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A Fuzzy Mean-Shift Approach to Lidar
Waveform Decomposition
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Abstract—Waveform decomposition is a common step for ex-
ploitation of full-waveform lidar data. Much effort has been
focused on designing algorithms based on the assumption that
the returned waveforms follow a Gaussian mixture model where
each component is a Gaussian. However, many real examples
show that the waveform components can be neither Gaussian
nor symmetric even when the emitted signal is Gaussian or sym-
metric. This paper proposes a nonparametric mixture model to
represent lidar waveforms without any constraints on the shape
of the waveform components. A fuzzy mean-shift algorithm is
then developed to decompose the waveforms. This approach has
the following properties: 1) It does not assume that the wave-
forms follow any parametric or functional distributions; 2) the
waveform decomposition is treated as a fuzzy data clustering
problem and the number of components is determined during the
time of decomposition; and 3) neither peak selection nor noise
floor filtering prior to the decomposition is needed. Experiments
are conducted on a dataset collected over a dense forest area
where significant skewed waveforms are demonstrated. As the
result of the waveform decomposition, a highly dense point cloud
is generated, followed by a subsequent filtering step to create
a fine digital elevation model. Compared with the conventional
expectation–maximization method, the fuzzy mean-shift approach
yielded practically comparable and similar results. However, it is
about three times faster and tends to lead to slightly fewer artifacts
in the resultant digital elevation model.

Index Terms—Classification, fuzzy algorithm, LiDAR, mean-
shift, waveform decomposition.

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) has been emerging
as a direct 3-D topographic data collection technique

and is extensively used in routine topographic mapping [1].
Recently, more advanced lidar measurement techniques were
introduced and became available. One of the most common
techniques is the full-waveform digitization lidar [2]–[5]. In-
stead of individual ranges, a full-waveform lidar system fea-
tures sampling and recording of the whole backscattered signal
at a temporal resolution of nanoseconds or subnanoseconds
[6], [7]. The recorded signal, referred to as a (returned) wave-
form, consists of a series of temporal waves, with or without
overlap, where each corresponds to an individual reflection
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from an object [8]. Compared with the process of analyzing
traditional discrete return lidar systems, working with full-
waveform data often needs one additional yet important step,
i.e., modeling and decomposing the waveforms. In this step,
the waveforms are decomposed into a number of independent
components, each of which corresponds to a detected target,
i.e., a point in the point cloud.

Different functions, including Gaussian, generalized
Gaussian, lognormal, Weibull, Nakagami, and Burr, have been
proposed to model lidar waveforms [9], [10]. Among them, the
Gaussian mixture model (GMM) has prevailed for many years
and is widely adopted [3], [11]–[15]. It models the returned
waveform y(t) as a weighted sum of a number of Gaussian
components, i.e.,

y(t) =

C∑
i=1

wi · exp
[
− (t− μi)

2

2σ2
i

]
(1)

where t is the sampling time, y the intensity of the waveform,
(μi, σi) the mean and the standard deviation of ith Gaussian
component, and C the total number of Gaussian components.
Both C and θ = {μ1, σ1, w1, μ2, σ2, w2, . . . , μC , σC , wC} are
parameters to be estimated.

Many algorithms were proposed to decompose the wave-
form data based on GMM. For example, in [11], the
Levenberg–Marquardt optimization algorithm was used. The
main challenge of such nonlinear optimization approach is its
convergence being sensitive to the initial values of the unknown
parameters. Another widely used and cited approach is the
expectation–maximization (EM) method [13], [16], [17]. In
EM, the number of waveform components needs to be pre-
defined and may vary from waveform to waveform. Recently,
there were efforts to apply wavelet methods to resolve the
GMM model [14], [15], [17]; however, they cannot deal with
cases where multiple waveform components are overlapped,
which are common for complex land covers.

The popular GMM is based on two assumptions: 1) the
emitted lidar signal is a Gaussian waveform; and 2) the returned
waveform is also a Gaussian, although its mean, standard
deviation, and the number of Gaussian waveform components
may vary from waveform to waveform. However, this is not
always true. In fact, although the laser sensors can generate
an electromagnetic wave that ideally leads the intensity of the
emitted signals to a Gaussian [18], the intrinsic noise in the
electrical device will introduce flat tails to the actual signal,
as shown in Fig. 1(a). The tails make the curve look more
like a Cauchy curve than a Gaussian [19]. Moreover, the
transmission path can also alternate the signal in a way that
deviates from Gaussian. For example, one of the properties of
Gaussian waves is symmetry, but the multipath effect will yield
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Fig. 1. Non-Gaussian signal in lidar. (a) Emitted lidar signal of Riegl Q680i.
The flat tails (noninformative) are highlighted in boxes. (b) Right-skewed
returned waveform of (a).

a Rayleigh channel [20], which makes a single waveform com-
ponent asymmetric, skewed, and non-Gaussian [10], [21]–[23],
as shown in Fig. 1(b).

In addition to this unrealistic GMM assumption, the existing
decomposition techniques, e.g., EM and Levenberg–Marquardt
methods, have the following limitations. First, the number of
total decomposed components C is usually prescribed in the
stage of initialization. To determine the optimal C, peak detec-
tion should be applied, and the algorithms need to run multiple
times to compare the results from different C’s. Second, a
filtering process is desired prior to the waveform decompo-
sition because the involvement of noise will deteriorate the
performance of decomposition. However, there is no standard
way to filter out the noise floor [24] in waveforms. One simple
and popular way is to apply a constant noise threshold [25],
although it is subjective. As a result, the previously described
decomposition algorithms are sensitive to the threshold value,
and the waveform is often either over or under filtered. Some
recent works do consider modeling the waveforms with more
complex distributions [22], [26]. They build a library of models
and choose the most suitable ones with Bayesian analysis.
However, their effectiveness is constrained by the creation of
a comprehensive model library and the complexity in selecting
one or more best models for a particular application. As a result,
such methods are not practical to handle large volume lidar data
and do not meet the needs of diverse applications.

Unlike the existing methods that use a mathematical
parametric function, we introduce a nonparametric model to
describe the waveforms. The nonparametric model does not
constrain the shape of the waveform components so that asym-
metric, non-Gaussian waveform components can be included.
Specifically, we model a waveform as a histogram of a col-
lection of random samples of x, X = {xn : 0 ≤ xn ≤ T, 1 ≤
n ≤ N}. Under this nonparametric model, the procedure of
waveform decomposition will be realized by clustering tech-
niques. Considering the number of waveform components C
as an unknown parameter in addition to the waveform com-
ponents themselves, we introduce a fuzzy mean-shift (FMS)
algorithm so that this number can be simultaneously estimated
during the process of waveform decomposition. As a result, the
waveform is decomposed into several clusters, either symmetric
or asymmetric and either informative (useful signal) or non-
informative (noise). Compared with existing methods, the sig-
nificant properties of our development are that it does not need
to assume the waveform components to be a Gaussian or of
any parametric form, and the number of waveform components
be known beforehand. Moreover, the noise floor can be filtered
out during the same time of waveform decomposition. Finally,
the peak time is the cluster center, i.e., the mass center of a
determined component.

The remaining part of this paper is structured as follows.
Section II will describe the proposed method, including the
nonparametric mixture model (NMM) and the FMS algorithm.
The study area and the dataset are described in Section III.
The waveform decomposition with the FMS approach is imple-
mented and discussed in Section IV; as an application of wave-
form decomposition, a digital elevation model (DEM) using
waveform decomposition results is created, and a preliminary
evaluation on its quality is conducted. Finally, this paper is
concluded in Section V.

II. METHODS

Our objective is to design a waveform model that: 1) takes
possibly asymmetric waveform components into account;
2) allows the popular GMM model to be its special case; and
3) yields a high-quality high-efficiency decomposition. To ad-
dress the first two properties, we introduce a NMM, whereas
for achieving the third property, we propose an FMS clustering
algorithm.

A. NMM

Let a (returned) waveform be collected along time t from
tag 1 to T . We regard the waveform Y = {y(t) : y(t) ≥ 0, 1 ≤
t ≤ T } as the histogram of samples of a random variable x,
X = {xn : 0 ≤ xn ≤ T, 1 ≤ n ≤ N}, where n is the sample
index, and N the total number of samples. The total number of
samples will be N =

∑T
t=1 y(t). Thus, the waveform y(t) can

be modeled by a nonparametric function as

y(t) =
1

N × h

N∑
n=1

k

(
t− xn

h

)
. (2)

Equation (2) is nonparametric because the waveform is not as-
sumed to follow any specific distribution. Instead, each sample
of x contributes to the waveform through a kernel function k(·),
which satisfies

sup |k(x)| < ∞∫
R

|k(x)| < ∞

lim
|x|→∞

|x| · k(x) = 0∫
R

|k(x)| dx = 1 (3)

and the parameter h is the bandwidth of the kernel function,
which determines the density of the lidar point cloud to be
generated through this decomposition. Examples of the kernel
functions include a rectangle function, a triangle function, or
a Gaussian function. A complex kernel function such as a
Gaussian can make the histogram smoother, whereas a simple
kernel function such as a rectangle may consume less computa-
tion time.

When more than one target is encountered by an emitted
lidar signal, there will be multiple components y1(t), y2(t),
. . . , yC(t) in the (returned) waveform. Each waveform
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Fig. 2. Returned waveform of Riegl Q680i. The noninformative noise is
highlighted in boxes, and the possible mixture positions of two clusters are
in dots.

component yi(t) is a cluster of x samples. This phenomenon
can be described by a mixture model as

y(t) =

C∑
i=1

yi(t) =

C∑
i=1

[
1

Ni × h

Ni∑
ni=1

k

(
t− xni

h

)]
(4)

where yi(t) is the ith component and C is the total number
of components. Here, yi(t) is modeled as a summation of a
number of kernel functions evaluated at each point in cluster i.
Depending on the clustering result, yi(t) could fit a Gaussian
or any other forms, either symmetric or asymmetric. It is
noted that yi(t) could be either informative laser energy or
noninformative noise, as shown in Fig. 2. It is desired that an
algorithm can determine and filter the noise levels at the same
time as decomposing the waveforms.

In (4), the samples of x are clustered in a way that each
sample belongs to a single component yi; therefore, all the
waveform components are separated without overlap. However,
in most cases, lidar waveform components do convolute and
are mixed. For example, the waveform intensity at the dots
in Fig. 2 is contributed by two adjacent, mixed waveform
components. To model such phenomenon, a mixture weight wn

is introduced, and (4) is evolved to a mixture model, i.e.,

y(t) =

C∑
i=1

yi(t) =

C∑
i=1

[
1

Ni × h

Ni∑
ni=1

wni
· k

(
t− xni

h

)]

(5)

where a sample xn can be assigned to multiple clusters with
the weight wni

. The NMM in (5) is the one we introduce
for waveform decomposition. We will design an algorithm to
determine C, wni

, and yi(t), with a preset bandwidth h.

B. FMS Algorithm

With NMM, the problem of waveform decomposition be-
comes a kernel clustering problem. Some popular kernel-based
clustering methods include the kernel k-means [27], spec-
tral clustering [28], support vector machine clustering [29],
and mean-shift clustering [30]. Among the different clustering
methods, the mean-shift algorithm offers the advantage of being
simple and able to estimate the number of clusters at the same
time the clustering is performed. This is a desired property
for waveform decomposition because the number of waveform

components is unknown, varying from waveform to waveform,
and most of the existing methods have to put extra effort to
estimate it. Moreover, the traditional mean-shift algorithm is
a hard or crispy clustering algorithm suitable for problems
described by (4), but not suitable for the mixture problems
defined in (5). Here, we will adapt the traditional mean-shift
algorithm to an FMS so that it can be utilized to decompose
waveforms with NMM.

The traditional mean-shift algorithm estimates the local
modes of the histogram from a random variable x, as we
described in (2) and (4). At any t, the gradient of the waveform
function (2) and (4) can be calculated using the following:

∂y(t)

∂t
=

C∑
i=1

[
1

Ni × h2

Ni∑
ni=1

k′
(
t− xni

h

)]
. (6)

Next, we define −→m(t), as the mean-shift vector shown in (7).
Its sign indicates the direction of the gradient of the waveform
function, i.e., it points toward the region where the majority
points of a waveform component reside. In practice, the kernel
function k(·) is chosen in such a way that only the data points
within the neighborhood (∂t) of xn contribute to −→m(t). Thus,
−→m(t) can be written as

−→m(t) =

∑
xn∈∂t xnk

(
t−xn

h

)
∑

xn∈∂t k
(
t−xn

h

) − t. (7)

The algorithm starts from an initial point x0 and moves along
the mean-shift vector until it converges at −→m(t) = 0. The center
of the first waveform component (either informative or noise)
is found at this point. During the process, all the data points
of xn that are once located within the search neighborhood
will contribute to the vector −→m(t) and form the first waveform
component y1(t). After that, the process will be conducted on
the rest of the data points and search for the second waveform
component y2(t). The algorithm continues until all the xn

samples are used to form one of the waveform components.
In the end, the algorithm returns all the waveform components
y1(t), . . . , yC(t) together with C, i.e., the number of found
components.

As pointed earlier, the traditional mean-shift algorithm con-
ducts a hard clustering by assigning each data point xn to
a single component and returns a result where all the wave-
form components are separated without overlap or mixture. To
resolve the mixture of waveform components, we adapt the
traditional mean-shift to an FMS to conduct soft clustering.
We notice that the sample points at the border of adjacent
waveform components are visited multiple times by different
clusters during the mean-shift process. We define such a point
as a mixture point and assign it through a fuzzy weight function
to all the clusters that once visited the point, i.e.,

wj(xn) =
vj∑C
i=1 vi

(8)

where vj is the number of times that xn is visited by cluster j.
In most cases, a mixture point will be visited by only two
adjacent components.
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Fig. 3. Shenandoah National Park and flight trajectory. (a) Park map (National Park Services: http://www.nps.gov/shen/planyourvisit/maps.htm) and (b) flight
trajectory of the sensor platform over the study area under Microsoft Bing Maps. The black lines are the trajectory of the airplane, and the single orange line in
the middle highlights the section where lidar sensor collected the data used in this paper.

III. STUDY AREA AND DATA

The study area is over the southern district of Shenandoah
National Park of Virginia, USA. It is a dense forest area with
limited visible ground exposure. The district is full of 132
species of trees and has an elevation range of 171–1234 m
relative to the North American Vertical Datum 1988 (NAVD
88) [31]. The maps of the Shenandoah National Park are shown
in Fig. 3. The black lines are the trajectory of the airplane, and
the single orange line in the middle highlights the section where
lidar sensor collected the data used in our tests.

The data were collected by a Riegl Q680i airborne laser
scanner that recorded all the emitted signals in this flight with
a sampling rate of 1 ns. Some emitted signals are plotted
in Figs. 1(a) and 4(a) and (b). All the emitted signals have
similar characteristics of symmetry, i.e., a Gaussian signal.
The dataset we used for implementation has two main files.
A binary full-waveform scan data file in “.sdf” format was
collected by the sensor. This file was accompanied with a binary
smoothed best estimate of trajectory (SBET) file in “.out”
format, which stores the trajectory and flight dynamics of the
airplane. The waveform file contains approximately 50 000 000
recorded waveforms and is about 8 GB in size. The part of
the trajectory file that corresponds to the acquisition of this
laser-scan data set consists of approximately 45 000 trajectory
points and other related records, e.g., speed and orientation
of the platform for each trajectory point. Fig. 3(b) shows the
trajectory of the platform over the study area and the complete

trajectory of the whole flight [25]. The SBET file contains a
136-B standard navigation record, which includes the time,
position, speed, orientation, platform heading, wander angle,
and acceleration information at a sampling rate of 200 Hz. We
access this binary file by using the “IceBridge Applanix SBET
file Perl reader” provided by the National Snow and Ice Data
Center (NSIDC).

The full-waveform binary file is accessible via the
RiWaveLib C++ waveform extraction library provided by
Riegl as an interface to extract information from the waveform
data. A specific waveform dataset consists of all sample blocks
of the waveforms detected by the receiver and additional infor-
mation, e.g., the beam direction. Data from two different chan-
nels, namely, high power and low power channels, are recorded
together with the reference channel for the emitted pulse. A
timestamp for the start of each sample block is recorded, which
allows to determine the time of all samples in the same sample
block using the sample interval. The dataset consists of only
one swath of flight, 770 m wide (West–East) and 6700 m long
(North–South). The flight height above ground is about 500 m.

IV. DISCUSSION AND EVALUATION

This section will examine the asymmetric properties of the
waveform, discuss the selection of bandwidth h of the ker-
nel function, explore the mixture of waveform components,
and evaluate the waveform decomposition by comparing its
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Fig. 4. Skewness of lidar emitted signals and returned waveforms. (a)–(c) Emitted signals: (a) #8267, γ = 0.04. (b) #7467, γ = 0.08. (c) the distribution of
skewness of the emitted signals. (d)–(f) Returned waveforms: (d) #8267, γ = 0.62. (e) #7467, γ = 0.92. (f) Distribution of skewness of the one-component
returned waveforms.

resultant DEM with reference to the USGS National Elevation
Dataset (NED) 1/3′′ DEM.

A. Asymmetric Waveforms

The symmetry of the returned waveform is measured by the
Pearson’s moment coefficient of skewness γ [32], i.e.,

γ =
m3

m
3
2
2

(9)

where

t̄ =

∑T
t=1 t · y(t)∑T
t=1 y(t)

mi =

∑T
t=1(t− t̄)i · y(t)∑T

t=1 y(t)
. (10)

A positive γ suggests a right skewed waveform and a negative
γ a left skewed one; γ = 0 represents a symmetric waveform.
To study the asymmetry of the waveforms, we conduct an
experiment on the first 10 000 waveforms of the dataset. The
MDL-EM method [25] is applied to the subset and finds 2084
(20.8%) waveforms with only one component. As examples,
two emitted signals and their returned waveforms are shown
in Fig. 4(a), (b), (d), and (e), respectively. Fig. 4(c) exhibits
the distribution of γ’s for all the 10 000 emitted signals,
whereas Fig. 4(f) is the distribution of γ’s for the one-
component returned waveforms. Clearly, the emitted signals
are statistically symmetric, where their skewness has a mean
of 0.0563 and standard deviation of 0.0194. In contrast, the
returned waveforms are considerably skewed with a mean of
0.1489 and a standard deviation of 0.239. Compared with
Fig. 4(c) for the emitted signals, Fig. 4(f) demonstrates that
the skewness of 34% of the returned waveforms are greater

than 0.15. In other words, right-skewed returned waveforms are
prevalent in this subset.

Due to the noticeable existence of asymmetry in our dataset,
the waveforms should be modeled by a method that takes
the asymmetric components into account and be decomposed
by appropriate algorithms. This demonstrates the need for
this paper. The nonparametric mixture model and previously
described FMS algorithm will be utilized for waveform decom-
position.

B. Selection of the Kernel Bandwidth h

Application of the kernel density model in the waveforms
starts from choosing a kernel function k(·) in (2). At this point,
we have no evidence that any specific kernel function is superior
to others for decomposing lidar data. Hereafter, a rectangle ker-
nel function is chosen in this paper to demonstrate the algorithm
since the use of a complex kernel (e.g., cosine or Gaussian
kernels) is primarily to smooth the estimated density function.
Moreover, the simplicity of the rectangle kernel function is
desirable when dealing with a large volume of waveform data.

The kernel bandwidth h is an important factor that controls
the density of the point clouds to be generated. Some of the
techniques for bandwidth selection include asymptotic expan-
sion (AMISE) minimization [33], stability maximization, and
isolation-connectivity optimization. In the application of lidar
waveform processing, a larger bandwidth will yield a smaller
volume of point cloud and a narrower one will lead to a denser
point cloud.

In our experiment, we choose h = 3.3 as the bandwidth,
where h is measured by the number of sampling time intervals
or data points. The following facts are considered for selecting
such value. First, the bandwidth essentially determines the
minimum width of a waveform component. Since we need at
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Fig. 5. Effects of the bandwidth of the kernel function on waveform #8267
[see Fig. 4(d)] decomposition. (a) Inappropriately small bandwidth h = 2.6
wrongly leads to four informative clusters and 12 noninformative clusters.
(b) Proper bandwidth h = 3.3 correctly leads to one informative cluster and
seven noninformative clusters.

least three data points to determine a bell-shaped or second-
order waveform component so that a meaningful peak can
exist, the bandwidth should satisfy h ≥ 3, i.e., a waveform
component should have minimum three data points. Second, the
bandwidth also determines the minimum separable distance be-
tween targets in ranging by Δr = h× c×Δt/2, where Δr is
the minimal separable distance, c is the speed of light, andΔt =
1 ns is the sampling time interval. We let Δr ≤ 0.5 m, which
leads to h ≤ 2Δr/(c×Δt) = 3.33. Finally, an inappropriate
small bandwidth may mistakenly generate artifacts. Combing
all above considerations, h = 3.3 is chosen. Cautions should be
taken when waveforms are stretched by the high slope of the ter-
rain and the multipath effect. We address this phenomenon by
demonstrating the decomposition result of one such broadened
waveform. The original waveform is shown in Fig. 4(d) and
shown as dashed lines in Fig. 5. Its decomposition results under
two different bandwidths are also shown in Fig. 5. The plot
plates in Fig. 5 are ordered horizontally, and plots within each
plate are ordered vertically. It depicts the time sequence the
clusters are found through the FMS algorithm. Different cluster
types are shown in different line styles. In Fig. 5(a), a bandwidth
h = 2.6 yields 16 waveform components, among which four
are informative (in solid lines) and 12 noninformative (star
lines). Apparently, the algorithm mistakenly generates false
components for this waveform. A more realistic decomposition

Fig. 6. Waveform decomposition and noise floor filtering on waveform #8269
with the FMS method. There are eight components found, starting from the
upper left ordered in vertical direction first.

Fig. 7. FMS decomposition of a waveform where the mixtures exhibit (a) the
waveform and (b)–(d) the decomposed components.

result can be obtained when h = 3.3, as shown in Fig. 5(b). It is
noticed that adjacent clusters often overlap, i.e., one waveform
data point can belong to more than one cluster, as suggested by
the principle of the FMS clustering approach.

C. Waveform Decomposition

The position of the initial point x0, as described in
Section II-B, does not affect the decomposed result. We start
the FMS algorithm from t0 = 1. The algorithm moves toward
right until the mean-shift vector equals to zero. All the points
visited during the moving process are plotted as stars, as shown
in the upper left plot in Fig. 6. FMS then restarts from the
left most point of the remaining points and finds out the other
clusters. We can see that there is overlap between the adjacent
clusters because the point in the overlapped area contributes to
the mean-shift vectors for both clusters. As an example, the
decomposed waveform (#8269) is shown in Fig. 6. There are
altogether eight clusters (components) as plotted in stars or
solid lines. The informative (useful signal) and noninformative
(noise) clusters can be distinguished by setting a threshold on
the cluster size Ni in (5), which is chosen as 100 in this paper.
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Fig. 8. Point clouds generated from the FMS approach. (a) Entire profile of the point cloud. (b) Two sample waveforms, each with four components, corresponding
to four points (in red dots). (c) Blow-up section of the point cloud.

The informative clusters (size >= 100) are plotted in solid
lines and the noninformative ones (size < 100) in stars.

Decomposing a waveform where mixture exists is the most
meaningful use of waveform decomposition. Here, we illustrate
another example of FMS applied on such case. The original
waveform is plotted in Fig. 7(a). There may be three wave-
form components, one isolated and two mixed, as would be
suggested by the EM algorithm. The FMS algorithm returns
the decomposed results in Fig. 7(b)–(d). The mixed component
is plotted in solid bold lines in Fig. 7(c). Each component could
be fine-tuned by applying a threshold on the intensities so that
only the points above the threshold are utilized to generate the
point clouds. Since the waveform is decomposed, the threshold
will be much lower than the one used in traditional prefilter-
ing. There are nine waveform components found by the FMS
method; their weighted sum will be the original waveform.

Once the decomposition is completed, the decomposed
waveform components are used to determine the time that the
signal is returned from the target. We take the mass center of
each waveform component to determine its time

ti =

∑Ni

n=1 wn · xn∑Ni

n=1 wn

. (11)

Similarly, for the corresponding emitted signal, its outgoing
time is

tout =

∑Nout

n=1 zn
Nout

(12)

where zn in (12) is defined the same way as we define xn,
except that zn is for the emitted signal. ti and tout are the time
of the waveform component returned from the target and the
time the laser signal is emitted, respectively. Ni and Nout are,
respectively, the number of samples within the ith waveform

component and the emitted signal. The range between the target
and the sensor is calculated by using the time the laser shot
takes to travel to and from the target and the speed of light, i.e.,

ρi =
v

2
(ti − tout) (13)

where v is the speed of light, and ρi is the range between
the sensor and the target. ρi will be utilized to determine the
coordinates of point clouds.

D. Point Clouds and DEM

Having the ranges and the directions of the emitted laser
pulses, we can calculate the coordinates of the targets in the
sensor coordinate frame. Using the positions of the platform
recorded in the SBET file, a series of coordinate transforms [34]
are then carried out to calculate the coordinates of the targets. It
should be noted that the flight trajectory is not available at the
same frequency as the pulse repetition rate of the lidar sensor.
The pulse repetition rate of the lidar system is at about 400 kHz,
whereas the trajectory is available at 200 Hz. Only one trajec-
tory position is available for approximately every 2000 laser
pulses due to this difference in data frequency. The position and
the orientation of the sensor platform are calculated by linear
interpolation of the trajectory at each instance of laser pulse
emission.

As shown in Fig. 8, we generated a point cloud by using the
FMS approach. For comparison, we ran EM on the same data
set. It is noted that there are various implementations of EM,
and each of them can tune parameters differently. Moreover,
since EM itself cannot determine the number of components
in the waveform, a peak detection procedure or a model se-
lection method has to be applied. In our experiment, a peak
detection initialization and a model selection method based
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TABLE I
NUMBER OF POINTS GENERATED BY WAVEFORM DECOMPOSITION AND

THE SUBSEQUENT GROUND FILTERING. ALL COMPUTATIONS WERE

COMPLETED ON A DELL PRECISION WORKSTATION WITH

EIGHT-CORE 3.7-GHZ CPU AND 16-GB MEMORY

on the minimum description length (MDL) [25], [35] were
used to determine the number of components in a waveform.
The penalty parameter of the MDL-constrained EM method
was adjusted such that it generated about the same number of
waveform components as the FMS did. In this way, the results
of the two methods are comparable. The number of points
and computing time of both EM and FMS are summarized
in Table I.

Since one of the applications for waveform decomposition
is to create DEM using the waveform-generated discrete point
clouds, we extracted the ground points using a filter imple-
mented in the LAStools (http://rapidlasso.com/) software. It
uses a variation of the Axelsson’s [36] triangulated irregular
network (TIN) refinement algorithm that avoids some of the
trigonometry overhead. We used the default parameter settings
to filter the point clouds resultant from the FMS and EM,
respectively. Notice from Table I that the ground point density
after filtering is 1.5 (EM) and 1.6 (FMS) points per square
meter, respectively. Both are suitable to generate a DEM at 1-m
resolution. DEMs at a resolution of 1 m were then created with
ArcGIS 10.3.1. The ground elevation of the DEM ranges from
422 to 1008 m.

As shown in Fig. 9, hillshading of six 195 m × 230 m
sites in the study area were selected to highlight the terrain
details from the two decomposition methods. Circles of solid
and dashed lines are, respectively, used to label locations of
apparent artifacts in the EM and FMS results. As a general
observation, the two DEMs have very comparable qualities.
Both can very satisfactorily reflect the terrain morphology and
almost all topographical details. On the other hand, both results
have a few noticeable small scale pits. These artefacts, both
in size and in number, are actually minimal, considering the
fact that the terrain is under heavy canopy. Examining the
hillshading in a closer view, the FMS approach created slightly
fewer artifacts (Sites 2, 3, 5, and 6) than EM. It should be
noted that the artifacts in both DEMs were likely introduced by
imperfect filtering. As many studies reported [37]–[39], high-
quality DEM generation under dense forest canopy is still a
challenging task for lidar data processing.

As a primary study to the vertical accuracy of the resultant
FMS DEM, its hillshading is stacked over the USTopo in
Fig. 10. The waveform DEM significantly reveals more detailed
terrain features. For example, a road under the forest can be
successfully detected in the waveform DEM, whereas it is
not visible in the NED 1/3′′ DEM, which has a resolution of
approximate 8 m. Other topographic features, including ridges,
valleys, and gullies, are also clearly presented. On the other

Fig. 9. Hillshading of six (6) DEM samples (195 m × 230 m) generated by
EM (left) and FMS (right).

Fig. 10. Hillshading generated from NED 1/3′′ DEM (left) and FMS DEM
(right). A road should exist as indicated by the red boxes. Many fine topographic
features are also clearly visible in FMS DEM. The background map is USTopo
map. The size of this area is about 770 m wide and 2600 m long.

hand, suspicious striping effect in west–east (perpendicular to
the flight) direction is noticed. Such artifacts are likely from
the jitter of the airplane and/or the sensor, which has not been
considered or fully corrected by the data vendor. The pixel by
pixel differences between the two DEMs show a very good
normal distribution with a mean of 0.89 m and a standard
deviation of 6.99 m. This result basically shows that there is
no significant systematic bias existing in our waveform DEM.
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According to the specification of this NED 1/3′′ DEM dataset,
it was from compilation of the NED 1′′ DEM, which has a nom-
inal vertical accuracy of 7 m. Therefore, we can only reason the
vertical errors of the waveform DEM are negligible compared
with the quality of the NED 1/3′′ DEM. Comprehensive and
more convincing evaluation on the waveform DEM’s accuracy
remains to be a future effort.

V. CONCLUSION

Effective waveform decomposition needs both simplicity and
accuracy. On one hand, the simplest and widely adopted de-
composition method is peak detection [40], [41]. It is attractive
because the waveform components can simply be detected by
applying a threshold. It has the desired high efficiency for
coping with large volumes of lidar data but does not take
mixtures into consideration. As a result, it sacrifices the high
accuracy and fidelity that come with advanced lidar systems in
exchange for such simplicity. On the other hand, the GMM and
corresponding algorithms are among the most popular wave-
form decomposition methods. They are supposed to be more
accurate since they take into account the mixture of waveform
components. However, the complexity of the algorithms are
greatly increased not only because the algorithms themselves
are iterative but because a preprocessing for estimating the
number of components and/or a postprocessing for optimizing
this number are often needed. In lidar waveform decomposi-
tion, any additional preprocessing and/or postprocessing are
computationally expensive because they ought to apply to each
and every individual waveform. Moreover, the GMM is un-
able to precisely model non-Gaussian waveform components,
particularly asymmetric waveform components that have been
frequently reported by researchers.

This paper introduced a nonparametric mixture model that
describes asymmetric lidar waveform components and leads
to a general approach to waveform decomposition. Compared
with the GMM, the nonparameter mixture model success-
fully models a variety of waveform components, regardless of
whether they are Gaussian or non-Gaussian and symmetric or
asymmetric. The FMS algorithm essentially is a density-based
data clustering approach, which does not assume that wave-
forms follow any functional or parametric distribution. Unlike
many existing practices, the FMS algorithm does not need
peak detection prior to decomposition and can simultaneously
determine the number of waveform components during the
decomposition process. Furthermore, the point density of the
decomposed waveforms largely relies on one single parameter,
i.e., the kernel bandwidth, for which a value of 3–4 times
the waveform sampling interval has been shown suitable in
this paper. Our tests with small footprint lidar data over a
dense forest area have validated the noticeable asymmetry
of returned waveforms and demonstrated satisfactory perfor-
mance of the proposed FMS method. A detailed DEM with
minimum artifacts can be produced through the subsequent
filtering. Compared with the conventional EM method under
an optimal implementation, the FMS approach is about three
times faster, whereas the resultant DEM is very similar and
tends to have slightly fewer artifacts. This paper not only
develops a novel theoretical model and general solution to
the waveform decomposition problem but practically provides
a promising satisfactory approach to terrain generation under

heavy canopy. This is useful for studies in geomorphology,
hydrology, and other Earth science subjects. The decomposed
waveform components can be further utilized for vegetation
classification, biomass estimation, and single tree detection.

Future studies can be carried out in a wide range of topics.
They may include optimal kernel selection and bandwidth
selection, and alternative fuzzy clustering algorithms. There is
also a need to comprehensively evaluate the proposed approach
with reference to the popular EM method and its variations. To
be specific, further studies may look into the necessity of the
consideration of asymmetry and the adoption of nonparametric
mixture model in urban areas since, in such scenarios, the sym-
metry in the emitted signals may not be greatly changed in the
returned waveforms. For vegetation, forestry, and bathymetry
studies, further exploration is needed to examine the ability
of the FMS method to extract near-ground returns under low
vegetation and dense canopy for subsequent construction of
DEMs and its comparison to higher order accuracy measures.
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