reconstruction from a single DSM, which treats buildings as an assemblage of simple
urban structures extracted from a library of 3D parametric blocks. The Gibbs model and the Bayesian
decision approach were used to control the block assemblage and to find the optimal configuration of
3-D blocks. To reflect the orientation and placement similarities between planar elements in building
structures, Zhou and Neumann [37] emphasized global regularity during the construction of planar
rooftops. This approach improved the reliability of the final results and decreased the complexity of
the building models. Similarly, Zhang et al. [38] proposed a novel method that represents building
roofs by geometric primitives and constructs a cost function for the final 3-D model reconstruction.
In addition, Chen et al. [39] used a multiscale grid method for the detection and reconstruction of
building roofs from airborne LiDAR data. Although it is beneficial to the plane-based methods that
LiDAR data provide a high density of 3-D points, the discrete and irregular distribution of these points
may lead to low geometrical accuracy for building models. Especially, it is difficult to determine
accurate boundaries and the connection relationships among roof faces with a height jump [34,40].

Here, we present a new point-based approach for 3-D reconstruction of building roofs from
airborne LiDAR data. The overall idea is as follows.

1. Smoothness-oriented rooftop patch extraction. For airborne LiDAR points of buildings, rooftop
patches are segmented by using a region growing approach. To reduce noise interference and eliminate
the effect of irregularly- distributed points, the rooftop points are smoothed before the building roofs
are reconstructed.

2. Determination of layer-connection points and calculations for building roof reconstruction.

Layer-connection points are generated from a 2-D grid to guarantee consistency between the boundary
footprints of different roof layers. Building roofs are then reconstructed by connecting neighboring
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layer-connection points. The generation of layer-connection points helps to establish the relationships
among different rooftop patches effectively and efficiently.

2. Methodology

The proposed approach for 3-D building roof reconstruction from airborne LiDAR data consists
of four steps. These four steps are as follows.

1. Preprocessing. Building rooftop points are extracted from airborne LiDAR data by using the
reversed iterative mathematic morphological (RIMM) algorithm and the density-based method.

2. Smoothness-oriented rooftop patch extraction. A strategy of “seed point selection, patch growth,
and patch smoothing” is introduced during the rooftop patch extraction to smooth the building
rooftop points.

3. Generation of layer-connection points. Layer-connection points are generated from a 2-D grid,
thus guaranteeing consistency between the boundary footprints of different roof layers.

4. Building model reconstruction. By connecting neighboring layer-connection points together, the
building roofs are reconstructed.

2.1. Extraction of Building Rooftop Points

As a precondition for 3-D building roof reconstruction, building roof points need to be detected
and extracted from airborne LiDAR data. We applied Cheng’s RIMM algorithm to extract the building
points [41]. The RIMM method first employs a morphological opening operation, and this opening
operation is iterated by gradually decreasing the window size at a fixed step length (3 m). The elevation
difference between two adjacent iterations is then compared, and parts with elevation differences
exceeding the minimum building height (3 m in this study) are regarded as building point clouds.
However, in the detected building point clouds, there may be some dense tree points, and the tree points
are removed by using a threshold roughness value (we set this to 0.8 m), i.e., the standard deviation of
height values of LiDAR points. The algorithm has been described in detail in the literature [41].

Airborne laser scanners not only acquire the laser measurements from building roofs, but also
obtain partial reflected pulses from building walls. Therefore, wall points still exist in the building
point clouds obtained by the RIMM algorithm. In order to retain only the rooftop points, we used
Awrangjeb’s method to remove wall points [42]. The experimental results demonstrated that the wall
points were eliminated by this method effectively.

2.2. Smoothness-Oriented Rooftop Patch Segmentation

Once we have extracted the building roof LiDAR points from the raw data, the different rooftop
patches must be determined, i.e., rooftop patches must be segmented. The segmentation process
follows a strategy of seed point selection, patch growth, and patch smoothing.

2.2.1. Rooftop Patch Segmentation

The input for the rooftop patch segmentation algorithm was implemented based on the classified
individual buildings, and for this, the region growing segmentation algorithm proposed by Sun and
Salvaggio [26] was used in our study; this algorithm uses the point normals and their curvatures.
First, the normal and curvature values of each LiDAR point are calculated and the point with the
smallest curvature value is selected as the seed point. Within a small neighborhood of this seed point,
the direction of the normal vector of any other point with the normal direction of this seed point
are compared. If the directional difference is larger than a predetermined threshold, the point being
examined does not belong to the group initiated by the seed point, and otherwise, it does. In those
points that have been grouped together by the seed point, points with curvature values lower than
a predetermined threshold are chosen as future seed points. The procedure is iteratively executed until
all LiDAR points have been visited.
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2.2.2. Smoothness-Oriented Rooftop Patch Optimization

Rooftop patch optimization involves (1) smoothing of the rooftop patch points and (2) eliminating
the interference of omissive LiDAR points.

The red box in Figure 1a contains a number of protuberant points (i.e., a small number of points
above a large rooftop patch); however, these protuberant points were not seen in the rooftop patch
segmentation results (Figure 1b). If these protuberant points are directly discarded before building roof
reconstruction, some holes will appear on the building roofs. As these points are usually distributed
above the real rooftop patches, we set a distance threshold (2 m) to recognize them. After all the
protuberant points have been found, they are projected to the corresponding segmented rooftop patch
by using the plane equation calculated by the RANSAC algorithm [29].

Furthermore, even if such points belong to the same rooftop patch, they may not be precisely
distributed on the same plane. Hence, a smoothing operation must be conducted prior to the building
roofs being reconstructed. Here, for each segmented rooftop patch, the RANSAC algorithm was
applied to fit a virtual plane from the candidate points, and then the points were forced to move on
to this estimated plane in order to assign a perfect flatness property to each surface. The smoothing
procedures described above were conducted iteratively for all rooftop patches. Figure 1c illustrates the
point clouds after smoothing.

Figure 1. Smoothing of building rooftop points: (a) original points; (b) segmented points; and
(c) smoothed points.

2.3. Generation of Layer-Connection Points

According to the derived rooftop patches, contour-based approaches are usually used for the
reconstruction of 3-D building roofs. However, some major flaws impede the use of 3-D contours
in building model reconstruction. These limitations are as follows: (1) the fitting of 3-D contours
is strongly affected by noise; (2) the extraction of 3-D contours demands a large number of points,
so the 3-D contours may be broken when not enough points are provided; and (3) the topological
relationships of 3-D contours among different roof layers are difficult to confirm.

Therefore, a point-based method for 3-D building roof reconstruction is proposed here. The core
objective of this method is to generate points to represent and connect roof layers (see Figure 2),
which are named as layer-connection points, for a building rooftop. Layer-connection points have
two purposes, namely, to represent a roof layer in the horizontal direction and to connect different
roof layers in the vertical direction. In the horizontal direction, as shown in Figure 2a,b, yellow points
represent the first layer (ground), blue points represent the second layer, and red points represent the
third layer. These points with different colors are defined as layer-points. In the vertical direction, as
shown in Figure 2c, a yellow point and red point form a line to connect the corresponding local region
of the first layer and the third layer. These two layer-points, which have the same x–y coordinates but
different z values, as a whole, are called a layer-connection point. Similarly, in Figure 2d, a yellow
point and blue point form a line to connect the first layer and the second layer. Moreover, in Figure 2e,
a yellow point, blue point, and red point form a line to connect the first layer, the second layer, and the
third layer. These three layer-points, as a whole, are also called a layer-connection point.
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Figure 2. An example of layer-connection points: (a) yellow points represent the first layer (ground),
blue points represent the second layer, and red points represent the third layer; (b) an enlarged view;
(c); (d) lines to connect points from two layers; and (e) line to connect points from three layers.

Before calculation of layer-connection points, we need to merge the rooftop patches into several
roof layers. First, we give a clear definition of the roof layer. A roof layer is defined as being made
up of several rooftop patches, which are adjacent and intersected with one another. For example, in
Figure 2a, the red points represent the third layer, but the layer has four different rooftop patches,
and, therefore, the four rooftop patches should be merged into a roof layer. Airborne LiDAR points
corresponding to different rooftop patches are used as source data for merging. Here, we first introduce
the principles for merging rooftop patches. The principles include whether there is an intersection
line and an adjacent relationship between two rooftop patches. For example, in Figure 3a, there are
two rooftop patches, i.e., S1 (red points in Figure 3a) and S2 (yellow points in Figure 3a). When S1

and S2 have an intersection line (blue line in Figure 3a), and the two rooftop patches have an adjacent
relationship, they can be merged into the same roof layer. After the completion of judgments for
all rooftop patches in accordance with the above principles, we can obtain the final merging results,
as illustrated in Figure 3b. After the merging of rooftop patches, the layer-connection points can
be calculated.

(a) (b) 

Figure 3. Example of merging rooftop patches into a layer. (a) Points with different colors represent
different rooftop patches; the blue line represents the intersection line between S1 and S2; and (b) red
points and blue points represent a roof layer.
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2.3.1. Construction of the 2-D Grid System

Before calculating the layer-connection points, we need to create a 2-D grid system. Thus, the
scale and grid cell size of the 2-D grid system need to be determined. The scale of the grid system
is set according to the maximum and minimum values of the point clouds in the X and Y directions.
To guarantee that a reasonable number of points lie inside each grid cell, the grid cell size is set to
2–3 times the average point spacing (we set it to 1.0 m in this study). The grid cells record the serial
numbers of each LiDAR point within them, and a cell with no points is said to be empty. For each
LiDAR point, we record the row and column number of its corresponding cell to construct a two-way
index. The index of a point with coordinates (x, y, z) can be obtained from the following formula:

i “ intppy ´ yminq{Gridsizeq
j “ intppx ´ xminq{Gridsizeq (1)

where i and j represent the number of row and column of a grid cell, respectively, (xmin, ymin) represents
the minimum coordinates of the building points, and Gridsize represents the size of a grid cell.

2.3.2. Calculation of Layer-Connection Points

During the calculation of layer-connection points, a center cell and its neighboring four cells are
taken into consideration. Aforementioned layer results are used to determine whether the LiDAR
points in the neighboring four cells are on the same roof layer with that in the center cell. There are
five potential situations.

In the first situation, as illustrated in Figure 4a, where all LiDAR points belong to the same roof
layer, the center cell (red box in Figure 4a) does not contain any connections between different
roof layers. In this situation, the cell will only generate a layer-point for the layer connection.
The coordinates of this cell’s center (blue rectangle in Figure 4a) are set as the x–y coordinates of
this layer-point, and the average height value of all LiDAR points inside the center cell is set as
its height.

In the second situation, as illustrated in Figure 4b, where the LiDAR points inside the center cell
and four neighboring cells do not belong to the same roof layer, the violet cell may contain connections
between different roof layers. A line splitting different roof layers can be calculated on which a point
to connect different layers can be located. If the cell (violet box in Figure 4b) with LiDAR points from
different roof layers lies to the left or right of the center cell (red box in Figure 4b), a black dotted
horizontal line is generated to intersect the splitting line (black solid line in Figure 4b). The point of
intersection (blue rectangle in Figure 4b) is taken as the x–y coordinates of the layer-connection point.
Simultaneously, the cell containing the planimetric coordinates of the intersection point is confirmed
and the LiDAR points in it are selected. Based on these points, height values of each layer-point are
determined by the average height of the LiDAR points of the corresponding roof layer.

(a) (b) (c) 

Figure 4. Cont.
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(d) (e)

Figure 4. Calculation of layer-connection points, points with different colors representing different roof
layers, and the blue rectangle representing the x–y coordinates of the derived layer-connection point:
(a) the points inside the five cells belonging to the same roof layer; and (b), (c), (d), (e) the points inside
the five cells belonging to different roof layers.

In the third situation, as illustrated in Figure 4c, if the cell (violet box in Figure 4c) with LiDAR
points from different roof layers lies above or below the center cell (red box in Figure 4c), a black dotted
vertical line is generated to intersect with the splitting line (black solid line in Figure 4c). The point
of intersection (blue rectangle in Figure 4c) gives the x–y coordinates of the layer-connection point.
Similarly, the cell containing the planimetric coordinates of the intersection point is confirmed and
height values of each layer-point is determined by the average height of the LiDAR points of the
corresponding roof layer.

In the fourth situation, as illustrated in Figure 4d, if the x–y coordinates of the layer-connection
point are exactly on the boundary of the center cell (red box in Figure 4d), a black dotted vertical line
intersecting the boundary gives the x–y coordinates of the layer-connection point (blue rectangle in
Figure 4d). Again, height values of each layer-point are set according to the average height value of
the LiDAR points (red and violet cells) of the corresponding roof layer.

In the fifth situation, as illustrated in Figure 4e, if the LiDAR points inside a cell (violet box in
Figure 4e) come from more than two roof layers, the number of points from each roof layer is counted,
and only two major groups of points are used to determine the x–y coordinates. The subsequent
calculations are the same as those used in situation two, three, or four.

2.3.3. Optimization of Layer-Connection Points

There are a number of layer-connection points distributed along building contours. If these
layer-connection points are directly connected, a series of zigzag contours will be produced. Thus, the
layer-connection points along building contours need to be smoothed. We applied Zhou’s method [43],
in which the principal orientations are derived from boundary points, and the points are iteratively
fitted to a line running along the principal orientations.

2.4. Building Model Reconstruction

Figure 5a shows a sample of the layer-connection points generated by the proposed approach.
As shown in Figure 5a, a building model can be obtained by connecting neighboring layer-
connection points.

For building roof reconstruction, the three neighboring cells should be searched, which correspond
to three layer-connection points. If the layer-points of the layer-connection points inside the three
neighboring cells are located on the same roof layer, these layer-points are connected to construct
a triangle mesh (red box in Figure 5b). By traversing all of the cells, the construction of rooftops can
be completed.
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This paper only focuses on building roof reconstruction. Therefore, building walls are replaced
with vertical planes. A similar operation is performed to construct the building walls. Briefly, layer-
connection points including multiple layer-points inside neighboring or diagonally adjacent cells
indicate the existence of a building wall. By connecting the layer-points belonging to different roof
layers (red box in Figure 5c), this building wall can be obtained. In addition, the layer-connection
points located on the boundary of a building must be connected to enable the construction of whole
building walls (blue box in Figure 5c).

Figure 5. An example of building model reconstruction: (a) layer-connection points; (b) rooftop
construction; and (c) wall construction.

2.5. Sensitivity Analysis of the Key Parameters

Given that a few parameters were used in this study, a summary of the setting procedures used
for the associated key thresholds is necessary. The setting basis of these thresholds involved two types
of information; namely, the data source and empirical results. The term “data source” means that
a threshold is set according to the real data. If this method is applied to some other 3-D building model
reconstruction, the “data source” thresholds can be determined easily, which increases the applicability
of the proposed method. The term “empirical” means that the thresholds are set empirically, and in
most cases, they can be set directly as we have proposed here.

During the process of extracting building rooftop points, the RIMM algorithm is employed.
The parameters used during this step are shown in Table 1. The initial window size Iw and the height
difference Th were set according to the data source, and these values usually refer to the length of
the largest building (106 m) and the height of the lowest building (3 m) in the experimental area,
respectively. The fixed step length Lc, and roughness value Rv were, respectively, set to 3 m and 0.8 m,
empirically. Two sets of different values (in meters) were tested while setting the values for the two
parameters Lc and Rv. For Lc the test values were 1, 3, 5, 7 m; for Rv the test values were 0.4, 0.6, 0.8, 1.0,
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and 1.2 m. According to the completeness and correctness of the segmented rooftop patches, we found
that the smaller Lc and the larger Rv could lead to that the extracted building point clouds contained
some tree LiDAR points. Conversely, there could be some missing building points if Lc was too large
and Rv was too small. The optimal extraction results were observed at Lc = 3 m and Rv = 0.8 m.

In the process of smoothness-oriented rooftop patch segmentation, an extraction method based
on region growth and rooftop patch optimization is used. The key parameters are shown in Table 1.
As we can see, all parameters used in this step can be set empirically. The search radius Rs and the
number of inner points N are related to the input LiDAR data. To guarantee that there were more
than ten points to calculate the normal of each LiDAR point, Rs is suitable for 2–3 times average of
point spacing. Elaborate consideration was given to the value of N as follows. We assumed that the
area of a minimum rooftop patch that could be detected was 4 m2, i.e., 2 m ˆ 2 m. According to the
point density of LiDAR data, a threshold for N can then be calculated easily. The distance threshold Td

were set to 0.2, 0.3, 0.4, 0.5, and 0.6 m to find the optimal value. In the process of patch optimization,
the phenomenon of over-smoothing will be occurred, if Td is set too large. At Td = 0.5 m the effect of
smoothing is moderate. The probability is a minimum probability of finding at least one good set of
observations in all iterative procedures. It usually lies between 0.90 and 0.99. In our experiments, the
probability was set to 0.98. During the generation of layer-connection points, a grid-based method is
introduced, and the cell size is set empirically.

Table 1. Key parameters in the proposed approach.

Procedure Threshold Scale Setting Basis

Extraction of building
rooftop points

Initial window Iw
The length of the
largest building Data source

Fixed step length Lc 3 m Empirical

Height difference Th
The minimum

building height Data source

Roughness value Rv 0.8 m Empirical

Smoothness-oriented
rooftop patch
segmentation

Patch segmentation Search radius Rs
2–3 times average of

point spacing Empirical

Patch optimization
Distance threshold Td 0.5 m Empirical

Number of inner points N 2 ˆ 2 ˆ point density Empirical

Probability P 0.98 Empirical

Generation of
layer-connection points

Construction of the
2-D grid system Cell size C

2–3 times average of
point spacing Empirical

3. Experiments and Analysis

3.1. Experimental Data

The airborne LiDAR data used in this paper were collected over Nanjing City, China, by using
an Optech ALTM Gemini laser scanning system from a flying altitude of about 1000 m on 26 November
2011. The average point density was about 10 points per m2, its average point spacing is about 0.25 m,
and data had a vertical accuracy of 0.15 m and a horizontal accuracy of 0.20 m. We used the campus of
Nanjing University, China, as the experimental Region 1 (Figure 6); this region covered an area of about
900 m ˆ 500 m and contained 4.2 million LiDAR points. Figure 6a,b shows the aerial orthophotos with
0.3 m resolution and the LiDAR data from a side view, respectively. Figure 6c shows no-data areas
where very sparse LiDAR points (one point in 30 m2) were collected as a result of the particular color
and special structures of the corresponding building tops. The buildings in these no-data areas were
not involved in the 3-D reconstruction process. The experimental Region 2 (Figure 7) was a residential
area in the Jianye district, Nanjing City, China; this region covered an area of about 900 m ˆ 600 m and
contained 4.5 million LiDAR points. Figure 7a,b shows the aerial orthophotos and the LiDAR data,
respectively. There were many buildings with various sizes and spatial distributions in Region 2.
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(a) (b)

(c)

Figure 6. Experimental Region 1: (a) aerial orthophotos with 0.3 m resolution (no-data areas are shown
by yellow boxes); (b) airborne LiDAR data; and(c) no-data areas (black), corresponding the yellow
boxes in (a) with letters.

(a) (b)

Figure 7. Experimental Region 2: (a) aerial orthophotos with 0.3 m resolution; and (b) airborne
LiDAR data.
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3.2. Experimental Results

Figures 8a and 9a demonstrate the reconstructed 3-D building roof models in Regions 1 and 2,
respectively. Details of the roof models in Region 1 can be seen in Figure 8b–d. Several building models
were selected to illustrate the details of the roofs in Region 2 (see Figure 9b–d). In Figures 8 and 9 the
building roofs with different structures, different directions, and different levels of complexity were
well-built and the results were satisfactory.

(a) (b)

(c) (d)

Figure 8. Reconstruction results in Region 1: (a) an overview; (b) a side view of the local reconstructed
roof models; and (c) and (d), building roof models for the red box in (b).

(a) (b)

(c) (d)

Figure 9. Reconstruction results in Region 2: (a) an overview; (b) a side view of the local reconstructed
roof models; and (c) and (d), building roof models for the red box in (b).
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3.3. Experimental Analysis

Evaluation of the experimental results was conducted according to (1) correctness and
completeness of the reconstruction results and (2) deviation distances between model points and
their nearest points in the laser data. These assessment criteria have been widely used in previous
studies to analyze the reconstruction performance of building models [39,44–46].

3.3.1. Correctness and Completeness

This section employs the correctness and completeness information to quantitatively evaluate the
quality of the 3-D reconstructions. The LiDAR point clouds, which contain building points, and the
aerial orthophotos were used as reference data. Here, the unit of evaluation were the rooftop patches
of the buildings. The rooftop patches in the reference data were extracted manually according to the
airborne LiDAR building point clouds and aerial orthophotos. When the area of a rooftop patch was
more than 2 m, the rooftop patch was determined and extracted. The correctness and completeness
of the experimental results were evaluated from two aspects; namely, the number of rooftop patches
(called the number evaluation) and the area of rooftop patches (called the area evaluation). For the
aspect of number evaluation, the reconstructed results and the reference data were then put together
as follows: (1) overlaid rooftop patches, in which the ratio of the overlapping area was more than 80%,
were taken as correct reconstructions; (2) rooftop patches only existing in the reference data were taken
as missing reconstructions; and (3) rooftop patches only existing in the reconstructed results, or rooftop
patches whose ratios of the overlapping areas were less than 20%, were taken as wrong reconstructions.
For the aspect of area evaluation, the accuracy is computed by the accumulated statistics on the correct,
missing, and wrong areas of the reconstructed rooftop patches.

Completeness “ TP

TP ` FN
(2)

Correctness “ TP

TP ` FP
(3)

where TP (true positives) represents the number or area of correct reconstructions for rooftop patches,
FN (false negatives) represents the number or area of missing reconstructions for rooftop patches, and
FP (false positives) represents the number or area of wrong reconstructions for rooftop patches.

Table 2 lists the detailed evaluation values. The evaluation results demonstrate that the proposed
method has high correctness and completeness. In regards to the number evaluation, the completeness
and correctness of Region 1 were 89.39% and 97.12%, respectively, and the completeness and correctness
of Region 2 were 90.37% and 95.42%, respectively. In regards to the area evaluation, the completeness
and correctness of Region 1 were 90.64% and 97.19%, respectively, and the completeness and correctness
of Region 2 were 91.85% and 93.26%, respectively. As can be seen from the results of the experimental
evaluation, the correctness was higher than the completeness. This was mainly due to the use
of a point-based method in the proposed approach whereby it is difficult to produce erroneous
commissions. The missing building rooftop patches were mainly caused by the fact that some small
building rooftop patches were not extracted during the process of segmentation because the number
of LiDAR points representing them was less than the pre-set threshold.

Table 2. Correctness and completeness of the reconstructed buildings’ rooftop patches.

Reconstructed
Results

Correct Quantity Missing Quantity False Quantity Completeness (%) Correctness (%)

Number Area (m2) Number Area (m2) Number Area (m2) Number Area Number Area

Region 1 236 84,183.25 28 8695.64 7 2432.90 89.39 90.64 97.12 97.19
Region 2 1145 145,659.82 122 12,924.63 55 10,526.89 90.37 91.85 95.42 93.26
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3.3.2. Deviation Analysis of the Reconstructed Building Roofs

The deviation analysis of the reconstructed building roofs was performed by calculating the
deviation distances between the reconstructed building roofs and the corresponding airborne LiDAR
data. The airborne LiDAR points of buildings were used as reference data for the quantitative
evaluation of the reconstructed building roofs’ accuracy. In the reconstructed building model M, we
selected a point Ri from reference data R and searched for the most neighboring triangular polygon
Mi by using a method that has been described previously in the literature [47]. Then, the deviation
distance between each LiDAR point and its corresponding patch was calculated. The statistical results
of the deviation distances for Regions 1 and 2 were computed based on the validation point set (as
shown in Figure 10a,b).

Table 3 lists the statistical results of the deviation analysis for Regions 1 and 2. The average
deviation distance and standard deviation (abbreviated as Std. Dev. in Table 3) of all reconstructed
building roofs in Region 1 were 0.05 m and 0.18 m, respectively. The average deviation distance and
standard deviation of all roofs in Region 2 were 0.12 m and 0.25 m, respectively. Compared with
Region 1, Region 2 had a larger average deviation distance and a higher standard deviation, which
was due to the fact that the roof structures of residential buildings were irregular and contained some
small objects. Overall, the evaluation results demonstrated that the reconstructed building roofs were
well matched with the reference data. Certainly, the deviation distances were mainly concentrated
at the average value. For example, in Region 1, about 96.61% points of the deviation distances are
distributed in the range from 0 to 0.3 m, and in Region 2, about 93.28% of the points are distributed in
the range from 0 to 0.3 m. The points with large deviation distances were mainly distributed in the
contour regions of buildings or in air conditioning and chimney areas.

(a) (b)

Figure 10. Deviation distances between the reconstructed building roof models and the LiDAR-derived
validation data, as represented by points with different colors: (a), (b) Region 1 and Region 2, respectively.
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Table 3. Deviation distances of the reconstructed building roofs.

Reconstructed
Results

Number
of Points

Maximum Average Std. Dev. Skewness Kurtosis
Percentage of Less

Than 0.3 m (%)

Region 1 743,502 3.53 0.05 0.18 4.78 31.47 96.61
Region 2 1,672,006 4.15 0.12 0.25 4.28 34.92 93.28

3.3.3. Influence of Elevation to 3-D Roof Reconstruction

This study also analyzed the influence of elevation on the reconstructed building roofs. First,
the airborne LiDAR points of buildings were divided into different groups according to the elevation
value (the elevation interval was set to 1 m). Afterward, we calculated the deviation distance under
each elevation range. The statistical results of Regions 1 and 2 are shown in Figure 11a,b, where
the solid squares in the figures represent the average values of the deviation distances under each
elevation range and the error bars represent the positive and negative deviations of each average value.
From Figure 11a,b, we can draw some conclusions. First, most of the average values of the deviation
distances were located in the range from ´0.05 m to 0.05 m. Second, in regards to different ranges of
elevations, when the elevation was more than the height of a specific value (80 m in Region 1; 37 m in
Region 2), fluctuations of the average values and standard deviations were larger than those where
the elevation was less than a specific value (70 m in Region 1; 33 m in Region 2). The reason for this
phenomenon is that for modern high-rise buildings, there are many central air conditioning units on
the building roofs, but there are not reflected in the reconstructed building roofs. Therefore, the average
values and standard deviations are more sensitive to the presence of modern high-rise buildings.

(a) (b)

Figure 11. Evaluation of the building roofs’ deviations under different elevations, where the solid
squares in the figures represent the average values of the deviation distances under each elevation range,
and the error bars represent the positive and negative deviations of each average value: (a), (b) Region 1
and Region 2, respectively.

3.4. Experimental Discussion

To further verify the effectiveness and reliability of the proposed method, several analysis
processes were conducted from two aspects of evaluation from the ISPRS test project and comparison
with other methods.

3.4.1. Evaluation from the ISPRS Test Project

The ISPRS benchmark test on urban object detection and reconstruction offers a unique possibility
to compare state-of-the-art methods [48,49]. Therefore, we used the test data provided by the ISPRS
benchmark test to evaluate the proposed method. The airborne LiDAR data for Vaihingen Areas 1, 2,
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and 3 were selected. The focus of the evaluation is on the quality of the roof plane segmentation and
on the geometrical accuracy of the roof polygons. The properties of datasets and the evaluation metrics
have been described in literature [48,50]. For the purpose of comparison with the state-of-the-art
methods, six different approaches from the ISPRS test project were selected [16,20,51–53], and the
overview of these methods is showed in Table 4, in which the proposed method is abbreviated as NUC.

The evaluation of the building reconstruction results for Vaihingen Areas 1–3 are summarized
in Table 5. The quality metrics are explained in literature [48]. For Area 1, the completeness and
the correctness of the extracted roof planes by using the proposed method were 73.6% and 99.2%,
respectively; the completeness and the correctness of the roof planes covering an area of at least 10 m2

were 75.5% and 99.0%, respectively. For Area 2, the completeness and the correctness of the extracted
roof planes by using the proposed method were 71.0% and 100.0%, respectively; the completeness and
the correctness of the roof planes covering an area of at least 10 m2 were 89.6% and 100.0%, respectively.
For Area 3, the completeness and the correctness of the extracted roof planes were 74.9% and 100.0%,
respectively; the completeness and the correctness of the roof planes covering an area of at least 10 m2

were 85.5% and 100.0%, respectively. Although there was a clear difference between the quality metrics
for all planes and for roof planes larger than 10 m2, the reconstruction quality of the proposed method
could reach about or above the average accuracy of the six state-of-the-art methods. In addition, the
geometrical errors (RMS, RMSZ) caused by the proposed approach were also in the range of the six
previous methods. Therefore, the proposed method produced a good reconstructions for Areas 1–3.

Table 4. Overview of the reconstruction methods. ID: Identifier of the method used in this paper.
Researcher/Affiliation: name and affiliation of the person submitting the results. Reference: a reference
where the method is described.

ID Researcher Affiliation Reference

CKU J.-Y. Rau N. Cheng-Kung U., Taiwan (Rau and Lin, 2011)
ITCE1 S. Oude Elberink ITC, The Netherlands (Oude Elberink and Vosselman, 2009)
ITCE2 S. Oude Elberink ITC, The Netherlands (Oude Elberink and Vosselman, 2009)
ITCX B. Xiong ITC, The Netherlands (Xiong et al., 2014)
VSK P. Dorninger TU Vienna, Austria (Dorninger and Pfeifer, 2008)
YOR G. Sohn York University, Canada (Sohn et al., 2008)

NUC Y.J. Wang Nanjing University, China This paper

Table 5. Evaluation of building reconstruction results in Areas 1, 2, and 3. The best values per column
are printed in bold font.

ID Cmob/Crob [%] Cm10/Cr10 [%] N1:M/NN:1/NN:M RMS [m] RMSZ [m]

Area 1 (288 roof planes)

CKU 86.7/98.9 86.7/99.3 10/36/3 0.66 0.70
ITCE1 60.8/94.6 58.5/94.0 16/26/17 0.91 0.55
ITCE2 65.3/97.3 63.3/97.3 0/38/3 0.94 0.55
ITCX 76.0/94.5 72.9/95.1 2/40/2 0.84 0.53
VSK 72.2/96.7 77.7/96.5 7/42/6 0.79 0.65
YOR 88.2/98.5 89.9/98.2 5/36/14 0.75 0.58

NUC 73.6/99.2 75.5/99.0 2/42/3 0.92 0.45

Area 2 (69 roof planes)

CKU 78.3/93.1 90.0/93.7 8/4/0 0.85 1.02
ITCE1 79.7/73.7 94.0/73.7 0/7/0 1.11 3.33
ITCE2 79.7/95.0 94.0/100.0 0/7/0 1.16 3.31
ITCX 62.3/92.9 74.0/92.7 2/4/0 0.79 0.44
VSK 73.9/100.0 88.0/100.0 3/5/1 1.03 0.88
YOR 73.9/100.0 90.0/100.0 5/3/0 0.77 1.04

NUC 71.0/100.0 89.6/100.0 3/7/1 0.83 0.62
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Table 5. Cont.

ID Cmob/Crob [%] Cm10/Cr10 [%] N1:M/NN:1/NN:M RMS [m] RMSZ [m]

Area 3 (235 roof planes)

CKU 81.3/98.4 82.2/98.3 4/48/2 0.76 0.65
ITCE1 67.7/100.0 62.8/100.0 0/47/2 0.96 0.29
ITCE2 64.3/100.0 55.9/100.0 0/46/0 1.04 0.42
ITCX 70.2/100.0 62.8/100.0 1/48/0 0.87 0.30
VSK 76.6/99.1 74.5/99.1 3/50/0 0.84 0.38
YOR 84.7/100.0 89.0/100.0 2/51/1 0.77 0.35

NUC 74.9/100.0 85.5/100.0 0/49/0 0.91 0.36

Compared to Area 2, Areas 1 and 3 was more difficult to reconstruct roofs because various
buildings with gabled roofs and small superstructures were present in the scene [50]. There was
more under-segmentation in Areas 1 and 3, which might be explained by a large number of small
attachments to the houses that were erroneously merged with neighboring roof planes.

3.4.2. Comparison with other Methods

We conducted a comparative experiment on six buildings, i.e., Buildings 1–6, which were covered
with all the rooftop types of the experimental regions. One innovation of the proposed method is
that it smooths segmented rooftop patches before reconstructing the building roofs. Therefore, this
experiment compared the proposed approach (Approach A) with the ordinary building reconstruction
approach (Approach B). In Approach B, the segmented rooftop patches along with the region growing
algorithm were directly used for the reconstruction task without smoothing the irregularly distributed
rooftop points and eliminating the interference of omissive LiDAR points. Furthermore, a grid-based
approach (Approach C) was selected to compare with the proposed method. Details regarding
Approach C can be found in the literature [39]. Figures 12 and 13 show the six building roof models
reconstructed by use of Approaches A, B, and C.

App. A 

 

App. B 

 

App. C 

 

 (a) (b) (c) 

Figure 12. Comparison of Approaches (abbreviated as App.) A, B, and C: (a), (b), and (c) the
reconstructed roof models of Buildings 1, 2, and 3, respectively.
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From the visual perspective, the reconstructed models of Building 1 that were obtained by using
Approaches A and B had similar reconstruction accuracies (see Figure 12a). The other building roof
models reconstructed by using the proposed approach were obviously superior to those reconstructed
by using Approach B, thus demonstrating the importance of smoothing before model reconstruction.
The superior behavior of Approach A is understandable because, as mentioned previously, even if
points belong to the same rooftop patch, small projections usually exist. If layer-connection points
are generated directly from the rough points, the reconstructed results will be fractured. In particular,
when it comes to interference information, the building roof models will be incoherent and unable to
accurately reflect the roofs of the buildings. Here, we must notice that the reconstruction of sloped roofs
with Approach C was unsatisfactory. This was mainly due to the fact that stair-step shapes were created
during the segmentation of depth imagery. For flat roofs, Approach C can guarantee satisfactory
reconstruction results, except irregular boundaries still exist in the roof models. The difficulty of
determining the optimal segmentation scale limits the application of the grid-based method for 3-D
reconstruction of building roofs with complex top structures in large urban areas. However, some
small mistakes were encountered in the model of Building 4 reconstructed by the proposed approach
(see Figure 13a); in particular, there was a lack of building fences. The reason for these errors lies in
the point spacing of the acquired LiDAR data. The width of the fence pickets was only a few tens of
centimeters, and the average point spacing was about 0.4 m. Thus, only one or two points could be
acquired along the fences, which made it difficult to accurately reconstruct them.

App. A 

App. B 

App. C 

(a) (b) (c) 

Figure 13. Comparison of Approaches (abbreviated as App.) A, B, and C: (a), (b), and (c)
The reconstructed roof models of Buildings 4, 5, and 6, respectively.

To quantitatively evaluate the modeling accuracy of the different approaches, Table 6 lists the
comparison results of the deviation distances for Buildings 1–6. The statistical results demonstrate
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that the performance of building roof models reconstructed by Approach A was superior to those
reconstructed by Approaches B and C. Approach A was associated with smaller average deviation
distances (less than 0.14 m) and lower standard deviations than those derived from the other
approaches. Specifically, the average deviation distances and standard deviations of the six building
roof models from Approaches B and C were larger than those from Approach A. This situation
illustrates that the roof models reconstructed by the latter two methods are unstable. For Buildings 1
and 2, Approaches A and B had similar average deviation distances and standard deviations, thus
indicating that the distribution of original airborne LiDAR data was smooth. When there were
sloped roof structures on building roofs, the average deviation distances and standard deviations
from Approach C were higher than those from Approaches A and B. For example, the average
deviation distance and standard deviation of Building 1 reconstructed by Approach C were 0.28 m
and 0.56 m, respectively. However, the average deviation distance and standard deviation of Building
1 reconstructed by Approach A were only 0.02 m and 0.11 m.

From Figures 12 and 13 we found that the building roof models reconstructed by using Approach
B were much rougher than those reconstructed by using Approach A. To quantitatively analyze the
experimental results of the two approaches, we calculated the roughness for each building. However,
because the roughness of a roof model cannot be calculated directly, we had to resample the roof model
to a high density point cloud (200 points/m2 in this paper) as replacement data. First, the roughness,
i.e., standard deviation, needs to be calculated for each point p. In the process of determining roughness,
the neighboring points (20 points in this paper) of point p are defined. Then, the roughness of point p

can be determined based on Euclidean distances from all neighboring points to the fitted plane. Finally,
the roughness of each building can be derived according to the calculated roughness of each point.

Table 6. Comparison of deviation distances for Buildings 1–6 reconstructed by Approaches A, B, and C.

Reconstructed
Results

Number
of Points

Approach A Approach B Approach C

Average Std. Dev. Average Std. Dev. Average Std. Dev.

Building 1 15,163 0.02 0.11 0.03 0.13 0.28 0.56
Building 2 29,480 0.06 0.18 0.09 0.19 0.10 0.27
Building 3 23,838 0.08 0.25 0.19 0.25 0.21 0.35
Building 4 28,151 0.14 0.22 0.17 0.23 0.15 0.29
Building 5 17,612 0.05 0.16 0.12 0.31 0.06 0.17
Building 6 18,705 0.07 0.13 0.13 0.14 0.13 0.22

Table 7 presents the roughness comparisons for Buildings 1–6. Generally speaking, the roughness
of building roof models reconstructed by using Approach A was about 0.005 m. Ideally, the roughness
values of all building roof models should be zero, as the rooftop patches are strict planes. However,
during the process of resampling roof models and calculating roughness, the loss of sampled data
accuracy may not lead to a roughness value of zero. As a comparison, the roughness values of building
roof models reconstructed by using Approach B were in the range of 0.10 m to 0.25 m. From Table 7,
we can see that the roughness values of Building 1 reconstructed by using the two approaches were
almost the same. This was because the roof of Building 1 contained no interference information, and
the original LiDAR point cloud was relatively smooth. Figure 14 shows the specific distribution of
roughness for Buildings 4 and 6, which supports the experimental analysis in Table 7. Therefore, we
can conclude that the building roof models reconstructed by using the proposed approach, which
were associated with smaller fluctuations and better smoothness, were superior to those reconstructed
by using Approach B. Thus, the importance of smoothing before model reconstruction is further
verified here.
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Figure 14. Roughness comparison between Approaches A and B: (a), (c) roughness of roof models
reconstructed using Approach A for Buildings 4 and 6; (b), (d) roughness of roof models reconstructed
using Approach B for Buildings 4 and 6, respectively. Data are represented by points with
different colors.

Table 7. Roughness comparison of building roof models for Approaches A and B.

Reconstructed Buildings Number of Rooftop Patches Approach A Approach B

Building 1 5 0.006 0.009
Building 2 13 0.004 0.128
Building 3 14 0.004 0.237
Building 4 4 0.005 0.221
Building 5 5 0.005 0.189
Building 6 3 0.002 0.171

4. Conclusions

This paper has presented a new approach involving a layer connection and smoothness
strategy for the reconstruction of building roof models from airborne LiDAR data. The proposed
approach consists of building rooftop point extraction, smoothness-oriented rooftop patch extraction,
layer-connection point generation, and building model reconstruction. The main contributions
of the proposed approach are as follows. (1) During the rooftop patch extraction, a “seed point
selection, patch growth, and patch smoothing” strategy is used to smooth building points, eliminate
interference information, and ensure the integrity of the point cloud data; and (2) layer-connection
points are proposed to guarantee consistency between the boundary footprints of different roof layers.
By connecting neighboring layer-connection points, the building roofs are reconstructed. Through
the calculation of layer-connection points, different roof layers are connected in a simple and fast
way. In the two experimental regions used in this paper, the completeness and correctness of the
reconstructed rooftop patches were about 90% and 95%, respectively. For the deviation accuracy, the
average deviation distance and standard deviation in the best case were 0.05 m and 0.18 m, respectively,
and those in the worst case were 0.12 m and 0.25 m. Our experiments prove that this method has good
applicability for model reconstruction of buildings in urban environments.

However, too many types of geometric shapes may exist on building roofs, such as artistic
sculptures, curved surfaces, and so forth. Therefore, there could be some phenomena of over-smoothing
for not-flat roofs by using the proposed method. To reconstruct building roofs with very complex
structures, further investigations will be necessary. In addition, small mistakes can persist in certain
tiny structures such as fences, air conditioning vents, and chimneys. The proposed method cannot
deal with roof overhangs, which are also difficult to reconstruct by the most previous methods. In our
future work, we will consider to reconstruct these roof parts with the aid of the auxiliary data (e.g.,
terrestrial LiDAR data). This paper has concentrated on the reconstruction of building roofs from
airborne LiDAR data, and little work was done for the subtle reconstruction of building façades.
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To achieve the reconstruction of complete building models, further work is needed to allow for the
subtle reconstruction of façade models from terrestrial LiDAR data.
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Abstract: Reconstructing building models at different levels of detail (LoDs) from airborne laser
scanning point clouds is urgently needed for wide application as this method can balance between
the user’s requirements and economic costs. The previous methods reconstruct building LoDs
from the finest 3D building models rather than from point clouds, resulting in heavy costs and
inflexible adaptivity. The scale space is a sound theory for multi-scale representation of an object
from a coarser level to a finer level. Therefore, this paper proposes a novel method to reconstruct
buildings at different LoDs from airborne Light Detection and Ranging (LiDAR) point clouds based
on an improved morphological scale space. The proposed method first extracts building candidate
regions following the separation of ground and non-ground points. For each building candidate
region, the proposed method generates a scale space by iteratively using the improved morphological
reconstruction with the increase of scale, and constructs the corresponding topological relationship
graphs (TRGs) across scales. Secondly, the proposed method robustly extracts building points by
using features based on the TRG. Finally, the proposed method reconstructs each building at different
LoDs according to the TRG. The experiments demonstrate that the proposed method robustly extracts
the buildings with details (e.g., door eaves and roof furniture) and illustrate good performance
in distinguishing buildings from vegetation or other objects, while automatically reconstructing
building LoDs from the finest building points.

Keywords: airborne LiDAR point clouds; building point extraction; building LoDs; the morphological
scale space; point cloud segmentation

1. Introduction

Three-dimensional (3D) building models play an important role in urban planning and
management, telecommunications, tourism, disaster relief and evaluation, environmental simulation,
vehicle navigation, and so on [1]. Automatically reconstructing building models at different levels
of detail (LoDs) is important for various applications. For example, the finest model would be taken
as the basis for assessing solar potential of rooftops [2], and a coarser model could satisfy personal
navigation in a mobile device [3].

The LoDs of buildings are the multiple representations of 3D building models. In the past
decade, many researchers have concentrated on the generation of LoDs from the finest 3D building
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models [4–8]. Generally, most methods derive coarse LoD models by employing the operators of
simplification and aggregation on a fine-scale 3D building model [5,7] or on the 2D ground plans [4,6,9].
However, there are many definitions for LoDs, and the standard is still not unified [4,10]. After the
CityGML (OGC City Geography Markup Language) standard was published [1], many studies
focused on deriving coarse models from a fine-scale 3D model according to the framework of CityGML.
Mao et al. generated CityGML models by simplification and aggregation, and then transformed the
generated CityGML models to a CityTree for realizing dynamic zoom functionality in real time [6].
Fan and Meng proposed a three-step approach to simplify and aggregate 2D ground plans and
generalize roof structures [4]. Verdie et al. generated building LoDs from the finest LoD to the
coarsest LoD based on surface meshes [11]. In a word, the above-reported methods generate 3D
building models at different LoDs from a fine-scale building model. However, reconstructing a
fine-scale building model is quite expensive and may not be relevant for many applications. Moreover,
the number of levels for discrete LoDs is fixed and thus limited in the framework of CityGML,
and the large difference between two adjacent building LoDs could cause a big jump from one level to
another level in the visualization [3,10]. Hence, automatically reconstructing a 3D building model at
desired levels from 3D information of buildings rather than from a fine-scale 3D building model is an
economical and flexible way to meet the user’s requirements.

Airborne Light Detection and Ranging (LiDAR) has become a mature technology for capturing
3D information of buildings [12], which could be taken as the basis for generating building LoDs.
At present, robustly extracting building points from various and complex urban scenes is still
a challenging issue [13,14]. In the last decade, numerous methods have been reported for
extracting building information from airborne laser scanning points, including DSM (Digital Surface
Model)-based methods [15], point cloud-based methods [16] and methods based on imagery-fusing
point clouds [17]. With the improvement of point density and the penetrating capacity of commercial
LiDAR systems (e.g., Full Waveform LiDAR systems), the point cloud-based methods could be more
suitable for complicated urban scenes. In general, segmentation-based methods and supervised
learning-based methods are two main solutions for building extraction based on point clouds.
Supervised learning-based methods [18–23] first select some building and non-building data as
samples for training classifiers, and then extract building points. However, it is time consuming in
selecting samples, and the result is highly dependent on samples [14]. Segmentation-based methods
begin by splitting point clouds into disjointed segments, and then extract building segments with
some prior knowledge or assumptions [16,24–27]. Generally, segmentation-based methods are widely
utilized in various engineering applications. These methods take each segment as an individual unit,
although many features derived from a single local segment cannot describe the differences between
buildings and other objects properly, causing classification errors. Fortunately, it can perform better
when the method combines features derived from the entire object with features derived from the
local neighbors, just like the human visual system distinguishes different objects from the whole to the
local [28]. The key step is to link the relationship between the segments of a building and the entire
building, and it is of great importance to generate building LoDs from extracted segments.

Scale-space theory lays a sound foundation for representing one object from a finer level to
a coarser level [29]. It gradually ignores the details and merges parts of an object into a group
with the increasing of the scale and could directly generate an arbitrary level from the finest point
clouds when the corresponding scale is given. Moreover, it maintains the spatial relations between
adjacent scales, and provides a good way to imitate the human visual system (HVS) for perceiving
objects ranging from whole to local details [28]. Generally, scale spaces can be constructed by
wavelet transform [30], Gaussian smoothing [31], and mathematical morphology [32]. The scale
space constructed by mathematical morphology is non-linear, and it is good for maintaining the
shape of an object. It has been widely used in various fields, such as signal processing and
image processing [29]. Vu et al. generated a DSM from airborne laser scanning point clouds and
constructed the scale space with area morphology for building extraction by fusing spectral imageries,
and providing the simple models with multi-scale representation [33]. Nevertheless, loss of information
(e.g., the multiple returns) in the generation of DSMs affect the extraction of buildings, and the method
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ignores the local details (e.g., dormers and other roof elements) of the building model in the multi-scale
representation. Fortunately, the scale space constructed by the morphological reconstruction
(e.g., opening and closing by reconstruction) generates the LoDs of an object by controlling the
scale (e.g., the size of a structuring element in morphology). It could better describe the local changes
of objects across different levels by the smoothing operators of opening and closing [32]. Hence,
we propose a novel method to extract building points and generate 3D building LoDs from airborne
LiDAR point clouds by applying the morphological scale space, where each level is directly generated
from point clouds by the morphological reconstruction. The main contributions of the proposed
method are as follows.

• Directly construct the scale space from airborne laser scanning point clouds by applying
the morphological reconstruction with planar segment constraints for feature preservation,
and a TRG (topological relationship graph) is created for representing the spatial relations between
segments across levels;

• Generate 3D building LoDs from the extracted building points based on the TRG, and the building
LoD with a specified level could be automatically reconstructed from the finest building points.

The remainder of this paper is organized as follows. An improved morphological scale-space
for point clouds is elaborated in Section 2. Section 3 describes the generation of building LoDs from
airborne laser scanning point clouds based on the improved morphological scale space. In Section 4,
the experimental studies that were undertaken to evaluate the proposed method are outlined. Finally,
conclusions are drawn at end of this paper.

2. An Improved Morphological Scale Space for Point Clouds

The improved morphological scale space is iteratively constructed by a morphological
reconstruction with planar segment constraints with the increasing of scale. Moreover, the topological
relationship graph (TRG) describing the spatial relations between different levels of one object is
generated for extracting building points and reconstructing 3D building LoDs.

2.1. A Morphological Reconstruction for Each Level with Planar Segment Constraints

The improved morphological reconstruction on the point clouds includes two steps, the opening
by reconstruction and the closing by reconstruction. Although the exterior shape of an object could
be maintained, part of an inclined roof may be flattened during the morphological reconstruction.
It leads to a failure in linking the topology between different levels. To overcome the drawback,
the result of a plane segmentation is adopted as constraints. The improved morphological
reconstruction is described as follows.

Let P = {p0, p1, . . . , pn} be the point clouds. P is segmented by the plane segmentation method
of [34] and small segments are removed by the threshold tN , which is defined as the number of points
in one segment. The remained segments are denoted as PS = {PS0, PS1, PS2, . . . }, and all points in the
removed segments are pushed into one set of individual points. Moreover, the slope of each segment
is calculated, and each segment is robustly labeled as horizontal or inclined by Equation (1) to avoid
the disturbance of noises.

Lpsi
=

{
1 i f Spsi

≥ tS

0 i f Spsi
< tS

(1)

where Spsi
is the slope of the segment psi; tS is the slope threshold; Lpsi

is assigned to 1 or 0 for marking
one segment to be horizontal or inclined.

Then, the opening reconstruction operator is defined as follows: Set an arbitrary value s as
the current scale, which is taken as the radius of a window Bs, and perform an opening operator
on point clouds P according to Equation (2) to flatten the sharp details, which are smaller than
two times s, and the result is denoted as POPEN . POPEN is taken as the marker point clouds,
and P is the mask point clouds. A geodesic dilation with a window BI is adopted iteratively according
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to Equations (3) and (4) until the result is stable [32]. The result of the opening by reconstruction is
denoted as POPEN_REC = δ

(n)
P (POPEN).

POPEN = (P ⊖ Bs)⊕ Bs (2)

δ
(1)
P (POPEN) = (POPEN ⊕ BI) ∧ P (3)

δ
(n)
P (POPEN) = δ

(1)
P ◦ δ

(1)
P ◦ . . . ◦ δ

(1)
P (POPEN) (4)

where ⊕ is the operator of the dilation; ⊖ is the operator of the erosion; δ is the operator of the geodesic
dilation; ∧ stands for the point-wise minimum; n is the iteration number.

The closing reconstruction operator is defined as follows: Perform a closing operator with
the disc window (Bs) on POPEN_REC according to Equation (5) to remove lower details, which are
smaller than two times s, and the result is denoted as PCLOSE. PCLOSE is taken as the marker point
clouds, and POPEN_REC is the mask point clouds. A geodesic erosion is adopted iteratively according
to Equations (6) and (7) until the result is stable [32]. The result of the closing by reconstruction
PCLOSE_REC = ε

(n)
POPEN_REC

(PCLOSE) is regarded as the reconstruction result at the level of s.

PCLOSE = (POPEN_REC ⊕ Bs)⊖ Bs (5)

ε
(1)
POPEN_REC

(PCLOSE) = (PCLOSE ⊖ BI) ∨ POPEN_REC (6)

ε
(n)
POPEN_REC

(PCLOSE) = ε
(1)
POPEN_REC

◦ ε
(1)
POPEN_REC

◦ . . . ◦ ε
(1)
POPEN_REC

(PCLOSE) (7)

where ε is the operator of geodesic erosion, ∨ stands for the point-wise maximum, and n is the number
of iterations.

For example, one building is illustrated in Figure 1a, and Figure 1b shows a cross-section of that
building. Figure 1c shows the result of the morphological reconstruction at the scale of 2 m. It shows
that T0

6 is flattened onto the larger segment, but T0
3 and T0

4 are erroneously processed as three segments
(T1

3 , T1
4 and T1

5 ). The phenomenon is the canonical cut-off problem in the morphological operator [35]
and will result in a failure of relinking the relationships between these segments from adjacent
levels. In order to address the problem, a segment is restricted to two states after the morphological
reconstruction: one horizontal segment or itself. The result of plane segmentation (PS) is adopted to
correct the result of morphological reconstruction. First, we design an indicator to check whether a
segment becomes horizontal or not after the morphological reconstruction. If the elevation difference
hpsi

as described by Equation (8) is less than a threshold tSH , the segment is marked as horizontal in
Equation (9). Otherwise, the elevations of the point in the segment are recovered by the corresponding
value after the morphological reconstruction. Figure 1d is the result after the modification.

hpsi
= (hMAX − hMIN)× Lpsi

(8)

L∗
psi

=

{
1 i f hpsi

≥ tSH

0 i f hpsi
< tSH

(9)

where hMAX and hMIN are the maximum and minimum elevation in the segment psi after
morphological reconstruction; hpsi

is the indicator; tSH is the threshold; and L∗
psi

is the judged result by
the indicator.

Additionally, although some segments are smaller than twice the scale, they may fail to be
removed. For example, there are two small segments T1

1 and T1
5 in Figure 1d, which is the

morphological reconstruction result at the scale of 2 m, and they fail to flatten into the segments
T1

0 and T1
4 . Therefore, the method automatically edits these false segments through two steps.

The first step is that the method detects these false segments according to their size and relationship
with the neighboring segments. For the first case T1

1 , the method first groups all segments into different
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clusters according to adjacent segments with a minor elevation difference in the vertical direction,
and each cluster is taken as an individual structure. Then, segments of any cluster which is smaller
than two times the scale are detected. For the second case T1

5 , the method checks each small segment
with a width less than twice the scale. If a small segment is included in another segment which is
larger than two times the scale, the small segment will be detected. After detection of false segments,
the method searches a neighboring segment with the width larger than twice the scale to modify
each false segment. Figure 1e is the final result of the improved morphological reconstruction at the
scale of 2 m.

(a)

(b) (c)

(d) (e)

Figure 1. Improved morphological reconstruction for a building. (a) Raw point clouds of a building;
(b) A cross-section of the raw point clouds, where the cross plane is illustrated in (a), and the width of
each segment is annotated; (c) Result of morphological reconstruction at the scale of 2 m, where parts
of the inclined roofs T0

3 and T0
4 are flattened; (d) Result of recovering the inclined segments T0

3 and T0
4 ;

(e) Result of modifying false segments, where T1
1 and T1

5 are flattened onto the larger segment.

2.2. Generating the Morphological Scale Space and Constructing the Topological Relationship Graph (TRG)

To generate the scale space for an object, the improved morphological reconstruction is iteratively
executed with the increasing of the scale. Hence, for one object, a scale space is constructed by
employing a series of scale values (S = {s0, s1, s2, . . . , sn}) until all points of the object are located on
a horizontal plane, and each scale value indicates one level. It is clear that the points of one object
have been portioned as different segments at each level. Sequentially, topological relationship graphs
(TRGs) across levels can thus be created by linking the spatial relations between segments of adjacent
levels, and each segment of one level is taken as a node. The rule of linking is that if most points
from one segment in a fine level can be found in another segment of the next coarse level by the point
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index, the spatial relation between them is recorded. Figure 2 is an example of generating scale space
and constructing topological relationship graphs within one building, and the scales are defined as
S = {2, 4, 8, 16, . . .}, where the former scale is half of the latter scale. Figure 2a is the raw point
clouds, and Figure 2d is a corresponding cross-section. There are seven segments, and the size of each
segment is annotated. Figure 2b,e are the results of the improved morphological reconstruction at
the scale of 2 m. T0

1 , T0
5 and T0

6 are flattened, and T0
3 and T0

4 are preserved. Figure 2c,f are the final
results of the improved morphological reconstruction, and the maximum scale is 4 m. Figure 2g is the
generated TRG.

(a) (b) (c) 

(d) (e)

(f) (g)

Figure 2. Generation of scale-space and the topological relationship graph within a building.
(a–c) Results of morphological reconstruction at the first scale (s = 0 m), the second scale (s = 2 m) and
the third scale (s = 4 m); (d–f) Results of scale space are displayed by cross-sections, and the location
of the cross plane is illustrated in Figure 1a; (g) Topological relationship graph, which is generated by
relinking the relationship between two segments from adjacent levels.

Moreover, the proposed method labels the topological relationship between each two adjacent
segments for each level in the generated TRG, where the level is in order from the coarsest to the finest.
For the labeling, four types of situations are designed, namely, INTERSECTION, STEP, INTERSECTION

and INCLUSION, STEP and INCLUSION, as shown in Figure 3. The steps of labeling are described
as follows:

Step 1: all segments are grouped into different clusters according to their father node.
For example, segments of the third level in Figure 2g would be grouped into four clusters, which are
the set of

{{
T0

0 , T0
1 , T0

6
}

,
{

T0
2
}

,
{

T0
3
}

,
{

T0
4 , T0

5
}}

.
Step 2: arbitrary two segments in one cluster are judged whether they are neighboring in

the horizontal direction. Two neighboring segments are denoted as a segment pair. For example,
the cluster

{
T0

0 , T0
1 , T0

6
}

would result in one set of two pairs {
{

T0
0 , T0

1
}

,
{

T0
0 , T0

6
}

}.
Step 3: traverses the segment pairs in each cluster one by one, derives an intersection line

from the segment pair, and labels the relationship of the pair as either INTERSECTION or STEP.
More specifically, if the distance between the points in the segment pair and the intersection line is less
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than one threshold (e.g., two times the point spacing), the relationship is labeled as INTERSECTION.
Otherwise, it is labeled as STEP. On the other hand, if points of one segment are fully located in the
exterior boundary of another segment in a segment pair, the relationship is labeled as INCLUSION

as well. Additionally, the relationship between the segments from different clusters could be derived
from their father nodes. For example, the labeled result of Figure 2g is illustrated in Figure 4.

Figure 3. Four types of the relationship between two adjacent segments, which are dotted in
different colors.

Figure 4. Labeling the relationship between the pair of two adjacent segments from each level of
the generated topological relationship graph (TRG), and two adjacent segments should be from the
same father node. When two adjacent segments are from different father nodes, the relationship is not
labeled, and it could be derived from their father nodes.

3. Generating Building Levels of Detail (LoDs) Based on the Improved Morphological
Scale Space

Figure 5 illustrates the flowchart of the proposed method. Four key steps are integrated to
generate 3D building LoDs from airborne laser scanning point clouds, namely, detection of building
candidate regions, generation of the improved morphological scale space, detection of building points,
and generation of building LoDs.

Figure 5. Flowchart of generating building LoDs from Airborne LiDAR point clouds.

3.1. Building Candidate Region Extraction and Generation of the Morphological Scale Space

Buildings in an urban scene have different structures with highly variable sizes and stories.
In general, the maximum scale is determined by their sizes and structures in the scale space. That is to
say, different buildings may be assigned different values for the maximum scales. Hence, the candidate
region of each building is first detected from the point clouds for adaptively tuning the maximum
value, and then the morphological scale space is generated for each candidate region respectively.

Step 1: The filtering method of [36] is utilized to separate ground points from non-ground points.
The filtering method classifies the points into a set of segments and one set of individual points by
point cloud segmentation, which are filtered by segment-based filtering and multi-scale morphological
filtering, respectively. Therefore, the non-ground points include two sets, non-ground segments and
non-ground individual points. Figure 6b is the filtering result of Figure 6a, and Figure 6c is the
non-ground segments.
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Step 2: Extract the candidate region of each building. First, the non-ground segments are clustered
via a region-growing method with the constraint of two-dimensional Euclidean distance, and the
distance threshold is specified as two times that of the point spacing. Then, with the assumption
that one building has a certain area, width and large elevation differences with its neighboring
terrain areas, the clusters are classified by Equation (10) to obtain the candidate building clusters.
Finally, each candidate building cluster is buffered with a distance (e.g., 3 m) to obtain a buffer area,
which is regarded as the candidate region of each building object. The buffer operator aims to ensure
the completeness of an object. For example, Figure 6d is the result of extracting candidate regions.

cBuilds =

⎧
⎪⎨
⎪⎩

SCi ∈ SC

∣∣∣∣∣∣∣

Rule1 : Num(Bound(SCi) > tH) > 0.25 × Num(Bound(SCi)) &&
Rule2 : Width(SCi) > tW &&

Rule3 : Area(SCi) > tA

⎫
⎪⎬
⎪

(10)

where cBuilds denotes the candidate building clusters; SC is the set of clusters, and SCi is the ith cluster;
Bound() is used to extract boundary points of each cluster; Num() is a counter of points satisfying
the condition of the elevation difference; Width() and Area() calculate the width and area of a cluster;
tW , tA, tH are three thresholds of the width, area and elevation difference respectively. tW and tA

should be tuned according to the scene (e.g., a modern megacity or a village), where tA could be
specified as 2.0–100.0 m2, and tW could be specified as 2.0–10.0 m. tH could be specified as a value in
consideration of a building no lower than 1.5 m.

Step 3: Generate the morphological scale space and the corresponding TRGs. Once the candidate
region of one building object is determined, the morphological scale space is generated according to
Section 2, and the corresponding TRGs are recorded as well. Generally, the root of a TRG represents the
entire object region, and the leaf nodes of a TRG are the segments of an object region in the minimum
scale. The relationships between segments from the same level are also labeled in the generated TRG.
For the generation of the morphological scale space, in consideration of time efficiency, a set of scales
S = {2, 4, 8, 16, . . .} is specified for iteratively generating each level of scale space, whereby the
former scale value is half of the later. An example is illustrated in Figure 7.

A

B

C

Figure 6. An example for building point detection. (a) Raw point cloud. There are a building and
several trees, and three trees are near to the building; (b) Filtering result. Ground and non-ground
points are separated; (c) Some non-ground segments; (d) Generated building candidate regions by
grouping non-ground segments; (e) Result of TRG classification. Only one candidate region is labeled
as a building; (f) Non-building points near the building are removed, and the remained points are
classified as building points.
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Figure 7. Generating the TRG for the building candidate region B of Figure 6d. (a) Raw point cloud;
(b–d) Segmentation results of three scales. Each segment is dotted in one color, and each segment is
annotated with a unique identification; (e) Generating TRG according to the method in Section 2.

3.2. Building Point Detection

A method based on the generated TRGs is employed to extract building points from each building
candidate region. The method distinguishes buildings from other points in consideration of the entire
object and its changes across scales. The method includes two steps. The first step is to label the
building TRGs, and the second step is to remove non-building points from the building TRG.

3.2.1. Classification of TRGs

The method first classifies all TRGs into building TRGs and non-building TRGs by five features,
as listed in Table 1. The five features are mainly related to geometrical sizes, surface characteristics,
the penetrating capacities within different objects, and the changing characteristics of objects across
scales. The classification rules are defined in Equation (11). For example, Figure 6e is the result of
TRG classification.

468



Remote Sens. 2017, 9, 14

buildTRGs =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pTRGi ∈ ATRGs

∣∣∣∣∣∣∣∣∣∣∣

Rule1 : A > tA &&
Rule2 : W > tW &&

Rule3 : ARMIN−MAX > tARMM &&
Rule4 : ARG−O < tARGO &&

Rule5 : PNRMIN−MAX > tPNRMM

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪

(11)

where buildRegions is the set of building TRGs, ATRGs is the set of all TRGs, pTRGi is ith TRG, tA, tW ,
tARMM, tARGO and tPNRMM are thresholds of five features, respectively. The threshold tARMM should
be determined by several factors, such as the flatness of an object. Generally, it should not be lower
than 0.5. For the threshold tARGO, in theory, it should be near zero. However, because of the structure
and material of a building, there may be a lot of ground points below roofs. Therefore, the value of
tARGO ranges from 0.2 to 0.6. The threshold of tPNRMM is mainly relevant to the penetrating capacity
and the surface characteristics, and it could be larger than 0.5.

Table 1. Five features based on the TRG.

Features Descriptions Characteristics

The area of the TRG (A) The area of the TRG

The areas of buildings and large trees
are large, and the areas of small objects
(e.g., vehicles,
low vegetation and street furniture) are
small

The width of the TRG
(W) The width of the TRG

The widths of buildings and large trees
are large, and the widths of small
objects (e.g., vehicles,
low vegetation and street furniture) are
small

The area ratio of the
segments (ARMIN−MAX)

The value is the ratio between the
minimum and the maximum area of
segments across scales. It reflects the
result of segmentation
for objects in different scales

The value of a building is large,
and that of a tree may be small

The area ratio of ground
points (ARG−O)

The ratio in areas between the entire
object
and the ground points in the
corresponding region. It reflects the
penetrating
capacities in different objects

The value of a building generally
approximates zero, and it may be higher
in the area of vegetation

The ratio of segmented
points (PNRMIN−MAX)

The ratio in the number of segmented
points between the minimum scale
and the maximum scale. It reflects the
changing of surface characteristics
across scales and the penetrating
capacities in different objects

The value of a building is large,
and it is small for vegetation

3.2.2. Extraction of the Final Building Points from Each Building TRG

Although TRGs have been classified, there may be some other objects (e.g., vegetation, vehicles)
in the building TRGs, and these objects should be removed. Generally, these objects consist of small
segments or individual points in the minimum scale, and they are near the border of the building
region. Therefore, the process is described as follows.

Step 1: The method detects the small segments by an area threshold tSA in the minimum scale,
and non-ground points removed in the process of segmentation are also detected. The detected points
are labeled as unclassified points. Generally, the threshold tSA is specified as 3.0–5.0 m2.

Step 2: The unclassified points are grouped into different clusters by a region-growing method
with the constraint of two-dimensional Euclidean distance.
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Step 3: For each cluster, the distance between its boundary and the border of the building region
is calculated. And then, the cluster will be determined whether it locates inside the building region
or near the border of the building region by one distance threshold, which is also specified as two
times that of the point spacing. If a cluster locates inside the building region, it would be classified as
building. Otherwise, five features are calculated after reconstructing a new TRG for each unclassified
cluster, and each unclassified cluster is labeled as building or non-building by Equation (11).

Figure 6f is the result of extracting the final building points of Figure 6a. Two trees near the
building are removed. Based on the detection result, the nodes of non-building segments would be
removed from the finest level to the coarsest level, and the relationships of these segments are also
removed at the same time. The process is illustrated in Figure 8. Moreover, if there are non-building
child nodes, the non-building points should also be removed the father node. For example, points of
T0

10 should be removed from the segments T1
0 and T2

0 .

Figure 8. Modifying one TRG (i.e., Figure 7e) from the finest level to the coarsest level after building
point detection. If all points in the segment are classified as non-building, the segment node and its
relationships are removed from the TRG.

3.3. Building LoD Generation

After automatically extracting building points and modifying the corresponding TRG, the method
reconstructs each building in each scale by the cycle graph analysis method of [37] to obtain the
corresponding building LoDs. The main steps of reconstructing a building model are as follows.
First, a graph about the topological relationship between each two adjacent segments from the same
level is constructed, and it is derived from the labeled TRG. Simultaneously, the feature lines are also
derived from each two adjacent segments. Then, roof corners are obtained by a strategy for detecting
closed cycles in the graph. The corner points are used to fix the ending points of the corresponding
feature lines. Finally, one building model is reconstructed by the combination of feature lines.
Two cases are illustrated in Tables 2 and 3.

Table 2. First example of generating the LoDs for the building of Figure 6.

Scale Values Multi-Scale Roof Data
Plane Segmentation

Results
Building LoDs

0 m

2 m
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Table 3. Second example of generating the LoDs for a building with gable roofs and dormers.

Scale Values Multi-Scale Roof Data Plane Segmentation Results The Final TRG Building LoDs

0 m

2 m

4 m
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4. Experimental Results and Analysis

The experiment was conducted on the Toronto dataset (as shown in Figure 9) provided by
International Society for Photogrammetry and Remote Sensing (ISPRS) to validate the performance
of the proposed method. The area of this dataset is about 403 m × 532 m, and the elevation ranges
from 40 to 190 m. There are 58 buildings larger than 2.5 m2, and the corresponding building area
is 88,249.8 m2. The dataset is located in a commercial zone with representative scene characteristics
of a modern megacity. Moreover, the area is covered by the high-rise and multi-story buildings with
complex rooftop structures, which are very suitable for verifying the proposed method.

Figure 9. Raw point clouds of the Toronto dataset provided by International Society for Photogrammetry
and Remote Sensing (ISPRS).

The procedure of the proposed method was executed to extract building points and generate
the LoDs for each building. The parameters involved in the proposed method are listed in Table 4.
The point clouds were first filtered into non-ground points and ground points. The result is shown
in Figure 10a, and the non-ground segments are showed in Figure 10b. Then, building candidate
regions were extracted, as illustrated in Figure 10c. For each building candidate region, the improved
morphological scale space and the labeled TRG were generated, TRGs were classified, and building
points were detected, as shown in Figure 10d–f. Then, the building LoDs were reconstructed.
Figures 11–13 are the processes for extracting building points and reconstructing building LoDs
from the building candidate region PB of Figure 10c. The result of reconstructing the building LoDs for
the entire scene is shown in Figure 14. It can be seen that roof structures change from complicated to
simple with the increasing scale until each roof becomes a plane. Therefore, the reconstructed building
models at different LoDs can serve various urban monitoring and analysis applications. Moreover, the
number of levels for each building self-adapts to its size and roof structures, ranging from three levels
to six levels. More importantly, the proposed method can reconstruct the roof model with any one
scale from the finest building points by the morphological reconstruction. The coarser roof model does
not need to be generated from the finest roof model. For example, the proposed method could directly
generate the level s = 4 m from the raw building points. This is very helpful to save the cost and satisfy
the user’s requirement.
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Table 4. Parameter settings.

Parameters Values Description Steps

tA/m2 50 The area threshold

Building candidate
region extraction

tW/m 5 The width threshold

tH/m 1.5
The threshold of describing the elevation
difference between the boundary
points of a building and the DEM

tN 10 This parameter is used to remove very small
segments in plane segmentation

The generation of
the scale space

tS/◦ 10 A threshold for the slope parameter

tSH/m 0.2
It is a threshold of the elevation difference for
determining a segment is inclined or
horizontal after morphological reconstruction

tARMM 0.5 The area ratio of the segments across levels of a
TRG

Building point
detection

tARGO 0.5 The area ratio of ground points within a TRG

tPNRMM 0.5 The ratio of segmented points across levels of a
TRG

tSA/m2 5 An area threshold for detecting
small segments near buildings

PB 

Figure 10. Detecting buildings from the Toronto dataset. (a) Filtering result; (b) Non-ground segments,
and each segment is dotted in one color; (c) Result of generating building candidate regions, where
each region is dotted in one color; (d) Result of TRG classification; (e) Result of extracting buildings;
(f) Result of the extracted buildings, and different buildings are dotted in different colors.
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Figure 11. Generating the scale space and the corresponding TRG for a building candidate region PB in
Figure 10c. (a) Point clouds of the building candidate region; (b–e) Segmentation results at four scales,
where different segments are dotted in different colors. Additionally, each segment is annotated with a
unique identification; (f) Generated TRGs.

 

Figure 12. Extracting building points and modifying the TRG from the building candidate region PB in
Figure 10c. (a) TRG classification. Two TRGs are classified as non-building, and one TRG is labeled as a
building; (b) Final result of building point detection; (c,d) Process of modifying the TRG according to
the result of building point detection, and only one segment node is removed.
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(a) s = 0 m (b) s = 2 m

(c) s = 4 m (d) s = 8 m

Figure 13. Reconstructing the building LoDs of the building candidate region PB in Figure 10c,
where there are four levels. The roof structures are changed from complicated to simple with the
increasing scale. (a) The building model within the scale of 0 m. (b) The building model within the
scale of 2 m. (c) The building model within the scale of 4 m. (d) The building model within the
scale of 8 m.

The high quality of building point detection results was the prerequisite for reconstructing
building LoDs in a scene. Hence, the result of building point detection was submitted to the
organization ISPRS for evaluation [38]. The evaluation result is shown in Figure 15, and the details can
be found on the website [39]. Several indicators are adopted for quantitative evaluation, including
Completeness (CP), Correctness (CR) and Quality (Q) at the pixel or object level, and the total Root
Mean Square (RMS) of reference boundaries. The result is listed in Table 5. It can be seen that the
Correctness values are 95.5% at the pixel level, and 96.6% at the object level. The high values show
that the proposed method can robustly distinguish buildings from vegetation or other objects. It may
benefit from the combination of features derived from the local and the whole of an object. In this result,
there are only two false positives at the object level. The false positives are large objects with smooth
surfaces, which are very easily classified as buildings. The Completeness values are 94.7% at the pixel
level, and 98.3% at the object level. The values indicate the method could robustly extract buildings,
as shown in the yellow areas of Figure 15. Additionally, the proposed method could also preserve
annex structures and rooftop furniture well by taking large parts of the building and small structures
as a whole in the process of detecting buildings, and robustly removing noise and vegetation points
on the roofs, as illustrated in Figure 16. In order to further analyze the performance of the proposed
method, the comparison between the proposed method and the other methods [13] is listed in Table 5,
showing that the proposed method has the best qualities in detecting buildings at the pixel level and
the total RMS, and only the method of FIE [40] obtained a better performance than the proposed
method at the object level. Therefore, the result of building point detection could provide a good
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foundation for the reconstruction of building LoDs. However, some small segments near the boundary
of a building may be erroneously removed, as shown in Figure 15 (dotted in blue), thereby resulting in
incorrect building LoDs reconstruction. Figure 17 shows an example of reconstructing building LoDs
for a building with complex rooftop structure. Because the points of dormers are few, they failed to be
detected, as illustrated in Figure 17a. The model of s = 0 m also missed several dormers, as shown in
Figure 17b.

 
(a) s = 0 m (b) s = 2 m

 
(c) s = 4 m (d) s = 8 m

 
(e) s = 16 m (f) s = 32 m

Figure 14. Results of reconstructing the building LoDs in the entire scene. The roof structures are
changed from complicated to simple with the increasing of the scale. Because different buildings have
different levels, the model of the maximum scale is utilized at a larger scale. (a) The building models
within the scale of 0 m. (b) The building models within the scale of 2 m. (c) The building models within
the scale of 4 m. (d) The building models within the scale of 8 m. (e) The building models within the
scale of 16 m. (f) The building models within the scale of 32 m.
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Figure 15. Elevation result provided by ISPRS. Yellow pixels are true positives, red pixels are false
positives, and blue pixels are false negatives.

Figure 16. A result of detecting a building. (a) top-view of the building detection result; (b) side-view
of the building detection result; (c) cross-section of the black line in (a) for detailed description of the
building detection result, where roof furniture and annex structures are preserved, and vegetation
points and noise points are removed; (d) corresponding building model at the scale of 0 m.
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Table 5. Evaluation result by ISPRS; the best results are highlighted.

Methods
Per_Area/% Per_Object/%

RMS/m
CP CR Q CP CR Q

The proposed method 94.7 95.5 90.6 98.3 96.6 95.0 0.8
WHUY2 [34] 95.1 89.3 85.4 96.6 94.6 91.6 1.2

TUM [41] 85.1 80.0 70.1 86.2 92.3 80.4 1.6
FIE [40] 96.6 90.6 87.8 98.3 98.2 96.6 1.2

ITCM [42] 80.5 82.1 68.5 96.6 22.9 22.7 1.5
MAR2 [15] 93.7 94.9 89.2 98.3 94.9 93.4 2.8
MON2 [43] 95.1 91.1 87.0 100 83.6 83.6 1.1
Z_GIS [44] 93.0 94.5 88.2 96.6 96.5 93.3 1.0

MIN 80.5 80 68.5 86.2 22.9 22.7 0.8
MAX 96.6 95.5 90.6 100 98.2 96.6 2.8

Finally, we selected two cases to describe the results of reconstructing building LoDs in the
local view, and the results were compared with the building LoDs in the framework of CityGML.
The first case is a connected building in Figure 18, where there is an ensemble of three parts with annex
structures and roof furniture. Figure 18a is the result of the proposed method, and Figure 18b is the
result based on CityGML. It shows that the proposed method could find the corresponding model
matching to each level of building LoDs based on CityGML. For example, the model of s = 0 m is the
same with LoD2, the model of s = 2 m approximates LoD1, and the model of s = 16 m is similar to the
LoD0, where only the elevation of the model of s = 16 m is assigned the minimum elevation of the
building points. Moreover, the models based on CityGML have only three levels, but the models of
the proposed method have five levels with a more gradual change for reducing the difference between
two adjacent levels. In the visualization of multi-scale representations for a building, the result of
the proposed method could have a smaller jump between two adjacent levels. The second case is a
building with multiple stories, where there are various types of roof structures (e.g., flat roofs and
gable roofs), as shown in Figure 19. Figure 19a is the result of the proposed method, and Figure 19b is
the result based on the CityGML. It also shows the models of the proposed method have a smaller
change between two adjacent levels. In addition, the inclined roofs are preserved in the model of s = 2
m from the proposed method, while each roof is flat in the LoD1 of the CityGML.

(a) Building points extracted (b) s = 0 m

The missing dormer segments 

Figure 17. Cont.
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g p

(c) s = 2 m (d) s = 4 m

 
(e) s = 8 m (f) s = 16 m

Figure 17. An example for describing some problems in the result of building LoDs. Because some
dormers are missed in the building point detection, the models of some levels may be incomplete.
(a) Extracted building points. (b) The building model within the scale of 0 m. (c) The building model
within the scale of 2 m. (d) The building model within the scale of 4 m. (e) The building model within
the scale of 8 m. (f) The building model within the scale of 16 m.

  
Building points s = 0 m s = 2 m 

  
s = 4 m s = 8 m s = 16 m 

(a)

Figure 18. Cont.
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( )

LOD2 LOD1 LOD0

(b)

Figure 18. Comparison of LoDs from CityGML and the proposed method for a connected building.
(a) Building LoDs from the proposed method; (b) Building LoDs from CityGML.

Building points s = 0 m s = 2 m 

s = 4 m s = 8 m s = 16 m 

(a)

LOD2 LOD1 LOD0

(b)

Figure 19. Comparison of LoDs from CityGML and the proposed method for a building with multiple
stories. (a) Building LoDs from the proposed method; (b) Building LoDs from CityGML.

5. Conclusions

In this study, we propose a method to reconstruct building levels of detail (LoDs) by using
an improved morphological scale-space. After separating ground and non-ground points, the
candidate region of each building is detected. The scale-space of each building candidate region
is obtained by iteratively using the improved morphological reconstruction. Topological relationship
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graphs (TRGs) are generated by relinking the relationships of segments between two adjacent scales.
Then, building points are detected by features based on TRG, and the TRG will be modified after
detection. Finally, the proposed method reconstructs the roof model for each building at each scale.
To verify the validities and the robustness of the proposed method, the Toronto dataset from
International Society for Photogrammetry and Remote Sensing (ISPRS) was selected to extract building
points and reconstruct building LoDs. The results of building point detection were submitted to
ISPRS for evaluation, and the building LoDs were compared with the building LoDs based on the
CityGML. The results demonstrate that the proposed method has a good performance in robustly
extracting the buildings with details (e.g., roof furniture) and distinguishing buildings from vegetation
or other objects. More importantly, the proposed method can directly reconstruct building LoDs from
airborne Light Detection and Ranging (LiDAR) point clouds with the adaptive number of levels while
maintaining the spatial relations between adjacent levels. However, some small parts of buildings
may be missed, which affects the quality of building LoDs. In the future, we will incorporate spatial
reasoning to improve the performance of extracting building details.
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