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Image registration is a crucial step for remote sensing image processing. Automatic registration of mul-
tispectral remote sensing images could be challenging due to the significant non-linear intensity differ-
ences caused by radiometric variations among such images. To address this problem, this paper proposes
a local descriptor based registration method for multispectral remote sensing images. The proposed
method includes a two-stage process: pre-registration and fine registration. The pre-registration is
achieved using the Scale Restriction Scale Invariant Feature Transform (SR-SIFT) to eliminate the obvious
translation, rotation, and scale differences between the reference and the sensed image. In the fine reg-
istration stage, the evenly distributed interest points are first extracted in the pre-registered image using
the Harris corner detector. Then, we integrate the local self-similarity (LSS) descriptor as a new similarity
metric to detect the tie points between the reference and the pre-registered image, followed by a global
consistency check to remove matching blunders. Finally, image registration is achieved using a piecewise
linear transform. The proposed method has been evaluated with three pairs of multispectral remote sens-
ing images from TM, ETM+, ASTER, Worldview, and Quickbird sensors. The experimental results demon-
strate that the proposed method can achieve reliable registration outcome, and the LSS-based similarity
metric is robust to non-linear intensity differences among multispectral remote sensing images.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

With the rapid development of remote sensing technology, re-
mote sensing images from different sensors usually differ in spec-
tral and spatial resolutions. Remote sensing images from different
sensors or different spectral bands can provide complementary
information about Earth’s surface. Registration of these images in
a common geographic coordinate is necessary for Earth observa-
tion. As a fundamental task in image processing, image registration
aligns two or more images with overlapping scenes taken at differ-
ent times, from different viewpoints, or by different sensors (Zitova
and Flusser, 2003). For remote sensing image processing, image
registration is also a prerequisite step for image mosaic, object
identification, image fusion, and change detection. An automatic
solution to this problem is highly desired as conventional image
registration techniques often require manual collection of tie
points1 between the images, which is often toilsome and time con-
suming. Different spectral bands often reflect different radiometric
characteristics of the same scene resulting in significant intensity
differences among the images acquired from different spectra, espe-
cially between visible and infrared imagery (Kern and Pattichis,
2007). The significant intensity differences can be visualized in
Fig. 1, showing a pair of images acquired by TM band 1 (visible)
and TM band 5 (infrared) sensors at the same time. Due to very dif-
ferent minute details now available between the multispectral
images, the detection of tie points became much more difficult than
ever before. Therefore, automatic registration of multispectral re-
mote sensing images could be challenging.

Generally, automatic image registration consists of two main
steps.

(1) Image matching: detect the tie points between the reference
and sensed image.
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Fig. 1. The significant intensity differences between the multispectral images covering the same scene. (a) the TM band 1 image, (b) the TM band 5 image. The two images
were taken at the same time.
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(2) Image rectification: Determine a transform model using the
matched tie points and rectify the sensed image.

Image matching is a prerequisite for image registration and the
quality of tie points influences the registration accuracy. According
to the different ways of image matching, image registration meth-
ods can be classified into two categories, namely, feature-based
and area-based methods (Zitova and Flusser, 2003).

Feature-based methods first extract the features (e.g., points,
lines, contours) from the images and then detect the tie points
based on the similarity of these features. Representative feature-
based methods include contour-based method (Li et al., 1995),
invariant moment-based method (Dai and Khorram, 1999), linear
or edge feature-based method (Dare and Dowman, 2001), and
phase congruency-based feature extraction method (Wong and
Clausi, 2007, 2010). Recently, local feature descriptors have been
rapidly developed in the computer vision field. The most represen-
tative local feature descriptor is the Scale Invariant Feature Trans-
form (SIFT, Lowe, 2004), which has been widely used in the
registration of remote sensing images because of its invariant to
image scale and rotation changes (Li et al., 2006; Yu et al., 2008).
Moreover, in order to further improve the matching performance
of SIFT, some researchers have proposed a series of enhanced SIFT
algorithms such as Colored SIFT (Abdel-Hakim and Farag, 2006),
Scale Restriction SIFT (SR-SIFT, Yi et al., 2008), Affine-SIFT (Morel
and Yu, 2009), and Uniform Robust SIFT (Sedaghat et al., 2011).
However, being fundamentally similar to SIFT, these algorithms
are designed for images with linear intensity changes; matching
images with non-linear intensity differences is still difficult (Kel-
man et al., 2007; Tsai et al., 2010). Achieving enough tie points
for precise registration using SIFT-based methods alone is difficult
due to intensity differences among multispectral or multisensor re-
mote sensing images. Despite being sensitive to the non-linear
intensity differences, SIFT-based methods are still useful for initial
registration of multispectral or multisensor images, during which
two images are coarsely aligned only using a small number of tie
points (Yu et al., 2008).

Different from feature-based methods, area-based methods,
sometimes called template matching, first define a template win-
dow in the sensed image, and then search for a correspondence
window in the reference image using different kinds of similarity
metrics. The centers of matched windows are regarded as tie
points. The similarity metrics play a crucial role in the area-based
methods. The conventional similarity metrics mainly include the
sum of square difference (SSD), the normalized cross correlation
(NCC), the mutual information (MI) and et al. SSD performs simi-
larity evaluation through comparing the differences of grey values
among images directly. As such, it is usually vulnerable to complex
intensity variations. As a classical similarity metric, NCC has been
widely applied for image registration because of its invariant to lin-
ear intensity changes, however, it cannot properly handle images
with non-linear intensity differences (Fan et al., 2010; Hel-Or
et al., 2011). MI is robust to non-linear intensity differences and
has been successfully applied in the registration of multispectral
or multisensor images (Cole-Rhodes et al., 2003; Kern and Patti-
chis, 2007). However, the registration methods based on MI is
computationally expensive (Hel-Or et al., 2011), which may pose
a restriction in practice. In addition, area-based methods often suf-
fer from image distortions due to the rectangular window used in
the matching process. This type of window may not cover the same
part of the scene between the images with complex geometric dis-
tortions. In order to solve this problem, a pre-registration proce-
dure could be required to reduce these distortions.

Overall, feature-based methods are more robust to the geometric
distortions of images compared with area-based methods, whereas
area-based methods have better resistance to the non-linear inten-
sity differences among images. Therefore, this paper proposes an
automatic registration method for multispectral images by integrat-
ing feature-based and area-based methods. The proposed method
involves a coarse-to-fine registration scheme. The pre-registration
is first achieved using the SR-SIFT algorithm, which improves the
correct match rate for multispectral images compared with the ori-
ginal SIFT algorithm (Yi et al., 2008). Then, we introduce a new sim-
ilarity metric based on the local self-similarity (LSS) descriptor to
determine the correspondences in the fine registration stage. LSS
is a local feature descriptor that captures the internal geometric lay-
outs of images (Shechtman and Irani, 2007). Recently, the LSS
descriptor has been successfully applied for the registration of ther-
mal and visible videos, and proved to be able to handle complex
intensity variations (Torabi and Bilodeau, 2012).

Upon a successful image matching, the subsequent image recti-
fication is straightforward. Since the main objective of this paper is
to develop a robust technique of tie-point detection to address
the non-linear intensity differences among multispectral remote
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sensing images, we use a piecewise linear (PL) transform (Gos-
htasby, 1986) to handle the complex distortions between the
images. It provides an alternative way for image registration to
conventional orthorectification with an accurate digital elevation
model and known sensor geometry, both of which are sometimes
difficult and complex to acquire.

The main contribution of this paper includes two aspects. One is
a coarse-to-fine automatic registration scheme designed for multi-
spectral remote sensing images; the other is the LSS integrated as a
new similarity metric to detect tie points between multispectral
images. The methodology is described in Section 2, followed by
experiments and evaluation in Section 3. Conclusions are pre-
sented in Section 4.
2. Methodology

Given a reference image and a sensed image acquired from differ-
ent spectral bands or different sensors, image registration aims to
determine an optimal alignment between the two images. The pro-
posed registration method involves a two-stage process, namely,
pre-registration and fine registration. In the pre-registration stage,
candidate tie points are first selected using the SR-SIFT algorithm,
and the outliers are removed by RANdom SAmple Consensus (RAN-
SAC, Fischler and Bolles, 1981). Then, the sensed image is rectified
through a projective transform. This rectified image is referred to
as the ‘‘pre-registered image’’. The purpose of pre-registration is to
eliminate the obvious translation, rotation, and scale differences be-
tween the images. In the fine registration stage, the Harris corner
detector is first applied to extract the evenly distributed interest
points in the pre-registered image. Then, the LSS is employed as a
new similarity metric for template matching in the reference image
to detect the correspondences. The tie points with large errors are re-
moved by a global consistency check method. Finally, the pre-regis-
tered image is rectified using a PL transform, which constructs the
Delaunay triangulated irregular networks (TINs) with the tie points
and applies an affine transform to rectify each triangle region. Fig. 2
shows the main process of our method.
2.1. Pre-registration by SR-SIFT

The SIFT algorithm first detects keypoints as the extrema in the
Difference-of-Gaussian scale space, and assigns a main orientation
Reference image Sensed image

Image rectification via piecewise linear transform

Tie-point detection by LSS

Interest point extraction

Register sensed image via projective transform

Tie-point detection by SR -SIFT

Fig. 2. Flowchart of the proposed image registration method.
for each keypoint. Then, the descriptor is computed using gradients
within the local neighborhood with respect to the scale and orien-
tation of each keypoint. The resulting descriptor is invariant to im-
age scale and rotation changes. However, SIFT doses not work well
for images with non-linear intensity differences (Kelman et al.,
2007; Li et al., 2011).

The SR-SIFT algorithm (Yi et al., 2008) was proposed to improve
the performance of SIFT in matching multispectral image. The main
improvements of SR-SIFT include the following two aspects.

(1) Gradient orientation modification: As the pixel intensity of
the same region between multispectral images is often dif-
ferent or even inverse (the river in Fig. 3), the SR-SIFT algo-
rithm modifies the gradient orientation and limits it
between 0 and p through the following equation:

bðaÞ ¼ a a 2 ½0o;180o�
360o � a a 2 ð180o;360oÞ

�
ð1Þ

where a is the gradient orientation, and b is the modified
orientation.

(2) Scale restriction criteria: Given a keypoint pair k1(x1, y1, r1, -
h1) and k2(x2, y2, r2, h2), the scale difference (SD) of the key-
point pair is defined as

SDðk1; k2Þ ¼ jr1 � r2j ð2Þ

where r is the scale of keypoint.
The SDs of the correct matches should be much smaller than

those of the mismatches. According to this property, the scale
restriction criterion is defined as

a < SDðk1; k2Þ < b ð3Þ

A match will be discarded if it does not satisfy the scale restric-
tion criteria. To decide the values of a and b in Eq. (3), a histogram
of SDs of all matches is formed, and the peak in the histogram is
noted as SD. Then, the values of a and b are respectively assigned
with SD�W and SDþW , where W is a constant and is set between
0.20 and 0.35 (Yi et al., 2008).

Given the above improvements, the SR-SIFT algorithm can raise
the correct match rate for multispectral images. However, the
number of tie points obtained using only SR-SIFT may be too low
and unevenly distributed in the image. Fig. 3 shows an example of
tie points detected by applying SR-SIFT between a SPOT 4 band 2
(visible) and band 4 (infrared) image. SR-SIFT can only obtain a lim-
ited number of tie points. A possible reason is that different spectral
information results in the significant non-linear intensity differ-
ences between the images. Nevertheless, SR-SIFT could provide at
least four tie points for the images, which is sufficient to determine
a projective transform2 for pre-registration to eliminate the obvious
translation, rotation, and scale differences between the images.

In the pre-registration stage, SR-SIFT keypoints are first ex-
tracted from the reference and sensed image, and a one-to-one
matching between the keypoints is performed using the Euclidean
distance ratio between the first and the second nearest neighbor
(hereafter assigned as dratio). Then, the matches that satisfy the
scale restriction criteria are selected as tie points, followed by
the application of RANSAC to remove the outliers. Finally, the
sensed image is rectified by a projective transform.

2.2. Fine registration

Once the pre-registration is completed, the reference and
the pre-registered images have been coarsely aligned. We can
2 The projective transform can handle affine transform (translation, rotation, and
scale) and perspective transform.



Fig. 3. The tie points detected using SR-SIFT between a SPOT 4 band 2 (a) and a SPOT4 band 4 image (b).
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determine a small search area to detect the correspondences in the
subsequent fine registration, which is carried out in accordance
with the following steps: interest point extraction, tie-point detec-
tion by LSS, elimination of mismatched tie points, and image
rectification.
2.2.1. Interest point extraction
In the fine registration, the first step is the extraction of the

interest points in the pre-registered image. Schmid et al. (2000)
evaluated different interest point detectors and found that the Har-
ris corner detector (Harris and Stephens, 1988) performed best.
This detector is therefore applied to extract the interest point in
this step. However, the Harris detector often needs to set a fixed
threshold to extract the interest points. This may make the interest
points unevenly distributed over an image (Fig. 4a). To address this
problem, a block-based scheme, which is free of threshold, is
adopted in the extraction of interest points. First, the image is di-
vided into n � n non-overlapping blocks, and the Harris value is
computed for each block. Then, the Harris value in every block is
Fig. 4. The Harris interest points extracted by two different methods, namely, (a) fixed th
and 10 interest points are extracted in each block.
ranked from largest to smallest, and the strongest k points are se-
lected as the interest points, where k is the number of interest
points desired. An example of interest points extracted using this
scheme is shown in Fig. 4b. The block-based scheme evenly distrib-
utes the interest points over the image.
2.2.2. Tie-point detection by LSS
LSS is a local feature descriptor that captures the internal geo-

metric layouts of local self-similarities within images and repre-
sents the indirect local image property. As such, LSS can be used
to match a textured region with other differently textured regions
as long as they have similar layouts/shapes (Shechtman and
Irani, 2007). This property is interesting for matching images be-
cause their local shape is similar but their intensity or texture is
different.

Fig. 5 illustrates an example of the LSS descriptor generation of
a local image region (typically 41 � 41 pixels). Within the local re-
gion, all surrounding image patches (typically 3 � 3 pixels) are
compared with the patch centered at q using the sum of square
reshold and (b) block-based scheme where the image is divided into 10 � 10 blocks,



Fig. 5. An example of LSS descriptor generation. (a) local image region, (b) correlation surface of (a), (c) the log-polar translated LSS descriptor.
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differences (SSD) between the patch intensity. Then, the SSDq(x, y)
is normalized and transformed into a ‘‘correlation surface’’ Sq(x, y).

Sqðx; yÞ ¼ exp � SSDqðx; yÞ
maxðvarnosie;varautoðqÞÞ

� �
ð4Þ

where varnoise is a constant that corresponds to the intensity varia-
tions (in illumination or due to noise). varauto(q) is the maximal SSD
of all patches within a very small neighborhood of q (of radius 1)
relative to the center patch q, expected to account for the patch con-
trast and its pattern structure.

To account for local affine deformation, the correlation surface
Sq(x, y) is transformed into a log-polar representation and is parti-
tioned into bins (e.g., 20 angles, 4 radial intervals). The maximal
correlation value of each bin is selected to generate the LSS
descriptor vector associated with the pixel q. Finally, the LSS
descriptor is linearly stretched to the range of [0. . .1] to achieve
invariance to the intensity variations of different patches in the lo-
cal image region. Fig. 6 shows the LSS descriptors computed from
visible

infrared

corner

edge

homogeneity

edge

corner

homogeneity

corner

Fig. 6. The LSS descriptors of the visible and infrared im
the corner, edge, and homogenous regions of the visible and infra-
red images in the same scene. The LSS descriptors are quite similar
despite the large intensity differences between the two images.

Theoretically, LSS should be resistant to non-linear intensity
differences because it captures the internal geometric layouts of
the image and represents the local shape property. The NCC of
LSS (hereafter assigned as LSCC) is used as the similarity metric
for multispectral image registration. The LSCC is defined as

LSCC ¼
PN

k¼1ðSq1ðkÞ � Sq1ÞðSq2ðkÞ � Sq2ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1ðSq1ðkÞ � Sq1Þ

2PN
k¼1ðSq2ðkÞ � Sq2Þ

2
q ð5Þ

where q1 and q2 are the image pixels in the reference and the sensed
images, respectively. Sq1(k) and Sq2(k) are the LSS descriptors of a
surrounding image region (template window) centered at q1 and
q2, respectively. Sq1 and Sq2 represent the means of the LSS descrip-
tors within the template window. N is the dimension of LSS
descriptor.
local regions

LSS descriptors

LSS descriptors

local regions

edge homogeneity

similarity

ages in the corner, edge, and homogenous regions.
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Fig. 7. The comparison of the similarity curve of LSCC and NCC. (a) The visible image, (b) the infrared image, (c) the NCC similarity curve, (d) the LSCC similarity curve.
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LSCC is compared with the conventional NCC (computed from
the grey intensity) by the similarity curve to illustrate its advanta-
ges to match the multispectral images. A template window
(41 � 41 pixels) is first selected from a visible image, Then, we
respectively calculate the LSCC and NCC for x-direction translations
(�20 to 20 pixels3) within a search window of an infrared image.
The LSCC and NCC similarity curves are shown in Fig. 7. It can be
clearly seen that LSCC achieves the correct match at the maximum,
but NCC fails. This example preliminarily indicates that LSCC is more
robust than NCC to the non-linear intensity differences. The more
comparative analysis for the performance of LSCC and NCC is pre-
sented in Section 3.4.

After a set of the interest points are extracted in the pre-regis-
tered image, a small search window in the reference image can be
determined because the images have been coarsely aligned. Then,
LSCC is used to detect the tie points using a template matching
strategy. In the matching process, a conventional way to avoid
some unreliable tie points is by setting a LSCC threshold. However,
initial experiments show that the threshold is related to the tem-
plate size and image scene, which results in being difficult to de-
fine a proper threshold for all the multispectral images. It often
occurs that a LSCC threshold does not successfully distinguish good
matches from bad ones. We instead apply a bidirectional matching
technique (Di Stefano et al., 2004) which includes two steps,
namely, forward matching and backward matching. In the forward
step, for an interest point p1 in the pre-registered image, its match
point p2 is found by the maximum of LSCC between the template
window in the pre-registered image and the search window in
the reference image. In the backward step, the match point of p2
3 This refers to the translation range of the center pixel of template window.
should be found in the pre-registered image using the same meth-
od. If the two matching procedures obtain a consistent result, the
matched point pair (p1, p2) is regarded as the tie points.

2.2.3. Elimination of mismatched tie points
Given several uncertainty factors such as shadow and occlusion,

the above resultant tie points are inevitably not error-fee. The large
tie-point errors are eliminated using a global consistency check
method based on a global transform. The choice of transform is
crucial for the consistency check, and it depends on the types of
relative geometric deformations between the images. As the actual
deformations between the images from different sensors are usu-
ally unknown, we select the projective model to handle common
global transform, such as translation, rotation, and scale. It is suit-
able for the low- and high-resolution images covering the plain
areas because few complex deformations exist among these
images. However, for the images covering the mountain and urban
areas, some researches find that the third-order polynomial model
is often better than other global transforms such as projective and
second-order polynomial models for prefitting the non-rigid defor-
mations among such images (Hong and Zhang, 2008; Ma et al.,
2010). The similar results are also presented in our experiments
(Section 3.3). Therefore, in our global consistency check, the pro-
jective model is used for the low- and medium-resolution images
with lowly undulating terrain, while the third-order polynomial
model is selected for images with significant terrain relief.

The residual error and the root mean-square error (RMSE) are
usually used to assess the registration accuracy. They are defined
as

residual ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxr � TðxpÞÞ2 þ ðyr � TðypÞÞ

2
q

ð6Þ



Table 1
Specifications of the test data.

Test Reference image Sensed image

Sensor Spectrum (lm) Size(pixels) resolution Date Sensor Spectrum (l m) Size(pixels) resolution Date

Test 1 TM 0.63 � 0.49 700 � 825 2004/9 ETM + Band 7 2.09 � 2.35 743 � 847 2002/11
Band 3 (red) 30 m (infrared) 30 m

Test 2 ASTER 0.52 � 0.60 1099 � 1236 2002/7 TM 1.55 � 1.75 531 � 602 2002/7
Band 1 (green) 15 m Band 5 (infrared) 30 m

Test 3 Worldview 0.86 � 1.04 865 � 901 2011/10 QuickBird 0.45 � 0.52 719 � 755 2007/11
Band 8 (near-infrared) 2.0 m Band 1 (blue) 2.4 m
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1residual2

n

N

s
ð7Þ

where (xr, yr) and (xp, yp) are the coordinates in the reference and
pre-registered images, respectively. T represents the transform used
in the global consistency check, and N is the total number of tie points.

The elimination of mismatched tie points (i.e. errors) is an iter-
ative refining procedure. A transform (projective or third-order
polynomial model) is first set up using the least squares method
with all the tie points. Then, the residuals and RMSE of tie points
are calculated. Subsequently, the tie point with the largest residual
is removed. The aforementioned process is repeated until RMSE is
less than a given threshold (e.g. 1 pixel).

2.2.4. Image rectification
After the removal of tie points with large errors, determining a

geometric transform is necessary to rectify the pre-registered im-
age. Considering the limitation of orthorectification that requires
accurate sensor geometry and high-precision DEM, we employ a
PL transform to fit the local distortions caused by terrain relief.
PL transform is a local deformation model based on an image trian-
gulation from a Delaunay TIN constructed by using tie points. The
Delaunay TIN is first constructed with all the tie points by the
incremental insertion method (Tsai, 1993), and then the parame-
ters of an affine transform (Eq. (8)) is calculated for each triangle
using the coordinates of its three vertices. Finally, the rectification
of the pre-registered image is performed on each triangle region.

xr ¼ a0 þ a1xp þ a2yp

yr ¼ b0 þ b1yp þ b2yp
ð8Þ

where (xr, yr) and (xp, yp) are the coordinates in the reference and
pre-registered images, respectively.

3. Experiments and evaluation

To validate the proposed method, it was tested using three sets
of multispectral remote sensing images from different sensors. The
test sets were divided into two categories: medium-resolution
multispectral image and high-resolution multispectral image. The
details of test sets are listed in Table 1. The images of test sets
are shown in Fig. 8, where the first, second and third rows corre-
spond to test 1, test 2, and test 3, respectively. The image pair of
each set was composed of a reference and a sensed image, which
were respectively acquired from different spectra resulting in sig-
nificant non-linear intensity differences. In addition to these, other
characteristics of each set are described below.

(1) The test set 1 consisted of the medium-resolution multispec-
tral images (from TM and ETM+) covering a plain area
located at the eastern part of Wuhan, China. The resolutions
of these two images are both 30 m/pixel. The maximum ele-
vation difference4 is about 65 m in the covered area of the
4 The elevation information in this paper is obtained from the ASTER Global DEM.
images. The two images have almost no obvious local distor-
tions due to the low resolution and the small terrain relief.
However, rotation difference (about 16�) can be observed
between the images.

(2) The test set 2 consisted of the medium-resolution multispec-
tral images (from ASTER and TM) covering a mountain
area located at the northern part of Denver, USA. The resolu-
tions of the ASTER image and the TM image are respec-
tively 15 m/pixel and 30 m/pixel. The two images have
differences in scale (2 times) and rotation (about 12�).
Moreover, the ground elevation range varies between
1573 m and 2622 m in the covered area of the images. The
large terrain relief results in the local distortions between
the images.

(3) The test set 3 consisted of the high-resolution multispectral
images (from Worldview and QuickBird) covering an urban
region located in San Francisco, USA. The Worldview image
has a resolution of 2.0 m/pixel, and the QuickBird image
has a resolution of 2.4 m/pixel. Scale difference (1.2 times)
and rotation difference (about 18�) can be observed between
the images. Due to being captured by different sensor mod-
els, these two high-resolution images contain the significant
local distortions caused by the relief displacement of the
building. Additionally, given the temporal difference of
almost four years (Table 1) between the images, some build-
ings have changed (left part of the image) during this period.
All these differences in this test make it very difficult to reg-
ister the two images.

3.1. Parameter setting

For all the test sets, the dratio was set to 0.6 for matching the SR-
SIFT keypoints in the pre-registration stage. In the fine registration
stage, the pre-registered image was divided into 10 � 10 blocks,
and 15 Harris interest points were extracted using the window of
3 � 3 pixels in each block, reaching a total of 1500 interest points.
To calculate LSS, the surrounding patch and the template window
size were set to 3 � 3 pixels and 41 � 41 pixels, respectively. In the
global consistency check method, due to the few local distortions
between the images, the projective model was used to check the
mismatches for test 1. For test 2 and test 3, the third-order polyno-
mial model was applied for error elimination because the images
of the two tests have the more significant local distortions. The
RMSE threshold is set to 1 pixel for all the tests.

3.2. Registration process

In the pre-registration stage, The SR-SIFT algorithm was first
used to achieve the matches between the reference and the sensed
image. Then, the outliers were removed using RANSAC, thereby
obtaining the tie points between the images. Finally, the projective
transform was used to rectify the sensed image. Table 2 lists the
number of tie points in the pre-registration stage. We can observe
from the table that the SR-SIFT algorithm only detects a small
number of tie points. This means that the SR-SIFT algorithm is very



Reference image Sensed image
The overlaid images of 

pre-registration

Fig. 8. The pre-registration results of all the test sets. The first, second and third rows correspond to test 1, test 2, and test 3, respectively.
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sensitive to non-linear intensity differences between the images.
However, the tie points detected by SR-SIFT are enough for the
estimation of the projective transform, which can coarsely rectify
the sensed image. The results of the pre-registration are shown
in Fig. 8. One can see that the pre-registered image and the refer-
ence image have been coarsely aligned. No obvious translation,
rotation, and scale differences can be observed between
Table 2
The number of tie points for pre- and fine registration.

Test Pre-registration Fine registration

SR-SIFT matches SR-SIFT tie points LSS matches LSS tie points

Test 1 35 25 920 793
Test 2 33 21 831 720
Test 3 26 18 627 472
the images. Nevertheless, in the enlarged sub-images of pre-
registration (Fig. 9), it can be observed that some misalignments
still exist between the pre-registered image and the reference
image for test 2 and test 3. This is because the images of the two
tests contain the substantial local distortions caused by terrain re-
lief, which cannot be handled very well by the projective trans-
form. These distortions would be further dealt with in the
following fine registration.

In the fine registration stage, 1500 even-distributed interest
points were first extracted by the block-based Harris detector in
the pre-registered image, and a small search window (20 � 20 pix-
els5) was determined in the reference image, where the matches
5 This refers to the moving range of the center pixel of template window.



(a) (b) (c)

Fig. 9. The enlarged sub-images of the pre-registration for all the test sets. (a) test 1, (b) test 2, (c) test 3. These sub-images correspond to the boxes shown in ‘‘the overlaid
images of pre-registration (Fig. 8)’’, respectively. The misalignments between the pre-registered image and the reference image are marked by the circles for test 2 and test 3.

Reference image Pre-registered image
The overlaid images of fine 

registration

Fig. 10. The fine registration results of all the test sets. The first, second and third rows correspond to test 1, test 2, and test 3, respectively.
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Fig. 11. The enlarged sub-images of all the test sets in the fine registration. The first, second and third rows correspond to test 1, test 2, and test 3, respectively. The first,
second and third columns correspond to a, b, and c boxes shown in ‘‘the overlaid images of fine registration (Fig. 10)’’, respectively.
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were found by LSCC combined with the bidirectional matching tech-
nique. Then the tie points between the images were obtained after
the mismatches were removed using the global consistency check.
Finally, these tie points were used to construct the TIN, and the fine
registration was achieved using the PL model. From ‘‘Fine registra-
tion’’ column in Table 2, one can be seen that LSCC detects a large
number of tie points for all the test sets. The first two tests achieved
the more tie points compared with test 3. The reason may be that the
temporal differences of almost four years result in the changes of
some areas between the images of test 3. However, test 3 achieved
a considerable number of tie points for image registration. Fig. 10
shows that the tie points of each test are densely and evenly distrib-
uted over the images, which is very useful for the PL model to handle
the local distortions caused by terrain relief. Based on the obtained
results for three test sets in the fine registration stage, it has proven
that LSCC is robust to the non-linear intensity differences between
multispectral remote sensing images.

3.3. Accuracy analysis

Two different methods have been used to evaluate the registra-
tion accuracy of the proposed method. One is visual inspection
which checks the overlay of the reference and the registered image.
The other method is based on RMSE calculated from the manually
selected check points between the images.

Fig. 11 shows that the three sub-images of each test are en-
larged for visual inspection. The sub-images cover different surface
scenes, such as the river bank, mountain, bridge, and building.
Generally speaking, the registered image fits very well with the ref-
erence image despite the significant non-linear intensity differ-
ences. However, It needs to be noted that the slight parallaxes
around the building (the first sub-image of the third row in
Fig. 11) are still observed due to the relief displacement of the
buildings. This is a tough problem for high-resolution image regis-
tration, and it cannot be solved perfectly through an image-to-im-
age registration method, unless a true orthorectification is applied
(Hong and Zhang, 2008)

On the other hand, a set of 20 check points was manually se-
lected between the reference image and the registered image for
the three test data. The registration accuracy represented by RMSE
is shown in Table 3.

Table 3 shows that the proposed method is successful in regis-
tering all the tests. However, they achieved different registration
accuracies due to the differences in the resolutions and terrains.
The registration accuracies of the first two tests are higher than
that of test 3. The reason for such difference is that the data of
the first two tests contain smaller local distortions caused by lower
resolutions. Compared with test 1 covering a plain area, test 2 cov-
ering a mountain area achieves relatively lower accuracy because it
has a larger terrain relief. As for test 3, its registration accuracy is
the lowest among all the test sets. This is because of the test data
being high-resolution images covering an urban area, where the
relief displacement of the buildings leads to the significant local
distortions. However, the RMSE of test 3 is 1.52 pixels, which is
acceptable accuracy for a registration of high-resolution images
covering an urban area. Overall, these results demonstrate that



Table 3
The registration accuracies of the three tests.

Test No. of check
points

RMSE
(pixels)

Characteristics

Test 1 20 0.65 Medium-resolution plain area
Test 2 20 0.88 Medium-resolution mountain area
Test 3 20 1.52 High-resolution urban area

Fig. 12. The registration accuracy comparison of different transforms. The PL
represents the piecewise linear transform.
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the proposed method can obtain reliable registration accuracies for
the multispectral remote sensing images with significant non-lin-
ear intensity differences.

To analyze the performance of the transforms, the registration
accuracy using the PL model was compared with those of projec-
tive and polynomial models. The comparison results are shown
in Fig. 12. We can find that the registration accuracy of the PL mod-
el is higher than that of others, especially for test 2 and test 3. This
is because the PL model can handle the local distortions well when
the tie points are densely and evenly distributed over the whole
image (Arévalo and González, 2008). Additionally, it can be also
seen that the projective model achieves the slightly higher accu-
racy than the second-order or third-order polynomial models for
test 1, while the third-order polynomial model performs better
than the projective and 2-order polynomial models for test 2 and
test 3. This indicates that a projective model is more beneficial
for medium-resolution images covering the plain area, whereas a
3-order polynomial is more suitable for images with terrain relief
in the global consistency check.
Fig. 13. The correct match rates of LSCC and NCC in the different template sizes for
all the tests. (a) The correct match rate of test 1, (b) the correct match rate of test 2,
(c) the correct match rate of test 3.
3.4. Comparison of LSCC with NCC

As LSCC was used as a new similarity metric for tie-point detec-
tion in the proposed method, it was compared with NCC to verify
Table 4
The correct matches, the total matches, and the correct match rates of NCC and LSCC in di
CMR: correct match rate.

Test Methods The CM, TM, and CMR(%) in different template sizes(pi

21 � 21 31 � 31

CM/TM CMR CM/TM CMR

Test 1 NCC 449/739 60.8 462/747 61.8
LSCC 569/782 72.8 707/868 81.6

Test 2 NCC 398/662 60.1 439/695 63.2
LSCC 537/718 74.8 649/789 82.3

Test 3 NCC 261/493 52.9 301/524 57.4
LSCC 345/528 65.3 422/585 72.1
its ability to match multispectral remote sensing images. The
comparison experiment was performed by detecting tie points in
the fine registration of the three previous image pairs. First, 1500
fferent template sizes for all the three tests. CM: correct matches, TM: total matches,

xels)

41 � 41 51 � 51 61�61

CM/TM CMR CM/TM CMR CM/TM CMR

506/777 65.1 512/778 65.8 514/780 65.9
793/920 86.2 829/938 88.4 844/947 89.1

450/704 63.9 477/713 66.9 481/716 67.2
720/831 86.6 748/847 88.3 763/855 89.2

327/549 59.6 334/554 60.3 337/557 60.5
472/627 75.3 500/638 78.4 509/643 79.2
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Harris interest points were extracted in the pre-registration image.
Then, the matches were obtained within a search window (20 � 20
pixels) of the reference image using LSCC and NCC combined with
the bidirectional matching technique, respectively. To analyze the
sensibilities of the two similarity metrics with respect to the tem-
plate window size (hereafter referred to as template size), different
template sizes for matching were used in the above procedure. The
mismatches were removed by the global consistency check meth-
od. Table 4 lists the correct matches, the total matches, and the cor-
rect match rates6 of the two similarity metrics for all the three test
sets. We use the correct match rate to evaluate the two similarity
metrics because it directly reflects the matching performance.
Fig. 13 shows the correct match rates of the two similarity metrics.

Fig. 13 shows that the correct match rates of LSCC are higher
than that of NCC in all template sizes for the three tests. This find-
ing indicates that LSCC is more discriminative than NCC in detect-
ing tie points between the three multispectral image pairs. The
reason is that NCC is only invariant to linear intensity changes
and cannot handle complex intensity differences between images
very well (Hel-Or et al., 2011). On the contrary, LSCC is based on
the LSS descriptor, which captures the local shape property of
images and is less sensitive to non-linear intensity differences.
We can also observe from Fig. 13 that the correct match rates of
these two similarity metrics rise with the increase of the template
size. Compared with that of NCC, the correct match rate of LSCC
grows at a faster ratio when the template size increases, especially
between 21 � 21 pixels and 41 � 41 pixels. This finding may be
attributed to the fact that a larger template size can contain more
shape properties, which may improve the robustness of the simi-
larity metric to some extent. However, although a large template
size can improve the correct match rate of LSCC, the correct match
rate has no significant improvement when the template size is be-
yond a certain range, such as 51 � 51 pixels. Furthermore, a large
template size will increase the computational expense. Consider-
ing the correct match rate and the computational efficiency com-
prehensively, a proper template size for LSCC should be between
41 � 41 and 51 � 51 pixels for practical application. Overall, the
above results demonstrate that compared with NCC, LSCC is a more
reliable similarity metric for matching the multispectral remote
sensing images with non-linear intensity differences.
4. Conclusions

Image registration is necessary step for combined utilization of
the remote sensing images acquired at different spectra. Automatic
registration of multispectral remote sensing images could be a
challenging task due to the significant non-linear intensity differ-
ences. Conventional registration techniques have limitations for
solving this problem. This paper presented an automatic image
registration method for multispectral remote sensing images by
using various techniques including the SR-SIFT algorithm, the Har-
ris corner detector, the LSS descriptor, and the PL model. The pro-
posed method involves two stages, namely, pre-registration and
fine registration. In the first stage, the pre-registration is performed
using SR-SIFT and a projective transform to eliminate the obvious
translation, rotation, and scale differences between the reference
and the sensed images. In the second stage, a set of Harris interest
points are first extracted in the pre-registered image. Then, LSS is
used as a new similarity metric (named LSCC) for tie-point detec-
tion by the bidirectional matching technique. Finally, the pre-
registered image is rectified using the PL model.

The proposed method has been evaluated using three pairs of
multispectral remote sensing images from different sensors, each
6 The correct match rate = the correct matches/the total matches.
having significant non-linear intensity differences and geometric
distortions. The experimental results demonstrate that the pro-
posed method can achieve reliable registration accuracies for all
the test data. However, there are some problems that need to be
addressed further. It can be observed that SR-SIFT only achieves
a small number of tie points in the pre-registration. The main rea-
son is that SR-SIFT uses the local gradient information to build the
feature descriptor, and the local gradient information is sensitive
to non-linear intensity differences (Tsai et al., 2010). Further re-
search could introduce the global structure information to enrich
the feature descriptor for improving the matching performance.
In the fine registration, though the PL model can handle the local
distortions well with as many tie points as possible, it cannot effec-
tively rectify the relief displacement from buildings for high-
resolution images covering an urban region. A true orthorectifica-
tion may be an effective approach to solve this problem. In
addition, LSCC is compared with NCC in terms of the performance
of the correct match rate. LSCC is found to perform better than NCC
for the test data and is robust to non-linear intensity differences
among multispectral remote sensing images. Nevertheless, we
should note that the performance of LSCC may decline if the
images do not include enough shape or structure information be-
cause LSCC depends on the LSS descriptor, which represents the lo-
cal shape property of the image. In this case, an image
enhancement technique can be applied to enhance the shape or
edge feature, which may be of some help to image matching. In fu-
ture work, a more detailed analysis for LSCC will be carried out
using various multispectral remote sensing images.
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