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This paper presents a global plane fitting approach for roof segmentation from lidar point clouds. Starting
with a conventional plane fitting approach (e.g., plane fitting based on region growing), an initial segmen-
tation is first derived from roof lidar points. Such initial segmentation is then optimized by minimizing a
global energy function consisting of the distances of lidar points to initial planes (labels), spatial smooth-
ness between data points, and the number of planes. As a global solution, the proposed approach can
determine multiple roof planes simultaneously. Two lidar data sets of Indianapolis (USA) and Vaihingen
(Germany) are used in the study. Experimental results show that the completeness and correctness are
increased from 80.1% to 92.3%, and 93.0% to 100%, respectively; and the detection cross-lap rate and
reference cross-lap rate are reduced from 11.9% to 2.2%, and 24.6% to 5.8%, respectively. As a result,
the incorrect segmentation that often occurs at plane transitions is satisfactorily resolved; and the topo-
logical consistency among segmented planes is correctly retained even for complex roof structures.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction driven methods, such as the graph matching approach (Verma
Building roof reconstruction is of a current research interest in
3D city modeling. Because of being able to directly collect dense,
accurate 3D point clouds of urban objects, lidar (Light Detection
and Ranging) technology provides an efficient solution to this need.
Reported methods for building roof reconstruction mostly fall into
two categories: data-driven (bottom–up) and model-driven (top–
down). In terms of data-driven methods, a common assumption
is that a building is a polyhedron consisting of planes and edges.
As a crucial step, the point clouds of a building are usually seg-
mented into disjointed planar regions. Subsequent tasks, including
roof edge extraction and topologic reconstruction, are dependent
on the quality of segmentation. A poor segmentation may make
these tasks fail. As for model-driven methods, a building is
assumed to be an assembly of roof primitives (e.g., gable roof
and hipped roof), which and whose topology are predefined in a
model library (Tarsha-Kurdi et al., 2007a; Huang et al., 2013).
However, roof segmentation is still a required step in many model-
et al., 2006; Oude Elberink and Vosselman, 2009). A poor segmen-
tation may alter the topology among roof planes and make the
matching task fail (Oude Elberink and Vosselman, 2009).

Building roof segmentation can be accomplished via various
approaches, such as data clustering, region growing, energy
minimization, and model fitting. A review of these approaches
can be found in (Awwad et al., 2010; Sampath and Shan, 2010). Data
clustering is basically a statistical technique that classifies the point
clouds into primitives based on certain pre-calculated local surface
properties or features. Filin and Pfeifer (2006) propose a slope adap-
tive neighborhood for such calculation. Considering the variations
in local point density, Sampath and Shan (2010) use the Voronoi
neighborhood to estimate the local surface properties, whereas
Lari et al. (2011) use a cylindrical neighborhood for this purpose.
As for clustering the feature vectors, mode-seeking (Filin and
Pfeifer, 2006), conventional mean-shift (Melzer, 2007), and fuzzy
k-means (Sampath and Shan, 2010) are applied. In spite of the pop-
ularity and efficiency of this approach, it suffers the difficulty in
neighborhood definition and is sensitive to noise and outliers.

Region growing is a region-based segmentation method that
partitions point clouds into disjoint homogenous regions. It starts
with a selected seed point or region and expands to its neighboring
points. Gorte (2002) selects the triangles in triangulated irregular
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Fig. 1. Labeling of data points and their fitted lines. The double-arrowed lines link
each pair of neighboring points. Data points and their corresponding fitted lines are
shown with the same shade.
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networks (TINs) as seed regions and extends them to neighboring
triangles. Zhang et al. (2006) perform a local plane fitting at points
and select the points with good planarity as seed points. To obtain
robust seed points, Chauve et al. (2010) develop an iterative
Principal Component Analysis (PCA) to estimate local planarity.
You and Lin (2011) present a non-iterative approach using tensor
voting for this purpose. Unlike the aforementioned approaches,
Dorninger and Pfeifer (2008) determine seed clusters (regions) by
a hierarchical clustering approach. As for expanding seed regions,
similarity measures such as distances of points to planes (Zhang
et al., 2006; Dorninger and Pfeifer, 2008; Chauve et al., 2010) and
angle differences between normal vectors (Dorninger and Pfeifer,
2008; Chauve et al., 2010; You and Lin, 2011) are used. Neverthe-
less, region growing is susceptible to the selection of seed regions
(Awwad et al., 2010) and difficult to stop when transitions
between two regions are smooth (Sampath and Shan, 2010).

The energy minimization approach is a global solution that
formulates the segmentation as an optimization problem. Its
objective function may consist of fidelity to data, continuity of fea-
ture values and compactness of segment boundaries (Kim and
Shan, 2011; Vitti, 2012). A widespread application of this approach
to image segmentation can be found in (Vitti, 2012). As for the seg-
mentation of lidar data, multiphase level set approach is adopted
to segment planar roof primitives under an energy minimization
formulation (Kim and Shan, 2011). Compared to the RANSAC
(RANdom SAmple Consensus, Fischler and Bolles, 1981) based
approaches, it is global and multiple roof planes can be segmented
at one time. However, a common shortcoming of this approach is
that poor segmentation may occur when the energy function
converges to a local minimum.

Since the reconstructed models are dependent on the robust
estimate at planar primitives, robust model fitting methods such
as RANSAC and Hough transform (Duda and Hart, 1972) are also
applied to roof segmentation. Lidar points that fit a mathematical
plane with most inliers are first extracted and regarded as a planar
segment. This approach is robust to noise and outliers, but it tends
to result in spurious planes (Tarsha-Kurdi et al., 2007b; Yan et al.,
2012). With the help of available building ground plans, Vosselman
and Dijkman (2001) split the dataset into small parts before apply-
ing Hough transform to prevent the detection of spurious planes.
Some extended RANSAC considering local surface normals (Bretar
and Roux, 2005; Schnabel et al., 2007; Awwad et al., 2010; Chen
et al., 2012) are also developed for this purpose. Considering spatial
connectivity, Zhang et al. (2006) and Chauve et al. (2010) combine
model fitting and region growing. Nevertheless, most of the model
fitting approaches are order-dependent and based on a single-
model. Segmentation results are dependent on the order in which
the planes are extracted. When multiple planes are present, each
plane instance needs to be sequentially extracted. As a result,
points at transitions between roof faces will be assigned to the first
extracted planes. In most cases, this approach performs well with
some additional constraints. However, for complex roof structures
it tends to result in mistakes, such as spurious planes (segments
that do not exist in reality), over-segmented planes (one actual
plane is segmented into multiple segments), and under-segmented
planes (multiple actual planes are segmented into one segment).

To overcome these problems, this paper seeks a global optimi-
zation solution to the problem of roof segmentation from airborne
lidar point clouds. A multi-label (plane) optimization approach is
introduced for this purpose. It intends to reduce the number of
mistakes derived from a plane fitting based on region growing
and to improve the topological consistency among segmented
planes. In our study, the point clouds of building roofs are first
extracted from airborne lidar data. Starting with initial planes
derived from a plane fitting approach, a global energy function
consisting of fidelity to data, spatial smoothness, and the number
of models (i.e., the number of planes) is constructed to optimize
the segmented planes. Comparing to existing approaches, the pro-
posed method incorporates spatial smoothness between data
points into plane fitting. It can produce spatially coherent seg-
ments and improve the segmentation quality. Additionally, the
proposed approach is global, i.e., multiple roof planes are deter-
mined at the same time and their corresponding model parameters
can be refined when minimizing the energy function. It yields both
high completeness and high correctness rates. More noticeably, the
incorrect segmentation that often occurs at plane transitions is
satisfactorily avoided and the topological consistency among
segmented planes is correctly retained.

The remainder of the paper is structured as follows. Section 2
formulates the segmentation task as a multi-label (plane) optimi-
zation problem and presents a graph cuts based global solution.
Section 3 starts with the test data description, followed by a
presentation of individual and overall test results to demonstrate
the solution procedure. Assessment and discussion constitute Sec-
tion 4, where we define our quality metrics, examine the sensitiv-
ity of the solution to relevant parameters, and assess the metric
quality and topologic quality of the segmentation outcome. Both
quantitative and qualitative evaluations are presented. Section 5
consists of our concluding remarks on the properties of the method
and future effort.
2. Multi-label optimization

2.1. Formulation

The segmentation task can be noted as a labeling problem and
formulated in terms of energy minimization. Eq. (1) provides such
a formulation (Delong et al., 2012; Isack and Boykov, 2012)

EðLÞ ¼
X

p2P
DpðLpÞ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{data cos t

þ
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zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{label cos t

ð1Þ

where L is a given set of labels (planes) and d(.) is an indicator
function. Let P represent a set of data points, the multiple labeling
task is to assign a point p � P a label Lp � L such that the labeling
L minimizes the energy E(L), where L0 is the set of labels appearing
in L and N is an assumed neighborhood for data points. Three energy
terms are considered in the energy formula. The data cost term (the
first term in Eq. (1)) measures the discrepancy between data points
and labels. It is the sum of the distances of points to their assigned
labels. The smooth cost term (the second term in Eq. (1)) measures
the label inconsistency between neighboring points. It is the sum of
weight wpq of each pair of neighboring points p and q that are
assigned to different labels. The label cost term (the third term in
Eq. (1)) measures the number of labels appearing in L. It is the
sum of the label cost hl of each label l � L0. Fig. 1 illustrates a labeling
of data points and their fitted lines. Two lines A and B are fitted to
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data points and the value of label costs is HA + HB. As a result, the
data cost can be calculated as dist(a,A)+dist(b,A)+dist(c,A)+dist(d,B)+
dist(e,B)+ dist(f,B) and the value of smooth costs is wcd, where dist(.)
is the perpendicular distance of a point to its fitted line.

2.2. Cost terms

Since a plane corresponds to a unique label, the multi-plane
optimization can be stated as a multi-label optimization problem.
Accordingly, the three terms in Eq. (1) can be adapted for our task.
This section will discuss how to construct the energy function for
multi-plane optimization.

The data cost term penalizes the disagreement between a point
and its assigned label. In the paper, the perpendicular distances of
lidar points to the segmented planes is used to measure the dis-
agreement. For a plane ax + by + cz + d = 0 (a2 + b2 + c2 = 1), its
paramter vector is (a, b, c, d). Assuming that the plane fitting errors
of inliers follow the Gaussian distribution, the data cost between a
lidar point p (xp, yp, zp) and its assigned label (plane) Lp(ap, bp, cp, dp)
is calculated as

DpðLpÞ ¼ � ln
1ffiffiffiffiffiffiffi

2p
p

Dd
� exp � distðp; LpÞ2

2Dd2

 ! !
ð2Þ

where

distðp; LpÞ ¼
axp þ byp þ czp þ dp Lp – Loutlier

2Dd Lp ¼ Loutlier

�
ð3Þ

In the aformentioned equation, Loutlier is an extra label for noise
or outliers and Dd is a distance threshold in plane fitting. Notably,
the distance between lidar points and label Loutlier is a constant
value, which is set to 2Dd in this paper. It means that the lidar
points with distances to their corresponding planes larger than
2Dd are more likely to be noise or outliers.

The smooth cost term penalizes the label inconsistency
between neighboring points. To minimize the energy function,
neighboring points are encouraged to have similar labels (Delong
et al., 2012). For this purpose, the neighborhood from derived Tri-
angulated Irregular Networks (TINs) is used. If a pair of neighbor-
ing lidar points p and q fit the same plane, the smooth cost
between them is 0; otherwise, the smooth cost is 1. The smooth
cost term considers the discontinuity at plane transition under a
global fitting and produces spatially consistent segments. Since
adjacent points are more likely to fit the same model, wpq is set
inversely proportional to the distance between points (Isack and
Boykov, 2012), i.e.

wpq ¼ expð�kp� qkÞ ð4Þ

The label cost term penalizes the number of labels. Fewer labels
are encouraged to be used to represent data compactly (Delong
et al., 2012). The term is introduced to reduce the number of
redundant planes in the segmentation results. When minimizing
the energy function, if the costs (data costs and smooth costs) of
eliminating a label l are smaller than hl, then the label l will be
eliminated or merged with other labels. A large label cost can help
to eliminate redundant planes, but small segmented planes may be
missed after the label optimization. To ensure that small roof
planes are kept after the label optimization, hl is written as

hl ¼
n� 1

2� ln 1ffiffiffiffi
2p
p

Dd

� �
Lp – Loutlier

0 Lp ¼ Loutlier

(
ð5Þ

where n is the minimum number of lidar points required for a valid
plane. Except for the labels for noise or outliers, every label has the
same label cost. However, the label costs derived from Eq. (5) may
be smaller for some large redundant planes. To alleviate this issue,
an adaptive label cost is used. The similarities between segmented
planes are checked. If the angle and distance (parameter d in the
plane equation) differences between segmented planes are less
than given thresholds, n is replaced with the average number of
inliers of the similar planes and their corresponding label costs
are updated. Notably, very similar planes can be merged even under
a small label cost.

2.3. Graph cuts based minimization

The above energy minimization problem can be resolved via
graph cuts. The graph cuts technique constructs a graph for the
energy function such that the minimum cut on the graph corre-
sponds to the minimum of energy (Boykov et al., 2001;
Kolmogorov and Zabin, 2004). We adopt a popular graph cuts
based method, i.e., the extended a-expansion algorithm (Delong
et al., 2012) to minimize the energy function in Eq. (1). Given a
set of initial labels, the algorithm converts the multiple labeling
problem into sequences of independent binary labeling problems
and minimizes the energy function using graph cuts. Since the
input to the energy function in Eq. (1) is a set of labels (planes),
the planes derived from existing model fitting methods can be
taken as the initial labels. In the paper, the plane fitting approach
described in (Chauve et al., 2010) is adopted to produce initial
planes without constraints on the plane normals. Algorithm 1
below illustrates the process of multi-plane optimization. Having
initialized the three cost terms (steps 1–4), the graph cuts based
method, i.e., the extended a-expansion algorithm is used to mini-
mize the energy function (step 5) to find the optimal labeling of
data points. Similiar to the PEARL (Propose Expand and Re-esti-
mate Labels) algorithm (Isack and Boykov, 2012), the optimization
is conducted in an iterative manner to refine the model paramters
of the derived labels. Notably, some coplanar segments may be
merged to a same label in the optimization. To separate them, a
connectivity analysis needs to be performed after the label optimi-
zation (step 7).

Algorithm 1. Process of multi-label optimization.

Input: A set of lidar points P and its corresponding labeling L0.
Input: Neighborhood system N.
Input: Threshold n and Dd.
Output: Optimal labeling L.
1. Initialize smooth costs (Eq. (4)) and set t = 0.
2. Derive the initial planes Mt from Lt.
3. Initialize data costs (Eq. (2)) and label costs (Eq. (5)).
4. Check the similarities between segmented planes and

update their corresponding label costs.
5. Set t = t + 1 and run the extended a-expansion to compute

the optimal labeling Lt.
6. If the energy decreases, go back to Step 2.
7. Compute the connected components of Lt and remove the

labels with less than n points.
8. Update Lt and set L = Lt.
3. Experiments and results

Lidar data sets over Indianapolis (USA) and Vaihingen (Ger-
many) are used for evaluation. The properties of the test data sets
are summarized in Table 1. The test site in Indianapolis (Fig. 2a)
is situated in downtown Indianapolis. It is characterized by
complex pitched roofs consisting of small planes; some flat roof
buildings are also present. The test site in Vaihingen (Fig. 2b) is
located in the center of the city Vaihingen and characterized by



Table 1
Properties of the two test data sets.

Site Indianapolis Vaihingen

# Total points 87,862 151,177
#Roof points used 30,498 22,799
Equipment Optech Gemini Leica ALS 50
Acquisition date December 2009 August 22, 2008
Coverage area �39,840 m2 �22,835 m2

Point density �1.4 pts/m2 �4 pts/m2

# Returns 2 3
# Returns used 2 3

#Returns: number of returns in lidar data; #Returns used: the number of used
returns for segmentation; #Roof points used: the number of roof lidar points used
for segmentation.
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dense buildings with complex roof structures (Cramer, 2010). It is
one of the benchmark data sets of the ‘‘ISPRS Test Project on Urban
Classification and 3D Building Reconstruction’’ (http://www2.
isprs.org/commissions/-comm3/wg4/tests.html), which aims to
test various algorithms on urban object classification and building
reconstruction.

We first use a sample building (Fig. 3) from the Vaihingen data
set to illustrate the process of the label optimization. We add a
number of random noise points to the raw building lidar points
to evaluate the robustness of the algorithm. Fig. 3b presents the
intial segmentation result, where many roof planes, including
small ones are correctly separated from the noisy lidar points.
However, spurious planes (e.g., segment C) are introduced and roof
planes (e.g., segment A) may be partitioned into several segments.
Similarly, segmentation of several transion regions between roof
planes results in dangling portions (e.g., segment B). After the first
iteration (Fig. 3c), most of the spurious planes are eliminated (cf.
segment C in Fig. 3b) and the redundant planar segments belong-
ing to the same roof plane are merged (cf. segment A in Fig. 3b).
More noteably, the introduction of the smooth cost term can
remove most of the dangling portions of planar segments (cf.
segment B in Fig. 3b). In the subsequent iterations, the remaining
arctifacts are gradually eliminated and the iteration converges
after six times (Fig. 3e). The use of the label cost term may produce
fewer labels, i.e., some coplanar roof planes are merged (e.g., planar
Fig. 2. Images of the two test sites (not in scale), (a) Indianapo
segments D and E in Fig. 3e). Therefore, a connected component
analysis of the segmented planes needs to follow to separate the
coplanar segments. Given a distance threshold based on the point
density, the components far away from other components are sep-
arated and assigned a new label. At the end, the labels (planes)
consisting of less than a given number of lidar points are
disregarded. Fig. 3f gives the final segmentation of the complex
building. Fig. 4 shows the changes of the energy and the number
of planes during the iteration. After the first iteration, most of
the roof segmentation is completed since the number of identified
planes and the energy drop sharply. In the subsequent iterations,
only a few lidar points change their labels, leading to a quick
convergence.

Same as the classical RANSAC, two necessary thresholds Dd
(distance threshold) and n (the minimum number of lidar points
required for a valid plane) must be selected before segmentation,
where n is related to the density of the lidar points and the size of
considered roof planes. In the paper, the distance thresholds in
the initial segmentation and label optimization are set to be the
same: Dd = 7 cm and 5 cm for Indianapolis and Vaihingen, respec-
tively, and n = 4 for both data sets. Fig. 5 provides an overview of
the segmentation results using the proposed approach. The
Indianapolis data set (Fig. 5a) has 338 actual (reference) roof
planes. Our approach misses 35 and yields a total of 337 planar
segments, which includes 3 spurious planes and some over-
segmented actual roof planes (e.g., roof planes A and B). The
Vaihingen data set (Fig. 5b) has 241 actual (reference) roof planes.
Our approach misses 10 and produces a total of 246 planar seg-
ments, including 5 spurious planes and some over segmented
actual roof planes.
4. Assessment and discussion

Six metrics are used to evaluate the performance of the
proposed approach. Completeness (Comp) is the percentage of
reference roof planes that are correctly segmented. It is sensitive
to the number of missed roof planes. Correctness (Corr) is the per-
centage of correctly segmented planes in the segmentation results.
It is sensitive to the number of spurious planes. The two metrics
are defined as
lis (from Google Map) and (b) Vaihingen (Cramer, 2010).
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Fig. 3. Segmentation of roof lidar points (random noise accounts for 25% of the data): (a) reference image, (b) initial segmentation, (c) iteration 1, (d) iteration 3, (e) iteration 6
(convergence), and (f) final segmentation. Building point clouds are colored by segmented planar segments, with white dots for unsegmented lidar points.

Fig. 4. Energy (E) and the number of planes (N) vs the number of iterations (t) in
multi-label optimization.
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comp ¼ TP
TPþFN

corr ¼ TP
TPþFP

ð6Þ

where TP is the number of true positives, i.e., the number of planes
found both in the reference and segmentation, FN is the number of
false negatives, i.e., the number of reference planes not found in
segmentation, and FP is the number of false positives, i.e., the num-
ber of detected planes not found in the reference. To be a true posi-
tive, a minimum overlap of 50% with the reference is required. To
evaluate the effect of the incorrect segmentation, two additional
metrics, detection cross-lap (DCL) rate and reference cross-lap
(RCL) rate (Shan and Lee, 2005; Awrangjeb et al., 2010) are adopted.
Detection cross-lap rate is the percentage of detected planes that
overlap multiple reference roof planes. Reference cross-lap rate is
the percentage of reference planes that overlap multiple detected
planes. They are defined as
DCL ¼ N0d
Nd

RCL ¼ N0r
Nr

ð7Þ
where N0d is the number of detected planes that overlap more than
one reference roof plane, N0r is the number of reference roof planes
that overlap more than one detected plane, Nr and Nd are
respectively the number of reference planes and detected planes.
However, the DCL and RCL metrics are mainly used for an object-
based evaluation. As supplementary indicators, boundary precision
and boundary recall are used (Estrada and Jepson, 2009). Boundary
precision measures the portion of boundary points in segmentation
that correspond to a boundary point in the reference. Boundary
recall measures the portion of boundary points in the reference that
correspond to a boundary point in the segmentation. For lidar
points, the two metrics can be defined as
Boundary precision ¼ jBs\Br j
jBs j

Boundary recall ¼ jBs\Br j
jBr j

ð8Þ
where Br and Bs are respectively the set of boundary points in the
reference and segmentation, | | denotes the number of points in a
data set. The reference planes and boundary points are derived by
manually labeling (segmenting) the roof points.



Fig. 5. Overview of the segmentation results color coded by planar segments: (a) Indianapolis and (b) Vaihingen.
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4.1. Parameters sensitivity

The geometric distance threshold (Dd) is an essential parameter
in roof segmentation. Points within that distance threshold to a fit-
ted plane become one segment. A large Dd results in coarse planes,
whereas a small one produces fine segments. Incorrect segmenta-
tion tends to occur at plane transitions. Fig. 6 provides an example
of segmentation under different distance thresholds. The angles
between roof planes A and B, A and C, and B and C (cf. Fig. 6a)
are respectively 34.0, 34.4, and 7.5 degrees. When the distance
threshold is set to 7 cm and 15 cm, respectively, neither of the
two initial segmentations (Fig. 6b and c left) can produce a satisfac-
tory separation between plane B and C. However, the label optimi-
zation approach can yield a stable and correct boundary (Fig. 6b
and c right) under both thresholds. What should be noted is the
case of Fig. 6d where Dd = 20 cm. Such a large threshold makes
plane B and C being segmented into one plane. The label optimiza-
tion process does not contribute to this case since it cannot pro-
duce more number of planes than the initial segmentation can.
Due to the lack of initial models corresponding to plane B and C,
lidar points of these planes will be assigned to other similar planes
after the label optimization.

4.2. Metric quality

This section is primarily focused on the evaluation of complete-
ness and correctness. Table 2 lists the statistics from the initial seg-
mentation and its optimization. A number of observations can be
noted based on this table. First, since the outcome of the initial seg-
mentation defines the maximum number of plane segments (i.e. the
set of possible labels), the optimization process cannot generate
more number of plane segments. Under this restriction, the optimi-
zation process essentially may e.g., merge initial segments, split a
segment and in the same time combine the results with other exist-
ing segments, or include initially not segmented lidar points to an
existing segment, all under the restriction that no more number of
segments is created. This fact is shown in the two #SP columns of
Table 2 where less number of plane segments are present in the
optimization outcome. Second, the optimization can segment many
initially unsegmented lidar points into planar segments (#US col-
umns). The remaining unsegmented points are 1.2–3.3 times less
than the initial results. In average more than half (148 vs 64) initially
unsegmented points (#US) are involved in the definition of the roof
planes, which considerably improves the completeness from 80.1%
to 92.3%. This is beneficial since more individual lidar points can con-
tribute to the subsequent roof reconstruction. It should be noted that
such property is likely due to the use of the smooth cost term (Eq.
(1)) which enforces a transition at regions with sparse lidar data.
Thirdly, many spurious planes resultant from the initial segmenta-
tion are resolved. Table 2 shows that the proposed optimization
approach keeps the high completeness rate (92.3%) and in the same
time improves the correctness from 93.0% to 100.0%, which means a
very small false alarm rate can be expected.

Fig. 7 presents some representative segmentation results before
and after the label optimization. As a common shortcoming of
data-driven approach, the proposed approach fails to catch small
roof planes with 0–6 lidar points (e.g., the elliptical regions in
Fig. 7a, b, c and f). Similarly, thin planar faces with a width less
than the point spacing are also missed due to insufficient lidar
points. However, if the missed small roof planes are coplanar with,
or very similar to a segmented one, they can likely be detected
after label optimization. An example is given in Fig. 7c. Although
the roof plane A (in the reference image) is missed in the initial
segmentation result, it is correctly segmented through the subse-
quent label optimization. Due to the introduction of the adaptive
label cost (Eq. (5)), the proposed approach behaves robustly even
for complex buildings with a number of small roof planes. As
shown in Fig. 7c, the test building consists of 49 roof planes, and
a considerable portion of them has no more than 10 lidar points.
Despite the existence of many complex shapes, 47 roof planes
are correctly segmented from the lidar points, which improves
the completeness from 77.6% to 95.9%.

The label cost term encourages representing data compactly.
Redundant planar segments will be merged or eliminated after
the label optimization. Benefiting from the label cost, most of the
spurious and over-segmented planes in Fig. 7 are eliminated or
merged while retaining the small roof planes (e.g., the roof planes
A and B in Fig. 7f). However, due to the presence of non-planar



(a, reference image) 

(b, Δd = 7cm) 

(c, Δd = 15cm) 

(d, Δd = 20cm) 

Fig. 6. Segmentation under different distance thresholds (Dd) in plane fitting. From left to right: the initial segmentation and optimized segmentation. The three line
segments represent the intersections of adjacent roof planes. Point clouds are colored by the segmented planar segments.

Table 2
Quality of segmentation results.*

Bld ID #Pts #Pls Methods #SP #US %Comp %Corr %RCL %DCL %BP %BR

a 454 14 Initial 13 79 71.4 92.3 9.1 0 93.1 83.2
Optimized 12 40 78.6 100 9.1 0 96.4 98.8

b 541 22 Initial 26 91 77.2 84.6 35.0 23.1 82.2 74.8
Optimized 20 34 86.4 100 5.0 10.0 99.2 91.4

c 1161 49 Initial 58 252 77.6 93.1 25.5 22.4 81.0 65.2
Optimized 47 79 95.9 100 6.4 0 99.8 97.2

d 1402 20 Initial 31 141 80.0 100 25.0 16.1 69.7 71.9
Optimized 21 58 100 100 5.0 0 87.4 93.8

e 5180 13 Initial 27 251 92.3 85.2 7.7 11.1 82.0 79.0
Optimized 12 75 100 100 0 7.7 97.4 96.0

f 425 12 Initial 14 86 75.0 100 33.3 7.1 93.4 63.7
Optimized 11 28 91.7 100 0 0 97.3 91.6

g 633 12 Initial 20 73 76.9 95 30.8 5.0 90.1 73.4
Optimized 16 25 92.3 100 7.7 0 95.3 91.9

h 2373 30 Initial 49 208 90.0 93.9 30.0 10.2 78.5 85.4
Optimized 33 171 93.3 100 13.3 0 92.3 90.9

Average Initial – 148 80.1 93.0 24.6 11.9 83.8 74.6
Average Optimized – 64 92.3 100 5.8 2.2 95.6 93.9

* ID: building label (cf. Fig. 7); # Pts: the number of lidar points in a building; # Pls: the number roof planes in lidar data; Initial: initial segmentation results; Optimized: label
optimization results; # SP: the number of segmented planes; #US: the number of unsegmented lidar points; %Comp: completeness; %Corr: correctness; %DCL: detection
cross-lap rate; %RCL: reference cross-lap rate; %BP: boundary precision; %BR: boundary recall.
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Fig. 7. Segmentation of roof lidar points. Building point clouds are colored by segmented planar segments, with white dots representing unsegmented points. From left to
right: initial segmentation, the optimized results, and reference images. (a)–(d): Indianapolis (images from Google Map); (e)–(h): Vaihingen.
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faces, the label optimization may fail to optimize the over-seg-
mented planes derived from curved surfaces (cf. the cone roof in
the reference image in Fig. 7g). Besides, since the distance thresh-
old in the experiments may be small for some roof planes, there
still exist over-segmented planes in the segmentation results. This
problem is common for buildings with large flat roofs (cf. Fig. 7d
and the roof planes A and B in Fig. 5a) (Oude Elberink, 2010). Addi-
tionally, the surface variations near roof eaves (cf. the regions B, C
and D in Fig. 7h) may also result in over-segmentation.
4.3. Topologic quality

This section is primarily about detection cross-lap, where a
detected plane overlaps multiple reference planes; and reference
cross-lap, where a reference plane overlaps multiple detected
planes. Conventional plane fitting methods usually extract planes
one after the other from lidar points. Although these methods
are robust to noise and outliers, they tend to result in mistakes
at plane transitions, which in turn causes topological inconsistency



Fig. 7 (continued)

J. Yan et al. / ISPRS Journal of Photogrammetry and Remote Sensing 94 (2014) 183–193 191
among segmented planes. Fig. 8 illustrates several examples of
incorrect segmentation. Fig. 8a shows that two planes are merged
into one. The type of incorrect segmentation in Fig. 8b is common
(cf. the region A in Fig. 7h), where two planes are separated at a
wrongly defined boundary. Fig. 8c is a typical over-segmentation
at plane transitions (cf. segment E in Fig. 9d). Both Fig. 8b and c
can be satisfactorily resolved through the label optimization pro-
cess, however, the optimization of Fig. 8a may fail (cf. Fig. 6d) since
the label optimization cannot increase the number of segments.

The topologic consistency can be measured by the detection
cross-lap (%DCL) and reference cross-lap (%RCL) in Table 2. A good
segmentation should have both as low as possible, so that the
detected planes match the actual roof planes well and the segment
boundaries adhere to roof edges. It is seen that the improvement is
rather substantial since more than half of the detection cross-laps
diminish after label optimization, whereas the improvement in ref-
erence cross-lap is significant, with an average reduction from
24.6% to 5.8%. Accordingly, all the boundary recalls (%BR) are
increased by 15–32%, whereas the average boundary precision
Fig. 8. Incorrect segmentations at a roof transition. Dots are roof lidar points; solid
lines are roof planes; dash lines are fitted planes (dots in dashed rectangles are the
inliers of fitted planes). (a) Adjacent roof planes are segmented into one segment.
(b) A roof plane and its neighboring points of another plane are segmented into one
segment. (c) The transition region is segmented into one segment.
(%BP) is increased from 83.8% to 95.6%. A common topologic incon-
sistency in plane fitting is that the derived patches may cross other
patches (Chen et al., 2012), which leads to dangling segments (i.e.,
broken boundaries) and results in a high detection cross-lap and
reference cross-lap rates. As shown in Fig. 7g (left image), three
planar segments cross each other at region A and the initial DCL,
RCL, BP and BR (Table 2) are respectively 5%, 30.8%, 90.1% and
73.4%. After the label optimization, the topological consistency
among the three planes is correctly retained and a low DCL and
RCL rate (0% and 7.7%) and high boundary precision and recall
(95.3% and 91.9%) are achieved in Table 2. Notably, such improve-
ment is mainly due to the use of the smooth cost in optimization.
Since neighboring points are encouraged to fit the same plane, the
label optimization process can produce segments with compact
boundaries, which in turn reduces the cross-lap rates among
derived patches.

The contribution of the label optimization to topologic consis-
tency can be further demonstrated through Fig. 9. Fig. 9a and b
are an overview of a selected area in Fig. 7h, respectively for its ini-
tial segmentation and label optimization. Fig. 9c–e are the blow-up
views of the two segmentation results. As shown in Fig. 9d, most of
the transition points are initially assigned to segment E, which
leads to over-segmented planes H (Fig. 9c) and C. Meanwhile, some
lidar points of segment F are wrongly assigned to segment C, yield-
ing its incorrect dangling. Additionally, a spurious plane D consist-
ing of lidar points near a roof ridge is also wrongly formed. Such
topological inconsistencies can be resolved via label optimization.
As shown in Fig. 9b, the most noticeable improvement is that the
lidar points of plane E are correctly assigned to other segments
such that the topological relationships among segments C, F, G
and H are restored. Moreover, due to the use of the smooth cost,
the dangling portions of segments A, B and C are removed, yielding
a correct topological consistency.

The above discussion reveals that the proposed approach can
produce spatially coherent segments and eliminate the dangling
portions of segmented planes. Meanwhile, the number of spurious
and over-segmented planes is reduced. Notably, in addition to the
aforementioned artifacts, other factors such as roof matericals or
features may also affect the segmentation quality. For example,
some roofs may have a height texture of several centimeters
(Oude Elberink and Vosselman, 2011), which may influence the
selection of distance threshold in model fitting. Moreover, due to
the lackness of sufficient returns, most of the returns from
chimmey may be classfied into noise or outliers, whereas some
skylights that are several centimetres above roof are segmented
into roof planes.



Fig. 9. Topologic consistency: (a) Initial segmentation (Dd = 10 cm). (b) The label optimization. (c–e) Comparisons of planar segments. The labeled letters represent the
segmented planar segments. Building point clouds are colored by the segmented planar segments; white dots are unsegmented points.
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5. Conclusions

This paper presents a global solution for roof segmentation
from airborne lidar point clouds. Staring with an initial segmenta-
tion, the multi-label optimization is applied to optimize segmented
planes. Experimental results from two test data sets show that
92.5% of the roof planes are correctly segmented, even for complex
buildings. To be more specific, the completeness is increased from
80.1% to 92.3%, the detection cross-lap rate and reference cross-lap
rate are reduced from 11.9% to 2.2%, and 24.6% to 5.8%, respec-
tively. As a result, the noticeable incorrect segmentation problems
at plane transition regions can be satisfactorily resolved and the
topological consistency among segmented planes is correctly
restored.

Compared to the existing model fitting methods for roof seg-
mentation, the label optimization solution is a global one. Unlike
the region growing and RANSAC-based approaches, the proposed
approach can simultaneously determine multiple roof planes. A
benefit of such approach is that multiple roof planes can compete
for lidar points at their transition regions to reach an optimal seg-
mentation. Another distinctive property of the proposed approach
is that the spatial smoothness between data points is considered. It
not only reduces the number of unsegmented points but also elim-
inates the incorrect dangling portions of the planar segments.

Notably, the proposed approach is a general solution to the roof
segmentation task. To facilitate the evaluation and discussion, a
plane fitting based on region growing (i.e., the initial segmenta-
tion) is used as a reference in this study, to which the proposed
label optimization approach is compared. However, from the prac-
tical point of view, the label optimization method can also be used
as a standalone method, which, as many clustering based segmen-
tation methods, needs initial segmentation to start with. Therefore,
it is expected that the proposed method can be combined with
other existing ones with limited modification and significant
performance enhancement.
However, the proposed solution also has limitations. It cannot
produce more number of planes than what it starts with. This sug-
gests an intentionally slight over-segmentation may be applied to
start this method. Like many model fitting methods, a relatively
small distance threshold would help for this end. Since the
multi-label optimization solution provides a scalable framework
for lidar point segmentation, additional constrains can be inte-
grated into this formulation. For example, surface normal may be
introduced to further consider the transition of planes and even
non-polyhedral roofs.
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