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Monitoring crop phenology provides essential information for crop management, as well as for understanding
regional to global scale vegetation dynamics. In this study, a hybrid phenology detection method is presented
that incorporates the “shape-model fitting” concept of the two-step filtering method and a simulation concept of
the crop models to detect the critical vegetative stages and reproductive stages of corn (Zea mays L.) and soy-
beans (Glycine max L.) from MODIS 250-m Wide Dynamic Range Vegetation Index (WDRVI) time-series data
and 1000-m Land Surface Temperature (LST) data. The method was first developed and tested at the field
scale over a ten-year period (2003–2012) for three experimental study sites in eastern Nebraska of USA,
where the estimated phenology dates were compared to the ground-based phenology observations for both
corn and soybeans. The average root mean square error (RMSE) of phenology stage estimation of the individual
development stages across all sites ranged from 1.9 to 4.3 days for corn and from1.9 to 4.9 days for soybeans. The
approach was then tested at a regional scale over eastern Nebraska and the state of Iowa to evaluate its ability to
characterize the spatio-temporal variation of targeted corn and soybean phenology stage dates over a larger area.
Quantitative regional assessmentswere conducted by comparing the estimated crop stage dateswith crop devel-
opmental stage statistics reported by theUSDANASS Crop Progress Reports (NASS-CPR) for both easternNebras-
ka and Iowa. The accuracy of the regional-scale phenology estimation in Iowa (RMSE ranged from 2.6 to 3.9 days
for corn and from 3.2 to 3.9 days for soybeans) was slightly lower than in eastern Nebraska (RMSE ranged from
1.8 to 2.9 days for corn and from1.7 to 2.9 days for soybeans), However, the estimation accuracy in Iowawas still
reasonable with the estimated phenology dates being within 4 days or less of the observed dates for both corn
and soybeans.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Accurate measurements of regional- to global-scale vegetation dy-
namics and phenology information improve our understanding of
inter-annual vegetation change in terrestrial ecosystems, as well as
climatic and other environmental variations from year to year (Brown,
de Beurs, & Marshall, 2012; Brown, Wardlow, Tadesse, Hayes, & Reed,
2008; Cleland, Chuine, Menzel, Mooney, & Schwartz, 2007; Cong et al.,
2013; Peña-Barragán, Ngugi, Plant, & Six, 2011; Pettorelli et al., 2005;
Schwartz, 1998). The phenological stages of crops provide essential
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information for agricultural activities such as irrigation scheduling and
fertilizer management (Sakamoto et al., 2010). In addition, accurate in-
formation on the timing of key crop growth stages is a key input for es-
timating crop yield based on remote sensed vegetation index (VI) data
(Bolton & Friedl, 2013; Funk & Budde, 2009; Sakamoto, Gitelson, &
Arkebauer, 2013).

A traditional approach to estimating crop phenology has been
through the use of crop models, many of which have been developed
to simulate corn and soybean growth responding to various environ-
ment conditions in which a crop is grown. They include generic crop
models, which describe the processes of assimilation, respiration, devel-
opment and growth without regard to crop species (e.g. SUCROS
(Simple and Universal CROp growth Simulator) (Spitters, van Keulen,
& van Kraalingen, 1989), WOFOST (WOrld FOod STudies) (Diepen,
Wolf, Keulen, & Rappoldt, 1989) and INTERCOM (INTERplant COMpeti-
tion) (Kropff & van Laar, 1993)) and crop-specifiedmodels, whichwere
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developed to simulate growth and development of a specific crop type
(e.g. Hybrid-Corn (Yang et al., 2004) and Soysim (Setiyono et al.,
2007)). Such models can often estimate phenological dates with a
high level of accuracy (RMSE: 0–4 days), but they require a number of
detailed information inputs summarizing crop (e.g. cultivar used and
plant population), soil (e.g. initial soil moisture), andweather (e.g. tem-
perature, rainfall, solar radiation and wind speed) conditions (Bhatia,
2014; Yang et al., 2004). The use of these crop models is also limited
by the availability of the required data inputs and the models usually
need to be calibrated for particular species and site-specific conditions
based on ground data (Bhatia, 2014). As a result, the phenological infor-
mation generated is site-specific and typically cannotmonitor crop phe-
nology beyond the field scale over larger areas.

Satellite remote sensing observations from global imaging sensors
such as the Advanced Very High Resolution Radiometer (AVHRR) and
the Moderate Resolution Imaging Spectroradiometer (MODIS) collect
image data and offer considerable potential to characterize regional-
scale spatio-temporal patterns of the key phenological stages of key
cash crops such as corn and soybeans on a gridded basis in a consistent,
time- and cost-efficient manner. MODIS data have become increasingly
used for cropmapping andmonitoring at a regional scale, because of its
unique combination of high temporal (near daily) andmoderate spatial
(i.e., 250-m and 500-m) resolutions (Funk & Budde, 2009; Galford et al.,
2008; Ozdogan & Gutman, 2008; Sakamoto et al., 2010; Wardlow &
Egbert, 2008; Wardlow, Egbert, & Kastens, 2007; Zhang et al., 2003).
The commonly used remote-sensing based phenology detection
methods can be divided into four groups: 1) thresholdmethods that es-
timate phenological stages by using either a fixed or dynamic threshold
(Delbart, Le Toan, Kergoat, & Fedotova, 2006; Fischer, 1994; Lloyd, 1990;
White & Nemani, 2006); 2) moving window methods that determine
the phenology dates by vegetation index (VI) changes of a time-series
VI curve in a defined moving temporal window (e.g. 20 days) (Balzter
et al., 2007; Reed et al., 1994; Tateishi & Ebata, 2004); 3) function fitting
methods that apply mathematical functions (e.g. logistic(Zhang et al.,
2003), wavelet (Sakamoto et al., 2005) or Fourier transformation) to
fit the VI time-series curves to a given function and extract phenological
stages through the detection of defined feature points (e.g., second
derivative equals 0) on the function curves; and 4) the shape model
method such as the two-step filtering (TSF) approach developed by
Sakamoto et al. (2010) that applies a novel shape-model fitting concept
to times-series VI curves for date identification.

The first three remote-sensing based phenology detection methods
summarized above are generally based on mathematical methods that
directly detect the feature points in time-series VI curve as the transition
dates of crops and other types of vegetation (Wardlow, Kastens, &
Egbert, 2006; Xu, Twine, & Yang, 2014; Zhang et al., 2003). Usually,
these dates represent general vegetation growth stages (e.g., greenup
onset, peak greenness and dormancy onset (Zhang et al., 2003)) but
have little association with the specific agronomic stages of a specific
kind of crops (e.g. corn, soybeans). Some key crop growth stages (e.g.
R1 (beginning bloom), R3 (beginning pod) stages of soybeans) are
challenging or cannot be directly detected from the VI time-series
curve. For example, the detection of the R5 (beginning seed) stage of
soybeans is relatively easy, as VI reaches a maximum value at or near
R5 stage (Bastidas, 2005). In contrast, the soybean R1 flowering stage,
which is a crucial phenology stage associated with yield, is difficult to
be detected because there is no distinctive vegetation change feature
(e.g., rapid increase in greenness) represented in the time-series VI
data at this stage. In addition, these phenology detection methods are
often sensitive to observation errors and noise caused by atmospheric
constituents (e.g., water vapor), thick cloud coverage, bi-directional re-
flectance distribution function (BRDF) effect, and themixed-pixel effect
due to viewing geometry in time-series VI data products (Sakamoto
et al., 2010). Wardlow et al. (2006) used Zhang et al. (2003) method
to estimate the green up onset date of summer crops (maize, sorghum,
and soybean) across the state of Kansas for 2001. Xu et al. (2014) tested
six common remotely sensed phenology detection methods that were
mainly based on feature points of the time-series VI data to detect the
leaf onset and offset of temperate forest, and found that most methods
had large biases in the estimation of these dates (RMSE ranged from
6.5 to 45.3 days).

The TSF approach showed considerable potential for the detection of
several specific agronomic stages of corn and soybeans with a high date
estimation accuracy (root mean square error (RMSE) ranging from 2.9
to 7.0 days and from 3.2 to 6.9 days for corn and soybeans, respectively).
Optimum parameters were derived representing the macroscopic
features in time-series VI data rather than focusing on the localized fea-
tures in the time-series around the green up andmaturity stages, which
avoid the influence of the localized fluctuations often representing er-
rors or noise in the data (Sakamoto et al., 2010). However this method
was based on an assumption that the shape model is linearly scalable
to fit the time-series VI profile of a crop’s growth pattern through geo-
metrical scaling, regardless of all the factors that would influence the
crop’s growth pattern expressed in the VI data, which can vary
from year to year (Sakamoto et al., 2010). For example, important envi-
ronmental factors that influence annual crop growth, such as air tem-
perature and photoperiod, were not taken into consideration. Air
temperature is generally one of the decisive factors that affect the
growth rate of all crops. Photoperiod is even a more important factor
for some photosensitive crops, as longer daylength decreases the devel-
opment rate by delaying reproductive development. (e.g., soybeans). As
a result, the growth rates of both corn and soybeans for each phenolog-
ical stage under different environmental conditions can vary from year
to year. In addition, a number of critical phenology stages for both
crops were not included in Sakamoto’s study (2010), such as the milk
stage (R2) of corn and beginning bloom (R1) and full pod length (R4)
stages of soybeans. Information on these stages is important for a num-
ber of applications including crop production estimates and irrigation
scheduling. For example, the period frommid-pod elongation to just be-
fore the start of seed enlargement is most critical for soybean seed yield
responses to irrigation (Kadhem, Specht, & Williams, 1985).

The objective of this paper is to present a hybrid phenology detec-
tion approach that incorporates the “shape-model fitting” concept of
the TSFmethod (Sakamoto et al., 2010) and simulation concept of tradi-
tional cropmodel that incorporates other environmental factors that in-
fluence crop development. The approach is designed to detect the
critical vegetative stages (V1 and V6 for corn and V1 for soybean) and
reproductive stages (R1 to R6 for corn and R1 to R7 for soybean) of
corn and soybeans from the MODIS 250-mWide Dynamic Range Vege-
tation Index (WDRVI) time-series data. This method was tested over a
ten-year period (2003 to 2012) for three experimental field sites to cal-
ibrate and quantitatively assess its performance with ground-based
crop phenology observations for each site. It was also tested regionally
over eastern Nebraska and the state of Iowa to evaluate its ability to
characterize spatio-temporal variation of the targeted corn and soybean
phenology stage dates across a larger major crop-producing region. Re-
gional results were quantitatively assessed using crop developmental
stage statistics reported by the U.S Department of Agriculture National
Agricultural Statistics Service (USDA NASS).

2. Study area and ground-based observations

The ground-based, crop growth stage observations were collected
over three field sites that are part of the Carbon Sequestration Program
(CSP, http://csp.unl.edu/Public/sites.htm) at theUniversity of Nebraska-
Lincoln's (UNL) Agricultural Research and Development Center (ARDC)
in eastern Nebraska (Fig. 1). Two sites (41°9′ 54.2″N, 96°28′ 35.9″W,
361 m and 41°9′ 53.5″N, 96°28′ 12.3″W, 362 m) are equipped with
center-pivot irrigation systems while the third site (41° 10′ 46.8″N,
96° 26′ 22.7″W, 362 m) is a non-irrigated, rainfed system. Site 1 was
continuously planted to corn since 2001, while site 2 was planted in a
corn (odd years)–soybean (even years) rotation before 2009 and

http://csp.unl.edu/Public/sites.htm


Fig. 1. The ASDs of eastern Nebraska and Iowa, aswell as the location and schematic of the
study sites at the UNL ARDC near Mead, Nebraska (the satellite image was from CSP
website, http://csp.unl.edu/Public/sites.htm).
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continuously planted to corn since 2009. Site 3 has been planted in a
corn (odd years)–soybean (even years) rotation since 2001. Like
Sakamoto’s study (2010), these three study sites will also be referenced
according to their respective cultivation methods as the Irrigated Con-
tinuous Maize (ICM) for Site 1, Irrigated Maize–Soybean (IMS) for Site
2, and Rainfed Maize–Soybean (RMS) for Site 3 in this paper.

The ground-based crop growth stage observationswere collected by
agronomists once every 3 to 10 days during the growing season and re-
corded based on general stage system (vegetation (V)-stage or repro-
ductive (R)-stage), as well as numerical staging system (e.g. V1 = 1,
…, V15 = 15, …, R1 = 22, …, R6 = 27). The numerical staging value
of the sites was calculated by averaging the numerical staging value of
several intensive management zones (IMZs) within each field covering
20 m2 areas where crops are intensively monitored and measured. The
numerical phenological stage value of each IMZwas calculated by aver-
aging the numerical stage value of all individual plants in the IMZ. In
terms of relating remotely sensed observations with these field-level
observations, generally, a median date when 50% of the crops are in
a specific phenological stage are used as the transition date between
respective stages (Sakamoto et al., 2010; Wardlow et al., 2006). To
use the ground-based observations as the reference data to assess
the remotely sensed phenology date estimates, the median dates of
each field based on numerical staging for each phenological stage
of all IMZs in this field were calculated by linear interpolation. For
example, if the averaged date value across all IMZs of certain field
was 22 for the R1 stage and 23 for the R2 stage, then the numerical
date value of 22.5 was used as the transition date from the R1 to R2
stage of the field.
3. Data description and preprocessing

3.1. WDRVI data calculated from MODIS surface reflectance data

The source data for theWDRVI time-series data set were the MODIS
8-day composite, 250m surface reflectance data (MOD09Q1, Collection
5) from 2003 to 2012. These data include 250 m red (band 1) and near
infrared (NIR; band 2) reflectance. The study area covers two MODIS
tiles (i.e., h10v04 and h11v04). The image data for the two tiles were
mosaicked and reprojected from Sinusoidal to Universal Transverse
Mercator (UTM, Zone 15 and WGS-84).

WDRVI, developed by Gitelson (2004), was used in this study in-
stead of the Normalized Difference Vegetation Index (NDVI) (Rouse,
Haas, Schell, & Deering, 1974), which has been widely used to monitor
vegetation conditions, because the WDRVI represents a VI with higher
sensitivity than NDVI at moderate-to-high LAI values (at least three
times greater) and demonstrated ability to maintain a linear relation-
ship across the range of LAI values for both corn and soybeans
(Gitelson, 2004; Gitelson, Wardlow, Keydan, & Leavitt, 2007;
Sakamoto et al., 2010). Accordingly, WDRVI was selected to be used in
this study and calculated using Eq. (1).

WDRVI ¼ αρnir−ρredð Þ= αρnir þ ρredð Þ ð1Þ

where ρnir and ρred are the MODIS surface reflectance values in the NIR
band (841–875 nm, Band 2) and red band (621–670 nm, Band1) and α
is weighting coefficient. Since WDRVI may be negative for low vegeta-
tion density, a scaled WDRVI (Peng, Gitelson, & Sakamoto, 2013) was
used in this study calculated using Eq. (2).

Scaled WDRVI ¼ f α‐1ð Þ þ α þ 1ð Þ � NDVI½ �= α þ 1ð Þ þ α−1ð Þ � NDVI½ �
þ 1‐αð Þ= 1þ αð Þg � 100 ð2Þ

NDVI ¼ ρnir−ρredð Þ= ρnir þ ρredð Þ ð3Þ

where ρnir and ρred are also the MODIS surface reflectance valued in the
NIR and red bands and α = 0.1 was used (Peng et al., 2013).

3.2. Average air temperature data calculated from MODIS land surface
temperature products

Both daily daytime and nighttime 1-km land surface temperature
(LST) data (MOD11A1, Collection 5) from 2003–2012were used to esti-
mate air temperature, which is a critical input for crop models in this
study. Air temperature was calculated using a linear regression model
(Zeng et al., 2015), and the calibration and validation were based on
both the daily observed air temperature from CSP at the field scale, as
well as the GHCN (Global Historical Climatology Network) daily data-
base from NOAA's National Climatic Data Center (NCDC, http://www.
ncdc.noaa.gov/) at the regional scale. Both daytime and nighttime LST
data were used to estimate daily maximum air temperature (Tmax),
but only nighttime LST data was used to estimate daily minimum
air temperature (Tmin) as daytime LST was found to have little
value to estimate Tmin, with the RMSE of estimated Tmax and Tmin

based on LST data of 2.27 and 1.75 °C, respectively (Zeng et al.,
2015). The daily averaged air temperature (Tavg) was calculated by
averaging the daily maximum and minimum air temperatures. The
8-day composite air temperature was then calculated by averaging
Tavg of cloud-free days during the 8 day composite period by
selecting the pixels that were flagged in the MODIS quality assurance
data as cloud-free and high quality.

3.3. Crops data layer

NASS Cropland Data Layer (CDL; http://www.nass.usda.gov/
research/Cropland/SARS1a. htm) was used in this study to select target

http://www.ncdc.noaa.gov
http://www.ncdc.noaa.gov
http://www.nass.usda.gov/research/Cropland/SARS1a
http://www.nass.usda.gov/research/Cropland/SARS1a
http://csp.unl.edu/Public/sites.htm


Table 1
Temperature and photoperiod parameter used for the soybean model in this study.

Stage Tbase (°C) Topt (°C) Tup (°C) Pcrt (h) Popt (h) B

VE-R1 7.6 31.0 40.0 25 11 6
R1-R7 0 21.5 38.7 18 12 0.83

VE: Emergence. It is defined as when the hypocotyl length exceeds sowing depth plus
0.6 cm and happens before V1 (Setiyono et al., 2007).
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corn and soybean pixels over Iowa and Nebraska. An area-ratio thresh-
old of 75% was adopted to select all MODIS 250 m pixels across the re-
gion that was covered predominately by either corn or soybeans
(Sakamoto et al., 2010). A relatively high area-ratio threshold (75%)
was empirically determined to reduce the number of mixed pixels con-
taining large percentages of multiple land cover types in order to collect
a representative sample of time-series WDRVI curves of corn and soy-
beans, respectively, across eastern Nebraska and the state of Iowa for
analysis (Sakamoto et al., 2010).

3.4. Crop progress reports

Crop Progress Reports (CPRs) are weekly crop progress informa-
tion about corn and soybeans reported by the Nebraska Agricultural
Statistics Service and Iowa Agricultural Statistics Service. In this
study, the CPR information was used as the pseudo-ground phenolo-
gy observation dataset to evaluate the accuracy estimation of
MODIS-derived, regional phenology dates. These progress reports
of crop developmental stages are recorded as an area ratio at the Ag-
ricultural Statistic District (ASD)-level in Nebraska for 2002 and in
Iowa annually after 2008. The weekly area ratio of each crop pheno-
logical stage was linearly interpolated to calculate the median date
when 50% of the corn/soybeans in the ASDs reaches each stage.
(Sakamoto et al., 2010). The MODIS-derived estimates for corn and
soybean phenological dates for each district were calculated by aver-
aging the phenological dates of all the selected corn and soybean
pixels across each ASD, respectively.

The most commonly used plant phenology staging system for
soybeans was V & R staging system developed by (Fehr, Caviness,
Burmood, Pennington, & Alexander, 1971). There are some differ-
ences between the crop developmental stages measuring system
used in NASS-CPR and the V & R staging system used for the three
CSP field study sites, which were used as calibration data to build
the model in this study. For example, there is no stage in V & R
stage system corresponding to a stage in the NASS-CPRs scheme
such as "soybean leaves turning color". Therefore, like in the work
of Sakamoto et al. (2010), the crop development stages in the
NASS-CPRs were matched with a specific agronomic stage estimated
fromWDRVI data based on their similar timing in corn and soybean's
growth cycles.
Fig. 2. The shape model of (a) corn and (b) soybean derived by curve fitting with
4. Methodology

4.1. Crop models for corn and soybeans

Plant growth processes are mainly influenced by interactions
among genotype, environment conditions and crop management
(Asseng & Turner, 2005; Soltani, Maddah, & Sinclair, 2013). In this
study, we assumed that the influence of genotype and crop manage-
ment (i.e., proper management of pests and diseases and fertilizer
applications was implemented) was minimal as compared to envi-
ronmental factors such as temperature that are considered in crop
growth models. For this study, the developmental stages of corn were
assumed to be most closely related to air temperature (Abendroth,
Elmore, Boyer, & Marlay, 2011; Bannayan, Hoogenboom, & Crout, 2004;
Tollenaar, Daynard, & Hunter, 1979), while the two dominant abiotic fac-
tors influencing soybean phenology are air temperature and photoperiod
(Bastidas, 2005; Cregan & Hartwig, 1984; Hesketh, Myhre, & Willey,
1973; Setiyono et al., 2007; Summerfield & Wilcox, 1978).

The models that describe the relationship between crop develop-
ment and environment factors (e.g., temperature) include linear and
nonlinear models. Linear models are simpler to apply, but nonlinear
models often describe the biological processes underlying crop growth
in more detail (Streck, Lago, Gabriel, & Samboranha, 2008; Wang &
Engel, 1998). Non-linear approaches have been shown to provide better
predictions of plant development stages than linear models for a num-
ber of different crops including corn (Cutforth & Shaykewich, 1990),
soybeans (Setiyono et al., 2007), wheat (Schr der & Sondgerath,
1996), potato (Fleisher, Shillito, Timlin, Kim, & Reddy, 2006), rice (Yin,
Kropff, Mclaren, & Visperas, 1995).

The Wang-Engel (WE) model (Wang & Engel, 1998) simulates crop
development using nonlinear models with response functions
that range from zero to one. The temperature response function in the
WE model is described by a beta function with three parameters
(i.e., minimum, optimum and maximum air temperatures). When the
temperature is below theminimumor above themaximum temperature,
crop development does not take place and the temperature response
function equals zero. When the temperature is at optimum, which is a
value between minimum and maximum temperature (e.g., 28°C for
corn), development takes place at the maximum rate and temperature
response function equals one (Wang & Engel, 1998). The WE model
was originally developed for winter wheat (Wang & Engel, 1998), but
has also been used to simulate the development of other annual crops in-
cluding potatoes (Streck, Paula, Bisognin, Heldwein, & Dellai, 2007), soy-
beans (Setiyono et al., 2007) and corn (Streck et al., 2008)with a positive
results modeling the development of these crops. Accordingly, the WE
model was used in this study to describe the development of corn and
soybeans responding to air temperature (Eqs. (4)–(8)).

rcorn ¼ rmax f Tð Þ ð4Þ
characteristic points indicating the start of the specific phenological stages.



Fig. 3. An example of the calculation of DOY from APTT.
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T ¼ T max þ T minð Þ=2 ð5Þ

f Tð Þ ¼ 0; if T ≥ Tup or T ≤Tbase ð6Þ

f Tð Þ ¼ 2 T−Tbaseð Þα Topt−Tbaseð Þα− T−Tbaseð Þ2α
h i
.

Topt−Tbaseð Þ2α
h i

; Tbase≤T ≤Tup

ð7Þ

α ¼ ln 2ð Þ= ln Tup−Tbaseð Þ= Topt−Tbaseð Þ½ � ð8Þ

where rmax is the maximum development rate (per day). It is assumed
that corn in this studywas not affected by factors other than temperature
and developed at a same rate in all stages, so rmax is a constant 1; Tmax and
Tmin are the daily maximum andminimum near surface air temperature
estimated from MODIS data. T is the daily average air temperature
(averaged by daily maximum and minimum air temperature). f(T)
is a temperature response function, which varies from 0 to 1. Tup,
Tbase and Topt are the abovementioned three parameters (minimum, op-
timum, and maximum air temperature, respectively). It was assumed
that Tbase = 8 °C, Topt = 28 °C, and Tup = 36 °C (Cutforth &
Shaykewich, 1990).

Temperature and photoperiod are the two main dominant abiotic
factors influencing soybean phenology. The soybean phenology simula-
tion model developed by Setiyono et al. (2007) was used in this study.
Setiyono et al. (2007) used temperature and photoperiod to simulate
soybean phenology based on five main phases: emergence, main stem
node appearance, flowering, pod, seed set and maturity. However, due
to the limitation of ground-based observation data, soybean phenology
simulation in this study was simplified to two main phases: vegetation
stage and reproductive stage. The daily development rate was calculat-
ed with temperature and photoperiod response function (Eq. (9)). The
temperature response function was also based on WE model using a
nonlinear beta function (Eqs. (6)–(8)). It used different values of tem-
perature parameters in different stages (Table 1). The photoperiod
response function was also based on a nonlinear beta function
(Eqs. (10) – (12)).

rsoybean ¼ rmax f Tð Þ � f Pð Þ ð9Þ

f Pð Þ ¼ P−Popt
2a

þ 1
� �

Pcrt−P
Pcrt−Popt

� � Pcrt−Poptð Þ=m" #α

; if Popt ≤ P ≤ Pcrt;

ð10Þ
Table 2
The predefined APTT of target phenological stages for corn and soybean respectively.

Corn (stage) Stage description X0 S

V1(vegetative stage 1) Collar is visible on lowest leaf. −29.0 V
V6 (vegetative stage 6) There are six leaves with visible collars; It is one of

the key stages for development.
9.3 R

R1(silk) Any silk becomes visible outside the husk leaves;
This stage is most sensitive to drought Stress.

74.1 R

R2(blister) Small, white kernels, and kernel fluid is clear. 88.0 R

R3(milk) Yellow kernels, milky white fluid in kernel; stress at
this stage will greatly affect yield.

98.8 R

R4(dough) Paste-like, or dough, kernel contents; 111.0 R

R5(dent) Kernels dent on the top due to starch accumulation; 129.5 R

R6(maturity) Physiological maturity with maximum dry matter
accumulation;

172.4 R

References related the description: Abendroth et al. (2011), Fehr et al. (1971), Pedersen (2009
f Pð Þ ¼ 0; if P N Pcrt; f Pð Þ ¼ 1; if P b Popt ð11Þ

α ¼ ln 2ð Þ= ln Pcrt−Poptð Þ=mþ 1½ � ð12Þ

where P is the daylength calculated using the algorithm described in
Keisling (1982). It is assumed that soybeans in this study were not af-
fected by factors other than temperature and photoperiod. In addition,
soybeans developed at a same rate in all stages, so rmax is a constant 1;
Pcrt is the daylength above which development rate is zero (h), Popt is
the daylength below which development rate is optimum (h), P is the
daylength that was calculated using the algorithm described in
(Keisling, 1982) paper. m is the constant (3.0 h). Tbase, Tut, Topt, Popt and
Pcrt used in this study are from Setiyono et al.'s (2007) study (Table 1).

4.2. Combining crop models with time-series WDRVI data

Photothermal time which combined both temperature and photope-
riod informationwas used todescribe leaf appearance rate andphenolog-
ical response of various plant species (Deen, Hunt, & Swanton, 1998; Ellis,
Roberts, & Summerfield, 1988; Masle, Doussinault, Farquhar, & Sun,
1989). To combine the crop model and time-series MODIS WDRVI data,
the concept of photothermal time (accumulated photothermal time,
APTT)was introduced in this study. Itwas defined as the accumulatedde-
velopment rate (∑r) which was calculated using the temperature and
photoperiod response function (Eq. (13)). It was used instead of calendar
time (Day of Year (DOY)) on the time axis (Fig. 2). Usually, the planting
oybeans (stage) Stage description X0

1 (first trifoliolate) Completely unrolled leaf at the unifoliolate node −3.7
1 (beginning bloom) One flower at any node. 7.1

2 (full bloom) Flower at node immediately below the uppermost
node with a completely unrolled leaf.

10.2

3 (beginning pod) Pod 0.5 cm long at one of the four uppermost nodes
with a completely unrolled leaf.

21.2

4 (full pod) Pod 2 cm long at one of the four uppermost nodes
with a completely rolled leaf. Stress occurring
anytime from this stage to shortly after R6 will
reduce yields more than the same stress at any
other period.

27.0

5 (beginning seed) Beans beginning to develop at one the four
uppermost nodes with a completely unrolled leaf.

31.8

6(Full seed) Pod containing full size green beans at one of the
four uppermost nodes with a completely unrolled
leaf

43.9

7 (beginning maturity) Pods yellowing; 50% of leaves yellow; Physiological
maturity.

72.0

).



Table 3
Summary of the optimum scaling parameters for 10 years (2003–2012).

Crop Management xscale xshift na

Mean Max Min Stdev Mean Max Min Stdev

Corn ICM 1.05 1.07 0.98 0.056 −0.82 4.00 −7.21 3.95 10b

IMS 1.03 1.09 0.96 0.072 −2.72 3.03 −7.01 3.29 7
RMS 1.05 1.15 0.95 0.120 4.55 11.89 −1.99 6.36 5

Soybean IMS 0.98 1.01 0.96 0.016 0.98 1.01 0.97 0.01 3c

RMS 0.98 1.01 0.97 0.019 3.82 5.66 1.59 1.45 5

a n is the number of the comparison data.
b Includes the 7 pixels used for making the shape model (ICM 2003, 2005–2006, 2008, 2010–2012).
c Includes the 3 pixels used for making the shape model (IMS 2004, 2006 and 2008).
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date varied from year to year, so to ensure that APTT valuewas calculated
from the actual onset of growth, a starting point of APTT was set as the
beginning of greenness of the crops (S0, Fig. 2),whichwas derived using
a method developed by Zhang et al. (2003).

APTT ¼
X
onset

rmax f Tð Þ � f Pð Þ ð13Þ

where Onset is when corn or soybeans rich beginning of greenness de-
rived by Zhang's method (Zhang et al., 2003). f(T) and f(P) are temper-
ature and photoperiod response functions. f(P) of corn equals constant
1, as the growth of corn is insensitive to photoperiod to some extent.
In order to combine APTT time and time-series WDRVI data, the APTT
was calculated at the same eight-day interval with the eight-day com-
posite periods of the MODIS WDRVI data.

4.3. Smoothing of MODIS WDRVI data

The standard 8-day composite MODIS surface reflectance
(MOD09) data, which was used to calculate WDRVI data still in-
cludes various noise components such as residual clouds and bi-
directional reflectance distribution function (BRDF) effects. There-
fore, a data smoothing method was applied to original WDRVI
data set to minimize the influence of noise. The Savitzky–Golay Fil-
ter method (Chen et al., 2004) was used to de-noise and rebuild the
time-series VI data. As compared with other methods, the Savitzky–
Golay filter has been found to be efficient at reducing contamination
in the MODIS VI time series data caused primarily by cloud contam-
ination and atmospheric variability (Chakraborty & Das, 2012; Chen
et al., 2004; Wang, Fritschi, Stacey, & Yang, 2011; Zhang et al., 2008;
Zhang, Feng, & Yao, 2014).
Fig. 4. An example of time-series WDRVI curve under calendar time (a) and photothermal tim
stages. (V2 stage was used in this figure as V1 stage was not recorded in 2003).
4.4. Building a shape model

The shapemodel is expected to represent the typicalmulti-temporal
trajectory of aWDRVI profile for corn and soybeans aswas demonstrat-
ed in the Sakamoto et al. (2010) study. In order to generate the shape
model from an idealized temporal VI for both crops, their shapemodels
were built under APTT from the two irrigated study sites only, as water
stress plays a significant role in influencing the phenology of crops,
whichmight delay/accelerate the growth progress or suppress key phe-
nological features in the VI observations under extreme drought or ex-
cessively wet conditions (Desclaux & Roumet, 1996; Meckel, Egli,
Phillips, Radcliffe, & Leggett, 1984; Viña et al., 2004). As the peak
WDRVI value can vary year to year, the smoothed WDRVI time series
data of each year were stretched in Y direction to make sure the peak
WDRVI value equals the median peak value (110 for corn and 112 for
soybeans), which was derived from the time-series data used to build
the shapemodel for both corn and soybeans, respectively. After the pre-
liminary Y-scale and X-shift (detecting the onset date of growth), the
discrete points of smoothedWDRVI data used to build the shapemodels
for corn and soybeans were fitted by the sum of three sine function, re-
spectively (Fig. 2). The smoothed WDRVI data of the ICM site for seven
years (2003, 2005–2006, 2008, 2010–2012) were used to develop the
corn shape model (to build more representative model, data for 2004,
2007, and 2009 were excluded, as due to the noise of remote sensing
data or other factors that affect the growth of corn, the data of these
three years could not achieve high degree of consistency with the data
of other years by preliminary Xshift and Yscale,), and data from the
IMS site for three years (2004, 2006 and 2008) were used to create
the soybean shapemodel. The predefinedAPTTX0 for each phenological
stage was calculated by averaging the APTT of each phenological stage’
transition dates of all the observations used to build the shape model
(Table 2).
e (b) with characteristic points indicating the transition dates of the specific phenological
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4.5. Fitting the smoothed WDRVI data on the shape model

Similar to building the shape model, the smoothed WDRVI time se-
ries data for each yearwere stretched by a Y-scale to make sure that the
peak valuewas equal to themedian peak value. Then the shapemodel is
fitted on the smoothedWDRVI time-series data. Like the Sakamoto et al.
(2010) study, the optimum scaling parameters (xscale, xshift) that ap-
proximate the fit of the smoothed WDRVI data to the shape model
were calculated based on the smallest root mean square error (RMSE)
between the shape model and the scaled smoothed WDRVI data.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXXe
S0

f xð Þ−g xð Þð Þ2
vuut ð14Þ

g xð Þ ¼ yscale� h xscale� x−xshiftð Þð Þ ð15Þ

The function f(x) is the shape model, h(x) refers to the smoothed
WDRVI data and g(x) is transformed from the smoothed WDRVI data
for a given site or year, where x is the APTT value; xscale and xshift are
Table 4
Accuracy assessment of the estimated phenological date and period against the ground-
based observations by calculating root mean square error (RMSE) and correlation coeffi-
cient (R) for corn.

Stage/period Management RMSE(days) R na

V1 ICM 3.2 0.92 9b

IMS 2.2 0.98 6
RMS 5.6 0.80 4
ICM + IMS + RMS 3.6 0.92 19

V6 ICM 1.8 0.95 10b

IMS 1.6 0.97 7
RMS 3.2 0.76 5
ICM + IMS + RMS 2.2 0.95 22

R1 ICM 2.1 0.95 10b

IMS 2.4 0.98 7
RMS 2.0 0.76 5
ICM + IMS + RMS 2.2 0.95 22

R2 ICM 1.3 0.95 10b

IMS 2.1 0.98 7
RMS 2.7 0.21 5
ICM + IMS + RMS 1.9 0.95 22

R3 ICM 1.9 0.94 10b

IMS 2.4 0.97 7
RMS 3.2 0.45 5
ICM + IMS + RMS 2.4 0.94 22

R4 ICM 2.5 0.90 10b

IMS 2.6 0.96 7
RMS 4.7 0.66 5
ICM + IMS + RMS 3.2 0.90 22

R5 ICM 3.6 0.89 10b

IMS 4.7 0.95 7
RMS 4.7 0.36 5
ICM + IMS + RMS 4.3 0.89 22

R6 ICM 3.2 0.86 10 b

IMS 4.7 0.92 5
RMS 4.3 0.83 5
ICM + IMS + RMS 4.0 0.86 20

V1–R1 ICM 3.0 0.56 9 b

IMS 3.7 0.75 6
RMS 5.9 0.64 4
ICM + IMS + RMS 4.0 0.56 19

R1–R6 ICM 3.8 0.83 9b

IMS 5.7 0.64 5
RMS 3.8 0.89 4
ICM + IMS + RMS 4.6 0.83 18

V1–R6 ICM 3.4 0.81 8b

IMS 5.1 0.74 5
RMS 6.5 0.24 4
ICM + IMS + RMS 4.8 0.81 17

a n is the number of the comparison data.
b Includes the 7 pixels used for making the shape model (IMS 2003, 2005–2006, 2008,

2010–2012).
the scaling and shifting parameters as presented by Sakamoto et al.
(2010).

4.6. Estimating phenology in calendar date from photo-thermal time

We assume that the predefined APTT was the required APTT for the
corresponding transition date among phenological stages. As a result,
calendar dates for specific phenology stages were calculated from the
corresponding APTT using linear interpolation. For example, as shown
in Fig. 3, the needed APTT of V1 (-29.0) occurs between the DOY 129
and DOY 137, in which the APTT values are −40.3 and, −27.3 respec-
tively. Based on this information, the calendar DOY of V1 is calculated
to be 136.0 using linear interpolation.

5. Result and discussion

5.1. Comparison with TSF method

As shown in Fig. 2, the fitting errors were small for both crops (R2=
0.98 for corn and R2 = 0.99 for soybeans). In addition, the summary of
the optimum scaling parameters (Table 3) shows that bothmean values
and the standard deviations of xscale and xshift obtained in this study
were lower than those reported in the study by Sakamoto et al.
(2010). The mean value of xshift in this study was much lower because
of the preliminary adjustment for detecting the onset points where
APTT was set zero. The narrower range and variance of xscale in this
study indicates that the introduction of temperature and photoperiod
reduce the differences among theWDRVI time-series curves of different
years for a given crop.

Using APTT instead of calendar time reduced the difference in time
for the phenological stages of corn and soybeans across different loca-
tion and years. The growth rate of corn increases with higher tempera-
tures when below the maximum allowable temperature, which was
Table 5
Accuracy assessment of the estimated phenological date and period against the ground-
based observation data by calculating RMSE and R for soybean.

Stage/period Management RMSE (days) R na

V1 IMS 3.5 – 3b

RMS 3.8 – 5
IMS + RMS 3.7 0.86 8b

R1 IMS 4.1 – 3b

RMS 4.9 – 5
IMS + RMS 4.6 0.86 8b

R2 IMS 3.9 – 3b

RMS 5.4 – 5
IMS + RMS 4.9 0.85 8b

R3 IMS 1.7 – 3b

RMS 4.4 – 5
IMS + RMS 3.6 0.94 8b

R4 IMS 0.9 – 3b

RMS 2.3 – 5
IMS + RMS 1.9 0.98 8b

R5 IMS 1.9 – 3b

RMS 3.3 – 5
IMS + RMS 2.9 0.96 8b

R6 IMS 2.7 – 3b

RMS 3.1 – 5
IMS + RMS 2.9 0.90 8b

R7 IMS 3.2 – 3b

RMS 4.1 – 4
IMS + RMS 3.7 0.75 7b

R1-R7 IMS 5.8 – 3b

RMS 7.1 – 4
IMS + RMS 6.6 0.69 7b

V1-R7 IMS 1.7 – 3b

RMS 3.6 – 4
IMS + RMS 2.9 0.98 7b

a n is the number of the comparison data.
b Includes the 3 pixels used for making the shape model (IMS 2004, 2006, 2008).



Fig. 5. Comparison of phenological dates of corn in three sites (a: ICM, b: IMS, c: RMS) between ground-based observation data and MODIS-derived estimation.
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incorporated into this method and reduced some of differences in phe-
nological stages estimated using other methods (e.g., Sakamoto et al.,
2010). Those temperature and photoperiod functions (Eqs. (8), (9))
also describe the growth rate of soybeans responding to temperature
and photoperiod, respectively. WRDVI in this study was observed at a
regular eight-day interval because of temporal compositing that had
to be considered in this study. If APTTwas used on the X axis, less calen-
dar timewould be needed to achieve a specific phenological stage as the
growth rate increased, while the APTT at every calendar time unit
would increase and the difference of APTTwould be decreased. Similar-
ly, when growth rate decreased, more calendar time would be needed
for reach a specific phenological stage, while the APTT at every calendar
time unit would decrease. Accordingly, through the introduction of
APTT, less difference of APTT for each phenological period and more
similar shape of WDRVI time-series curves from different years and dif-
ferent location would be expected.

For example, according to the ground-based green LAI measure-
ments for corn from 2001 to 2005 (Suyker & Verma, 2009), the senes-
cence of corn in 2003 at the RMS site was earlier and the reproductive
stage was shorter than normal because of drought conditions with rela-
tively higher temperatures (Sakamoto et al., 2010). While in 2009, a
longer growth period was observed due to relative low temperatures
(USDA, 2009). In Fig. 4a, the calendar time for the reproductive stage
was much longer in 2009 than in 2003 even though the vegetation
stage for both years was of similar length. With temperature taken
into consideration in this study, xscale and xshift (1.01, 6.76 for 2003
and 1.09, 1.42 for 2009, respectively) fitted to the shape model, the re-
quired APTT of corn for both the vegetation and the reproductive
stage was almost the same for both years (Fig. 4b). In contrast, the scal-
ing and shifting of the whole time-series WDRVI curve under calendar
Fig. 6. Comparison of phenological dates of soybeans in two sites (a: IMS, b: RM
time (Fig. 4a) introduced larger errors in phenological date estimation
during years when abnormal environmental conditions and/or late/
early planting times occur.

5.2. Pixel-based verification with ground-based observation data

Overall, the performance for estimating all individual targeted grow-
ing season stages was relatively high with the average RMSE in three/
two sites ranging from 1.9 to 4.3 for corn (ICM+IMS+RMS)
(Table 4) and from 1.9 to 4.9 for soybeans (IMS+RMS) (Table 5). The
RMSE of the estimated dates at individual sites were less than 8 days
for both corn and soybeans and the average RMSE across the three
sites for all growth stages of corn and soybeans were 3.0 and 3.5 days,
respectively. There was no distinct systematic error (earlier or later) in
the estimated phenological dates for all growth stages (Figs. 5, 6 and
7). By taking the temperature and photoperiod into consideration, the
estimation accuracy was improved when compared to the results
from the original TSFmethod developed by Sakamoto et al. (2010), par-
ticularly for soybeans. In the Sakamoto et al. (2010) study, the averaged
RMSE at the three sites ranged from 1.9 to 14.5 days for corn and soy-
beans. In comparison, the RMSE values in this study ranged from 1.9
to 4.9 days in this study for the same sites. In addition, this method ex-
panded the number of growth stage dates that could be estimated,
which included the blooming (R1) and pod lengthen (R3) stages of soy-
beans and V6 and Milk (R3) stages of corn.

Similar to the results of Sakamoto's study (2010), the error of the es-
timated growing stages was higher for both corn and soybeans at the
beginning and end of the growing season (V1 and R6/R7) than the phe-
nological stages during themid-growing season (Tables 4 and 5). One of
the primary reasons for this difference is the changes of the local VI
S) between ground-based observation data and MODIS-derived estimation.



Fig. 7. Comparison of phenological periods (a: corn, b: soybean) between ground-based observation data and MODIS-derived estimation.
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profile around the maximum point is easier to detect than other stages
nearer the tails of the VI time series profile near the beginning and end
of the growing season (Sakamoto et al., 2010). As a result, higher esti-
mation accuracy was obtained for the growth stages at or near the
peak of growing season (R1 of corn, R5, R6 of soybean; Tables 4 and
5). Secondly, theWDRVI curve reflects only physical changes of vegeta-
tion, whereas some reproductive stages are not associated with such
changes (e.g., rapid increase/decrease or peak point) and are not direct-
ly represented in the time-series WDRVI curve (e.g., R1 and R2 of soy-
bean), which results in larger estimation errors. The lowest estimation
accuracies for corn were the V1, R6 and R7 stages. As for soybeans, the
largest estimation errorswere found for the three soybean stages during
the reproductive stage: blooming (R1), full blooming (R2) and physical
maturity (R7). As a result, the estimation accuracy for reproductive
growth length (R1-R7) was also low for soybeans (Table 3), though
the estimation accuracy of the whole growing season (V1-R7) was
higher, as the xscale and xshift parameters were obtained from each
growing curve to stretch the smoothed WDRVI curve to approximate
to the shape model. In addition, water stress is an important factor
that can affect thephenology and yield of both corn and soybeans signif-
icantly that was not included in this method. Estimation errors of
Table 6
The general crop development stages in the NASS-CPRs matched with a specific agronomic sta

NASS-CPR MODIS-derived (Nebraska) MODIS-derived (Iowa)

Corn emerged V1 V1
Corn silked R1 R2
Corn in or past milk stage R4
Corn in or past dough stage R4 R5
Corn in or past dent stage R5
Corn mature (safe from frost) R6 R6

Table 7
Accuracy assessment of the estimated phenological date against the NASS-CPR statistic data fo

NE Corn RMSE

(ASD3,6,9, in 2002) Emerged-V1 2.1
Silk-R1 1.8
Dough-R4 2.8
Dent-R5 2.7
Mature-R6 2.9

Iowa
(ASD 1-9, from 2009 to 2012)

Corn RMSE
Emerged-V1 3.9
Silk-R2 3.0
Milk-R4 2.6
Dought-R5 3.3
Mature-R6 3.9
growing stages were higher for the non-irrigated site than the irrigated
sites for both corn and soybeans (Tables 4 and 5). Similar to the result of
Sakamoto et al. (2010), less variance of both xscale and xshift was ex-
pected for the irrigated sites given that the time-series data from
those sites were used to develop the shape models. As for water stress,
the inter-annual variability in seasonal WDRVI curves was typically
greater for the rainfed site than irrigated sites, which results in both
greater variance of xscale and xshift.

5.3. Region-based verification in eastern Nebraska and Iowa

Therewere somedifferenceswhenmatching theNASS-CPR data and
MODIS-derived observations for corn in Nebraska and Iowa. According
to the comparison with MODIS-derived model which was calibrated
by the three field sites in Nebraska, the observations reported by
NASS-CPR data are one stage later in Iowa than those in Nebraska
from R1 to R5 of corn (Table 5). Similar to Sakamoto et al. (2010)
study, the dates of R1, R4 and R5 stages derived from MODIS data
were closest to those when 50% of corn reaches the silk, dough, and
dent stages reported in NASS-CPRs in eastern Nebraska in 2002.
While, the dates of R2, R4 and R5 stage derived from MODIS data
ge estimated form WDRVI data in eastern Nebraska and Iowa, respectively.

NASS-CPR MODIS-derived (Nebraska) MODIS-derived (Iowa)

Soybeans emerged V1 V1
Soybeans blooming R3 R3
Soybeans setting pods R5 R5
Soybeans dropping leaves R7 R7

r corn and soybean on eastern Nebraska 2002 and Iowa from 2009 to 2012.

R Soybean RMSE R

Emerged-V1 1.8
Blooming-R3 2.7
SettingPod-R5 2.9
Dropingleaves-R7 1.7

Soybean RMSE
0.64 Emerged-V1 3.7 0.32
0.91 Blooming-R3 3.9 0.63
0.89 SettingPod-R5 3.2 0.55
0.94 Dropingleaves-R7 3.6 0.75
0.93



Fig. 8. Comparison of phenological dates (a-e: corn, f-j: soybean) between statistical data of NASS-CPR andMODIS-derived estimation in the states of Iowa from 2009 to 2012 and eastern
Nebraska in 2002 (NE-ASD 3,6,9).
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Fig. 9. Spatial patterns of key phenological dates (DOY) of corn in eastern Nebraska, 2002.

Fig. 10. Spatial patterns of key phenological dates (DOY) of corn in Iowa, from 2009 to 2012.
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were closest to the dateswhen 50% of corn reaches silk, milk and dough
stages in Iowa from 2009 to 2012 (Table 6).

Region-based verification was conducted in eastern Nebraska for
2002 and the state of Iowa from 2009 to 2012. The results show that
the median ASD-level date estimates of the key phenological dates for
corn and soybeans were in close agreement with the NASS-CPR in
both eastern Nebraska and Iowa (Table 7 and Fig. 8). Overall, the
RMSE values of the estimated growth stages of both corn and soybeans
were within 4 days of the observed dates and the estimation errors
were less than 10 days for all phenological stages with the exception
of the V1 stage for both corn and soybeans. In Sakamoto et al. (2010)
study, the V2.5 stage of corn was used to correspond to emergence in
NASS-CPR data and a bias of about 10 days later than observed dates
was found. While in this study, the V1 stage was used instead of the
V2.5 stage because it occurred before V2.5 and was closer to the time
of emergence stage in NASS-CPR data. However, there is still slight sys-
tematic bias in estimated V1 stage (~4 days later), compared to the
emergence stage recorded in NASS-CPR data, for both corn and soy-
beans. The reason for this bias is that different phenological staging sys-
tems were used to describe the phenology at the CSP field sites
compared to the data collected for the NASS-CPRs. In the case of emer-
gence, NASS reports the date for this stagewhen plants have broken the
soil's surface, whereas the V1 stage for corn and soybeans represents
early-stage, post-emergence leaf development (Sakamoto et al., 2010).
As a result, some lag between the time when MODIS-derived V1 and
NASS-CPR-reported emergency occurred would be expected. So the es-
timated phenological dates of V1 was subtracted 4 days for both corn
and soybeans when calculating RMSE.

The estimation accuracy in eastern Nebraska was slightly higher
than that in Iowa for most of the stages of both corn and soybeans
(Table 7). A slightly higher accuracy might be expected in eastern Ne-
braska given the fact that the calibration data used to develop the
models was from field sites in this area. There could be some slight dif-
ference in environment factors (inter-annual climatic conditions and
soils) and cultivars between Nebraska and Iowa. In addition, there
might be some difference in the measuring criterion or samplingmeth-
od of fields for the NASS-CPRs collected by USDA staff in Nebraska and
Iowa independently.

The region-basedMODIS-derived estimationsusing themethod pre-
sented in this paper illustrate the spatial-temporal patterns of corn and
soybean phenology in both eastern Nebraska and Iowa (Figs. 9 to 12).
The spatial distributions of MODIS-derived phenological stages of corn
and soybeans across the three ASDs in eastern Nebraska for 2002 are
shown in Figs. 9 and 11 with earlier planting times in the southern dis-
trict and becomingprogressively later in a northwarddirection. The ear-
liest dates (at or near DOY 135) for the V1 stage of corn (highlighted in
green) occurred in the south and in the northernmost region occurring
at or near DOY 165 (highlighted in red). This north-south trend in later



Fig. 11. Spatial patterns of key phenological dates (DOY) of soybeans in eastern Nebraska, 2002.
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to earlier dates for the early stage vegetation stages across Nebraska is
consistent with planting date variations across this region with early
planting times occurring in the southern part of the state. There was
no obvious north–south planting date gradient occurring in Iowa
(Figs. 10 and 12). However, the multi-year MODIS-derived date esti-
mates demonstrate the inter-annual variation of the phenological
dates across Iowa. It is shown from Figs. 10 and 12 that the growing sea-
son of both corn and soybean started earlier in 2012 across most of the
state than the other years in the study period. The earlier start of the
2012 growing season resulted from abnormally warm late-winter and
early-spring temperatures that allowed earlier planting times and
shifted the crop growth stages earlier dates across Iowa that year
(USDA, 2012). In contrast, the 2009 growing season experienced a nota-
ble delay because of abnormally wet, cool weather in spring, summer,
and fall resulting inmajor crop planting, maturation, and harvesting de-
lays across Iowa and other parts of the Midwest (USDA, 2009). This is
Fig. 12. Spatial patterns of key phenological dates (
reflected in theMODIS-based phenology results with a longer than nor-
mal growing season for corn and later timing of the reproductive stages
(Fig. 10). These regional-scale results show that the MODIS-based phe-
nology estimation approach developed in this study can be extended
over a larger geographic area with a reasonable estimation accuracy
that is consistent with USDA crop conditions reports.

6. Conclusion

This study presented a hybrid remote sensing-based crop phenology
estimationmethod for corn and soybeans that incorporated the simula-
tion concept of crop growth models with the shape-model fitting con-
cept of the TSF method developed by Sakamoto et al. (2010). All
critical vegetative stages (V1 and V6 for corn and V1 for soybean) and
reproductive stages (R1–R6 for corn and R1–R7 for soybeans) were es-
timated from time-series MODIS WDRVI data for both crops (i.e., corn
DOY) of soybeans in Iowa from 2009 to 2012.
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and soybean) using this hybrid modeling approach. By taking the envi-
ronmental factors of temperature and photoperiod into consideration,
the inter-annual variation of estimation accuracy was minimized. Com-
pared to the original TSF method developed by Sakamoto et al. (2010),
this hybridmodel had a higher level of agreement between the estimat-
ed and observed phenological dates for corn and soybeans at both the
field and regional scales. RMSE values ranged from 1.9 to 4.3 days at
the field scale and from 1.8 to 2.9 days at the regional scale for corn,
and from 1.9 to 4.9 days at the field scale and from 1.7 to 2.9 days at
the regional scale for soybeans. The error rate of regional-scale phenol-
ogy estimation in Iowa (RMSE ranged from 2.6 to 3.9 days for corn and
from3.2 to 3.9 days for soybean)was slightly higher than that in eastern
Nebraska. Slightly higher estimation accuracies in Nebraska could be at-
tributed to the fact that the calibration data for the shape models were
from this area. However, the estimation accuracy in Iowa was quite ac-
ceptable as the crop phenology date estimates of both crops were typi-
cally within 4 days or less compared to the reported date.

The phenology estimatemethod presented in this paper shows great
potential to detect critical phenology stages of both corn and soybeans
at a regional scale. A wide range of applications can benefit from this
study, for example, yield prediction, as crop yield is expected to be
closely related to the conditions during one or several critical phenology
stages (Funk & Budde, 2009; Sakamoto et al., 2013).

This method is potential to be extended to phenological stage
estimation for other crop types (e.g., wheat and rice). Future work is
also needed to take precipitation and accountwater stress into consider
to further improve the phenological date estimation from remote
sensing-based time-series VI data. Water stress might accelerate or
delay some phenological stage, but a challenge still remains to establish
the quantitative relationship between water stress and phenology that
can be incorporated into these new remote sensing-based phenology
estimation methods.
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